
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

A DECOMPOSITION OF THE RAVIART-THOMAS FINITE ELEMENT
INTO A SCALAR AND AN ORIENTATION-PRESERVING PART

Fleurianne BERTRAND 12

2 University of Twente
Drienerlolaan 5, 7522 NB Enschede, Netherlands

f.bertrand@utwente.nl

Key words: mixed finite element methods, Raviart-Thomas element

Abstract. This contribution considers the conforming finite element discretizations the vector-valued
function space H(div,Ω) in 2 and 3 dimensions. A new set of basis functions on simplices is introduced,
using a decomposition into an orientation setting part with the edgewise constant normal flux as a degree
of freedom and an orientation preserving higher-order part. As a simple combination of lowest-order
Raviart-Thomas elements and higher order Lagrange-elements, the basis is suited for fast assembling
strategies.

1 Introduction

Accurate flux and stress approximations are of crucial interest in many applications, although the stan-
dard Galerkin approximation usually minimize an energy depending on a primal variable. The divergence
of those approximation does usually not belong to the Sobolev space H(div,Ω), consisting of vector fields
for which the components and the weak divergence are square-integrable. A lot of attention has therefore
been devoted to the reconstruction of the flux from a primal formulation. The reconstruction procedures
for fluxes are also of particular importance for a posteriori error estimation and have a long history with
ideas dating back at least as far as [17] and [18]. A unified framework for Stokes is presented in [16],
polynomial-degree robustness is shown in [13] and extensions to three space dimensions in [14].

An alternative approach uses flux-based variational formulations involving the flux as an independent
variable approximated in a suitable H(div)-conforming finite element spaces. Such approaches may
either lead to a saddle-point problem or a symmetric positive definite system. The first one, have been
intensively studied and we refer to [8] for an overview. The second type includes in particular the Least-
Squares Method (see [7] for a comprehensive overview) and the discontinuous Petrov-Galerkin method,
introduced in a series of papers [9, 10, 11].

The use of H(div,Ω)-conforming finite elements is therefore crucial in challenging applications. Through-
out this paper, a regular triangulation T of a domain Ω⊂ IRd is considered, and Pk(T ) denotes the space
of discontinuous polynomials of degree k with respect to T . Recall that for a finite element family to be
H(div,Ω)-conforming, the normal component must be continuous. For a given polynomial degree k ≥ 0
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the smallest polynomial space from which the divergence maps onto P0(T ) is the so-called the so-called
Raviart-Thomas element, denoted by RTk(T ) and introduced in [?].

The construction of the basis function and the choice of the degrees of freedom for the Raviart-Thomas el-
ement are an important issue in view of fast assembling and computations. They are less evident than for
the standard element, as not all degrees of freedom are pointvalues. Computational bases for H(div,Ω)
with Lagrangian property are derived in [15], althought the autor restrict himself to the two-dimensional
case. This basis is defined on the reference triangle and the continuity of the normal component of the ap-
proximation across the edges in the triangulation is satisfied by the use of the Piola transformation and the
Lagrangian property of the basis functions. However, using an affine transformation to map a reference
triangle on any triangle in the triangulation is less appropriate regarding an adaptive mesh refinement
such that an alternative approach forming local bases on any triangle in the triangulation is proposed in
[2]. A construction of basis functions which implies sparse element matrices has been developped in [6],
where the authors are concerned with fast assembling and fast matrix-vector multiplications.

The efficient assembly of H(div) is an important issue, discussed e.g. in [19], where the authors propose
an implementing strategy relying on a decomposition of the element tensor into a precomputable refer-
ence tensor and a mesh-dependent geometry tensor. An alternative effective and fexible way to assemble
finite element stiffness and mass matrices with edge elements is proposed in [1].

The aim of this paper is to propose a decomposition of the Raviart-Thomas space into a scalar and
an orientation-preserving part, as this will increase the speed of the assembling strategies. In fact, the
orientation of the basis function can be defined once and for all for the lowest-order Raviart-Thomas
space, and be conserved in the higher-order case. Such a decomposition is also usefull for the analysis of
the effect of approximated flux boundary conditions (see [5]). For the implementation of the parametric
Raviart-Thomas elements (see [4]) this decomposition can be used to reduce the computational cost of
the parametric mapping, since it is then sufficient to apply the H(div) conforming mapping on the lower-
order orientation-preserving part and to use the standard isoparametric mapping for the scalar part. An
other application of this decomposition is the derivation of hierarchical error estimator, simplifying the
analysis and dumbing computational cost down.

