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SUMMARY

Nonlocal models guaranty that finite element computations on strain softening materials remain
sound up to failure from a theoretical and computational viewpoint. The non locality prevents strain
localization with zero global dissipation of energy, and consequently finite element calculations con-
verge upon mesh refinements. One of the major drawbacks of these models is that the element size
needed in order to capture the localization zone, must be smaller than the internal length. Hence, the
total number of degrees of freedom becomes rapidly prohibitive for most engineering applications and
there is an obvious need for mesh adaptivity. This paper deals with the application of the arbitrary
Lagrangian-Eulerian (ALE) formulation, well known in hydrodynamics and fluid-structure interaction
problems, to transient strain localization in a nonlocal damageable material. It is shown that the
ALE formulation which is employed in large boundary motion problems, can also be well suited for
nonlinear transient analysis of softening materials where localization bands appear. The remeshing
strategy is based on the equi-distribution of an indicator that quantifies the interelement jump of a
selected state variable. Two well known one-dimensional examples illustrate the capabilities of this
technique: the first one deals with localization due to a propagating wave in a bar, and the second

one studies the wave propagation in a hollow sphere.
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INTRODUCTION

Prediction of strain localization in transient dynamics is of importance for the design and veri-
fication of concrete and reinforced concrete structures subjected to impact loads or explosions, for
which the response of the structure up to failure is required. For materials like concrete, failure is
triggered by localization caused by strain-softening, a feature which is necessary in order to describe
progressive cracking. However, before these phenomena are modelled, theoretical and computational
problems should be addressed; first, a mathematically consistent model, in agreement with the me-
chanical behavior of the material, must be developed for the description of the localization and the
post-localization response; second, an efficient computational strategy must be used in order to capture

the large local variations of the material parameters. This paper is focused on the later problems.

From a mathematical point of view, the appearance of localization in classical rate independent
continuum mechanics is associated with a change of type of the governing equations. In dynamics,
the equations of motion change from hyperbolic to elliptic at the inception of localization. It has
been pointed out on numerous occasions [2,6] that strain-softening in classical continuum mechanics
produces failure without energy dissipation (it occurs over a set of measure zero) and this is totally
unrealistic. As a consequence, finite element calculations suffer from pathological mesh dependence.
To overcome these difficulties, localization limiters must be implemented. Among these are the mi-
cropolar constitutive models [7], nonlocal models [6,27], gradient dependent models [8,19], and rate
dependent models [29]. These constitutive relations bear the same fundamental property: an internal
length, also called intrinsic characteristic length, is introduced in the constitutive equations to limit
the thickness of the shear band. Actually, this implies that two well-differentiated length scales are
present in the problem: one associated to the macroscopic behavior of the solid and one micro-scale

related to the localization zone.

From a computational point of view, there is a basic underlying issue common to every constitutive
model or resolution technique: the spatial interpolation of the primitive variables. The solution is
desired at the micro-scale level: shear bands or, generally speaking, high localized gradients must
be accurately described. This implies that the measure of the discretization (loosely speaking: the
element size) must be in the order of, or even smaller than, the internal length in static and dynamic

analyses. In the later, for instance, semi-discrete studies of harmonic wave propagation in a bar with a



uniform mesh have shown that element sizes must be one order of magnitude smaller than the internal
length if errors under five percent are desired [15,16]. On the other hand, the macroscopic scale
analysis of the structure is also of interest, and it should be noticed that the localization band may not

be known a priori. Thus, adaptive remeshing strategies, in a general sense, seem the natural solution.

In most academic tests a uniform fine mesh is employed because it has the advantage that no
prediction of the localization zone is needed a priori. The computer cost of the fine uniform mesh
in real engineering problems is, however, totally prohibitive because the entire domain is discretized
with elements designed for the localized area. Adaptive mesh refinement seems therefore an excellent
solution [24,25,31]. It is based in reducing the element size on the localization band and has proved
its effectiveness in steady-state analyses. However, it needs to modify the mesh connectivity at each
iteration and the elaboration of sophisticated algorithms to preclude an increase in number of ele-
ments, algorithms which are usually restricted to triangular elements. Ortiz and Quigley [24] present
an excellent discussion on the difficulties that have deterred an extensive application of the adaptive
methods in the context of strain localization: path-dependent constitutive relations and error estima-
tion relying, in statics, on the ellipticity of the equations which is lost at the inception of localization.
Finally, methods based in spectral overlays [4] have the advantage of increasing the richness of the
interpolation in a particular zone without the reduction in the element size. This allows higher rates

of convergence but requires an a priori knowledge of the localization area.

