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RESUMEN

Este articulo presenta un modelo numérico para el analisis no lineal de estructuras de
hormigén bajo carga estatica creciente hasta la rotura, cuyas principales caracteristicas son
las siguientes: discretizacion por elementos finitos tridimensionales, ecuaciones constitutivas
fragiles para el hormigén, representacién distribuida de la fisuracién y proceso incremental de
carga y fisuracién. A continuacién, se analizan tres elementos estructurales de comportamiento
experimental conocido. Los andlisis de un prisma de hormigén en masa con rotura frigil y de
una viga de hormigdén armado con rotura por flexién muestran que las predicciones de carga
de rotura son moderadamente sensibles al elemento finito y a la malla adoptados. Finalmente,
las predicciones para una viga de hormigén armado con rotura por cortante muestran que los
resultados pueden ser muy sensibles al criterio de actualizacién de propiedades del método
iterativo, bien por falta de convergencia o por propagacion de mecanismos espurios.

SUMMARY

This paper presents a numerical model for the non-linear analysis of concrete structures
under monotonic loading up to failure, the main features of which are as follows: three-
dimensional finite element modelling, brittle constitutive law for concrete, smeared modelling of
cracking and incremental loading and cracking procedure. Three different structural elements
of known experimental performance are analysed. The analyses of a plain concrete prism
exhibiting a brittle failure and a reinforced concrete beam failing in flexure show that the
predictions of ultimate loads are rather insensitive to the adopted finite element mesh. Finally,
the predictions for a reinforced concrete beam failing in shear show that the results may be
very sensitive to the updating strategy of the iterative procedure due to lack of convergence or
to divergence caused by propagation of spurious mechanisms.
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INTRODUCCION

El método de los elementos finitos (MEF en adelante) se ha converido, tras su
aparicién a mediados de los afios cincuenta', en la técnica numérica de resolucién de
problemas fisico-matematicos mas extendida entre los ingenieros. La aplicacién del
MEF al anilisis no lineal de estructuras de hormigén se inicié una década més tarde??,
pero ya en 1982 habia sido objeto de numerosos trabajos de investigacién®, lo que
demuestra el interés suscitado por este campo de la investigacién. Sin embargo, el éxito
de los modelos numéricos ha sido bastante limitado dada la escasez de publicaciones
en las que se aborde el estudio de la generalidad y de la objetividad de los modelos
propuestos.

De entre los distintos modelos numeéricos presentados hasta hoy, conviene destacar
aquellos elementos basicos del analisis sobre cuya bondad existe un cierto consenso entre
los investigadores: técnicas de representacion discreta’ y distribuida® de la fisuracidn,
empleo de fuerzas residuales para ajustarse a relaciones ¢ — € no lineales respetando el
equilibrio global de la estructura®® e inclusiéon de propiedades no lineales y envolventes
de rotura multiaxiales obtenidas de ensayos experimentales especificos del hormigén™®.
A estos elementos bdsicos del andlisis se suman otros elementos secundarios sobre los
que no existe un consenso generalizado y cuyo elevado numero dificulta seriamente
el estudio riguroso de la objetividad de los modelos numéricos que los incorporan.
Entre estos 1ltimos hay que citar los siguientes®: contribucién del hormigén entre
fisuras, relaciones o — € postiltimas, acufiamiento de aridos entre caras de fisura, efecto
pasador de las armaduras (i.e. elementos del analisis relativos a las propiedades de
los materiales), niimero de fisuras por iteracién, elementos finitos, regla de integracién
numérica, malla de elementos finitos y método iterativo (i.e. elementos del anélisis
relativos a los métodos numéricos).

El objetivo de este trabajo es presentar un modelo tridimensional con
representacion distribuida y fragil de la fisuracién para el andlisis no lineal de
estructuras de hormigén®; asi como discutir mediante ejemplos la influencia en las
predicciones del modelo de algunos elementos del analisis que han sido objeto de reciente
discusién cientifica!®?? tales como el elemento finito, la malla de elementos finitos y
el método iterativo.