The main result of this paper is that given a basis of RT0(T ), it is possible to find a set of basis func-
tions for RT k(T ), that are given as a product of the RT0(T ) basis functions and a scalar function. This
means that the lowest order basis functions can be considered as the orientation part of all the cell-based
higher-order basis functions. Since these are easily computable and since the scalar part can be seen
as a Lagrange basis function this implies a reduction of the computational cost. This paper is orga-
nized as follows: section 2 recalls some properties of the Raviart-Thomas element while in section 3
the orientation-preserving basis function are provided. In section 4, a basis retaining the orientation is
constructed for the quadratic case. Finally, the results are extended to the higher-order case in section 5.

2 The Raviart-Thomas element

In this section, we review the different definitions of the degrees of freedom. Note that even the indexing
of the Raviart-thomas space is not consistent in the literature. We choose to work with the following
definition of the Raviart-Thomas element:

RTk(T ) = (Pk(T ))d +xPk(T ) (1)
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Figure 1: Degrees of freedom for the Raviart-Thomas element

forming the Raviart-Thomas space

RTk(T ,Ω) = {v ∈ H(div,Ω) : v|T ∈ RTk(T ) for all T ∈ T } . (2)

We start by recalling from [?] (see also [8]) that k ≥ 0 and for any vh ∈ R Tk(T ), it holds

div vh ∈ Pk(T ) ,

vh ·n ∈ Rk(∂T ) ,
(3)

where ∂T denote the boundary of an element T ∈ T . Further let F (T ) denote the set of its facets, n the
outward oriented normal and

Rk(∂T ) = {φ ∈ L2(∂T ) : φ|e ∈ Pk(e) ∀ e ∈ F (T )} (4)

the polynomial space on the facets. Recall that if∫
∂T

(n ·vh)pk ds, ∀ pk ∈ Rk(∂T ) (5a)

∫
T

vh ·pk−1 dx, ∀ pk−1 ∈ (Pk−1(T ))
d (5b)

holds for vh ∈ RTk(T ), then vh = 0. As represented in figure 2 and 3 for k = 0 and k = 1 (see [12] as
well), this motivate the fact that the degrees of freedom ΣΣΣk(vh) = ΣΣΣ

n
R,k(vh)∪ΣΣΣ

int
P,k(vh) are typically given
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by

ΣΣΣ
n
R,k(vh) = {

∫
∂T

(n ·vh)pk ds : pk ∈ R} (6a)

ΣΣΣ
int
P,k(vh) = {

∫
T

vh ·pk−1 dx : pk−1 ∈ P} (6b)

where R and P are basis for Rk(∂T ) and (Pk−1(T ))
d respectively. Note that the degrees of freedom

depend on this basis. Denoting the standard conforming Lagrangian basis function on a element E with
Lk(E), one possible choice are

R = {q ∈ L2(∂T ) : q|e ∈ Lk(e) ∀ e ∈ F (T )} (7)

and P = Lk−1(T ). Constructing the set of functions

{vi ∈ RTk(T ) : {ΣΣΣk(vi)} j = δi j}
dim RTk(T )
i=1 (8)

leads to a dual basis of RTk(T ). Throughout this paper, RT n
k (T ) denotes the linear combination of the

basis functions assiociated with (6a) such that

RTk(T ,Ω) = RT n
k (T )

⊕
RT int

k (T ) (9)

holds. Note that for k = 0, RT int
k (T ) = /0. Further, recall that

dim RTk(T ) = (k+d +1)
(

k+d−1
d−1

)
=

{
(k+3)(k+1) d = 2
1
2(k+1)(k+2)(k+4) d = 3

. (10)

Due to P k−1(K)⊂ RTk(T ) and vh ·n ∈ Rk(∂T ) for vh ∈ RTk(T ), an alternative way to define the degrees
of freedom are point evaluations, i.e. Σ̃ΣΣk(vh) = Σ̃ΣΣ

n
k (vh)∪ Σ̃ΣΣ

int
k (vh) with

Σ̃ΣΣ
n
k,ΞΞΞ(vh) = {(vh(ξξξi) ·n)|e : ξξξi ∈ΞΞΞ, e ∈ F (T )} (11a)