In this paper, another generalized spatial interpolation technique is suggested: the arbitrary
Lagrangian-Eulerian (ALE) formulation. This technique which is now well established in the fluid
mechanics field, has recently been extended to nonlinear continuum mechanics in transient analyses
[13] increasing the field of applicability of this formulation in the context of explicit codes. However,
the ALE formulation has remained up to now restricted to the problems that naturally suggested its
need: boundary motion analyses. Here, the ALE is reinterpreted as a simple numerical technique to

modify the spatial interpolation introducing more degrees of freedom where they are needed.

ALE FORMULATION

The arbitrary Lagrangian-Eulerian formulation is briefly reviewed in this section. A complete

presentation may be found in [13,14,20-22]. The material, spatial and referential coordinates denoted



by X, x and x, are respectively related to the particles, laboratory and the kinematic reference em-
ployed. A Lagrangian formulation is employed when the reference, x, coincides with the material
particles, X; and an Eulerian formulation imposes a reference fixed in the laboratory or spatial do-
main. An ALE formulation allows an arbitrary motion of the reference with respect to the material and
spatial coordinates, see Figure 1. This is perfectly suited for large boundary motion problems in fluid
[5,9,14,17] and solid [12,13,20-22] mechanics; here the same formulation is used not to account for
boundary motion but to enhance (refine) the spatial interpolation in order to capture the localization

areas.

The kinematics in the ALE description that link it to the classical Lagrangian and Eulerian de-
scriptions are designed to relate material time derivatives, with referential time derivatives and spatial

gradients. The fundamental equation in ALE, originally devised in [17] is
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where ¥ is any physical property, and ¢ is the convective velocity which relates the material, v, and

mesh, v, velocities
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Notice that v is the unknown particle velocity but ¥ is an arbitrarily chosen mesh velocity. The

remeshing technique, described in future sections, is based on an automatic procedure to compute V.

With an ALE formulation, i.e. using Eq. (1), the equilibrium equation is rewritten in strong form
as
dv; + ov; d0ij @
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where p is the density, o is the Cauchy stress tensor, no body forces are included, and standard indicial

notation is adopted.



Apart from the conservation equations the constitutive law is also modified to account for the
relative motion between mesh and particles. Any of the frequently employed rate type constitutive

equations may be written after substitution of Eq. (1) as
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where r is the usual Lagrangian rate of the Cauchy stress tensor. The integration of Eq. (5) is readily
done in a Lagrangian formulation because quadrature points at which stresses are evaluated coincide
with the same material points throughout the deformation. In ALE this integration is more difficult
but it is important to observe that Eq. (5) is a scalar equation for each stress component. Moreover,
all the “stress related variables”, i.e. variables or constant fields needed for the evaluation of r, have
an evolution similar to Eq. (5). Consequently the difficulties of implementing the ALE formulation
in the context of nonlinear path dependent materials are concerned with the accurate time integration

scheme for
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where T is any stress or related variable and ¢ is a general nonlinear source term.

A split-step algorithm [13] is used to integrate in time this last equation. First of all, a pseudo-
Lagrangian stress is obtained by simply integrating the Lagrangian stress rate, g. Then, the pseudo-
Lagrangian stress is convected. This step is equivalent to the interpolation or projection (between old
and new meshes) needed in any adaptive mesh refinement technique. Any numerical formulation for
first order hyperbolic or conservation equations may be implemented. Here a full upwind technique
is used because it can be adapted to the particular nature of the stress fields (discontinuous element
to element) and to the numerical constraints (explicit code), see [13]. The detailed equations are

presented in next sections.