DESCRIPCION DEL METODO DE ANALISIS NUMERICO

Elementos finitos

Los elementos finitos empleados son los que se representan en la Figura 1. Es
decir, los hexaédricos de 20 y 27 nodos para el hormigén (serendipitico y lagrangiano
respectivamente) y el uniaxial de tres nodos para el acero. (Se trata de elementos
isoparamétricos muy populares cuyas funciones de forma pueden encontrarse en
cualquier texto basico de elementos finitos.) Nétese que para el elemento de 20 nodos se
han considerado dos reglas de integracién gaussiana: 2x2x2 o 3X3x3 puntos de Gauss.
A este respecto hay que puntualizar que, si bien para el analisis lineal de tensiones existe
unanimidad en que el elemento integrado por defecto (elemento H X20A en adelante)
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mejora las predicciones de tensiones obtenidas mediante el elemento con integracién
completa'? (elemento H X 20B en adelante), se ha argumentado recientemente que para
el analisis no lineal de estructuras de hormigén la integraciéon por defecto aumenta
el riesgo de propagacién de mecanismos espurios'?. Sin embargo, las comparaciones
efectuadas durante el desarrollo de este modelo numérico indican que, en general, el
uso del elemento integrado por defecto resulta también favorable para el andlisis no
lineal de hormigén estructural®**.

HX20

Hx27

-/—'\ LM03

Figura 1. Elementos finitos tridimensionales incorporados: (HX20) Elemento
serendipitico de 20 nodos; (HX27) Elemento lagrangiano de 27 nodos;
(LMO03) Elemento uniaxial de 3 nodos.

Ecuaciones constitutivas del hormigén y del acero

Las ecuaciones constitutivas adoptadas para describir el comportamiento del
hormigén bajo carga estdtica de corta duracién son las propuestas por Kotsovos'®.
Tales ecuaciones se derivaron mediante ajuste estadistico de informacién obtenida de
ensayos uniaxiales, biaxiales y triaxiales de probetas de hormigén, sin que en el proceso
se adoptara ningin modelo teérico de material. El modelo de material consta de
relaciones o -- € triaxiales sin ramas de ablandamiento’® védlidas hasta una envolvente
triaxial de tensiones de rotura'®. (Todas las propiedades son tunicamente funcién
de la resistencia a compresién simple en probeta cilindrica.) Las relaciones tensién-
deformacién se caracterizan por su no linealidad, que se atribuye generalmente a los
procesos de microfractura interna del material, debidos a la extensién y propagacién
de microfisuras. Tales procesos de microfisuracién dan lugar a relaciones o — € estables
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hasta niveles tensionales préximos a los de rotura. Sin embargo, a partir de éstos el
material se macrofisura y sufre un crecimiento drastico e inestable de volumen que
en ausencia de confinamiento conduce a la fractura brusca del material's*"!%'*  Por
tanto, el modelo de material no incluye relaciones no lineales postiltimas, ya que los
resultados experimentales muestran que la hipdtesis de rotura completamente fragil
es la que mejor representa el comportamiento del hormigon desde el punto de vista
macroscépico’®. Obsérvese que tal naturaleza fragil del hormigdén es perfectamente
compatible con el comportamiento ductil de algunas estructuras de hormigén®®.

b g

:—Es

£

Figura 2. Diagramas uniaxiales o —e adoptados para el acero: (A) Aceros deformados
en frio; (B) Aceros de dureza natural.

2%.

En lo que respecta al acero, en la Figura 2 se representan los diagramas adoptados
para los aceros deformados en frio (tipo A) y para los aceros de dureza natural (tipo B).
Los diagramas son trilineales y quedan definidos al especificar valores para el médulo
de Young, el limite eldstico (deformacién remanente del dos por mil), la tensién de
rotura y la deformacién de rotura. Segun se vera en los ejemplos numéricos, los
nodos de los elementos finitos correspondientes al acero siempre coinciden con nodos de
elementos finitos de hormigén, lo que implicitamente supone la adopcién de la hipétesis
de adherencia perfecta entre el hormigén y el acero. A este respecto, hay que explicar
que la representacién distribuida de la fisuracién no permite una adecuada modelizacién
de de fendmenos localizados como el de la adherencia, por lo que esta hipétesis es
habitual en casi todos los modelos distribuidos®.
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REPRESENTACION DISTRIBUIDA DE LA FISURACION

