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Abstract

In this paper we present a stabilized finite element method to solve
the transient Navier-Stokes equations based on the decomposition of
the unknowns into resolvable and subgrid scales. The latter are ap-
proximately accounted for, so as to end up with a stable finite ele-
ment problem which, in particular, allows to deal with convection-
dominated flows and the use of equal velocity-pressure interpolations.
Three main issues are addressed. The first is a method to estimate
the behavior of the stabilization parameters based on a Fourier anal-
ysis of the problem for the subscales. Secondly, the way to deal with
transient problems discretized using a finite difference scheme is dis-
cussed. Finally, the treatment of the nonlinear term is also analyzed.
A very important feature of this work is that the subgrid scales are
taken as orthogonal to the finite element space. In the transient case,
this simplifies considerably the numerical scheme.
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1 Introduction

Let {2 be an open, bounded and polyhedral domain of R%, where d = 2 or 3
is the number of space dimensions, I' = 0 its boundary and [0, T the time
interval of analysis. The Navier-Stokes problem consists in finding a velocity
u and a pressure p such that

Ou—vAu+u-Vu+Vp=7Ff inQ, t€)0,T], (1)
Vou=0 inQ, t€l0,T], 2)

where v is the kinematic viscosity and f is the force vector. These equations
must be supplied with an initial condition of the form w = u® in Q, t = 0,
and a boundary condition which, for simplicity, will be taken as © = 0 on
', t€]o,T7.

Let us introduce some standard notation. The space of square integrable
functions in a domain w is denoted by L?(w), and the space of functions
whose distributional derivatives of order up to m > 0 (integer) belong to
L?*(w) by H™(w). The space Hj(w) consists of functions in H'(w) vanishing
on dw. The topological dual of Hy(f) is denoted by H~1(Q), and the duality
pairing by (-,-). A bold character is used to denote the vector counterpart of
all these spaces. The L? inner product in w (for scalars, vectors or tensors) is
denoted by (-, )., and the norm in a Banach space X by ||-|| . This notation
1s simplified in some cases as follows: (-,-)q = (-, "), Il z2(q) = [Ill, and if K
is the domain of an element (see below) [l Logzey = -1l -

Using this notation, the velocity and pressure finite element spaces for
the continuous problem are L*(0,T;V,) and L'(0,T; Qy), respectively, where
Vo := H(Q), Qo := L%)/R. We shall be interested also in the spaces
Wo = Vo x Qp, V= HY(Q), Q :=L*(Q), W :=V x Q. The weak form of
the problem consists in finding [u, p] € L*(0,T;V,) x L(0,T; Q) such that

(Oeu, v) + v(Vu, Vo) + (u - Vu,v) — (p, V - v) = (f,v), (3)
(Q7 V- u’) =0, (4)

for all [v, q] € Vo x Qq, and satisfying the initial condition in a weak sense.
The numerical approximation of problem (3)-(4) is in principle straight-
forward. However, apart for the difficulties associated to the extremely com-
plex physical phenomena that it may represent, there are several well known
numerical problems due to the mathematical structure of the equations.
The discretization strategy adopted in this work consists of two steps.
First, the equations are discretized in time using a finite difference time in-
tegration scheme, and then a finite element approximation is performed in



space. This procedure uncouples errors coming from the temporal discretiza-
tion from those of the spatial one. Nevertheless, it has to be remarked that
the most common approach is to proceed the other way around, that is to say,
by discretizing first in space and then approximating the resulting system of
ordinary differential equations in time.

Concerning the temporal discretization, we will use here the generalized
trapezoidal rule, which is the simplest single step finite difference method.
The stability of this scheme is analyzed for example in [1]. Convergence in
the particular case of the backward Euler method is proven in [2] (see also
[3, 4]). However, the ideas presented here can be applied to any other finite
difference scheme.

Referring to the spatial discretization, it is well known that the standard
Galerkin method may fail basically for two reasons: the dominance of the
(nonlinear) convective term over the viscous one when v is small and the
compatibility required for the velocity and pressure finite element spaces
posed by the inf-sup condition. Both can be overcome by resorting to a
stabilized formulation. The one adopted in this work is based on the subgrid
scale concept and, in particular, in the approach introduced by Hughes in
[5, 6] for the scalar convection—diffusion equation (see also (7, 8] for related
methods). The basic idea is to approximate the effect of the component of the
continuous solution which can not be resolved by the finite element mesh on
the discrete finite element solution. An important feature of the formulation
developed herein is that the unresolved component, hereafter referred to as
subgrid scale or subscale, is assumed to be L? orthogonal to the finite element
space, in a sense to be explained later. This idea was first introduced in
[9] as an extension of a stabilization method originally introduced for the
Stokes problem in [10] and fully analyzed for the stationary Navier-Stokes
equations in [11]. It is further elaborated in this work and extended to
transient problems.

A question that arises when a stabilized finite element method is ap-
plied to the equations coming from a temporal discretization is how does
this discretization in time affect the stabilized method. This is one of the
fundamental issues analyzed in this paper. It is shown here that the subgrid
scale decomposition allows to answer this question in a simple manner. In
our particular case we start from a finite difference time discretization, but
exactly the same ideas can be applied if a space-time finite element approx-
imation is chosen. As we will see, the final conclusion is that the subgrid
scales satisfy an evolution equation which needs to be approximated to ob-
tain a closed-form expression for them. We will call this process modeling of
the subscales, in analogy to what is done in turbulence.

Our modeling assumption is based on a Fourier analysis of the problem
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for the subscales, but of course other options are possible. For example, the
numerical formulations presented in [12, 13] are based on adding numerical
diffusion to the subgrid components of the solution, which is another type of
modeling approach. Likewise, when subscales are approximated by bubble
functions, as in [7, 14, 15, 16, 17, 18, 19], solving for them is what can be
considered the modeling step.

A related approach is the nonlinear Galerkin method and its variants
(see [20, 21, 22, 23, 24, 25] and references therein). The idea now is to
split the solution into large and small scales in space and use a different
treatment for them in time, generally with a coarser time approximation
for the small scales. The goal again is to obtain a numerical model (or a
continuous decomposition as in [21]) whose computational cost be driven by
the large scales but in which the subgrid scales are approximately accounted
for.

It has to be remarked that both in the development of the stabilized
formulation for the stationary problem and in its extension to the transient
case, our arguments are heuristic. They are intended to lead to a fully dis-
crete problem from which improved properties with respect to the standard
Galerkin method can be expected. The validity of these properties can only
be verified through the numerical analysis of the method (which is not un-
dertaken here) and the numerical experiments.