NONLOCAL DAMAGE MODEL

The localization limiter used in this study is the nonlocal damage model proposed by Pijaudier-
Cabot and Bazant [25]. The stress strain relation is identical to that of a scalar continuous damage
model:

oij = (1 = D)Ciju €k (7



in which oj; and ¢;; are the ij components of the stress and strain tensors, respectively; the scalar
D is the damage variable which ranges from O initially to 1 when the material cannot sustain any
stress; and Cjjx are the components of the elastic fourth-order tensor for the undamaged material.
The growth of damage is defined by a loading function f and its associated evolution equation. The
loading function is: i

Y (X)

f(Y(x), D) =f F(z)dz— D (8)
0

where F is a function which describes the growth of damage, and Y (x) is the average energy release
rate due to damage at point x. In fact, this quantity (the average energy release rate Y) introduces the
nonlocal nature of the model because it is defined as a weighted average of the local energy release

rate, Y, over the entire material domain denoted as V, namely

Y(x):/W(s—x)Y(s) ds 9)
V

with
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The weighting function W is a normalized bell-shaped function, that is
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where ¢ is the internal length of the nonlocal continuum which can be estimated experimentally as a

Y —x) =

(11)

function of the size of the heterogeneities in the material [2]. Finally, the evolution law of damage is

prescribed as usually in non associated plasticity or damage:

.
) g (12)
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with the Kiihn-Tucker conditions 8§ > 0, f < 0, and § f = 0, where § is the damage multiplier, f is
defined in Eq. (8), and g is the evolution potential which is simply the average energy release rate,
¢ = Y, in the present model. In the applications, function F is of the form:

B

F(x) = - (13)
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where B and Y are material parameters.



REMESHING STRATEGY

In the ALE description the mesh nodes move arbitrarily in the Lagrangian coordinate system.
The mesh motion is determined once the convective velocity or the mesh velocity is chosen. In
hydrodynamics and fluid-structure interaction problems the objective of the ALE formulation is to
maintain regular shaped elements; consequently, the remeshing algorithms are based in geometrical
considerations. In this paper, the remeshing strategy must be adequate to capture correctly the local-
ized region, and also to introduce in it “enough” finite elements to minimize the discretization errors

whose influence in the phase velocity is demonstrated in [15].

In adaptive remeshing techniques an error indicator and a mesh optimality criterion are defined.
From a general point of view, error indicators could be divided into i) those based on the properties of
the equations under study, see [1,18,32] among others, and ii) those purely related to the interpolation
of the unknown variables, see [24-26]. This extremely simple classification is independent of their
ability to quantify the error or to control the quality of the computations. On the other hand, the opti-
mality criterion is designed to provide the desired element size. Among the several mesh optimality
criteria the most usual one is based on the equidistribution of the error indicator, but others may be

also used, see for instance [23].

In the context of localization problems several error indicators have been employed. Among those
based in the properties of the equations, the success of the Zienkiewicz-Zhu [32] a posteriori error
estimator initially developed for elastic problems induced at first its direct application to localization
problems [31]. However, since it is based on a standard energy norm, the loss of ellipticity of the un-
derlying equations precludes efficient results, as Ortiz and Quigley [24] demonstrated. Nevertheless,
the standard energy norm or a norm based in the plastic dissipation can be used when a localization

limiter is implemented, see the comparisons presented in [30].

Other authors [25,24] use interpolation-based estimators. While in [24] the variation of the
velocity field (related to the displacement interpolation error bounds in Sobolev spaces) is the er-
ror indicator, in [25] the estimator used in compressible flow computations by [26] is modified for
localization problems. The later estimator is based on the quadratic departure from the piecewise
linear interpolatioﬁ assuming exact nodal values. Therefore, a “key” variable for the problem, such

as density in compressible flow, is chosen and the error estimator detects the ability of the continuous



piecewise linear interpolation to approximate it. Second derivatives of such “key” variable are needed.
In [25] instead of a single variable two functionals of field variables and their derivatives are used, one
related to the plastic deviatoric strain and the other related to the determinant of the acoustic tensor.
In spite of the fact that both functionals do not have a continuous piecewise linear interpolation and
that a numerical estimation of the second order derivatives of internal variables such as plastic strains

is questionable for triangular linear elements, the results are encouraging.