La fisuracién del hormigén es, sin duda, un factor muy importante en el
comportamiento de las estructuras de hormigén. Consecuentemente, su modelizacién
es también un factor de gran peso en el analisis. Ademas, la importancia en el analisis
de los aspectos relacionados con la fisuracién se ve aumentada por la degradacién
del acondicionamiento de las matrices de rigidez que la fisuracién conlleva, segin se
ha discutido en otras publicaciones®**. La técnica aqui adoptada se conoce como
representacién distribuida de la fisuracién (“smeared cracking”*). Esta técnica consiste
bésicamente en modificar las matrices constitutivas de aquellas zonas de la estructura
en las que el estado tensional excede los estados de rotura , para con ello incorporar la
pérdida de rigidez asociada con la fisuracion. Tal pérdida de rigidez conlleva descargas
tensionales que se transforman en fuerzas residuales que preservan el equilibrio. La
versién de representacién distribuida incorporada en este trabajo es la misma que la
empleada en la mayor parte de los modelos publicados en los 1ltimos afios®, y consiste
en modificar las tensiones y las matrices constitutivas de los puntos de Gauss que se
utilizan para la integracién numérica de las matrices de rigidez y para el cdlculo de las
fuerzas residuales.

Las matrices constitutivas adoptadas para puntos de Gauss fisurados son
compatibles con la hipétesis de fragilidad anteriormente expuesta y se describen a
continuacién. Cuando el estado tensional de un punto de Gauss supera por primera
vez la envolvente en traccién (i.e. al menos una tensién principal es de traccién), se
forma un plano de fisuracién que es perpendicular a la direccién de la maxima traccién
principal previamente existente. A partir de entonces, la tensién normal a tal plano
se anula e incrementos de tensidn y deformacién en ejes locales se relacionan por la
siguiente expresion:

Aoy A b 0 0 O 0 Ae
Aoy b A 0 0 O 0 AN
Ao, 0O 0 0 0 o0 0 Aes
AT]z 0 0 0 G 0 0 A'le
A1"13 0 0 0 0 ﬁG 0 A713
Ang 0 0 0 0 0 ﬁG A‘y;;;

donde el tercer eje local es perpendicular al plano de la fisura y (0 < 8 < 1) es el
factor de retencién del médulo de deformacién transversal. (Nétese que los coeficientes
A, by G son médulos de deformacién correspondientes a la Teoria de la Elasticidad
obtenidos a partir de unos médulos quasitangentes K; y G; descritos en la referencia
9.) La presencia de un factor de retencién de G no nulo es indispensable para evitar el
excesivo deterioro del acondicionamiento de las matrices de rigidez®'*. En este sentido,
cabe sefialar que valores entre 0.1 y 0.5 son generalmente suficientes para mantener la
estabilidad numérica y que las predicciones no lineales son poco sensibles dentro de este
intervalo® (e.g. un 10%). Si el estado tensional supera por segunda vez en traccién la
envolvente, se forma una segunda fisura. La combinacién de ambas fisuras se representa
mediante la pérdida de rigidez en todas las direcciones, salvo en la direccion paralela
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2% fisura

Figura 3. Ejes locales para puntos de Gauss fisurados (primera fisura paralela al plano
OAB, segunda fisura paralela al plano ABC).

a la intersecciéon de ambos planos. Las relaciones que se adoptan en los nuevos ejes
locales (ejes 12’3’ en la Figura 3) son las siguientes:

rAc;770 0 0 O 0 0 Ag
Ao, 0 A0 O 0 0 Ae
Ac; 0 0 0 0 0 0 Aes
ATu 0 0 O ﬁG 0 0 xﬁ‘hg
Aflg 0 0 O 0 ﬁG 0 A‘]’lg

L. Ang 4 'L 0 0 0 0 0 ﬁG A"{ga

donde de nuevo hay que  conservar algo de rigidez transversal para mantener la
estabilidad numérica. Para el caso extremo de que el estado tensional supere por tercera
vez la envolvente en traccién o en que la envolvente se alcance con todas las tensiones
principales en compresién, el material se considera que pierde su rigidez en todas las
direcciones. Consecuentemente, la matriz constitutiva adoptada es una matriz casi
nula con sélo valores residuales de rigidez transversal, i.e. valores SG; cuya presencia
se justifica por la misma razén apuntada anteriormente para el caso de una o dos fisuras.

