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Abstract

In this study, we consider a four-regime bubble model under the assumption of time-
varying volatility and propose an algorithm of estimating the break dates with volatility
correction. First, we estimate the emerging date of the explosive bubble, its collapsing
date, and its recovering date to the normal market under the assumption of homoskedas-
ticity. Second, we collect the residuals and then employ the weighted-least-squares-based
estimation of the bubble dates. Using Monte Carlo simulations, we demonstrate that the
accuracy of the break date estimators improves significantly via this two-step procedure
in some cases compared to those based on the ordinary least squares method.
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1 Introduction

Non-stationary volatility is sometimes observed in time series (in particular, financial data),

but discussions on break date estimators under non-stationary volatility have received limited

attention in the literature. One of the exceptions is Harris et al. (2020), wherein the estima-

tion of level shift is improved by correcting the original time series via non-parametrically

estimated time-varying variance. While the explosive bubble model has been proposed by

Phillips et al. (2011) and extended by Phillips et al. (2015a,b) and Harvey et al. (2017), in

which the time series is generated by a unit root process followed by an explosive regime that

is again followed by a unit root regime (or with a possible stationary correction market in a

recovery regime), the importance of non-stationary volatility accommodation in bubble detec-

tion methods has been discussed by Harvey et al. (2016), Harvey et al. (2018, 2020), Phillips

and Shi (2020), Astill et al. (2023), and Kurozumi et al. (2023), among others. Phillips and

Shi (2020) proposed a modification of the wild bootstrap recursive algorithm (based on the

expanding sample) of Harvey et al. (2016) for obtaining the dates of the bubble(s) and also

addressed the multiplicity testing problem. On the contrary, Harvey et al. (2020) considered

the maximization of the sign-based statistic for obtaining the dates of the bubble but did

not provide any finite sample performance. At the same time, as discussed in Harvey et al.

(2017) and Pang et al. (2021) (PDC hereafter), the break date estimators based on the mini-

mization of the sum of squared residuals (SSR) are more accurate than the recursive method

of Phillips et al. (2015a,b) under the assumption of homoskedasticity. Nevertheless, as far as

we know, there are no studies that accommodate the non-stationary volatility behavior into

the estimation of the bubble dates based on the minimization of the SSR.

Recently, PDC and Kurozumi and Skrobotov (2022) investigated the asymptotic behavior

of bubble date estimators. In particular, they obtained the consistency of the collapsing date

estimator by minimizing the SSR using the two-regime model (even though the true model

has four regimes), allowing non-stationary volatility. Owing to the consistency, one could

split the whole sample at the estimated break date and consider the estimation of the date

of the origination of the bubble using the sample before the estimated collapsing date and

the date of the market recovery using the sample after the estimated collapsing date. This

sample splitting approach closely resembles that of Harvey et al. (2017) by minimizing the

full SSR based on the four-regime model, but it is computationally less involved and, as

PDC demonstrated, performs better in terms of the estimation accuracy of the break dates.

On the contrary to the collapsing date of the bubble, the consistency of the dates of the

origination of the bubble and the market recovery depend on the extent of the explosive and
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collapsing regimes. In other words, if the explosive speed is not sufficiently fast, then PDC

and Kurozumi and Skrobotov (2022) obtain only the consistency of the estimators of the

break fractions, not the break date.

In this study, we propose a two-step algorithm for estimating the emerging, collapsing,

and recovery dates of a bubble under non-stationary volatility. First, due to the consistency of

the break date (fraction) estimators regardless of heteroskedasticity, we estimate these break

dates as proposed by PDC and Kurozumi and Skrobotov (2022) and collect the residuals of

the fitted four-regime model. Second, we non-parametrically estimate the time-varying error

variance from these residuals and perform the generalized-least-squares (GLS)-based sample

splitting approach, which minimizes the weighted SSR. Monte Carlo simulations demonstrate

the performance of our correction method for a model with a one-time break in volatility,

especially when this break occurs at the beginning or end of the sample. The empirical

application consists of different time series of cryptocurrencies for which the two methods

of identifying the bubble dates are performed: one without volatility correction and another

with volatility correction.

The remainder of this paper is organized as follows: Section 2 formulates the model and

assumptions. In Section 3, we define the main GLS-based procedure under a general type of

weights. Section 4 discusses the choice of the specific weights and proposes the new two-step

algorithm. Section 5 demonstrates the finite sample performance of the estimated break dates

and Section 6 provides an empirical example. Section 7 concludes the paper.

