
1 

 1 

Frequency and damping identification in flutter flight testing 2 

using Singular Value Decomposition (SVD) and QR 3 

factorization 4 

 5 

José Barros-Rodríguez
+
, Roberto Flores Le Roux

#
, Jesús López-Díez* and Rodrigo Martinez-Val

◄
* 6 

 7 

+ Logistic Center of Ordnance and Experimentation (CLAEX), Spanish Air Force (SAF) 8 

# CIMNE – Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona, Spain 9 

◄ Departamento de Vehículos Aeroespaciales, Universidad Politécnica de Madrid, Madrid, Spain 10 
* Corresponding author. Tel.: +34-913366367. E-mail address: rodrigo.martinezval@upm.es 11 
 12 

 13 

Abstract 14 

A new method, based on Singular Value Decomposition (SVD) and QR factorization, has been 15 

developed and applied to the analysis of F-18 flutter flight-test data. The method is capable of 16 

identifying the frequency and damping of the critical aircraft modes, those responsible for the flutter 17 

phenomenon. The procedure relies on the capability of SVD for the analysis, modelling and 18 

prediction of data series with periodic features and also on its power to identify matrix rank. The 19 

analysis of simulated and real flutter flight test data demonstrates the effectiveness, robustness, 20 

noise-immunity and the capability for automation of the method proposed under specific conditions.  21 
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1. Background  25 

Flutter flight-testing remains a demanding task, mainly due to safety concerns. Great efforts are also 26 

required in several related areas, including flight data analysis. 27 

A flutter test-campaign was completed on an F-18 aircraft configured with a wingtip-mounted IRIS-28 

T Missile and several underwing stores in order to establish the boundaries of flight envelope. Two 29 

types of excitations are employed in F-18 flutter flight-testing. Swept-frequency aileron deflection 30 

excitation is used to identify structural modal parameters. This provides an estimation of the 31 

frequency for each mode but yields low-accuracy results for damping. Dwell (3 seconds fixed 32 

frequency) aileron deflection excitation is used to obtain a better estimation of damping and to 33 

identify non-linear effects, giving an indication of energy exchange between critical modes. From 34 

the free response (which lasts for 2 or 3 seconds) obtained after dwell excitation, damping and 35 

frequency information can be extracted. 36 

Free response signals from dwell excitation are short as well as scarce since, unlike ground tests, 37 

flight time is very costly and tests are seldom repeated. Moreover, as the stability boundary is 38 

approached, the spacing between the critical modes is reduced (frequency coalescence), their energy 39 

difference increases (larger damping difference) and the nonlinearities become more pronounced 40 

(amplitude increases). In summary, close to the stability border, where information on critical 41 

modes (those leading to flutter phenomena) is of vital importance, the measurements required 42 

become very problematic.    43 
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These facts make modal identification in flutter testing especially difficult. To overcome these 1 

problems several methodologies have been studied. The Morlet wavelet has been employed 2 

combined with several methods to avoid end-effects for short signals; Kijewski &Kareem
1,2

 use 3 

signal padding to extend the signal while Slavic & Boltezar3-5 apply several methods without signal 4 

extension, modifying instead the mother wavelet. Brenner
6
 employs first only wavelet and later 5 

combines Wavelet and SVD
7
 (Singular Value Decomposition) to analyze flight test data while Thai-6 

Hoa & Kamura
8
 combines wavelet with FDD (Frequency Domain Decomposition). Brenner & 7 

Prazenica
9
 investigate the application of Hilbert- Huang Transformation for the analysis of 8 

aeroelastic flight data. Kijewski &Kareem
10

 employ Random Decrement Technique combined with 9 

bootstrap statistics to estimate damping while Rodrigues and Brincker
11

 study its use combined with 10 

other modal methods to unveil the modal parameters of short signals. Juang and Pappa
18

 develop the 11 

ERA (Eigenvalue Realization Algorithm), further explained in Gawronski’s Book
19

. 12 

Short free-response data samples from the IRIS-T test campaign were analysed with a SVD and QR 13 

factorization based method which is presented in section 3. The method can be employed even 14 

when weak nonlinear effects are present, as is the case for an F-18 with heavy loads in outboard 15 

wing stations. In section 4 the performance of the method is demonstrated with synthetic as well as 16 

real flight-tests data.  17 

 18 

2. Characteristic features of SVD  19 

Given any m n×  real matrix A, there exist a m m×  real orthogonal matrix U, a n n×  real 20 

orthogonal matrix V and a m n×  rectangular diagonal matrix S, such that
12-16

: 21 
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The elements of S, called singular values, are arranged in a non-increasing order (that is, for 23 

m n< ): 24 
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It can be concluded that the SVD decomposition indicates the effective rank of the matrix A.  26 