Proceso incremental de carga y fisuracién hasta la rotura

El método iterativo elegido para la resolucién del problema no lineal es el conocido
método incremental de Newton-Raphson (MINR en adelante). El MINR se puede
aplicar con distintas estrategias de puesta al dia de propiedades, que dan lugar a
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distintas variantes del método que se suelen referenciar como métodos distintos (e.g.
métodos de Newton-Raphson puro; modificado, mixto, etc.). No obstante, todas las
variantes comparten un esquema de flujo cuya formulacién por elementos finitos se
resume en la Figura 4 y que se describe brevemente a continuacién.

El vector de carga externa se aplica en escalones de carga, Af,, a los que hay que
afiadir el vector de fuerzas residuales de la iteracién anterior, Af,. A continuacién
se actualiza o no la matriz de rigidez incremental de la estructura, K (generalmente
conocida como matriz tangente). Si se puede resolver el sistema de ecuaciones, se
obtienen los incrementos de desplazamientos nodales, Aa, y se calculan en cada punto
de Gauss los nuevos incrementos de deformaciones y de tensiones, Ae y Ae, haciendo
uso de las matrices B y D incorporadas en el sistema de ecuaciones; y se actualizan
los valores totales de deformaciones y de tensiones, € y ¢. Las nuevas tensiones
totales estdn equilibradas (i.e. f(B)T.¢.dV = f.), pero no cumplen las relaciones no
lineales de los materiales, a menos que se haya alcanzado la convergencia. Por tanto,
estas tensiones equilibradas se corrigen para satisfacer las ecuaciones constitutivas de
los materiales (tensiones desequilibradas ¢’). Esta correccién causa la aparicién de
fuerzas desequilibradas o residuales. Si las fuerzas residuales no satisfacen el criterio
de convergencia, la carga externa se mantiene constante y se continia iterando. En
caso contrario, se aplica un nuevo escalén de carga. Obsérvese que antes de la préxima
iteracién se decide qué matrices D conviene actualizar.

Segin se indica en la Figura 4, el proceso incremental de carga sélo se detiene
por divergencia de las fuerzas residuales (si la méxima fuerza residual es mayor que
100 veces la carga total aplicada’) o por la imposibilidad de resolver el sistema de
ecuaciones (método de Choleski®) a causa de la creciente degradacién de la matriz K.
En consecuencia, las predicciones de carga de rotura a que se hace referencia en las
Tablas I a III se corresponden con las cargas méaximas sostenidas en el analisis, i.e. las
correspondientes al ultimo escalon de carga convergido.

En lo que respecta al andlisis no lineal distribuido de hormigén, la fisuracién origina
serios problemas de convergencia si no se actualizan las matrices D de los puntos de
Gauss fisurados'”? (e.g. método de Newton-Raphson modificado); e incluso puede
dar lugar a divergencias prematuras por propagaciéon de mecanismos espurios'?®*, A
este respecto, hay que puntualizar que el método iterativo utilizado para los ejemplos
numeéricos que se describen mas adelante actualiza inmediatamente las matrices D de
las nuevas fisuras (método NR-plus); salvo en el tercero de los ejemplos en el que se
discute la influencia del método iterativo.

También es importante destacar que las fuerzas residuales causadas por la fisuracién
distan mucho de ser pequefias en el caso de modelizacién frgil (i.e. sin ramas
descendentes o — € en la direccién normal a las fisuras como es el caso en este trabajo),
lo que obliga a controlar el numero de fisuras permitidas por iteracién para mantener
la estabilidad numérica del andlisis**®**. En este sentido, hay que sefialar que en los
ejemplos numeéricos sélo se han permitido 2 nuevas fisuras por iteracién para el elemento
HX20A (2 x2x2 puntos de Gauss) y 3 para los elementos HX20By HX27(3x3x3
puntos de Gauss).
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Figura 4. Diagrama de flujo por elementos finitos del método incremental de Newton-
Raphson.
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Caso Malla EF EF PGs CMS CMS/Exp.
(MPa)
1 2x1x2 HX20 Ix 2 %2 19 1.10
2 2x1x2 HX20 3x3x3 15 0.87
3 2x1x2 HX21 3x3x3 19 1.10
4 2x1x1 HX20 2x2x2 20 1.16
5 4x1x4 HX20 2x2x2 20 1.16

TABLA I. Prisma de hormigén en masa.
méaximas sostenidas (3 = 0.1).