2 Model

Let us consider the following bubble’s emerging and collapsing model for t = 1, 2, . . . , T :

yt =


c0T

−η0 + yt−1 + εt : 1 ≤ t ≤ ke,
φayt−1 + εt : ke + 1 ≤ t ≤ kc,
φbyt−1 + εt : kc + 1 ≤ t ≤ kr,
c1T

−η1 + yt−1 + εt : kr + 1 ≤ t ≤ T,

(1)

where y0 = op(T
1/2), c0 ≥ 0, η0 > 1/2, φa > 1, φb < 1, c1 ≥ 0, and η1 > 1/2. We assume

that the market is normal in the first and last regimes in the sense that the time series yt is a

unit root process (a random walk) with a possibly positive drift shrinking to 0. The process

starts exploding at t = ke+ 1 at a rate of φa, which is typically only slightly greater than one

and thus sometimes characterized as a mildly explosive specification. The explosive behavior

stops at t = kc and yt is collapsing at a rate of φb < 1 in the next regime, followed by the
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normal market regime. This model can be regarded as a structural change model with the

break points being given by ke, kc, and kr. The corresponding break fractions are defined as

τe := ke/T , τc := kc/T , and τr := kr/T , respectively. We would like to estimate these break

dates as accurately as possible.

For model (1), we make the following assumptions:

Assumption 1 0 < τe < τc < τr < 1.

Assumption 2 εt := σtet, where {et} ∼ i.i.d.(0, 1) with E[e4t ] <∞ and σt := ω(t/T ), where

ω(·) is a nonstochastic and strictly positive function on [0, 1], satisfying ω < ω(·) < ω <∞.

By Assumption 1, the break fractions are distinct and not too close each other. Assump-

tion 2 allows for various kinds of nonstationary unconditional volatility in the shocks, such

as a volatility shift (possibly multiple times) and linear and non-linear transitions. Under

Assumption 2, it is well known that the functional central limit theorem (FCLT) holds for

the partial sum process of {εt} normalized by
√
T , which weakly converges to a variance-

transformed Brownian motion, as shown by Cavaliere and Taylor (2007a,b).

3 Individual Estimation of Break Dates

Following PDC and Kurozumi and Skrobotov (2022), we estimate the break dates one at a

time. As model (1) can be expressed as

yt =


φ1yt−1 + ut
φayt−1 + ut
φbyt−1 + ut
φ1yt−1 + ut

where φ1 = 1 and ut :=


c0/T

η0 + εt
εt
εt
c1/T

η1 + εt,

(2)

PDC and Kurozumi and Skrobotov (2022) proposed to fit the one-time structural change

model without a constant and to estimate the break point by minimizing the SSR. It is

shown that the estimated break date, k̂c, is consistent for kc. We then split the whole sample

into the two subsamples, and from the fist subsample before k̂c, the emerging date of the

explosive behavior is estimated by fitting a one-time structural change model again, while kr

is estimated from the second subsample after k̂c. These estimated break fractions, τ̂e := k̂e/T

and τ̂r := k̂r/T , are shown to be consistent, and furthermore, k̂e (k̂r) is consistent for ke (kr)

if, roughly speaking, φa deviates from 1 sufficiently (φa−1 > 1−φb). See PDC and Kurozumi

and Skrobotov (2022) for details.
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Although the aforementioned estimated break dates (fractions) are consistent under non-

stationary volatility in Assumption 2, the efficiency gain would be expected by estimating

the break dates based on the weighted SSR following Xu and Phillips (2008). To be more

precise, let wt be a generic series of weights wt, and then, the weighted SSR based on a

one-time structural change model is given by

SSR(k,wt, φa, φb) :=
k∑
1

w−2t (yt − φayt−1)2 +
T∑
k+1

w−2t (yt − φbyt−1)2 , (3)

where
∑m

t=` is abbreviated just as
∑m

` . As SSR(k,wt, φa, φb) is minimized at

φ̂a(k,wt) :=

∑k
1 yt−1ytw

−2
t∑k

1 y
2
t−1w

−2
t

and φ̂b(k,wt) :=

∑T
k+1 yt−1ytw

−2
t∑T

k+1 y
2
t−1w

−2
t

for given k and wt, the estimator of kc is given by

k̂c(wt) := arg min
τc≤k/T≤τc

SSR(k,wt),

where 0 < τ c < τc < τ c < 1 and SSR(k,wt) := SSR(k,wt, φ̂a(k,wt), φ̂b(k,wt)). The

corresponding break fraction estimator is defined as τ̂c(wt) := k̂c(wt)/T .