The remeshing strategy in the arbitrary Lagrangian-Eulerian formulation follows a similar line
of thought: first an error indicator must be defined and then a mesh optimality criterion is chosen.
With respect to the error indicator, it is important to observe that in the present problem, the interest
is focused on obtaining the best possible description of the damage localization zone which is charac-
terized by propagating damage fronts, because the solution in this highly nonlinear problem is largely
dependent on the damage localization zone. Therefore, it is assumed that the optimum mesh must
concentrate elements in the neighborhood of sharp variations of damage. Consequently, instead of
using the bounded variation of the velocity field as a suitable norm of the solution, see [24], the varia-
tion of a dependent variable, damage, is taken as the relative indicator of the error estimate. Damage
is a bounded field, recall that it varies between O initially and 1 when the material can not sustain any
stress (failure). The numerical evaluation of the mesh indicator is, in this case, extremely efficient
in contrast to [25] where second derivatives of the indicator involving sophisticated schemes, such
as projections or variational recoveries, are needed. On the other hand, as the other error estimators
based on the interpolation errors, the indicator only provides a control of the quality of the mesh.
That is, it simply detects when the mesh is too coarse and a minimum admissible element size must
be given and related to the maximum value of the indicator to determine the desired element sizes in
the rest of the domain. Nevertheless, the ALE formulation is perfectly suited for such relative error
estimates, because it does not introduce new elements, in fact the motion of the computational frame

may be also based on a relative measure of the element size.

In one dimensional problems, damage is known at the Gauss points but the mesh indicator, denoted
K. is defined at each nodal point as a function of the absolute value of the jump of damage across
elements; in higher dimensions, generalizations similar to those presented in [24] could be used. That
is,

K(x) =alDo)T+b  where  [DG)] =D — D'| (14)

-



where a and b are two parameters, x; is the coordinate of node i and D' denotes the damage at element
i.
In order to equi-distribute the estimator K over the entire domain the following equation must be
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solved:

It is based on the classical elliptic mapping of the coordinate lines, see [11] and it is automatically
generalizable to higher dimensions. In Eq. (15) the estimator X' may be regarded as a diffusion coef-
ficient known at each nodal point. In fact, Egs. (14) and (15) with the known position of the domain
boundary define a Dirichlet problem which has a simple physical interpretation: the error indicator
K times the element measure must be kept constant over the domain. The parameters ¢ and b in
Eq. (14) control the relative element size. It can be easily shown that the ratio of the maximum over

the minimum length of the elements throughout the mesh is bounded by 1 + a/b.

Equation (15) induces a nonlinear system which must be solved iteratively at each time step, once
the error indicator is computed. This is certainly a major drawback because fast transient problems
are usually solved with explicit schemes which induce a large number of time steps. The resolution
of Eq. (15) must not be too much time consuming. In fact, for one dimensional problems, explicit
techniques could be devised for a faster remeshing procedure. However, in multidimensions the
remeshing algorithms are time consuming. On the other hand, the numerical solution of Eq. (15)
can be quite efficient and easily generalizable to higher dimensions. First of all, the tolerance in the
convergence scheme can be quite large (typically 1% to 10% for the relative error of the solution
with the usual Euclidean norm) because the unknowns are the nodal positions and its accuracy is not
extremely important. Unlike the momentum equation, it is not necessary to satisfy Eq. (15) with the
highest possible accuracy. Second, it is important to notice that this is an evolutionary problem, thus
the initial approximation of the solution in the nonlinear system of equations is relatively close to the
final solution because the time steps are small. And third, efficient techniques such as inverse Broyden
method with line search can be implemented. In all the applications, the number of iterations is
relatively small: usually two and always less than five. Nevertheless, the development of an adequate

explicit remeshing algorithm which will serve the same purpose is the subject of further research.

When the error indicator is only a function of damage, remeshing starts after damage has started



to grow in one element. If damage and localization occur at time steps close to each other, the incep-
tion of the localization will be controlled by the initial mesh. Indeed, since damage has not grown
sufficiently, the mesh may be still too coarse. This initial deficiency of the discretization may perturb
significantly the subsequent distributions of damage. In order to avoid this problem, remeshing can
also be performed starting at the beginning of the computation. For this, the indicator is taken as a

function of the second invariant of strain. In a one dimensional formulation it simply reduces to
k(i) =alBl+b  where  [E()] = &7 — & (16)

where &' is the second invariant of the strain at element i. This indicator is used up to the inception
of damage when the previously defined one, Eq. (14), is activated. In the applications, both cases are

implemented.

FINITE ELEMENT IMPLEMENTATION - EXAMPLES

In order to illustrate the capabilities of this computational method, two well-known problems
which deal with localization due to wave propagation are considered. The first one is a rod subjected
to constant velocity boundary conditions [2]. The second example deals with the propagation of a
pressure wave in a spherically symmetric structure. This example was proposed by Belytschko ef al.
[6], and further studied in [19]. These two problems are one dimensional computations which are

aimed at exhibiting the main properties of the continuum description and the computational strategy.

