Experimental Investigation on the effect of thickness on the flexural properties of glass/vinyl-ester composite laminates for marine applications

Dr Niamh Nash

Mr Alex Portela

Mr Carlos Bachour

Dr Ioannis Manolakis (former Co-PI) – now Sligo IT

Dr Anthony Comer (PI)

Irish Composites Centre (IComp)

School of Engineering Bernal Institute

University of Limerick

FIBRESH

MECHCOMP 5th International Conference on Mechanics of Composites, Lisboa, 1 - 4 July 2019

Contents

- > Overview of FIBRESHIP H2020 project
- Objective of this study
- > Experimental Details
- Results & Discussion
- Conclusions
- > Acknowledgements

Ship Block Demonstrator

Background

- Composites dominate construction of small-to-medium length vessels (< 50 m)</p>
- Restriction on use of composites on ships longer than 50 m !
- Main Reason: Lack of design guidelines from certification bodies
- Main issues: Safety particularly Fire
- The trend in aviation (e.g. B787, A350) demonstrates that adoption of composite technology in primary and secondary structures is feasible

Courtesy of Tuco Marine (FIBRESHIP partner) – ProZero range of offshore/patrol/service FRP vessels (8-18 m)

PROMARINE, OUEST composites SEMI RIGID Boat (JEC 2019)

Challenge

www.ul.ie

- Enhance acceptance of composites in primary structures of ships > 50 m
- Recommend relevant changes in rules and regulations to the responsible bodies
- Create a niche market opportunity for the manufacture of large marine vessels in the EU

Irish Composites Centre

Bernal

Institute

Response: FIBRESHIP

• Engineering, production and life-cycle management for the complete construction of large-length FIBRE-based SHIPs

- Innovation Action
- Total budget: 11.0M€;
 (EU contribution: 8.7M€)
- Coordinator: TSI SL, Spain
- Duration: 36 months from June 2017

Partners

- 18 partners, 11 countries
- European shipyards: 3
- Naval architect/design/engineering companies: 4
- Ship owners & operators: 4
- R&D organisations: 4

UNIVERSITY of LIMERICE

• Classification/certification bodies: 3

Bernal

Institute

Lloyd's

Xblue

www.ul.ie

RINA SERVICES

Tuco

MARINE GROUP

T-i.Ø

ANEK LINES

www.anek.g

FOINIKAS SHIPPING COMPANY

Ateknea

COMP

Technical Impact

- Feasibility of the concept of a composite large-length ship
- Reduce fuel consumption by 10-15%
- Lower greenhouse gas emissions
- Improve ship stability and safety
- Underwater noise reduction
- Reduce maintenance and life cycle costs by 30%

Safehaven marine 11-18 m

Swedish Navy Visby > 70 m

Corrosion-free

Our role in FIBRESHIP

Involved in 4 work packages:

≻Materials (WP 2)

➢Production (WP 5)

► Large-scale Validation (WP 7)

Work Packages

Dissemination & Exploitation (WP 9)

Materials (WP 2)

Which resins and reinforcements are viable solutions for large marine vessels ?

considering....

- fire retardancy
- processability
- economics
- recycling
- mechanical properties
- environmental resistance..

Demonstrator under construction at iXblue, La Ciotat, France showing **laminate** and **sandwich** construction

Materials (WP 2)

Which **manufacturing processes** are most suitable for the manufacture of large marine vessels ?

considering....

- scale involved
- shipyard capabilities
- investment required
- future market
- skilled workforce available
- production rate
- need to automate..

Composite ship block < 50 m long

Materials (WP 2)

- Liquid resin infusion identified as the most suitable manufacturing technique.... familiar to ship yards, scalable, cost effective, flexible, closed mould infusion process
- Matrix of infusible resin systems was drawn up (x7 systems with a range of different chemistries)
- Thin laminates manufactured in the laboratory using a range of non-crimp fabric reinforcements
- Mechanical testing performed on samples extracted from thin laminates to obtain properties

Research Question!

What about thick laminates manufactured at the ship yards?

How do the mechanical properties compare with thin laminates manufactured in the lab ?