Once we obtain the estimator of kc, we can move on to the estimation of ke and kr. For

ke, on the one hand, the estimation is based on the minimization of the weighted SSR using

the first sub-sample, and the estimator is defined as

k̂e(wt) := arg min
τe≤k/T≤τe

SSR1(k,wt)

where 0 < τ e < τe < τ e < τ̂c and

SSR1(k,wt) :=
k∑
1

w−2t

(
yt − φ̂c(k,wt)yt−1

)2
+

k̂c(wt)∑
k+1

w−2t

(
yt − φ̂d(k,wt)yt−1

)2

with φ̂c(k,wt) :=

∑k
1 yt−1ytw

−2
t∑k

1 y
2
t−1w

−2
t

and φ̂d(k,wt) :=

∑k̂c(wt)
k+1 yt−1ytw

−2
t∑k̂c(wt)

k+1 y2t−1w
−2
t

.

The corresponding break fraction estimator is defined as τ̂e(wt) := k̂e(wt)/T . For notational

convenience, we suppressed the dependence of k̂e(wt), τ̂e(wt), and SSR1(k,wt) on k̂c(wt).

On the other hand, for the estimation of kr, we minimize the weighted SSR using the

second sub-sample, and the estimator is defined as

k̂r(wt) := arg min
τr≤k/T≤τr

SSR2(k,wt)
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where τ̂c < τ r < τr < τ r < 1 and

SSR2(k,wt) :=
k∑

k̂c(wt)+1

w−2t

(
yt − φ̂e(k,wt)yt−1

)2
+

T∑
k+1

w−2t

(
yt − φ̂f (k,wt)yt−1

)2

with φ̂e(k,wt) =

∑k
k̂c(wt)+1

yt−1ytw
−2
t∑k

k̂c(wt)+1
y2t−1w

−2
t

and φ̂f (k,wt) =

∑T
k+1 yt−1ytw

−2
t∑T

k+1 y
2
t−1w

−2
t

.

The corresponding break fraction estimator is defined by τ̂r(wt) := k̂r(wt)/T .

We call the above-stated method the sample splitting approach based on the weighted

least squares (WLS) method. Note that the special case where wt = 1 for all t corresponds

to the estimation method employed by PDC, with the sample ranging from 1 to kr, and that

by Kurozumi and Skrobotov (2022).

4 Adaptive Estimation

To implement the sample splitting approach based on the WLS method in practice, we

need to choose an appropriate weight function wt. In our model, it is natural to choose

the volatility function σt as the weight wt to obtain the efficiency gain, but such a WLS

estimation is infeasible because the volatility function is unknown. In this article, we follow

Xu and Phillips (2008) and estimate σt via a kernel-based method. More precisely, as the first

step, we estimate τe, τc, and τr using the sample splitting approach based on the ordinary

least squares (OLS) method (wt = 1 for all t), as proposed by PDC and Kurozumi and

Skrobotov (2022). Furthermore, using the estimated break dates denoted as τ̂e(1), τ̂c(1), and

τ̂r(1), we estimate

∆yt = µ1Dt(τ̂e(1), τ̂c(1))+µ2Dt(τ̂c(1), τ̂r(1))+φaDt(τ̂e(1), τ̂c(1))yt−1+φbDt(τ̂c(1), τ̂r(1))yt−1+et,

(4)

via the OLS method and obtain the residuals êt, where Dt(a, b) = I(baT c < t ≤ bbT c), with

I(·) being the indicator function. Using these first-step residuals, the second step entails the

calculation of the weight function, which is used for the WLS estimator, that is, we calculate

σ̂2t as

σ̂2t =

T∑
t=1

(
T∑
i=1

Kit

)−1
Kitê

2
t , where Kit =

{
K
(
t−i
T b

)
if t 6= i

0 if t = i
, (5)

K(·) is a bounded nonnegative continuous kernel function defined on the real line with∫∞
−∞K(s)ds = 1, and b is a bandwidth parameter. By plugging σ̂2t into w2

t in the sam-

ple splitting approach, we obtain the estimators τ̂e(σ̂t), τ̂c(σ̂t), and τ̂c(σ̂t). Xu and Phillips
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(2008) showed that the estimation accuracy of the coefficient in a stable autoregressive model

improves by the adaptive (WLS) estimation, and we investigate if their observation holds for

the estimation of the bubble’s dates in the next section.

5 Monte Carlo Simulations

In this section, we examine the performance of the estimates of the bubble regime dates in

finite samples when the error variance is subject to changes in volatility.