Resumen de casos analizados y de cargas

Caso Malla EF EF PGs " CMS CMS/Exp.
(kN)
1 I3x1Ixl HX20 2x2x2 12 0.88
2 Ix1x1 HX20 3x3x3 14 1.03
3 Ix1x1 HX27 3x3x3 14 1.03
4 6x1x2 HX20 2x2x2 14 1.03
5 6x1x2 HX?20 3x3x3 13 0.96
6 6x1x2 HX27 3x3x3 13 0.96

TABLA II. Viga con rotura ductil. Resumen de casos analizados y de cargas maximas
sostenidas (8 = 0.1).

PROGRAMA DE ORDENADOR

El principal programa de ordenador se derivé a partir de un macroprograma
FORTRAN de analisis lineal por elementos finitos denominado FINEL??. La estructura
modular de FINEL permitié que se aprovecharan sin cambios algunos de sus mddulos,
i.e. los médulos de generacién de malla, renumeracién nodal, condiciones de contorno y
resolucidn del sistema de ecuaciones por el método de Choleski; asi como otras utilidades
del programa como el procesador del fichero de entrada de datos, el gestor de médulos
y el gestor de la base de datos. Por tanto, el desarrollo del modelo numérico se centré
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Caso Malla EF MINR CMS CMS/Exp.
(kN)
1 Wx1x3 NR-plus 300 0.90
2 10x1x3 MIXNR 200 0.60
3 10x1x3 INITK 50 0.15

TABLA III. Viga con rotura fragil. Resumen de casos analizados y de cargas maximas
sostenidas (8 = 0.1).

fundamentalmente en los aspectos relacionados con la no linealidad de los materiales®,
i.e. matrices de rigidez, relaciones o — ¢, fuerzas residuales, fisuracion, convergencia,
etc. También se desarrollaron otros dos programas auxiliares para el procesamiento y la
obtencién de gréficos de fisuracién como los que se incluyen en los ejemplos numéricos.
En lo que respecta a estos gréficos, hay que sefialar que, en todos los casos, representan
una seccién de la malla paralela al plano de referencia X Z (Figuras 5b, 8b y 12b) y
que contiene a los puntos de Gauss mas préoximos a dicho plano XZ. Los simbolos
para la fisuracién tienen el siguiente significado: los trazos orientados indican fisuras
que forman con el plano de la seccién un angulo mayor que 45° (i.e. fisuras “casi-
ortogonales” al plano de la seccién); los circulos indican fisuras para las que tal angulo
es menor que 45° (i.e. fisuras “casi-paralelas” al plano de la seccién); y, por 1iltimo,
los asteriscos indican puntos de Gauss sin rigidez (i.e. con tres fisuras o que hubieran
alcanzado la envolvente en compresién).

EJEMPLOS NUMERICOS

Prisma de hormigén en masa bajo carga concentrada en franja

Este ejemplo se corresponde con uno de los prismas ensayados por Niyogi*® y
analizado anteriormente por Bedard y Kotsovos con un modelo bidimensional®’. El
objeto de este ejemplo es estudiar la influencia en las predicciones del modelo numérico
del elemento finito y de la malla de elementos finitos. En la Figura 5 se representan los
datos experimentales del prisma y una de las tres mallas de elementos finitos utilizadas
en el andlisis (gracias a las simetrias sélo se analiza un octavo del prisma). Los
resultados del andlisis se resumen en la Tabla I y en las Figuras 6 y 7 se presentan
algunos de los graficos de fisuracién obtenidos.