The one dimensional weak form of the momentum equation is:

L v L v L asu
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Where the first integral is classical, it is associated to the local increment of velocity; the second one
is related to the convective effects due to the relative motion between mesh and particles; and the
last one is the usual internal force term. Note that according to this equation, accelerations are the
time derivatives of the particle velocity, v, holding the reference frame fixed (not the particle, nor
the laboratory). However, the spatial gradient of the velocities corresponds exactly to the classical

Lagrangian strain (under the small strain assumption).



An explicit central difference scheme has been used for the time integration of the momentum
equation. Thus, after the finite element analysis of the previous equation, the system of algebraic

ordinary differential equations to be integrated, is

Ma = fox —n() — fin (18)

where M is the mass matrix which is taken lumped, M”, in the time integration scheme; a is the nodal
acceleration vector (nodal values of %—f x); [ ext 18 the vector of externally applied loads; n(v) is the
convective vector, it is related to the second term of Eq. (17); and f;, is the usual internal force vector

associated to the last term in (17).

The convective term depends on the arbitrarily imposed mesh velocity and also on the unknown
particle velocity: itis nonlinear. This nonlinearity which is easily overcomed implementing an explicit
algorithm, precludes second order accuracy of the time integration scheme for constant time steps.
However, the relative influence of the convective term in Eq. (18) for all the studied cases, indicates

that almost second order is achieved.

The time integration algorithm is detailed in Box 1. It shows that very simple modifications are
needed in a classical explicit code to introduce the ALE formulation. Apart from the implementation
of the convective term already discussed, it is necessary to evaluate the new nodal coordinates and to

update the strain and damage.

In order to compute the convective velocities, the new nodal coordinates are evaluated accord-
ing to the remeshing strategy. Here, this is done at each time step but remeshing can be activated
whenever the user desires. The finite element integration of Eq. (15), a nonlinear Laplace equation
with Dirichlet boundary conditions (the known positions of the contour nodes), induces the following

nonlinear system of equations

Lx)x =b (19)

where the unknowns are the new nodal positions. As cited previously, an inverse Broyden algorithm

with one iteration per line search has been implemented.

Once the new mesh coordinates are obtained, the convective nodal velocities are computed

(20)
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Then, the state variables, strain and damage, can be transported to the new mesh coordinates. In fact,
the integration of Eq. (6) is done by a split step technique. The Lagrangian part is computed with a

usual central difference scheme for strains
ety =¢e(t)+ At e(r + EAT) (21)

where £ is simply the vector of spatial gradients of the particles velocities, v, at the Gauss points; and
t* is related to a middle instant between ¢ and the end of step t + Af. In order to obtain the final
values, the convection due to the mesh motion must be evaluated, see Eq. (6). On the other hand, for
the damage variable the Lagrangian update is directly evaluated knowing the strain field at the desired

instant and the damage field at the previous step [27].

Then, the convection part which is related to the right hand side of Eq. (6), is computed in both
cases using a full upwind first order time integrator. A second order Lax-Wendroff technique can also
be implemented, but the results are almost identical [13]. Both take into account the discontinuous

nature of the state variables and require, for stability, the enforcement of the local Courant condition

co A\t
<

1.0 (22)
he

where ¢, and h. are the average convection velocity and the length at element e. Note that the nu-
merical difficulties associated to the Riemann problem are drastically reduced because the convection
part of Eq. (6) has a wave speed equal to the convection velocity which is usually much smaller
than the stress wave speeds. The full upwind technique, which is generalizable to higher dimensions
and takes into account the incoming and outgoing information along the characteristic lines, has a
simple expression in the one dimensional case. Denote by () the state variable at the Gauss point
of element e of length /1, whose nodes are identified by the local indices 1 and 2. The full upwind
integration is simply

1 — sign(c2)

At 1 + sign(cy)

Te(t + A1) = T.(t*) — — 5

hg [Te—H - Te]} (23)

where the adjacent elements are referred by e — 1 and e 4 1. Note that it is not mandatory to do
first the Lagrangian integration and then transport the state variables to the new mesh. In fact, here,

damage is first convected and then updated, see the algorithm in Box 1.
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Bar Problem

The implementation of the nonlocal damage model in a one-dimensional finite element code is
presented in [27] where the objectivity of the discretization for this constitutive model was demon-
strated. Figure 2 shows the response of the material under uniaxial tension. The material constants
are taken as follows: the elastic modulus E is 32 000 MPa, the poisson ratio v is 0.2, the density p is
2.5103 kg/m?, and the material parameters Yy and B are taken as 1.50 10~ MPa and 9.27 10> MPa~!
respectively. This set of parameters corresponds to concrete with an average strength. The bar has a
cross section of Imm? and a characteristic length £ = Imm. The velocity at the extremities is such
that a constant strain wave of amplitude 0.75¢* (where * is the strain measured at the peak stress)
is propagated. These waves meet at t* in the middle of the bar where localization occurs. Figure 3

shows a schematic problem statement.