Σ̃ΣΣ
int
k,H(vh) = {vh, j(ηηηi) : ηηηi ∈H}d

j=1 (11b)

where H is a point set on an element T with

dim(H) =

(
k−1+d

d

)
(12)

and ΞΞΞ is a point set on a facet, with

dim(ΞΞΞ) =

(
k−1+d

k

)
. (13)

Now, constructing the set of functions

{vi ∈ RTk(T ) : {Σ̃ΣΣk(vi)} j = δi j}
dim RTk(T )
i=1 (14)

4



Fleurianne Bertrand

(a) k = 0 (b) k = 1

Figure 2: Degrees of freedom for the Raviart-Thomas element for k = 0 and k = 1

leads to basis of RTk(T ). For k ≥ 1, the points for (6b) can be chosen as the interior points of the
Lagrange element of type k+d, each point represents d degrees of freedom (see figure 1). Note that in
fact, there is no need to enforce the evaluations of the different components at the same point, such that
Σ̄ΣΣk(vh) = Σ̃ΣΣ

n
k (vh)∪ Σ̄ΣΣ

int
k (vh) with

Σ̄ΣΣ
int
k,H1,...,Hd

(vh) = {vh, j(ηηηi) : ηηηi ∈H j}d
j=1 (15)

where H1, ...,Hd are sets of points on an element T with dim(H j)=

(
k−1+d

d

)
, j = 1..d. In particular,

this definition of the degrees of freedom allows to reduce the computational cost could be reduced using
the coordinate system provided from the RT0 functions.

3 Orientation preserving Basis Functions

[3] provides three short Matlab implementations of the lowest-order Raviart-Thomas mixed finite ele-
ments for the numerical solution of a Laplace equation with mixed Dirichlet and Neumann boundary
conditions. In particular, a section is devoted to the edge-basis functions for the lowest-order Raviart-
Thomas finite elements. Although these results are written down for the 2D case, the representation of a
Raviart-Thomas function directly carries over to three dimensions. In the lowest-order case, the Raviart-
Thomas Function space RT0(T ) is given by facet-functions, i.e. there is a basis Ψ̂ = {φ̂F}F∈F , where
φF lives on the two adjacent elements of F . This together with the H(div) conformity implies that the
facets will be oriented. Therefore, for a given facet F ∈ F a left and a right triangle denoted by T+ and
T− are defined, corresponding to left and right d-th points denoted by P+ and P−. This defines one for
all the orientation of the given edge, and the purpose of the next section is to retain the orientation in the
corresponding basis function. The basis functions are given by

ψ̂F(x) =


|F |

2|T+|(x−P+) on |T+|
− |F |

2|T−|(x−P−) on |T−|
0 elsewhere,

(16)
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(a) k = 0 (b) k = 1

Figure 3: Degrees of freedom for the Raviart-Thomas element (d = 3)

where |F | denotes the measure of the facet F and |T | denotes the measure of the element T . These basis
functions correspond to the nodal set of degrees of freedom Σ̃ΣΣ

n
0,· =ΣΣΣ

n
R̃0,k, with

R̃0 = {q : e 7→ IR : q(x) = |F |−1}e∈F (T ) . (17)

Since the normal component of the basis function is constant on an edge, the evaluation point does not
have to be specified. In the two-dimensional case, denoting the barycentric coordinates by λ associated
with the points of an edge E by λ

+
E and λ

−
E , the basis function ψ̂E for E ∈ F can be written as

ψ̂E(λ)|T = λ
−
E (∇×λ

+
E )−λ

+
E (∇×λ

−
E ) . (18)

In the three-dimensional case, the basis function ψ̂F for F ∈ F can be written as

ψ̂F(λ)|T =
3

∑
i=1

λ
−
F,i(∇λ

+
F,i×∇λ

−
F,i) . (19)

where {λF,i}3
i=1 denotes the barycentric coordinates associated with the i− th vertice of the face F , and

∇λ
+
F,i and ∇λ

−
F,i its adjacent points on the face.