This paper is organized as follows. In the following section the bases of
the stabilized formulation are explained. For this, it is enough to consider
the stationary and linearized form of problem (1)-(2), that is, replacing the
momentum equation (1) by

—vAu+a-Vu+Vp=§Ff inQ, (5)

(and of course dropping the initial condition), where a is a given solenoidal
velocity field. The finite element approximation of the linear problem (5)-(2)
(Oseen problem) may suffer from instabilities due to the velocity-pressure
interpolation and from the dominance of the convective term over the vis-
cous one. Both are eliminated by using the stabilized formulation presented
in Section 2, where it is motivated in some detail. After presenting the
problem to be solved, the subgrid scale decomposition is described. The
subscales, which are solution of a differential equation, are approximated as
proportional to the independent term of this equation. The coefficients of
proportionality are called stabilization parameters. A method to determine
these parameters based on a Fourier analysis of the equation for the subscales
is then presented, which is applicable to any forcing term in this equation.
The next step is precisely to select this term so that the subscales be or-
thogonal to the finite element space, which leads to the formulation that we



propose. It is shown in [26] that the stability and convergence properties
of this method are similar to those of related formulations aiming to stabi-
lize the pressure interpolation and the convective term, as those analyzed in
[27, 28, 29, 30, 31, 32], among others.

The second important point to be treated is how to apply the stabilized
formulation to the equations resulting from the temporal discretization of
a transient problem. This is done in Section 3. Again, the effects of the
nonlinearity are irrelevant for this discussion, and it suffices to consider the
linear equation

ou—vAu+a-Vu+Vp=Ff inQ, t€0,T] (6)

instead of Eq. (1). After presenting the basic time discretization, it is shown
that the decomposition into large and subgrid scales leads to an evolution
equation for the latter that can be modeled using the same ideas as for
the stationary case. Two implementation issues are then discussed. The first
concerns how to track the subscales in practice, and the second is a discussion
on the possibility of treating some terms explicitly.

Finally, the stabilization concepts developed in the linear case are applied
to the fully transient and nonlinear problem (1)-(2) in Section 4. This is can
be easily done after a linearization of the problem. The resulting scheme,
which summarizes the method proposed in this paper, is presented in Box 1.

Some numerical results are presented in Section 5. The main conclusion
that can be drawn from them is that the formulation presented here is in
general as stable as other related methods but less diffusive. From the com-
putational point of view, it may be advantageous in some cases. These and
other conclusions are finally stated in Section 6.

2 Stationary Oseen equations

2.1 Problem statement

In this section we consider the linear and stationary problem (5)-(4), supplied
with the homogeneous Dirichlet condition for the velocity field.
Let U = [u,p] € Wp. The equations to be solved can be written as

—-vAu+a-Vu+Vp] _ f] .
o -[5]=F (7)
in the domain Q and v = 0 on I'. Let V = [v,q] € W,. The variational
statement for problem (7) can be written in terms of the bilinear form defined
on Wy x W, as

B(U,V) :=v(Vu,Vv) + (a-Vu,v) — (p,V-v) + (q,V - u) (8)

L) =
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and the linear form L(V') := (f,v). Problem (7) with the homogeneous
Dirichlet condition consists then in finding U € W, such that

B(U,V)=L(V), YV eW,. (9)

The standard Galerkin approximation of this abstract variational problem is
now straightforward. Let P), denote a finite element partition of the domain
2. The diameter of an element domain K € P, is denoted by hx and the
diameter of the finite element partition by h = max{hg | K € P,}. We
can now construct conforming finite element spaces V5, C V, Qp C Q and
Wy = V), x Qp, in the usual manner, as well as the corresponding subspaces
V05 @0 and Wy g = Vi 0 X Qp . In principle, functions in V, are continuous,
whereas functions in Qp not necessarily. Likewise, the polynomial orders of
these spaces may be different.
The discrete version of problem (9) is: find U, € W),y such that

B(Uh, Vh) = L(Vh), VYV, ¢€ Wh,O- (10)

The well posedness of this problem relies on the ellipticity of the viscous
term and the inf-sup or Babuska-Brezzi condition (see [33]), which can be
shown to hold for the continuous problem. The first property is automatically
inherited by its discrete counterpart. However, the inf-sup condition needs to
be explicitly required. This leads to the need of using mixed interpolations,
that is, different for u and p, and verifying

inf  sup M > (>0, (11)

9hECh,0 v4EVS o llgnll thnl
for a constant 8 independent of h.

Convenient velocity-pressure interpolations, such as equal interpolation,
turn out to violate condition (11). This is why many of the so called sta-
bilized formulations have been proposed to approximate problem (9). The
idea is to replace (10) by another discrete variational problem in which the
bilinear form B is replaced by a possibly mesh dependent bilinear form Bj
with enhanced stability properties. Likewise, it has already been mentioned
that instability problems may arise when the convective term dominates the
viscous one. Both this and the need to satisfy (11) can be overcome by using
the finite element formulation described next.

2.2 The subgrid scale approach

Let W =W, ® W, where W is any space to complete W, in W. Obviously,
W is infinite-dimensional, but once the final method will be formulated, it
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will be approximated by a finite-dimensional space (cf. Remark 2 below),
although we will keep the same symbol W for it. The elements of this space
are denoted by V = [9,4]. Likewise, let Wy = Wy o & W), with W, any
complement of W, o in W,. The space W, will be called the space of subgrid
scales or subscales.

The continuous problem is equivalent to find U, € W, and U e Wg
such that

B(Uh, Vh) + B(ff, Vh) = L(Vh) VV, € Wh,O, (12)
B(U,,V)+B(U,V)=L(V) YVeW,. (13)

Integrating by parts within each element in (12)-(13), it is found that these
two equations can be written as

B(U, V) +Z/KI~J~£*(Vh) dn

+Z / (gun + vn - Vo) dT = L(V3), (14)
Z/ (pn + vn - Vu) dF+Z/V L(U) dD

_ ; /KV- [F - £(U)] 49, (15)

where > ; stands for the summation over all K € P,, m is unit normal
exterior to the integration domain, and £* is the formal adjoint of L, given
by

" Av, —a-Vv, -V
r (Vh) :I: VAV —% v:h Gh (16)

Assuming that the exact tractions are continuous across inter-element

boundaries, the first term of (15) vanishes. This equation is then equivalent
to:

LO) =R:=F—LUy) +Vhor in KE€Py, ¥ Vo €W, (17)

which must be satisfied together with boundary conditions on 0K that are
unknown, but who must ensure in particular the continuity of the diffusive
fluxes across interior boundaries. It is important to remark that (17) holds
for any element V'j, o orthogonal to W,. Here and below, orthogonality is
understood with respect to the L? inner product, unless otherwise specified.

The idea now is to approximate the solution of (17) with the approprlate
boundary conditions by

U~7xgkR inK€Py, (18)



where T is a matrix of algorithmic parameters depending on K and the co-
efficients of the operator £. This approximation for U is intended to mimic
the effect of the exact subscales in the volume integral of (14), whereas the
integral over the element faces will be neglected. Observe that the pointwise
values of U are not needed, and thus (18) needs not to be understood point-
wise. If the coefficients of £ are constant, only the moments of U appear in
(14) (L*(V'y,) is a polynomial).