Segin se observa en la Figura 6, las predicciones analiticas muestran que, tras la
fisuracién vertical de la parte central del prisma, se produce la expansién del lateral
del mismo y la subsiguiente rotura. Aunque el grado de aproximacién a la carga de
rotura es igualmente bueno en los tres primeros casos de la Tabla I (misma malla
de elementos finitos y distinto elemento finito), hay que destacar que con el elemento
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placa de carga

2%15‘

406.-4 mm

(a) (b)

Figura 5. Prisma de hormigon en masa: (a) Datos experimentales (f. = 26.9 MPa);
(b) Malla intermedia de elementos finitos.

de 20 nodos e integracién completa la respuesta es mds rigida y la carga méxima
sostenida es menor que con el mismo elemento integrado por defecto (2 x 2 x 2 puntos
de Gauss) o que con el elemento lagrangiano; lo que contradice los resultados de De
Borst y Nauta'®, quienes a partir de un unico ejemnplo sugieren que el uso de elementos
integrados por defecto (2x2x2 PGs en los elementos serendipiticos bidimensionales de 8
nodos) empeora la estabilidad numérica respecto a los mismos elementos con integracién
completa. Por otra parte, la comparacién de los casos 1, 4 y 5 (mismo elemento finito
y distinta malla) pone de manifiesto que las predicciones de carga de rotura son en este
caso, poco sensibles a la malla de elementos finitos. No obstante, hay que notar las
diferencias en los graficos de fisuracién (ver Figura 7); aunque, exceptuando el caso 4
en que la discretizacién es muy burda, los grificos son cualitativamente semejantes y
las diferencias atribuibles a la distinta posicién de los puntos de Gauss y al sustancial
cambio de aspecto de los elementos finitos (relacién altura: anchura: profundidad).

Viga de hormigén armado con rotura dictil

El segundo elemento que se analiza es una viga bajo dos cargas puntuales con
rotura dictil ensayada por Kotsovos?®. En la Figura 8 se resumen las caracteristicas
geométricas y de armado de la viga y se representa una de las dos mallas empleadas
en el analisis (en esta ocasién sélo se analiza un cuarto de la viga). La relacién vano
de cortante/canto 1itil es de 3.33 y la cuantia de armadura de traccién del 1.2%. La
posibilidad de rotura por cortante se aminoré mediante armadura transversal en el
vano de cortante. En este sentido, cabe sefialar que la carga de rotura experimental
(13.6 kN) es muy parecida a la que se obtiene mediante cualquier bloque de tensiones
equivalente. No obstante, las mediciones experimentales de deformaciones contradicen
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Figura 6. Prisma de hormigén en masa. Influencia del EF en la fisuracién (escalén de
carga = 1 MPa, desplazamientos magnificados x30): (a) elemento H X204;
(b) elemento H X20B; (c) elemento H X27.

las hipStesis habituales para el calculo de secciones en flexién®® (e.g. plastificacién del
hormigén en compresién). Los resultados se resumen ahora en la Tabla II. De nuevo,
el elemento finito y el tamafio de la malla son objeto de comparacién. En la Figura
9 se compara la curva carga-flecha experimental frente a las predicciones mediante el
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Figura 7. Prisma de hormigén en masa. Influencia de la malla de EF en la fisuracién

para la carga maxima sostenida (escalén de carga = 1 MPa): (a) 2 elementos
HX?20A4; (b) 4 elementos HX204; (c) 16 elementos H X20A.

elemento de 20 nodos con 2 X 2 x 2y 3 x 3 X 3 PGs (casos 4 y 5 de la Tabla II). Por
otra parte, las Figuras 10 y 11 incluyen graficos de fisuracién de la seccién de referencia
para distintos casos.