Two bars of different lengths, 40mm and 160mm, are discretized in 9 elements of constant and
uniform lengths and their results are compared with a “reference solution”. This reference is obtained
with a sufficient number of elements (199 elements) of constant length and fixed throughout the
calculation. These two cases are studied because the ratio between the localization width and the
initial mesh size are very small, in the order of 1.6 and 0.4 respectively, while the reference case has
ratios of 33 and 9. Notice that in the second case, the localization width is less than half the size of

the initial discretization.

Figure 4 compares the damage profiles obtained at# = 1.5¢* with the reference solution, the fixed
mesh, an ALE computation with remeshing starting at +*, and an ALE computation with remeshing
from t = 0. The length of the bar is 40mm. When remeshing starts at #*, the mesh indicator is
a function of the jump of damage, Eq. (14). However, when remeshing starts at t+ = 0, the mesh
indicator depends on the strain jump, Eq. (16), until damage starts to grow, then the indicator is defined
by Eq. (14). The remeshing parameters in Eqgs. (14) and (16) are @ = 13 and b = 1. Compared with
the reference solution the fixed mesh clearly overestimates the localization width. On the other hand,

both ALE solutions are close to the reference one.

It can be noticed that the size of the element where localization starts has some influence in the
results. In fact, this difference between both ALE solutions decreases and becomes unnoticeable as

the number of elements is augmented. The influence of remeshing starting before or after localization



is better seen in Figure 5, where the same cases are shown at r+ = 1.2t*. In this figure both the
ALE from t* and the fixed mesh clearly overpredict the localization width. The nodal points remain
fixed if damage is constant; upon a sudden variation of the damage field, that is at the inception of
localization, the finite element mesh is too coarse for a good approximation. The motion of the ALE
mesh corrects this error in the following time-steps but the history-dependent constitutive equation
(the rate of damage is always positive or zero) and the explicit solver for the equilibrium equation
precludes a better approximation shortly after localization appears. Figure 6 presents at# = 1.5¢* and
for the same cases the element length along the bar corresponding to the damage profiles on Figure
4. As expected, the element size is reduced (half of the initial mesh) near the damage front, and it is
augmented accordingly away from the localized area. Finally, Figure 7 shows the damage profiles for
the 160mm bar. In this extreme case where the localization width is smaller than the initial element
length the influence of the remeshing is clear. The ALE computation with remeshing starting at# = 0

captures adequately the localized area.

Spherically Symmetric Problem

The second test case deals with the propagation of a pressure wave in a hollow sphere. The
internal radius of the sphere is R, = 10mm and the external one is R = 100mm. Figure 8 shows the
problem statement. A uniform pressure is applied on the exterior surface of the hollow sphere. Due to
the spherical symmetry, the stresses increase as the stress wave propagates towards the center of the
sphere. When the peak strength is reached, localization occurs over an interior surface of the sphere.
The material constants used for this problem are: £ = IMPa, G = 1 x 10°MPa, p = lkg/mm?.
They are identical to the constants chosen in [19]. The governing equations for this problem are
standard and can be found in the same reference. The constants for the evolution law of damage are

B = 2MPa~!, Yy = 0.5MPa, £ = 2.5mm, and the applied external pressure is p = 0.6MPa.

The implementation of the nonlocal damage model in the finite element code requires the calcu-
lation of the average of the damage energy release rate Y at every Gauss point using Eq. (9). This
equation is, in fact, an integration over the entire three-dimensional domain. However, it can be
simplified to a one-dimensional computation if R (distance to the center of symmetry of any Gauss

point where Y is evaluated) is sufficiently large compared to the internal length £ of the continuum,
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then it is well approximated by:

(R n?
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This approximation has been used in the finite element calculations. Following the previous discus-
sion, remeshing starts at t = 0 and it is related to the volumetric strain, Eq. (16), up to the inception

of damage when remeshing is then controlled by damage itself, Eq. (14).