Matrix 7x in (18) will be called the matriz of stabilization parameters.
Its design is one of the cornerstones in the development of stabilized finite
element methods, many of which can be formulated in the previous frame-
work [5, 34]. The heuristic approach proposed in this work is the subject of
the following subsection.

2.3 Behavior of the stabilization parameters from a
Fourier analysis

To simplify the discussion, we may consider first the previous procedure
applied to the convection-diffusion-reaction equation

—vAu+a-Vu+ou=f inQ,

where v and f are now scalar and ¢ > 0 is a reaction coefficient. The
counterpart of (17) is

—vAti+a-Vi+ot=r in K € Py, (19)
ri=f— (—vAup +a - Vu, + ouy),

which must be solved approximately for the subscale @, u; being the finite
element approximation to u. In what follows, it is understood that all the
quantities are referred to the element K under consideration. Likewise, for
simplicity we will assume now that a is constant over element K.

As for the Oseen problem, the solution to Eq. (19) will be approximated
by

i(z) = 7r(x), (20)

where 7 is a parameter to be determined. The purpose of what follows is to
give an expression for 7 and to precise in which sense 7r approximates .

Let us consider the following Fourier transform of a generic function g
defined on K:

(k) == /K e~ g(2)dQ,, (21)



where i = /=1, h is now the diameter of element K and k = (ki, ..., kg) is
the dimensionless wave number.

The subscales 7 are the part of the continuous solution which can not
be approximated by the finite element discretization. This means that their
Fourier representation will be dominated by the components with high wave
numbers.

If n; is the j-th component of the normal exterior to K, it can be readily
checked that

a _ik=z .k‘,\
Z(k) = [ me (@)l +i 29 (k) (22)
J

From this expression it is seen that if we are interested in high wave numbers,
the second term in the right-hand-side of this expression dominates the first
one, no matter which is the value of the function g on K. Thus, for functions
with high wave numbers we may approximate Eq. (22) by

)

Ky

All the properties valid for functions of rapid decay defined on R? apply to
this case. We assume that this in particular can be applied to the subscales
@ and its derivatives. If we take the Fourier transform of Eq. (19) we will
have that

- k2 a-k -
u(k) = T (k)F(k), T(k):= (1/~hé— +1i - -+ 0> . (24)
Plancherel’s formula leads to
- 1 [ 1 R
lall% ~ ==z llull?, g, = == [, |T(k)]?|F(k)|*dk, (25)
(2m) RY T (2m)e Jr

where both approximations come from neglecting the boundary values of
4. Since both |7(k)|? and |7(k)|? are nonnegative, the mean value theorem
implies that there exists a wavenumber kg, for which

1 : 1
S k)[2|7 (k) [2dk = k 2/ 7(k)|*dk.
5t Jos TRk = gl TR0 [ 1700
This, together with Eq. (25) and using again Plancherel’s formula yields
[l = | T (o)l x- (26)
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This expression is what we were looking for. If we identify 7 in Eq. (20) with
|7 (ko)|, it allows us to conclude that if we take

T = [<c1% + a>2 + (Cg I%‘)T o (27)

then, there exist values of ¢, and c, independent of h for which Eq. (20)
holds, in the sense that both @ and Tr have (approzimately) the same L*-norm
over element K. Moreover, c; is independent of the coefficients v, a and o,
whereas c; depends only on the direction of a, but not on its magnitude.
The constant ¢; can be identified with |ko|* and ¢, with |ko|| cos @, o being
the angle between a and ky. This in particular implies that c2 < ¢;. Observe
that ko depends on the residual r(x) in Eq. (19), and thus the constants ¢;
and cy will also depend on it.

Let us consider now the application of these ideas to the Oseen problem,
again taking the advection velocity constant. The equation for the subscales
(17) can be written as

—vAt+a-Vau+Vp=ry, (28)
V"fl;:T'Q, (29)

where 7, and r; are the components of R in (17). Without loss of generality,
we may assume that 7r; is divergence free, and that its potential component
is included in the pressure subscale p.

The Fourier transform defined above applied to (28)-(29), neglecting again
the behavior of the subscales on the element boundary, yields

(:ﬂs—f + 1"‘}1—’“) k) + i%ﬁ(k) i (30)
i% - a(k) = 7y (k). (31)

Multiplying (30) by ik/h and using (31) and the fact that =, is divergence
free, we get the Fourier-transformed pressure Poisson equation

(u@ + iLk> 7a(k) — '}l’“—k(k) —0, (32)

from which we may approximate the pressure using the same reasoning as
for the convection-diffusion equation, that is, by

4 (%%} 2J ) (33)

DR TeTy, Ty =
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where the constants c; and c; have the same interpretation as in (27).
Using the values of p(k) obtained from (32) in (30) it is found that the
Fourier coefficients of the velocity are

g0

(kP ek ho
(k)—(l/ﬁ-i—l - ) rl(k)—lwkm(k).

It is seen that the second term only affects the component of @(k) in the
direction of k. We will neglect the contribution of 75 in %. Apart from the
fact that this will allow us to formulate a simpler method, this approximation
implicitly assumes that the subscales are driven by the residual of the momen-
tum equations r; rather than by the error in satisfying the incompressibility
constraint by the finite element solution. Moreover, from the analytical point
of view we will need matrix T in (18) symmetric and positive-definite (see
below) and since 7 does not appear in the expression for p, r, cannot appear
in the expression for @. Therefore, the approximation we suggest for @ is:

(01 %)2 + <02|%'-> 2} _1/2. (34)

Remark 1. The stabilization parameter in Eq. (27) for the convection-
diffusion-reaction equation behaves asymptotically in h, v, |a| and o as

'l:'l,%TlTl, T =

v laf]™
T ~ clﬁ + G 027 ;
This expression was proposed in [34] using a completely different reasoning.
Likewise, from Eqs. (34) and (33) we see that

h2

Ty = .
1Ty

This relationship between 7, and 7, was also found in [35] based only on the
convergence analysis of the Oseen problem and using a stabilization technique
similar to the Galerkin/least-squares method, found by dropping Viort in
(17). It is simpler than what is proposed for example in [29, 36, 32] and,
moreover, can be justified from the previous heuristic reasoning.