Segin se ha explicado anteriormente, en los seis casos se utilizé el criterio de
permitir pocas fisuras por iteracién (2 fisuras para el elemento HX20A y tres para
los elementos HX20B y HX2T7), descartandose el caso de no controlar el nimero de
nuevas fisuras porque ya Bedard y Kotsovos®* comprobaron que en elementos armados
tal criterio puede conducir a la divergencia prematura del analisis. Con este criterio
las predicciones han de ser poco sensibles al escalon de carga, que se fijo en 1 kN.
En la Figura 9 se aprecia como las predicciones de flechas son algo mayores que las
experimentales (~ 20% mayores para 10 kN) hasta que se inicia en el analisis la
plastificacion de los elementos de acero. En este sentido, hay que advertir que en
el analisis la plastificacién se inicia al 80% del limite elastico (ver Figura 2). Con
un diagrama bilineal para el acero (mds parecido al experimental en este caso) se
conseguiria ajustarse mas a la curva experimental para cargas proximas a la de rotura;
pero con el trilineal se consigue una transicién mas gradual —que se refleja en las curvas
analiticas—, lo que mejora la estabilidad numeérica y facilita el analisis de los resultados,
ya que se consigue obtener algin/os escalones de carga convergidos con algunos puntos
de Gauss del acero ya plastificados. Es importante resaltar que la rotura se produce
en los seis casos estudiados por plastificacién del acero y fisuracion horizontal de la
zona comprimida (ver Figuras 10 y 11) y no por aplastamiento del hormigén. Nétese
que los puntos de Gauss mds proximos a la carga puntual (los tnicos con las tres
tensiones principales de compresién) no han alcanzado la envolvente de rotura para el
ultimo escaldn de carga convergido; puesto que se habria producido la pérdida total de
capacidad portante en dichos puntos que se reflejaria en el grifico mediante simbolos
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Figura 8. Viga con rotura dictil: (a) Datos experimentales (f. = 37.8 MPa, f, = 417
MPa); (b) Malla de 12 elementos hexaédricos.

asterisco. Segin se observa en la Figura 11, hay que destacar la excesiva fisuracién de
la zona comprimida que aparece cuando se utiliza el elemento HX20B (3 x 3 x 3 PGs),
0 que, de nuevo, indica su excesiva rigidez. En cualquier caso, las cargas de rotura
y las curvas carga-flecha son satisfactorias en todos los casos desde el punto de vista
practico; incluso en el caso 1, en que la malla es poco densa en puntos de Gauss.

Viga de hormigén armado con rotura fragil por cortante

El tercer elemento que se analiza es una de las vigas sin estribos con rotura por
cortante ensayadas por Bresler y Scordelis®*. Se trata de la viga designada en el articulo
por las siglas OA-1, cuyas caracteristicas geométricas y de materiales se resumen en la
Figura 12a. La relacién vano de cortante/canto 1til es de 3.97 y la cuantia de armadura
de traccién del 1.8%. La rotura se produjo en el ensayo a una carga de 334 kN (6.6 mm.
de flecha), sin que la armadura longitudinal alcanzara el régimen no lineal. El método
iterativo utilizado es ahora objeto de comparacién, por lo que la malla de elementos
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Figura 9. Viga con rotura dictil. Comparaciéon entre la curva carga-flecha

experimental y las analiticas para los elementos HX20A4 v HX?20B.

finitos (Figura 12b) se mantiene igual para los tres casos que se presentan. Las cargas
maximas sostenidas se resumen en la Tabla III y las Figuras 13 y 14 muestran algunos
graficos de fisuracién.

En el caso 1 de la Tabla III, el método iterativo es el mismo que en los ejemplos
anteriores. Es decir, el método incremental de Newton-Raphson con actualizacién
automatica de las matrices D de las nuevas fisuras (NR-plus). Los graficos de fisuracién
de los ultimos escalones de carga convergidos y de la iiltima iteracién realizada son los
que se representan en la Figura 13. Por comparacién de los grificos de los escalones
9 y 10 (225 y 250 kN), se observa cémo para 250 kN la fisuracién incide en el quiebro
del camino de compresiones, lo que se corresponde bien con la fisuracién diagonal
observada en el ensayo. En el analisis la fisuracién se estabiliza en éste y en el siguiente
escalén de carga. En el dltimo escalén de carga convergido (300 kIN) aparece una fisura
horizontal junto a la carga puntual que indica la proximidad de la rotura del elemento.
(También en este escalén aparecen un buen niimero de terceras fisuras (asteriscos en el
grafico) que ocasionan la divergencia en este escalén cuando se utiliza una matriz D nula
para puntos de Gauss con tres fisuras®.) Finalmente, el gréfico de la 1ltima iteracién
realizada (“load step 777", 325 kN) muestra el fallo local que se produce en el apoyo
por fisuracién miltiple que ocasiona el descalce del elemento y, consecuentemente, la
divergencia del proceso iterativo.