The reference solution has been obtained with a uniform mesh of 80 elements and a time step
At = 0.5s. Localization appears at t* = 52s. Figure 9 compares the distribution of damage at t = 80s
obtained with the reference solution and with a fixed uniform mesh of 30 elements. Notice in the
reference solution that two localized areas are clearly developed and a third one is appearing. Several
localized areas were expected: as the stress wave propagates to the center it is amplified, therefore
when it reaches the peak stress localization is triggered; nevertheless, loading waves in this dispersive
medium can still propagate after localization has started, consequently the stresses are again amplified
as they pass to the center and trigger the formation of additional localized surfaces. Therefore several
localization zones may appear before the wave is reflected on the interior surface at R = R,. Note
that the exact position of the localization zones is not known a priori by symmetry considerations as
in the bar problem. It is important to observe that the damage distribution obtained with the coarser
mesh is quite different from the reference solution. Three localization areas are clearly developed and
none coincides with the positions of the reference ones. This proves the inherent difficulties of this

particular problem with respect to mesh distribution.

The ALE analysis uses the same initial uniform mesh with 30 elements. Figure 10 shows a
comparison between the ALE results and the reference solution at # = 60s, 70s and 80s. Although
better agreement between both calculations is observed, several qualitative differences still persist.
The most important one being a slight translation of the distribution of damage towards the center of
the sphere. In view of [19] it is important to remark that in the present explicit time integration no
artificial damping is introduced in the fixed mesh computations; therefore, in the reference solution,
spurious oscillations appear from one element to the next. On the other hand, in the ALE analysis the

full upwind scheme employed for the integration of the convection term, Eq. (23), introduces some
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numerical damping. Therefore in the fixed mesh studies, such as the one with the refined mesh of
80 elements, the oscillations associated to high frequencies tend to trigger localization sooner, that s,
farther from the center of the sphere. In order to suppress these oscillations, a stiffness proportional
damping, similar to [19], is introduced only in the non ALE computations. The last term in Eq. (17)

associated to the internal force is modified and the equilibrium equation is rewritten as

/L 5 av\ p +/L 5 Bvd +/L osu ; +ﬂ/£ adu fr D 25)
U — X uc-—dax — O dX _ =
o PO Iy 5 F ox o 9x , ox

where B controls the amount of damping.

The reference solution is reevaluated with added damping (8 = 0.1), as well as the analysis with
the fixed 30 element mesh, the differences between both computations are similar to those shown
in Figure 9. On the other hand, a very good agreement is obtained between the ALE results and
the reference solution with 8 = 0.1. This shows the effectiveness of the ALE formulation. It is
important to observe that this example is particularly demanding for the ALE formulation. Note that
damage is detected, for every localized area, in coarse elements compared to the reference solution.
This explains the lower maximum values of damage during the generation of the bands (in a similar
manner as in the bar problem). For instance the second band in Figure 11b just appeared at 1 = 66s
(eight time-steps before the representation). Moreover, the remeshing tends to concentrate elements
around the first localized area until the second band is detected. Consequently the mesh motion must
be reversed to concentrate elements also on the second band which is correctly captured, see Figure
11c. Finally, Figure 11 also shows that the ALE damage distributions have a small bias towards the
center of the sphere compared to the reference solution, this is due to the numerical smoothing of the

sharp damage fronts introduced by the updating algorithm.

Figure 12 shows the evolution of the mesh with time. In these plots each element is represented
by a rectangle whose side is proportional to the actual length. At # = 40s the mesh indicator is still
computed according to the volumetric strain, the ratio between the lengths of the smallest element to
the largest one is approximately 3. At ¢ = 80s damage is well developed and this ratio is almost 11.
The agreement between ALE and reference solutions shows that the strain and damage distributions

are not distorted by the variations in the mesh indicator or in the size of the elements.
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CONCLUSIONS

The Arbitrary Lagrangian-Eulerian formulation is one of the techniques that can be applied to
strain localization analysis in fast-transient problems. In the ALE formulation, the mesh nodes move
independently of the material particles, hence the element size can be conveniently adjusted in order to
capture strain localization. This formulation has several interesting properties: the mesh connectivity
and the number of degrees of freedom remain constant during the computation. Furthermore, the
remeshing itself is imbedded in the equation of motion which is not the case in other adaptive methods.
In fact, in this paper the ALE formulation has been used as an adaptive remeshing technique to better
capture the localization area. Although only one-dimensional examples are presented, the formulation

is developed to allow a further generalization to problems in two and three dimensions.