2.4 Orthogonal subscales

The starting point of our developments have been the decompositions W =
Whr®W and Wy = Wy o ® Wp. If = denotes an isomorphism between two
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vector spaces, we have that W 2 Wi-NW and Wy = l/VhL’OﬂWo. Nevertheless,

there are many possibilities to choose W and W,. The particular one adopted
in this work is to take precisely

W =Wnw. (35)

To obtain a feasible numerical method we need to introduce some approxima-
tions. The first concerns the choice for Wo First, we assume that functions
in W already vanish on 89, and thus W, ~ W. Additionally we assume that
Wir "W a Wik, which can be thought of as a non-conforming approximation
for the subscales. Altogether, this amounts to saying that

Wo = W = Wi (36)
With this approximation, it follows from (17) that

Vot € Wi & Wh, (37)
U e Wy~ Wi, (38)

which means that V' o is a finite element function and therefore numerically
computable. We refer to this particular choice for the space of U, motivated
by the election (35) and the approximation (36), as the space of orthogonal
subscales.

Imposing condition (38) in expression (18) for U we have that

(i], Vh) = ;(TK[F - [,(Uh)], Vh) + ;(TKVh,ort, Vh)

=0 VY V,EW. (39)

Let us assume that matrices Tx are all symmetric and positive—definite.
From (39) it follows that V', o is the projection of the residual L(U}) — F
onto the finite element space with respect to the L* inner product weighted
element by element by the matrices of algorithmic parameters T . We denote
this weighted inner product and its associated norm by

(X, Y)T = Z(TKX,Y)K = ;(X,TKY)K, (40)
1Yl := /(Y,Y),. (41)

In these expressions, the functions X are Y need not being continuous for
the local L? products to make sense.
Equation (39) now becomes

(F - ’C(Uh)’ Vh)'r =+ (Vh,ort; Vh)‘T =0, VV,eW,. (42)

13



If we call II, the projection onto W, associated to the inner product (40),
hereafter referred to as 7-projection, we see that

Vh,ort = _HT[F - L(Uh)]a (43)

Likewise, we will denote by I, o the 7-projection onto W o and [T+ := I —TII,
where [ is the identity in Wj.
From (18) and (43) it follows that

U =1} F - L(U,)] in K € P, (44)

If this expression is now introduced in (14) and, as already mentioned, the
integrals over the interelement boundaries are neglected, we finally obtain
the modified discrete problem: find Uj € W, o such that

Bh(Uh_, Vh) = <F, Vh> - (H;L(F), ,C*(Vh))ﬂ Y Vh € Wh,o. (45)
where the stabilized bilinear form B), is
By(Un, Vi) = B(Us, Vi) = (I [L(Un)], L*(V 1)) (46)

The hope is that the stability properties of (45) are much better than those
of the original discrete problem (10).

Remark 2. Equation (44), together with (37) and (38), indirectly determine
the approximation to the space W in which the discrete solution is sought.
This space is W, enlarged with piecewise discontinuous functions generated
by functions in W, as indicated by (44). We could have started the develop-
ments by identifying W with this finite dimensional vector space, which in
this case would be an approximation to the space of the continuous problem.

The previous developments are applicable to any linear system of convec-
tion-diffusion-reaction equations. Let us apply these ideas to the particular
case of the Oseen equations. The adjoint of £ is now given by (16) and the
matrix of stabilization parameters by

Tx =diag(Ti,x, o,k), Tix = 1,14, (47)

where I is the d x d identity matrix and with 7 x and To,k computed
elementwise as indicated by (34) and (33), respectively, and replacing the
Euclidian norm of @ by |a@|w k, the maximum of the Euclidian norm of a
in the element domain K. Matrix T defined in (47) is symmetric and
positive-definite, a requirement needed for (40) to be an inner product.

We will introduce further simplifying assumptions that will lead to a
method easy to implement and with good stability properties. These are:

14



e The weighted projection II, associated to the inner product defined in
(40) will be approximated by the L? projection, denoted by II. Like-
wise, I will be approximated by IT+ = I —II. The difference between
II. and IT depends on the variation of the stabilization parameters from
element to element. From the computational point of view, it is very
convenient to use II, since L? projections can be computed very effi-
ciently.

o 71 xII*(f) = 0, which means that the force vector belongs to the finite
element space W), or it is approximated by an element of this space. In
any case, the term 7 (II+(f) is of the same order as the optimal error
that can be expected. Taking for example a = 0, for f € H™(Q),
m = —1,0,..., we may expect u € H™?*(Q), p € H™1(Q) and an L2
velocity error of order O(h"), with r = min{m + 2,p + 1} and p the
order of the finite element interpolation, and this is precisely the order
of 7 x ITH(F).

e Second order derivatives of finite element functions within element in-
teriors will be neglected. They are exactly zero for linear elements and
for higher order interpolations disregarding them leads to a method
which is still consistent (in a sense explained later; cf. Remark 4).

Under these conditions, the second term in the RHS of (45) vanishes and
the stabilized bilinear form (46) reduces to

B[(Uh, Vh) = B(Uh, V},,) + (HL(CI, . Vuh + Vph), a - V’l)h + th)ﬁ
+ (HL(V ' U’h); % vh)Tza (48)

where B is defined in (8).

Once arrived to (48) it is observed that what the present method provides
with respect to the standard Galerkin method is a least-squares control on
the component of the terms a-Vu, + Vp, and V -, orthogonal to the
corresponding finite element spaces.

There is a simple modification of the bilinear form (48) which leads to
another stabilized method with slightly better stability properties. The idea
is to control separately the components of a - Vu, and Vp, orthogonal to
V). The bilinear form associated to this method is

Bii(Up, Vi) = B(Up, Vi) + (Tt (a - Vug),a - Vo),
+ (T (Vpn), Vau)r, + (TH(V - up), V - vp)s,. (49)

Dropping the orthogonal projection IT* the method reduces to a general
version of that analyzed in [27], which has a consistency error that makes it
only applicable with P; elements.
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Remark 3. Both methods I and II could be slightly modified by project-
ing onto W in (42) instead of projecting onto W,. However, even though
the global convergence is optimal, projecting onto W, leads to spurious
numerical boundary layers, similar to those found for the pressure in classi-
cal fractional step schemes for the transient problem (see for example [37]).
Further discussion about this point can be found in [10].

Remark 4. There is a possible way to formulate the present method in a
manner that it can be viewed as consistent. Indeed, if we introduce

B;([uh,ph, &ns 5h]7 [Uh: Ghs Ty 'Yh]) = B([umph]’ [vh’ Qh])
+(a-Vur+ Vpr —€p,a - Vop + Van — ny)n
+(V~'U,h —0p, V - vy —’Yh)'rz’

the discrete problem is equivalent to find [ws, pp, &4, 6n] € VhoX Qpo X Vi x Oy

such that B;(['U'h,ph) E/-u 5h]7 ['Uh, Gh, Mp,» f)’h]) = <f; ’Uh) for all ['Uh, Gh> Mhs f)/h] €
Vho X Qpo X Vi X Qp. This problem is consistent in the sense that, for
smooth enough solutions [u, p|] of the continuous problem, B¥([u, p, a - Vu +

vpa V- U’], ['Uh, Ah, TNh» ’Yh]) = <f’ 'Uh)-

3 Transient Oseen equations

3.1 Discretization in time

Let us consider now the transient Oseen problem, that is,

ou—vAu+a-Vu+Vp=Ff inQ, t€)0,T] (50)
V.u=0 inQ te€)o,T] (51)

supplied with an initial condition and the homogeneous Dirichlet condition
for the velocity. In order to be able to use the same notation as in the
previous section, we need to introduce the matrix

M = dia‘g(Id’ O)a
which allows us to write Eqgs. (50)-(51) as
Mo,U+L(U) =F, (52)

where the notation involved is the same as before. For the sake of simplicity,
we will consider throughout that F' is time-independent.