Using the Frobenius norm
12

, an energy balance can be established between the values of A and the 27 

singular values: 28 
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The SVD decomposition is very stable and robust
12

 since perturbations in the elements of A give 30 

rise to fluctuations of the same or smaller order in the singular values. 31 

In summary, since SVD gives the rank of A, it provides the number of rows that are linearly 32 

independent.  And because SVD remains stable if the elements of A are contaminated with noise, it 33 

is still able to identify the number of linearly independent rows. 34 
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In order to identify a base of the space spanned by the rows of A, which consists of r vectors ai (r 1 

being the rank of A), a subset selection criterion as proposed by Prof. Kanjilal
12

 is needed. To this 2 

effect, the row having the maximum Euclidean norm is chosen first. Next, the row having 3 

maximum orthogonal component to the row just selected is chosen. The process is repeated until r 4 

rows have been selected. 5 

 6 

3. Proposed method for system identification  7 

3.1. Hypothesis of linearity 8 

The basic hypothesis used in this method is that there is a structural equivalent system in which the 9 

structural modes can be represented by harmonic signals exponentially damped
17

.  10 

This assumption implies the existence of a standard set of linearized equations of motion: 11 

 0+ + =Μx Cx Kx&& &  (4) 12 

where M, C and K denote the mass, damping and stiffness matrices respectively and x is the 13 

displacement vector. The solution of Eq. 4 can be expressed as a function of the modal coordinates 14 

as: 15 
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In Eq. 5 ΦΦΦΦ denotes the modal matrix whose rows are the modal shape vectors φφφφ
r
. The vector q 17 

contains the values of the modal coordinates q
r
. The time evolution of the modal coordinates is 18 

given by: 19 
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r

df  denotes the damped frequency of mode r, whose natural frequency and damping ratio are 
r

nf  21 

and 
rξ ; on its side,

rφ  is the phase of the mode r. 22 

A sensor of the aircraft is able to measure a component xi(t) of the vector of displacements x(t). 23 

Assuming that the free response comprises only exponentially-damped harmonic signals, each one 24 

with constant frequency and a damping coefficient, the following expression can be obtained: 25 
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However, the signal form a sensor of the aircraft will also contain electrical noise, forced response 27 

to turbulence and the effect on nonlinearities. 28 
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If the noise and response to turbulence are random and Gaussian distributed and only weak 30 

nonlinear effects are present, the method proposed hereafter is applicable. The method also provides 31 

an assessment of the importance of non-linear effects. 32 

 33 

 34 

 35 
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3.2. Matrix assembly with a single sensor and dependence between rows 1 

In the case where there is only one sensor, in principle, all the modes of the system could be 2 

identified. If, however, the sensor is placed close to a node, the corresponding mode cannot be 3 

detected because the signal it creates is too weak (i.e. the relevant component of the modal vector is 4 

small). 5 

Let us take a signal of length T recorded with sampling frequency fs and containing an odd number 6 

of samples (for the sake of convenience). 7 

 [ ]( ) (0) ( ) (2 ) (3 )..... (2 )
SAMPLING

s s s sx t x x T x T x T x NT→ =2Nx% % % % % % %  (9) 8 

The time between samples is given by Ts=1/fs and the total number of sample points is 9 

2N+1=Ts/Ts+1. The first step of the method is to build a symmetric square matrix A. This is 10 

achieved taking as the first row the first N+1 samples of the signal, the second row contains the 11 

signal offset by one record, the third row is the signal offset by 2 records and so on: 12 

 13 
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 (10) 14 

Let us now study the relationship between the different rows of the matrix. It is assumed that there 15 

are n modes and that the noise, turbulence and nonlinearity can be modelled as a white Gaussian 16 

noise ε. 17 

Note that in the following the subindex I corresponding to the sensor has been removed. 18 
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 (11) 20 

Each mode has been split into its cosine and sine components in order to remove the phase from the 21 

argument of the trigonometric functions. 22 
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For any natural number α: 1 
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 (13) 3 