Monte-Carlo simulations reported in this section are based on the series generated by

model (1) with y0 = 1500 and {εt} ∼ IIDN(0, 1). Data are generated from this DGP for

samples of T = (400, 800) with 50, 000 replications.1 We set the drift terms in the first and

fourth regimes to c0T
−η0 = 1/800 and c1T

−η0 = 1/800, respectively, following PDC. In this

experiment, we focus on the local to unit root behavior characterized by φa = 1 + ca/T and

φb = 1− cb/T , where ca takes values among {4, 5, 6} whereas cb is fixed at 6.

For the dates of bubble regimes, we set (τe, τc, τr) to be equal to (0.4,0.6,0.7). This setting

seems to be empirically relevant considering Japanese stock price, the US house price index,

and cryptocurrencies. We consider the case in which there is a one-time break in volatility

at date τ , so that the volatility function σt has the following form:

σ2t = s20 + δ(s21 − s20)I(t > bτT c)

where s1/s0 takes values among {1/5, 5} and τ takes values among {0.2, 0.8}.

As in Kurozumi and Skrobotov (2022), in the minimization of SSR(k/T ), SSR1(k/T ),

and SSR2(k/T ), we exclude the first and last 5% observations from the permissible break

date k. For example, when estimating kr based on SSR2(k/T ), the permissible break date

k ranges from k̂c + 0.05T + 1 to 0.95T . If the break date estimate k̂c exceeds 0.95T , then we

cannot estimate kr; we do not include such a case in any bins of the histogram and thus the

sum of the heights of the bins is not necessarily equal to one for k̂r in some cases. Similarly,

we cannot estimate k̂e when k̂c < 0.05T . To save space, we pick up several selected cases in

the following, and the other cases are provided in the online appendix.

Figure 1 presents the histograms of k̂c when τ = 0.8, s0/s1 = 1/5, and T = 400. The

left-hand column shows the results based on the OLS method, while the right-hand column

corresponds to the WLS-based method. In this case, the process becomes more volatile at

the end of the sample, and thus, it would be difficult to distinguish between the explosive

1All simulations were programmed in R with rnorm random number generator.
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and collapsing behavior (from τ = 0.4 to 0.7) and a random walk with high volatility (from

τ = 0.8 to 1). As expected, the OLS method incorrectly chooses the end of the sample as the

collapsing date when ca = 4, as shown in Figure 1(a), although the local peak is observed at

around the true break fraction (τc = 0.6). As the size of the bubble (ca) gets larger, the local

peak becomes higher, as is observed in Figures 1(c) and (e) (note that the vertical axis is

different depending on the value of ca). On the contrary, we can observe from Figures 1(b),

(d), and (f) that the WLS method can estimate the collapsing date more accurately than the

OLS method; the finite sample distribution has a mode at the true break fraction and the

frequency of correctly estimating the true date by WLS is about twice of that by OLS.

Figure 2 shows the histograms of k̂c when τ = 0.2, s0/s1 = 5, and T = 400. In this case,

there exists a unit root regime with high volatility at the beginning of the sample, and thus,

it is expected that the histograms would have positive frequencies before τ = 0.2. In fact,

this is the case as observed in Figure 2, although the accuracy is much better than the case

in Figure 1. Overall, the WLS-based method can detect the true collapsing date more often

than the OLS-based method. For example, when ca = 4 and cb = 6, the relative frequency of

correct detection of the true collapsing date rises from 0.25 to 0.35 by introducing the adaptive

procedure. We can also observe that the WLS method incorrectly detects the collapsing date

at the beginning of the sample less frequently than the OLS method.

Figure 3 presents the histograms of k̂e when τ = 0.2, s0/s1 = 5, and T = 400, which is

the same case as in Figure 2. Overall, when the size of the bubble is small with ca = 4, it is

difficult to estimate the emerging date (τe = 0.4) accurately, but for large values of ca, the

accuracy of k̂e improves and the histograms have a peak at 0.4, as in Figures 3(c)–(f). Again,

in this case, the performance of the estimator based on the WLS method is better than that

based on the OLS method.

The other results are briefly summarized in the online appendix. Overall, Monte Carlo

simulations demonstrate that the accuracy of the estimators of the break dates improves

significantly in some cases, while in other cases, we cannot find any difference between the

distribution of the estimator based on the OLS method and that based on the WLS method.