Problem (52) needs to be approximated both in space and in time. For the
time discretization we will consider here the simple trapezoidal rule, although
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the ideas to be developed can be equally applied to any other finite difference
time integration scheme. If time is also discretized using finite elements,
the methodology would be the straightforward extension of what has been
developed for the stationary problem. However, the goal is to analyze how
does the time discretization affect the stabilization method when using finite
differences.

Let us consider a uniform partition of the time interval of analysis [0, T’
with time step size 62. We will denote by a superscript the time step level at
which the algorithmic solution is computed. If # € (0,1] and U™ is known,
the trapezoidal rule applied to the variational form of Eq. (52) consists of
finding U™ as the solution of the problem

(M&U™ V) +BU™ V)=L(V) VYV eW,. (53)

Here and in what follows, we use the notation
i
= O L (L= 0)f, f" = (7 )

for any function f.

3.2 Subgrid scale decomposition and modeling of the
subscales

From the semidiscrete problem (53) we can now obtain the fully discrete
formulation applying the same ideas as for the stationary case. We start by
considering the same decompositions YW = W, & W and W, = Who @ W,
which allow us to split (53) into two equations, the first of which is

(M UL, V3) + (M&U", V) + BUM V)
+3 /Kz"f"” LAV dQ = L(V}4) Y Vi € Wy, (54)
K

which corresponds to (14) of the stationary problem. Observe that we have
already neglected the contribution from the integrals over the element bound-
aries. Note also that there is a contribution from the transient evolution of
the subscales. These are solution of

M&U" + L") = R i K € Py, (55)
R} = F — [M&U}, + LU + Vion

which is the counterpart of (17) for the stationary case. Again, V', o is any
arbitrary element in W . In what follows, it is understood that the subscales
are computed within each element K of the finite element partition Pj,.
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We can equivalently write (55) as

1 n+0
(N196t+£)U M%U + R (56)
from where a closed-form expression for U has to be proposed. It is the
same modeling step as for the stationary case. There, the operator £ was
replaced by matrix 77!, which was designed on the grounds that both the
exact and the modeled subscales had approximately the same L? norm over
each element. To be consistent with the approximations made in the previous

section, let us introduce the matrix

-1
(.ZVI@ + 7'_1> = diag(Tl,tId, 7'2), (57)

7ty
= et T )

The modeling of (56) proposed is

~ n+0

U’ =rM tU + 7, R}, (58)

)

Once U o is computed we can obtain ot

At this point we can impose that the subscales be orthogonal to the finite
element space. This determines the function V', o in WOL The counterparts
of Eqgs. (43) and (44) are

Vior = =11 [F — (MU} + LU))], (59)

U =M ; 5th + It [F — (M&,UR + LUT)] (60)

Expression (60) is what we were looking for.

3.3 Stabilized finite element problem

The previous development is general and applicable to any system of convec-
tion-diffusion-reaction equations. Let us specialize it to the transient Oseen
problem using the same approximations as for the stationary case. First,
observe that

[I*(F) =0, same approximation as for the stationary case, (61)
I (M6&,U?) =0, since M§,U} is a finite element function,  (62)
(M6&U",V),) =0, since M6,U" is orthogonal to Wh,. (63)
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Using (61) and (62) in (60), taking into account expression (57) for 7; and
neglecting the orthogonal projection of second derivatives as we did for the
stationary case, we obtain the expression for the velocity and pressure sub-
scales

1
,&n—i—e — Tl,t@'&n . Tl,tHJ—(a . VU;LL—}-@ + vp;LH-G), (64)
p'n-i-e — _TZHJ—(V . UZ+0), (65)

which inserted into the equation for the finite element solution (54) and
noting (63) yields

(6;up, vy) + B(UT V)
+ (T (a - Vul*? + Vpit9), a - Vo, + L
+ (ITH(V - ul*), V - )y,

1 .
= L(Vh) + @(u ,a - Vvh+th)

This is the transient version of problem defined by the bilinear form B;
defined in (48). The main differences of the stabilizing terms of this transient
problem with respect to the stationary one are

(66)

Tt

e The stabilization parameter 7y is replaced by 71, (see (57)).

e There is a RHS contribution that comes from the fact that subscales
need to be tracked in time.

This fact gives an answer to the question of how does the finite differ-
ence time integration affect the stabilization. First, we see that the stability
parameter 7, is certainly affected by d¢. Expressions similar to (57) have
been proposed for example in [38]. However, if no RHS modification is intro-
duced, the steady-state solution would depend on the magnitude of §¢ and
the method would lack stability for ¢ — 0. On the other hand, if the present
approach is used, it is clear that the stabilization terms tend to those of the

stationary problem as the steady solution is reached. This can be seen for
example from (58): If U™ = 0" it is easily checked that ot = TR,
In fact, using this assumption is a possible alternative. We could assume that
the subscales do not change in time, and thus that ot =" always. This
would lead to the same stabilization terms as for the stationary problem.
Since the basic assumption is that the temporal variation of the subscales is

negligible, we call them quasi-static subscales.
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It is interesting to note that in [20] the authors analyze a nonlinear
Galerkin approximation of the Navier-Stokes equations in which the tem-
poral derivatives of the subgrid scales are also neglected. Furthermore, the
space of velocity subgrid scales used in this reference is also orthogonal to
the space of large scales for the velocity (pressures are not split), although
in this case both are finite element spaces.

3.4 Tracking of subscales

For quasi-static subscales the second term in the RHS of (66) disappears and
there is no need to store 4". However, when this approximation is not used,
subscales need to be tracked. Let us describe how this can be done.

Let us consider a standard Lagrangian finite element interpolation and
expand U} as

- ima(m)ug, (67)

where n,, is the total number of nodes of the finite element mesh, U? is the
nodal value of U} (z) and node a and N,(z) = N,(z)I 441, with N,(z) the
shape (basis) function of node a and I ;41 the (d+1) x (d+1) identity matrix.