The different rows of matrix A are obtained by delaying the first row by an integer number of 4 

records. In light of Eq. 10, for a linear and free of noise, the rank of matrix A (the number of 5 

nonzero singular values on its SVD) should match the number of independent vectors c
r
 and s

r
. 6 

That is, the rank of A would equal twice the number of modes. On the other hand, in a real system 7 

with noise, turbulence and weak nonlinearity all the singular values are nonzero. The smallest 8 

singular values appear due to these additional factors. 9 
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If the conditions under which the method is applicable are met, there will be 2n dominant singular 11 

values with the rest being considerably smaller. This provides a direct measure of the modal order  12 

of the system. If there is no clear distinction between both sets of singular values this means the 13 

method is not applicable (e.g. there are strong nonlinearities in the response). By dropping the small 14 

singular values it is possible to filter out most of the noise. This is achieved by building the matrix 15 

AC which is almost noise-free, in which small singular values have being equalled to zero: 16 
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 (15) 17 

In order to obtain the noise-free signal the first and last columns of matrix AC must be combined 18 
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 (16) 20 

Several existing methods, such as ERA
18, 19

 and CVA
20, 21

 build up a matrix A (Hankel matrix) and 21 

employ SVD for model reduction, justification based on linear dependency between matrix’s rows 22 

when the signals can be approximated by exponentially damped harmonic functions is presented in 23 

this paper. 24 

 25 

 26 
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 1 

3.3. QR factorization and column pivoting 2 

Any set of 2n columns from matrix AC would form a base equivalent to the 2n vectors c
r
 and s

r
. It is 3 

important, however, to choose the most adequate vectors. These are the vectors that are the most 4 

orthogonal to each other and have maximum norm. An efficient means of achieving this goal is 5 

QR
12,15

 factorization with column pivoting. A column pivoting strategy is used to obtain a 6 

permutation matrix E such that: 7 

 / , 0ijR i j= = = ∀ > → =T T

C CA E QR QQ I B E A  (17) 8 

The matrix B is ordered in such a way that its first 2n rows are the best base available to represent 9 

the space spanned by the vectors c
r
 and s

r
. Therefore, it is enough to keep these 2n rows and the rest 10 

can be discarded. A truncated matrix Bt can be built keeping only the first 2n rows: 11 
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Since matrix Bt is of rank 2n, its SVD has a singular matrix S (2n by N+1) with 2n nonzero singular 13 

values.  14 

Column pivoting
12

 based on QR decomposition in order to optimize row selection in matrix A is not 15 

employed in other modal analysis methods and is inspired by Prof. Kanjilal
12

 subset selection. 16 

 17 

3.4. Frequency and damping determination 18 

An augmented matrix B
*
 can be obtained adding an additional row to Bt. If the new row is linearly 19 

independent from the old ones (i.e. it is linearly independent from the 2n vectors c
r
 and s

r
) B

*
 will 20 

be of rank 2n+1. On the other hand, if the new vector is a linear combination of the rows of Bt, the 21 

ranks of Bt and B
*
 shall remain equal due to the additional singular value being null. 22 

In order to find the modes contained in the signal a parametric family of exponentially-damped 23 

sinusoidal functions (normalized with their Euclidean norm) is created. The free parameters are the 24 

frequency and the reduced damping (fK, ξK). 25 
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 (19) 27 

The 
K

1
Y  vectors are used to build a family of augmented matrices

K

*
B . The SVD transformation is 28 

then applied to each member of this family: 29 
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To evaluate the rank of K

*B  the product of the 2n+1 singular values of KS  is taken. Let us denote it 2 

by ΨK. 3 
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Note that ΨK is actually the determinant of the reduced matrix obtained retaining only the first 2n+1 5 

columns of KS . This determinant vanishes if matrix K

*B  is of rank 2n. For each pair of parameters 6 

(fK, ξK) a ΨK value can be computed which assesses to what degree the new vector 
K

1Y  is 7 

independent from the (c
r
, s

r
) base. Those 

K

1
Y  vectors which more closely match the modes of the 8 

system yield minimum values of ΨK. 9 

In order to obtain a comprehensive coverage a sequence of (fK, ξK) pairs must be built which spans 10 

the range of interest with an adequate resolution. To simplify the interpretation of the results it is 11 

desirable to build a sequence in which consecutive elements correspond to monotonically increasing 12 

damping ratios for a given frequency value: 13 

 14 
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While SVD is a very robust algorithm for matrix analysis, it cannot always avoid spurious matches 1 

between the 
K

1Y  vectors and noise present in the signal. Nevertheless, it must be noted that the 2 

analytical K

1Y  vectors were built using the sine function, but could have been built from the cosine 3 

function as well. When the mode identified is real the values of ΨK for K

1Y  vectors built with both 4 

sine and cosine functions must be local minima. Failure to meet this condition indicates that the 5 

mode identified is spurious and must be discarded. 6 

Current method employs SVD to identify frequency and damping inspired in other technological 7 

areas as image correlation while other modal analysis techniques prefer Least Square algorithms 8 