A simple remeshing strategy based in the equidistribution of the jump of material state variables
(strain or damage) has been chosen in order to obtain an accurate solution. The remeshing equation
reduces to a nonlinear system of equations. The resolution of these equations, in spite of the effec-
tiveness of the algorithm and the relaxed convergence requirements, is time consuming and requires
further study in the context of fast-transient codes. On the other hand the strain and damage update,

necessary to account for the mesh motion, is very simple and efficient.

Two test cases presented where good approximations are achieved with meshes whose element
length is initially much larger than the internal length of the material (which scales the localization
zone). When remeshing starts at the beginning of the calculation, the element size is automatically
adjusted in order to obtain strain localization at the correct location. Accurate capturing of the propa-
gating damage fronts is achieved in spite of the small amount of elements used in the discretization.
Moreover the results are clearly comparable with the reference solutions and always obtained with
a drastic reduction in the computer time. The quality of the solution at the inception of localization
depends on the mesh configuration at this specific time-step. Even though the ALE solution is not
very accurate at this precise time because the mesh is too coarse, the formulation corrects this error at

subsequent time steps.

In the ALE formulation, it is clear that the initial number of degrees of freedom is the important
parameter that must be adjusted in order to achieve an accurate description of strain localization. If it

is too low, the interpolation will be too coarse despite element size optimization. An elegant solution
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would be to combine the ALE formulation with mesh adaptive techniques available in the literature

when the number of degrees of freedom needs to be increased.
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FIGURE CAPTIONS

Box 1: Flow chart of the ALE finite element program.
Figure 1: Schematic representations for the Lagrangian, Eulerian and ALE formulations.
Figure 2: Concrete response under uniaxial tension.
Figure 3: Wave propagation in a bar: problem statement.
Figure 4: Wave propagation in a bar: damage profiles at r = 1.5¢*.
Figure 5: Wave propagation in a bar: damage profiles at t = 1.2¢*.
Figure 6: Wave propagation in a bar: element lengths at t = 1.5¢*.
Figure 7: Wave propagation in a bar: damage profiles at = 1.5¢* for the 160mm bar.
Figure 8: Wave propagation in a hollow sphere: problem statement.

Figure 9: Wave propagation in a hollow sphere: comparison of the damage profiles between

the reference solution and the fixed mesh computation at t = 80s.

Figure 10: Wave propagation in a hollow sphere: comparison of the damage profiles between
the reference solution and the ALE computation at a) t = 60s, b) t = 70s, and c)

t = 80s.

Figure 11: Wave propagation in a hollow sphere: comparison of the damage profiles between
the reference solution with damping and the ALE computation at a) t = 60s, b)

t = 70s, and c) r = 80s.

Figure 12: Wave propagation in a hollow sphere: evolution of the mesh in the ALE solution.
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Algorithm for the ALE explicit code

1.— Initialization and initial conditions

2.— Loop over time steps

At time t":
a) Given €", compute o and D" use Egs. (7) to (13).

b) Given the spatial coordinates x", compute the internal forces and the
mass matrix at t".

. _L ; i _L
¢) From the particle, v~ %, and convective velocities, ¢"~ 2, compute the

; . —d
convective forces, 9" "2 (v), at 1" 2.

d) Solve the equation of motion with the lumped mass matrix and compute
the accelerations at t".

L_n __ gn n—1i n
M-a" = ext — 1 z(v) = int

e) Compute new velocities and strains

o Loop over nodes
1 1
VI =" 4 Ard’ + O(AL?)

no__ n—l; _1_ n
v =v -+2Ara + O(At)

g L . ;
o Loop over elements, compute "7 as the gradient of the veloci-
. L
ties, v"*2 at each element, then

1
& =g+ Ar "I + O(AF%)

f) Compute the mesh indicator; K, using Eq. (14) or (16) from D" or &*.

n+1

g) Solve Eq. (19) and get new nodal coordinates, x" ™", then compute the

: - L .
convective velocities at "7 using

i { xn—H — x"

xn+1 — x"
c' = v” — (T) —+ (')(Af)

h) Update strain and damage at the new nodal positions using Eq. (23).

3.— Compute the next time step, go to 2.—
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