The alternative definition of the degrees of freedom with the moments leads to

ϕ̂F(x) =


1

2|T+|(x−P+) on |T+|
− 1

2|T−|(x−P−) on |T−|
0 elsewhere,

(20)

corresponding to ΣΣΣ
n
R0,k, with

R0 = {q : e 7→ IR : q(x) = 1}e∈F (T ) . (21)

Throughout the further sections, the choice of the set of basis functions for RT0 does not matter, the de-
composition into a orientation-part and the scalar part will conserve the scaling of the RT0 basis functions
into the higher-order case either way.
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4 Quadratic Raviart-Thomas Element

In this section, a basis for the facet-based shape functions RT n
2(T ) is proposed. Recall that we want to

conserve the orientation defined by the lowest-order facet-based functions. Therefore, define the linear
scalar-valued polynomials pF,P,T : T 7→ IR such that

pF,P,T (P) = 1

pF,P,T (Pm(T )) = 0 and

pF,P,T (Pi) = 0 for Pi ∈ Q (F)\P .

(22)

where Pm(T ) denote the center of gravity of the element T and Q (F) the set of the vertices of the facet
F . Note that these functions are unique and correspond to a Lagrange Basis on a uniform refined mesh.
This leads to the following lemma.

Lemma 1. A basis for RT n
2(T ) is given by {ψPi,F}F∈F ,i=1,...,d , with

ψPi,F(x) =


|F |

2|T+|(x−P+)pF,Pi ,T+
(x) on |T+|

− |F |
2|T−|(x−P−)pF,Pi,T−

(x) on |T−|
0 elsewhere

. (23)

Using the lowest-order basis function from (16), it holds

ψPi,F = ψ̂F · pF,i, i = 1, ...,d (24)

with the scalar-valued, piecewise linear polynomial pF,i : Th→ IR such that

pF,i =


pF,Pi ,T+

on |T+|
pF,Pi ,T−

on |T−|
0 elsewhere

i = 1, ...,d . (25)

Proof. Due to construction, ψPi,F ∈ RT n
2(T ). Further for x /∈ F , since ψ̂F(x) · n = 0 it follows from

(24) that ψPi,F(x) ·n = 0. It remains to proove that for a given facet F , the d functions ψPi,F(x) ·n = 0
for Pi ∈ Q(F) are linearly independent. Due to (24), this is equivalent to the fact that the d functions
pF,i, i = 1, ...,d are linearly independent for a given facet F , and this is ensure by the conditions (22),
and the fact that the triangulation is regular, since these are d + 1 conditions for a linear polynomial in
IRd .

Note that in the two-dimensional case, due to symmetric properties, it holds

pF,P,T (P) = 1

pF,P,T (Pm(T )) = 0 and

pF,P,T (P+(F)) =−1 .

(26)

To obtain an orientation preserving basis, it remains to construct a basis for RT int
2 (T ), using the lowest-

order basis functions. Therefore for a facet F of an element T ∈ Th consider the scalar-valued linear
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Figure 4: Example for ansatzfunctions on reference triangle

polynomial pF,T : T → IR such that

pF,T (Pi(F)) = 0, i ∈ {1, ...,d}
pF,T (Pm(T )) = 1

(27)

and let imin(T ) be the index such that Pimin(T ) is the vertice of T with minimal angle. Note that pF,T
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althought correspond to a Lagrange Basis on a uniform refined mesh, such that the following lemma
ensures a simple computation of the basis functions for T .

Lemma 2. A basis for RT int
2 (T ) is given by {ψi,T}T∈T ,i∈{1,2,3,4}\{imin(T )} with

ψi,T = ψ̂F(Pi,T ) · pF,T (28)

where F(Pi,T ) denotes the facet of T which intersection with Pi is empty.

Proof. Since pF(Pi),T = 0 for each vertices of the facet F and ψ̂F(Pi,T ) vanishes for the remaining verctice
of the element T , ψi,T vanishes at all vertices of T . This implies that the normal component of ψi,T

vanishes on all facet, such that it remains to check that the d functions ψi,T are linearly independent for
a given T , and that holds due to the fact that ψ̂F(Pi,T ), i ∈ {1,2,3,4}\{imin(T )} are linearly independent.