Using expression (60) and (61)-(62), equation (67) allows us to expand
the subscales as

o 1 -n
o' = M g2 U" + 701" [F — (MOU} + LUT))
1 =n L n+0
=M= U" — 7l (U]
1 on o2
=T MU -3 [T (£(N))] Uzt (68)

within each element K. Note, however, that UZ+9 does not depend on K. We
thus conclude that the subscales can be written in terms of a set of “nodal

values” UG,K, a=1,..,n, K € Py, as
Z [r (L) Un,  in K € Py, (69)

where, according to (68),

~nto n+6
0rt = TtM%tUaK um+e. (70)
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Note that, in general, the set
{TIT (LN, a=1,...,mp, K € Py}

is not a basis for the space of subscales, but, according to (69), it spans
this space. Obviously, it is understood that the coefficient Ua, K 18 zero when
node a does not belong to element K. It is also interesting to remark that
if 7, were the same for all the elements, UG,K would be the same for all the
elements K sharing node a, and thus the number of “nodal values” needed
to track U would be M.

For the particular case of the Oseen problem that we are considering, the
equation to update the subscales (68) can be explicitly written as

11””} B [%u"J B ;{: [Tl,tHJ'(a-vNa) Tl,tH‘L(VNa)] [ung
Zean B | IV - N,) 0 ppt? ]’

p
where u, and p,, a = 1,...,n,, are the velocity and pressure nodal values,
respectively, and now N, = N,I,.

This approach to track the subscales in completely general and can be
used in any finite element implementation. However, in the most common
element based implementation another approach is possible. In this case,
the contributions to the global discrete variational equation are computed
element by element using numerical integration, and thus the subscales are
only needed at the integration points. Instead of using the “nodal values”
given by (70), one can simply evaluate (68) at the integration points and
store the results for use in the next time step.

3.5 Explicit approximation of the subscales

Even if the finite element unknown w, is treated implicitly in time, one
could consider the possibility of solving explicitly the subscale @. Of course,
the pressure subscale p needs to be treated implicitly. The problem for

ot = [@™*, 51 to be solved instead of (55) is

6" — VA" + a - V" + VPt = r7To

~n+1 __  n+l
V‘U -—TQ )

where 71, and 7, are the components of R; in (55). Following the same
procedure as before, the expressions found for #"*! and p"*! are

a™t! = (1 = ﬁ) a” — 5t (a : Vu}:“’ + Vpﬁ“’) 5 (71)

T1
ﬁn-i-l = _T2HJ_(V . ,u’n—H)'
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For a fixed 7; we have that

Tt = 0t + O(6t?), % =1- i—f + O(6t?),
and thus (64) and (71) differ from a term of order O(6t*). The expression
for the pressure subscale has not changed from (65).

Clearly, not much is gained by treating explicitly 4. However, an impor-
tant computational gain is obtained if the orthogonal projection in (71) is
computed as [I+ = I — T, with the identity applied in time step n + 6 and
IT in time step n, that is, (64) is replaced by

@t = %’%&" — 1 [(a@- Vupt? + Vprt®) — 11 (a - Vu + Vo).

This and other implementation aspects of the formulation presented here are
similar to those of the pressure stabilization technique described in [39].

4 Extension to the Navier-Stokes problem

4.1 Temporal discretization and linearization

Before discretizing in space the incompressible Navier-Stokes equations (1)-
(2), let us consider the time discretization using the generalized trapezoidal
rule, as for the Oseen equations in Section 3. Using the same notation as
above, at each time step the problem to be solved is

(5,5'11,” + un+9 . Vun+6 _ I/Au”+6 + vpn-H — f, (72)
V-u"t? =0, (73)

Observe that the pressure computed in (72) has been considered evaluated at
time level n + 1 (this simplifies the final algorithm of the following section).

This problem is nonlinear. Before going to the finite element discretiza-
tion we can linearize it. Again, several options are possible, but now we will
restrict ourselves to the simple fixed point (or Picard) algorithm, which leads
to an Oseen problem within each iteration step. Denoting by f™! the i-th
iteration of the unknown f at time level n, the linearized form of problem

(72)-(73) is

Seu™i Il Tyt A et = (74)
V -yt =, (75)

This is the linear system to which we apply the previous developments.
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4.2 Final algorithm

Problem (74)-(75) is clearly an Oseen problem for the velocity w*%* be-
ing the advection velocity given by a = u"*%i~1. Hence, we can apply the
formulation developed in the previous section in a straightforward manner.
However, there is an important remark to be made. When the unknown
velocity is split into its finite element component and the subscale, this de-
composition also affects the advection velocity a, that is to say, we will have

o= ulr:-}-«?,i—l 4 gntoi-t
This implies that the velocity subscale not only need to be tracked in time,
but also along the iterative process. Of course, expression (64) is still valid,
and it will allow us to carry out this tracking.

The final algorithm is written in Box 1. There are three points that we
would like to emphasize of this formulation, two of which are common with
that of the transient Oseen equations:

e The velocity subscales appear also in the advection velocity a. It is not
up """ as for the standard Galerkin method, but w}+%~1 4 gnt+0i-1,

e The stabilization parameter 7, ; depends on the time step size dt.

e The velocity subscales appear both evaluated in the previous time step
(the term coming from the approximation to their temporal derivative)
and in the previous iteration (in @). Thus, they have to be stored at
each iteration and at each time step.

Remark 5. Apart from the particular time integration scheme and lineariza-
tion method adopted in Box 1, the main feature of this algorithm is that the
projections onto the finite element space have been treated iteratively using
the same iterative loop as for the fixed point linearization of the convective
term. As mentioned in the previous section, it is also possible to treat these
projections explicitly (that is, computed with values of the previous time
step), or even with a nested iteration within each linearization step. In any
case, we have observed from numerical experiments that it is important to
treat the advective velocity implicitly. If # = 1, one could perform a sin-
gle iteration within each time step while keeping formal first order accuracy.
However, we have noticed that this may lead to instability problems. For
example, when stationary solutions are searched, the convergence towards
the steady state can be non-monotone.
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Remark 6. In [13] the authors present also a multiscale decomposition of the
incompressible Navier-Stokes equations, but with a different goal than ours.
Rather than obtaining a stabilized numerical method, they intend to develop
a physical model. However, the underlying concepts are similar. The main
difference is that instead of the closed-form expression for the subscales (64)
(in fact its counterpart for the Navier-Stokes equations) they model these
subscales by adding a Smagorinsky-type eddy viscosity. Nevertheless, our
approach has an inherent modeling of the classical terms for which a closure
equation has to be given in turbulence, such as the Reynolds stress and the
Cross stress [13]. How does our numerical method behave as physical model
is a point that needs further research.

5 Numerical examples

In this section we present three simple numerical examples. The first is an
example of the behavior of the formulation for the stationary Oseen equa-
tions, whereas the other two are transient incompressible flows computed
with the formulation of Box 1. These examples are the classical cavity flow
problem and the flow over a cylinder. For much more complex applications
(using quasi-static subscales) the reader is referred to [40].