- Thin laminate (~3.5 mm) manufactured at the University of Limerick
- Thick Laminate (~ 16 mm) manufactured at ship yard
- All mechanical testing performed at the University of Limerick

Test Matrix

	Thick Laminate ~ 16 mm	Thin Laminate ~ 2.5 mm			
Manufacturer	IXblue SHIPYARD, FRA	ULIM, IRE			
Resin:	LEO Injection Resi	n 8500 from BÜFA			
Reinforcement:	SAERTEX U-E-940 g/m ² -LEO UD				
Curing schedule:	Infusion resin temp: 18°C, Mixing ratio: 2% peroxide, Post cure: 6 hours@80°C	Infusion resin temp: 17°C, Mixing ratio: 2% peroxide, Post cure: 6 hours@80°C			
Lay-up	[0] ₂₆ (26 layer)	[0] _{2S} (4 layer)			
Test sample size & Span/thickness ratio	500 x 30 x ~16 mm 25:1	200 x 25 x ~2.5 mm 30:1			
Sample Orientation	Longitudinal & Transverse	Longitudinal & Transverse			
Conditioning prior to testing:	None	Dried for 4 hours at 45°C			

Manufacture

Manufacture of thin laminates at ULIM

- All laminates nominally: 350 x 500 x 2.5 mm
- Lay-up: 0₂₅ (4 layers of NCF in a UD configuration)
- SAERTEX U-E-940 g/m²-LEO UD

Manufacture

Infusion, cure and post cure schedule in line with manufacturers guidelines

Coated and uncoated thin laminates

UNIVERSITY OF LIMERICK

Quality Control (thin)

• Material	Cured Ply Thickness	FVF		
VE	0.71 mm	52%		
PE	0.73 mm	54%		
EP	0.74 mm	53%		
TP	0.72 mm	55%		

Tg and degree of cure

Void Analysis (MS 0051)

UNIVERSITY of LIMERICK

Irish Composites Centre

Thick Laminate

Thin Laminate

3-pt bend quasi-static loading arrangement

Results

Coefficient of variation < 10 % in all cases

0° test samples

	Thickness (mm)	Cured ply thickness (mm)	Fibre volume ¹ (%)	Span to thickness ratio	Flexural Strength (MPa)	Flexural Modulus (GPa)	Strain at failure (%)	Density ² (g/cm ³)
Thick (x6)	16.6	0.64	58	25.3	1088	34.8	3.0	1.98 (x5)
Thin (x5)	2.6	0.66	56	30.4	907	39.4	3.4	1.97 (x16)

90° test samples

	Thickness (mm)	Cured ply thickness (mm)	Fibre volume ¹ (%)	Span to thickness ratio	Flexural Strength (MPa)	Flexural Modulus (GPa)	Strain at failure (%)	-
Thick (x5)	16.2	0.63	59	25.3	155	15	1.7	-
Thin (x4)	2.7	0.68	54	29.6	157	13	2.5	-

Failure Modes

Conclusions

- A study has been performed to evaluate the mechanical properties of thick • laminates manufactured in a shipyard environment and thin laminates manufactured in a laboratory environment using the same materials and cure schedule
- Properties evaluated include flexural strength, flexural modulus, density, fibre • volume fraction and cured ply thickness
- The physical properties (density, fibre volume fraction and cured ply thickness) ٠ were confirmed to be essentially equivalent
- 0° 3-pt bend: shipyard samples showed a +20% increase in strength and a -12 % ٠ reduction in modulus relative to the laboratory samples. Failure mode was by compression under the load nose for both cases
- 90° 3-pt bend: shipyard samples showed a -1.2% reduction in strength and a ٠ +15% increase in modulus
- These variations are within the limits of variation expected. ٠

Bernal

Future Work

 In future work, samples will be extracted from a variety of locations on the hull of the demonstrator (~ 25 mm thick) to evaluate various properties of large thick laminates manufactured under shipyard conditions:

Acknowledgements

This work has been funded by the H2020 project FIBRESHIP (www.fibreship.eu) under grant agreement 723360

Thank you for your attention

www.fibreship.eu

http://cordis.europa.eu/project/rcn/210787_en.html

UNIVERSITY of LIMERICK