En la Figura 14 se representa el estado de fisuracién del dltimo escalén convergido
y de la ultima iteracidén en el caso 2 de la Tabla IIl. En esta ocasién el método iterativo
es un MINR mixto (MIXNR en la Tabla III) con secuencia prefijada de iteraciones
sin y con actualizacién de todas las matrices constitutivas (una actualizacién cada
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Figura 10. Viga con rotura dictil. Fisuracién para la carga méxima sostenida con
malla de 3 elementos hexaédricos (escalén de carga = 1 kN) (a) elemento
HX20A; (b) elemento HX20B; (c) elemento HX27.

tres iteraciones en este caso). El gréfico de la tltima iteracién realizada (Figura 14b)
muestra claramente cémo se produce un mecanismo local en la zona fisurada. Este tipo
de fenémeno es lo que se ha dado en llamar propagacién de mecanismos espurios’, y
que consiste en la propagacién de algin modo de deformacién que no requiere energia
de deformacién (modos de deformacién asociados con los valores propios nulos de la
matriz de rigidez). Tal propagacién de lugar a grandes desplazamientos nodales que,
a su vez, ocasionan grandes deformaciones y tensiones superiores en varios ordenes
de magnitud a las tensiones de rotura de los materiales. El mecanismo espurio se
produce seguramente por la combinacién de dos factores: el método iterativo y el mal
acondicionamiento de las matrices de rigidez de los elementos fisurados, que en este
caso se ve agravado por la aparicién de segundas fisuras. Téngase en cuenta que el
MINR, mixto es tal que mantiene temporalmente la rigidez previa a la fisuracién, lo
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Figura 11. Viga con rotura dictil. Fisuracién para la carga maxima sostenida con
malla de 12 elementos hexaédricos (escalén de carga = 1 kN) (a) elemento
HX20A4; (b) elemento HX20B; (c) elemento HX?27.

que ocasiona la existencia de fuerzas residuales importantes en zonas ya fisuradas. Por
ello se pueden producir situaciones anémalas, como que al actualizar las propiedades
queden zonas fisuradas ya sin rigidez pero con las fuerzas residuales de la iteracién
anterior. El método iterativo ocasiona en esta ocasidén una situacidén semejante a las
combinaciones inestables de rigidez que el uso de ramas o — € descendente conlleva®**.
No obstante, hay que puntualizar que la mayor parte de los casos estudiados con los
dos ejemplos anteriores se recalcularon con el método mixto obteniéndose resultados

muy similares a los aqui presentados®.
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Figura 12. Viga con rotura fragil: {a)Datos experimentales (f. = 22.5 MPa, f, = 555
MPa}; (b) Discretizacién por EF

Finalmente, el método iterativo en el caso 3 es el método de Newton-Raphson
modificado (o de la rigidez inicial, INITK en la Tabla IIT). En esta ocasién la ejecucién
fue abortada intencionalmente tras varios cientos de iteraciones sin que se verificara
el criterio de convergencia de tensiones residuales para puntos de Gauss fisurados
(0.1 MPa). Este ejemplo no pone sino de manifiesto los problemas de convergencia
sin actualizacién de propiedades cuando se producen no linealidades discontinuas
localizadas (e.g. fisuracién del hormigén); y también desaconseja el uso de criterios
de divergencia basados en el nimero de iteraciones (obsérvese que la carga méxima
sostenida es de sélo el 15% la carga de rotura).

CONCLUSIONES

A la vista de los resultados aqui presentados, las siguientes conclusiones parecen
estar justificadas:

1) El andlisis de los dos primeros ejemplos (prisma de hormigén en masa y viga
con rotura dictil) muestra que las predicciones de la carga de rotura con
representacién fragil de la fisuracién no son necesariamente muy sensibles a la
malla adoptada de elementos finitos.
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Figura 14. Viga con rotura frdgil. Fisuracién para el caso 2 (desplazamientos

2)

magnificados x5): (a)carga maxima sostenida (200 kN); (b)iltima iteracién
realizada (225 kN)

Las predicciones analiticas indican en los tres casos que la inclusién de ramas de
ablandamiento en compresion puede resultar irrelevante; puesto que en ningin
caso se ha alcanzado la envolvente en compresién.

El tercer ejemplo (viga de hormigén armado con rotura por cortante) demuestra
los problemas de convergencia del método de Newton-Raphson modificado
e indica que el uso del método de Newton-Raphson mixto puede ocasionar

divergencias prematuras por propagacién de mecanismos espurios.
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