5.1 Stabilized formulation for comparison

The formulation presented in this paper will be compared with the Algebraic
Subgrid Scale (ASGS) method, as presented in [35], which is similar to the
Galerkin/least-squares (GLS) method [29, 36, 32]. This formulation leads to
the discrete variational problem

(6tu2"i, vh)' + (u;fre’i—1 . Vuﬁw’i, v,.l) + V(VUZ+9’i, Vo)
— Py Y vp) + (@, V- up ™)

). +9) 9,'—1 0:. 11'
+ (G — vAUPHS 4l gyt g gL

vAvy, + u}f“”i—l -Voun + Van).
+(V-ul? Vv,

= (f,vn) + (f, vAv, + u} T Vo, + V) n (76)
instead of the problem in Box 1. Note that the main differences between

both formulations are

e The advective velocity, which in (76) is w}"®"~'. However, in the nu-
merical examples we will use also this velocity instead of w}™"*" +

@"T%=1 in the algorithm of Box 1.
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Box 1. Algorithm for solving the Navier-Stokes equations

e Read (or compute) u) and set p) =0, @’ = 0.

FOR n=0,..,N -1 DO:

e Sett=0
o Set up 0 = up, pptt0 = pr @00 = gn,
WHILE (not converged) DO:

o1+ 1+1

0i—1 | ~ni0i—
o Set @ = up Tt 4 gt

e Compute 71, and 7, from (34)-(33)-(57)
e Compute the projections
€h — (a vun+¢92 1_+_v n+1,i— 1)
5}1 — H(V . TL+91 1)

e Compute u"+0 4 and P by solving

Sy ,'vh) + (a- Vupt® vp) + v(Vul™ Vo)
BV ) + (a1, V- )
+(a- Vupt® 4+ vt o Vo, + Vau)r,
+(V- h+9, Vv,
= (f, o) + 5= (@0 Vo, + Vay),,,
+ (€na - VUL +Vau)r, + (0n, V - a)r,
e Update the subscales

. 1
un-i—Hz_Tlt_u —TItH (a vun+92+vpn+lz)

0ot
e Check convergence
END
e Set up converged values
uz—{—a _ ’U,Z'+6 z, ﬂ,"+0 _ un+9 i pn — pz—i—l )

END
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e The use of 7; in (76) instead of 71, in Box 1, related to the presence
of 4™ in the second case, which is absent in (76). However, as it has
been mentioned at the end of Section 3.3, this difference disappears
using quasi-static subscales, a possibility that we will also consider in
the examples.

e The term (f,vAv, + ul ™' Vo, + Vq),, in (76), which replaces

the projection terms in the RHS of the problem in Box 1.

e A very important fact from the computational point of view is that in
(76) the Laplacian of both the velocity and the velocity test functions
within each element has to be added to the convective and pressure
terms to maintain consistency. The evaluation of second derivatives
is a costly and cumbersome process in finite element implementations
which can be avoided by using the formulation of Box 1.

e We have included the term d,u}" in the expression of the element resid-
ual in (76). If time is discretized using the discontinuous Galerkin
method with a piecewise constant time interpolation, one arrives to
(76) with 6 = 1 and without this term. However, much better results
are obtained if term is included. This has also been observed in [41, 42].

The formulation presented in this paper and summarized in Box 1 will
be referred to as Orthogonal Subscale Stabilization (OSS), following the defi-
nition introduced in [9]. The particular implementation we have used in the
nodal-based one described in [43].

The numerical examples presented aim to demonstrate that the 0SS in-
troduces less numerical diffusion than the ASGS method while being equally
stable. In particular, peaks are better captured. Likewise, in spite of the
smaller amount of numerical diffusion, the evolution to the steady state is
similar using the OSS and the ASGS method. Thus, the OSS can be con-
sidered as an alternative to reach steady states in a flow calculation. An
additional conclusion will be that if 6t is much larger than 7, it is not nec-
essary to track the subscales in time, since considering them as quasi-static
leads to very similar results.

5.2 Oseen flow in an L-shaped domain

The purpose of this example is to check the performance of the OSS method
in a simple stationary Oseen problem but showing three features of practical
interest: the presence of internal layers, of boundary layers and high pressure
variations.
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The computational domain is taken as the interior of [0, 3] X [0, 3]\ [0, 2] x
[1,3]. The inlet is taken at z = 0, where a discontinuous inflow velocity
u = (1,0) for 0 <y < 1/2 and u = (0,0) for 1/2 < y < 1 is prescribed.
A zero pressure is prescribed at the outlet y = 3 and on the rest of the
boundary wu is fixed to (0,0). The Oseen equations (7) are solved, taking
a = (1,0) and v = 10™*. For such a small viscosity, the inflow discontinuous
profile propagates inwards with little smearing and a velocity boundary layer
is created at z = 3.

The domain is discretized using 2000 biquadratic elements of equal size,
yielding 8241 nodal points. For these elements, second order derivatives can
not be neglected in the ASGS method (76).

N

Figure 1: Pressure contours (left) and velocity vectors (right) for the Oseen
flow in an L-shaped domain.

Pressure contours and velocity vectors are shown in Fig. 1. These results
have been obtained using the ASGS method, and are very similar to those
obtained using the OSS formulation. The differences are observed in Fig. 2.
Three main conclusions can be drawn from these. First, internal layers are
approximated similarly, with the same overshoots and undershoots in both
methods. This could be expected, since both the ASGS and OSS introduce
streamline diffusion, but no crosswind numerical dissipation. From the y-
velocity section at y = 2 it is seen that the OSS yields more oscillations
near the boundary layer, which are due to the fact that it introduces less
numerical diffusion. This is also the reason why the pressure variation is
much better captured using OSS that ASGS, as it is seen from the pressure
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section at the wall z = 3. A similar behavior was found in the numerical
examples presented in [9] for advection-diffusion and Stokes problems.
Referring to the cost of the calculation, it obviously depends on the par-
ticular implementation adopted. We have dealt with the projections onto the
finite element space iteratively. Giving the reference 100 time units (t.u.) to
the solution of the linear system in the first iteration, which is obviously the
same for the OSS and the ASGS methods, the construction of the system
matrix has taken 13.57 t.u. for OSS and 24.59 t.u. for ASGS. Each further
iteration of the OSS method, in which only the right-hand-side has to be
updated and the system matrix is already factored, takes 6.31 t.u. In this
example, 8 iterations have been needed to reach convergence with a tolerance
of 107° in the relative Euclidian norm of the array of velocity nodal values.

5.3 Cavity flow problem

This benchmark test case consists in the prediction of various vortices inside
the two-dimensional cavity Q =|0,1[x]0, 1[ when a velocity u, = 1, u, =0
is prescribed along the lid y = 1. The results presented here correspond to a
Reynolds number of 5000 and using the so called “ramp condition” (u =0
at the corner nodes).