5 Higher order case

The results from the previous section can be extended to higher order elements. Therefore recall that a
Lagrangian element of order k+d has

NI(k) =
(

k−1+d
d

)
(29)

degrees of Freedom located in the interior of an element T ∈ Th. Let Sk(T ) = {ST,k,i}NI
i=1 be the points

corresponding to these degrees of Freedom. Further Rk(F) = {RF,k,i}NF
i=1 with NF = dim Pk(F) =(

d−1+ k
k

)
denotes the Lagrange points on a facet. Then, the following lemma states that one can

define a unique scalar-valued polynomial of order k on a element T ∈ T using the nodes values at Sk(T )
and {Rk(F)}F∈F (T ).

Lemma 3. Consider j ∈ {1, ...,NF}. There exist a unique scalar-valued polynomial qF, j,T,k of order k
such that

qF, j,T,k(RF,k, j) = 1

qF, j,T,k(RF,k,i) = 0 for i = 1, ...,NF , i 6= j and

qF, j,T,k(ST,k,i) = 0 for i = 1, ...,NI .

(30)

Proof. Since all points are distinct, the equations (30) corresponds to NF +NI equations and it is suffi-
cient to prove that dim Pk(T ) = NF +NI . In fact, it holds

NF +NI−dim Pk(T ) =
(

d−1+ k
k

)
+

(
k−1+d

d

)
−
(

d + k
k

)
=

(d−1+ k)!
(d−1)!(k−1)!

(
1
k
+

1
d
− d + k

kd

)
= 0 .
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Note that these functions again correspond to a Lagrange Basis on a uniform refined mesh, such that
the following theorem implies a possible fast implementation of the facet-based Raviart-Thomas basis
functions.

Theorem 1. A basis for RT n
k (T ) is given by {ψi,F,k}F∈F ,i=1..d , with

ψi,F,k(x) =


|F |

2|T+|(x−P+)qF,i,T+,k(x) on |T+|
− |F |

2|T−|(x−P−)qF,i,T−,k(x) on |T−|
0 elsewhere

i = 1, ...,d . (31)

Using the lowest-order basis function, it holds

ψi,F,k = ψ̂F ·qF,i,k, i = 1, ...,d (32)

with

qF,i,k =


qF,i,T+,k on |T+|
qF,i,T−,k on |T−|
0 elsewhere

i = 1, ...,d . (33)

Proof. Similarly to the quadratic case, the construction of the basis function implies ψi,F,k ∈ RT n
k (T ).

Further for x /∈ F , since ψ̂i,F,k(x) ·n = 0 it follows from (32) that ψi,F,k(x) ·n = 0. It remains to prove that
for a given facet F , the d functions {ψi,F,k(x) ·n = 0}i=1,...,d are linearly independent. Due to (32), this
is equivalent to the fact that the d functions qF,i,k, i = 1, ...,d are linearly independent for a given facet F ,
and this is the statement of lemma 3.

It remains to construct a basis for RT int
k (T ). Therefore, for a point S ∈ Sk(T ) consider the scalar-valued

polynomial qF,T,S : T → IR of order k such that

qF,T,S,k(S) = 1

qF,T,S,k(P) = 0, P ∈ Rk(F)

qF,T,S,k(P) = 0, P ∈ Sk(T )\S .

(34)

These polynomial functions leads to a basis of RT int
k (T ), as the following theorem states.

Theorem 2. {ψi, j,T}T∈T ,i∈{1,2,3,4}\{imin}, j=1,...,NI
with

ψi, j,T = ψ̂F(Pi)|T ·qF(Pi),T,ST,k,i,k (35)

define a basis for RT int
k (T ) .

Proof. Recall that the normal component of ψ̂F(Pi vanishes on all facet of T but F. Thus, qF,T,S,k = 0 on
F implies that the normal component of ψi, j,T vanishes on all facet, such that it remains to check that the
d ·Ni functions ψi, j,T are linearly independent for a given T . This is ensured by the combiation of the
linearly independency of ψ̂F(Pi,T ), i ∈ {1,2,3,4}\{imin(T )} and the Ni nodes values.
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Figure 5: An other set of Ansatzfunctions on reference triangle
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