 9 

3.5. Method for multiple sensors 10 

When there are S different sensors, the first step is to normalize each signal using its Euclidean 11 

norm. Once this has been done, the algorithm closely follows the single-sensor case: 12 
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In this case the square matrix A contains samples from all sensors: 14 
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 16 

Next, the SVD is applied to A and reduced singular value matrix SC is formed in order to remove 17 

unwanted noise. The filtered signal can be recovered from AC matrix: 18 
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The rest of the steps to follow are identical to single-sensor procedure. 2 

 3 

4. RESULTS AND DISCUSSION  4 

4.1. System Identification with Synthetic Data 5 

Tests were conducted using the basic MATLAB 6.5 software without specialized toolboxes, 6 

applying the method to exponentially-damped harmonic functions to which Gaussian noise was 7 

superimposed. An example is shown in Eq. 26 with two harmonic functions whose parameters are 8 

similar to the typical modal parameters found in the real tests. The frequencies of the functions are 9 

5.4Hz and 6.0Hz. The amplitudes are respectively 1.0 and 0.5 and the damping coefficients 0.015 10 

and 0.03. There is a variable phase shift between the two functions. The signal was intentionally 11 

contaminated with various levels (relative to the 6.0 Hz component) of Gaussian noise. Sampling 12 

frequency is 500 Hz, equal to that available in the real tests presented later: 13 

 
2 0.015 5.4 2 0.03 6.0

(0,0.5)

1
( ) sin(2 5.4 ) sin(2 6.0 )

2

t t

Ny t e t e tπ ππ π ϕ ε− ⋅ − ⋅= + + +  (26) 14 

The results are shown in Table 1. 15 

It can be observed that results are not influenced by the phase shift due to the nature of the method. 16 

In the case when noise is 8 dB and phase is 15
0
 Table 1 depicts both the original signal and the 17 

filtered data obtained using the SVD-based method and retaining 4 singular values. 18 

 19 
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Table 1 - Frequency (Hz) and damping coefficients for various values of phase and noise 1 

  Phase  

  0 15 30 45 60 75 

Noise Level 

8 f = 5.4 and ξ = 0.015 

f = 6.0 and ξ = 0.025 

6 f = 5.4 and ξ = 0.015 

f = 6.0 and error in damping, with a low probability of missing the mode 

2 f = 5.4 and ξ = 0.001 – 0.002 

f = 6.0 and error in damping, with a high probability of missing the mode 

 2 

Once the noise has been removed from the signal, the modal identification step can be performed. 3 

In the case when noise is 8 dB and phase is 15
0
 Table 2 shows the evolution of the Ψ  parameter, as 4 

different combinations of frequency and damping are tested. Each curve segment corresponds to a 5 

single frequency value, which is labelled on the horizontal axis. The frequency difference between 6 

adjacent curves (∆f) is 0.2Hz while the jump in damping ratio between consecutive points (∆ξ) is 7 

0.005. 8 

The curve shows two distinct peaks at f=5.4Hz, ξ=0.015 and f=6.0Hz, ξ=0.025. The frequencies 9 

have been correctly estimated. Furthermore, for a 2s sample length conventional frequency-domain 10 

analysis techniques would be at the limit of their resolving power (0.5Hz) making it extremely 11 

difficult to identify the two modes due the high noise level. The method proposed compares 12 

favourably in this respect. Regarding the damping ratio, a reasonable estimate has been obtained. It 13 

must be stressed that high noise content is especially troublesome in this respect, so the result is 14 

actually fairly accurate.  15 

4.2. System Identification with Flight Data 16 

The method has been employed on signals from sensors embedded on the wing of the EF-18 fighter 17 

aircraft obtained during an IRIS-T missile integration flutter test-flight. Although it has been used 18 

only for post-processing of the signals on ground, the short computing time (around 1 second) with 19 