The computational domain has been discretized using two meshes. The
first one, referred to as coarse in the following, consists of 40 x 40 uniform
bilinear elements (1681 nodal points), whereas the second, which we will call
fine, consists of 5408 linear triangles and 2809 nodal points, and it is refined
near the boundaries. The general streamline pattern obtained with this mesh
is shown in Fig.3. These results have been obtained using the OSS method
and the fine mesh, although they are very similar to those computed using
the ASGS formulation.

To determine the accuracy of the numerical results we have compared
them with those presented in [44], which were obtained using a very fine
grid and have become a standard reference. The comparison of the z- and
y-velocity profiles along the cavity mid-sections z = 0.5 and y = 0.5 is shown
in Fig.4. It is observed there that the OSS seems to give (slightly) better
results than the ASGS method on the coarse grid, whereas results on the fine
grid are very good in both cases.

As it has been mentioned (cf. Remark 5), we have observed from several
numerical experiments that the OSS formulation is sensitive to the conver-
gence tolerance within each time step. In this case we have reached the
steady state by stepping in time with ¢ = 10 and using three iterations per
time step. This leads to a monotone convergence to the steady state that is
shown in Fig.5. For this particular case, it is slightly better using the OSS
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Figure 2: z-velocity at z = 1 (top), y-velocity at y = 2 (middle) and pressure
at z = 3 (bottom) for the Oseen flow in an L-shaped domain.
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Figure 3: Streamline pattern for the cavity flow problem. Results obtained
using the OSS method and the fine mesh.

than the ASGS method.

5.4 Flow over a cylinder

This example involves the flow past a cylinder, another widely solved bench-
mark problem. The computational domain is Q = [0,16] x [0,8] \ D, with
the cylinder D of diameter 1 and centered at (4,4). The velocity at z = 0
is prescribed to (1,0), whereas at y = 0 and y = 8 the y-velocity component
is prescribed to 0 and the z-component is left free. The outflow (where both
the z- and y-components are free) is x = 16. The Reynolds number is 100,
based on the cylinder diameter and the prescribed inflow velocity. The finite
element mesh employed consists of 4000 linear triangles, with 2100 nodal
points, being refined near the cylinder.

In order to obtain the fully developed vortex shedding characteristic of
this problem, 90 time steps have been performed with é¢ = 1 and 6§ = 0.5
(Crank-Nicholson scheme), employing for that the ASGS formulation. The
convergence tolerance within each time step has been taken as 1072, again
in the relative Euclidian norm of the array of velocity nodal values (a single
Picard iteration has been needed to converge). The solution thus obtained
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Figure 4: z-velocity profile along z = 0.5 (top) and y-velocity profile along

y = 0.5 (bottom) for the flow inside a wall driven cavity.
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Figure 5: Convergence to the steady state for the flow inside a wall driven
cavity.

shows a fully developed periodic flow pattern. These results have been taken
as the initial condition for a more accurate calculation, now computed with
0t = 0.1 and requiring a convergence tolerance of 10~%. Three Picard iter-
ations have been performed for each time step, both for the ASGS and the
OSS methods.

Pressure contours and contours of the y-velocity component at ¢ = 2.5
(after the initial transient described) are shown in Fig.6. These results have
been obtained using the OSS method and tracking the subscales, although
the corresponding pictures obtained with the ASGS formulation and the OSS
method with quasi-static subscales are very similar.

The period of the oscillations has been found to be 5.70 time units with
the OSS formulation and 5.76 using the ASGS method. The values given
in references [45] (using the classical SUPG formulation) and [46] are 6.0
and 5.6, respectively. In Reference [47], the period obtained with a very
fine mesh (3426 @Q2/P; elements, 14000 nodal points) is 5.8 time units (see
also [36] for results obtained using a similar stabilized formulation). The
temporal evolution of the y-velocity component at point (z,y) = (0.623,0.4)
in the time interval [40, 60] is shown in Fig. 7. It is seen there that the ASGS
method is slightly more diffusive than OSS. For this method, on the other
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Figure 6: Pressure and y-velocity contours at t = 2.5 for the flow over a
cylinder. Results obtained with the formulation of Box 1.
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hand, tracking the subscales or assuming that they are quasi-static leads to
very similar results. The reason for this is that in this case 6¢ = 0.1 is ten
times larger than the average 7 (= 0.01). However, an interesting difference
between both formulations can be observed from the pressure evolution in
time (also at point (0.623,0.4)), which is shown in Fig.8. It is observed that
both the ASGS method and the assumption of quasi-static subscales in the
OSS formulation lead to a spurious time step-to-time step oscillation which
is not present if the subscales are properly tracked. This effect is due to
the variation of the element size from one element to another. It disappears
if the mesh is refined or if only one mesh size is used to compute all the

stabilization parameters.

08 | ' 0SS, Tracking of subscales i
0SS, Quasi-static subscales -------
ASGS --------

0.6 - o hat
40 45 50 55 60

Figure 7: Temporal evolution of the y-velocity at (0.623,0.4) for the flow over
a cylinder (6t = 0.1).

6 Conclusions

In this paper we have described a stabilized finite element method for the
incompressible Navier-Stokes equations based on the decomposition of the
unknowns into large scales and subgrid scales.
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Figure 8: Temporal evolution of the pressure at (0.623,0.4) for the flow over
a cylinder (6t = 0.1).

The way to deal with the subgrid scales proposed here is to give a closed-
form expression for them based on a Fourier analysis of the problem of which
they are solution. This can be considered a modeling strategy alternative to
the addition of subgrid viscosity [12, 13], the use of a coarse time integration
in the nonlinear Galerkin method [23, 25], or the approximation using bubble
functions [7, 17].

The bottom line of our approach is a stabilized numerical method which
consists basically of adding a least-squares form of the component of the
convective and pressure terms orthogonal to the finite element space into
the discrete problem, as well as a RHS term that comes from the temporal
derivative of the subscales which can be neglected if these are considered
quasi-static.

Although not presented in this paper, the analysis of the linearized prob-
lem reveals that the method is stable and optimally convergent using equal
velocity-pressure interpolations, even in the case of convection-dominated
flows. These results are confirmed by the numerical experiments presented
here, which show that the method has excellent accuracy. Nevertheless, local-
ized oscillations near sharp layers are even stronger than with other stabilized
methods, such as that given by (76).
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Concerning the computational cost, for stationary linear or mildly nonlin-
ear problems the formulation proposed here is certainly more expensive than
(76), since the need to deal with projections onto the finite element space
makes the algorithm necessarily iterative. However, for transient calculations
it is very competitive, sometimes even cheaper, since less stabilizing terms
appear. Moreover, these terms do not depend on the residual of the Navier-
Stokes equations, which in some situations may be expensive or very difficult
to evaluate. Examples of this are the presence of thermal or electromagnetic
couplings, Coriolis forces and, above all, nonlinear viscosities, coming either
from nonlinear constitutive models or from turbulence modeling.
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