MATLAB software indicates that the method could be working combined with prediction 20 

algorithms (Flutter Margin) to assist in the decision whether or not to proceed to a more critical 21 

points during in-flight testing. Aircraft was configured with wingtip-mounted missile and several 22 

heavy under-wing stores. Test point was performed fairly close to the final stability border and 23 

corresponds to an asymmetric dwell excitation at 4.5 Hz. The free response unprocessed signals 24 

resulting from such excitation are shown in Table 3, while the frequency spectrum of the signals as 25 

well as the comparison between processed and unprocessed LM13 signal have been included in 26 

Figure 4. Given that data from multiple acquisition channels is available both the single-sensor and 27 

the multiple-sensor variants of the method can be put to test and their results can be compared. Data 28 

was collected for two seconds using a 500 Hz sampling frequency. 29 

The signals were passed through an analog band-pass filter on the aircraft to remove components 30 

below 1 Hz and over 20 Hz. The method for single sensor has been applied to each individual signal 31 

while the method for multiple sensors has been used with the complete set.  The results of the 32 

analysis are summarized in Table 2. 33 

 34 
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Table 2- Frequency (Hz) and damping coefficients obtained with SVD-based analysis method 1 

 

SVD Method with single sensor SVD Method with 

Multiple Sensor LJ11 LM11 LJ13 LM13 LJ17 LM17 

1
st
 

Mode 

5.3 (Hz) 

0.045 

5.3 

0.035 

- 

- 

5.1 

0.005 

5.3 

0.05 

5.2 

0.055 

5.3 

0.045 

2
nd

 

Mode 

6.7 (Hz) 

0.02 

6.5 

0.01 

6.9 

0.02 

6.6 

0.015 

6.8 

0.02 

6.8 

0.015 

6.7 

0.02 

 2 

The method identifies a bending mode at 5.3Hz and a torsional mode at 6.7Hz.  In this case the first 3 

torsion sensor (LJ13) was placed close to a node of the bending mode, and was therefore incapable 4 

of detecting it. It is worth remarking that the results obtained for individual sensors agree well 5 

among themselves and also show a good correlation with the multiple-sensor estimate. Due to their 6 

specific placement, a better measurement of the bending motion is of course expected from the 7 

flexion sensors (LJ11 & LM11). On the other hand, the torsional response is best captured by LJ13 8 

through LM17. Nevertheless, the two types of sensors are able to detect with reasonable accuracy 9 

both modes (with the exception of LJ13 which, as explained, lies too close to a node of the bending 10 

mode).  11 

 12 

5. Conclusions 13 

A method based in SVD and QR factorization with column pivoting has been presented. Time-14 

shifting of the signal yields a symmetric square matrix from which noise is removed through SVD. 15 

In the process, the modal order of the system is also determined. Next, using QR factorization, a 16 

base of the space spanned by the modal vectors is built. Finally, SVD is utilized for modal 17 

parameters identification using a family of sinusoidal exponentially-damped functions. 18 

 19 

The method presented overcomes the signal identification limitations found when testing flight 20 

conditions near flutter. In these cases, due to the proximity of adjacent modes and the short sample 21 

length, standard frequency domain-based methods suffer from severely degraded accuracy. The 22 

method described was applied to flutter flight-test data gathered during the IRIS-T / EF-18 23 

integration campaign. The technique demonstrated adequate modal identification performance (in 24 

terms of damping and frequency). 25 

 26 

Further studies to evaluate the impact in accuracy of non-linearity, sampling frequency, signal 27 

length, noise content and relative amplitude and damping of neighbouring modes are underway. 28 

Additional work is also needed in order to develop error-estimation criteria appropriate for the new 29 

method. 30 

 31 

Final consideration 32 

This paper is based on the research work carried out by the first author (J Barros) under the 33 

supervision of Prof Lopez-Diez, his PhD Thesis advisor, and the collaboration of Dr Flores. After 34 

Prof Lopez-Diez’s sudden death, in January 2013, Prof Martinez-Val has taken the responsibilities 35 

of PhD advisor. The authors dedicate this paper to the memory of the late Prof Lopez Diez, kept as 36 

third author as it was initially planned. 37 

 38 

39 
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Figure 1 - Original signal and filtered data 4 

 5 

 6 

Figure 2 – Evolution of the 
KΨ  parameter as a function of the fK, ξK combination 7 
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 1 

Figure 3– Raw signals from six different sensors 2 

 3 

 4 

Figure 4– Signals Frequency Spectrum and LM13 Processed Signal 5 