Because our volatility correction does not deteriorate the finite sample performance of the

break dates estimators, we recommend using the sample splitting approach with the WLS-

based method in all the cases.
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6 Empirical Application

In this section, we demonstrate the application of the two sample splitting approaches to the

top largest cryptocurrencies by capitalization (btc, eth, xrp, xlm, bch, ltc, eos, bnb, ada, xtz,

etc, xmr) for daily observations. In all cases, the closing price in US dollars at 00:00 GMT on

the corresponding day is used. Recently, Kurozumi et al. (2023) investigated the explosive

behavior of these time series and detected explosiveness as well as non-stationary volatility

behavior. We implement the two estimation methods for each calendar year (365 observations

from January 1 to December 31), from 2014 to 2019, if the data of the corresponding currencies

are available in that year. We report only the cases where the two methods return the

different estimates of the break dates, because the purpose of this section is to demonstrate the

effectiveness of the WLS method in identifying the dates of the explosive behavior. Therefore,

we omit the cases where the break dates are the same in both methods.

We find eight cases where at least one of the estimated break dates is different. The

results are presented in Figures 4-11. In each figure, the black line shows the sample path

of the corresponding cryptocurrency. The three red doted lines indicate the estimated dates

of the emergence, collapse, and recovery based on the OLS method; furthermore, the three

blue dashed lines represent those estimated by the WLS method.

For xrp in 2014 in Figure 4, the series is collapsing from the beginning of the sample, and

it seems to be explosive, at least through visual inspection, at the end of the sample. Clearly,

our model (1) with one explosive regime is not valid in the corresponding year. In such a

case, both methods cannot identify the correct break dates. This example demonstrates that

we should be careful when choosing the sample periods and select those in which only one

set of the four regimes should be included in the same order as in model (1).

Figure 5 shows xrm in 2015. We can observe that the same collapsing and recovering

dates of the explosive behavior are obtained by the two methods, whereas the estimated

emerging date by the WLS is about one month earlier than that by the OLS, especially if we

take nonstationary volatility into account.

Figure 6 shows eth in 2016, which may become explosive twice by visual inspection. It

seems that the WLS method successfully detects the explosive behavior of eth in early 2016,

whereas the OLS method erroneously assigns the second peak of the process as the recovering

date.

The currency xlm in 2017 is given in Figure 7, in which the small explosive behavior exists

at the middle of the sample and the much larger explosiveness is observed at the end of the
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sample, which is not compatible with our model (1). Nevertheless, the WLS method seems

to detect the first explosiveness well, whereas k̂c, estimated by the OLS method, is no longer

the collapsing date.

Figure 8 for etc in 2017 and Figure 9 for xmr in 2017 are similar to Figure 7 in that the

time series has two explosiveness in the sample. Again, for etc in 2017, the first exuberance

is well identified by the WLS method whereas the OLS method seems to fail to accurately

estimate the recovering date. However, identifying the break dates by both methods for xmr

in 2017 seems to be difficult.

Figure 10 shows the sample path of xlm in 2018, which has several small humps in this

sample period. Although the three break dates estimated using the WLS may be interpreted

as the emerging, collapsing, and recovering dates, they may not correspond to one specific

explosiveness but to some of the several humps. On the other hand, the three estimated

dates via the OLS method cannot be interpreted as designated by theory.

Figure 11 shows bnb in 2018, in which large explosiveness is observed at the beginning

of the sample and a mild explosive and collapsing behavior seems to exist in most parts of

the sample. It seems that the WLS method captures this second behavior, although the

collapsing regime is relatively short when taking volatility shift into account. It seems that

the estimated collapsing date by the OLS method seems to be incorrect and it may be either

the recovering or emerging date.

As a whole, volatility correction based on the WLS method seems to work well, except

for several cases where the explosive behavior is observed more than twice. We also observe

that the WLS method can be robust to the short explosiveness either at the beginning or

end of the sample if there exists another exuberance in the middle of the sample, although it

is desirable to set up the sample periods in which only one set of the exuberance is included.

For that purpose, the procedure proposed by Phillips et al. (2015a,b) may be useful.

7 Conclusion

We propose an algorithm for volatility correction in the estimation of the dates of the bubble

in the four-regime model. The method consists of the following steps: estimation of the break

dates without volatility correction and calculation of the residuals, and WLS-based estimation

of the dates of the bubble using the weight function obtained through the non-parametric

estimation of the volatility function. The Monte Carlo results show that the estimated

break dates are at least as accurate as those under the homoskesasticity assumption and
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better in some cases. The empirical illustration using the cryptocurrencies demonstrates the

different performance of the two methods, with and without volatility correction, while also

establishing that the WLS method returns the adequate break dates more often than the

OLS method.
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Figure 1: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 1/5, T = 400
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Figure 7: XLM in 2017
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Figure 9: XMR in 2017
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Online Appendix to

“Improving the accuracy of bubble date estimators under

time-varying volatility”
by Eiji Kurozumi and Anton Skrobotov

This appendix contains additional figures with the histograms of the break date estimates

with different combinations of s0, s1, τ , and T , as described in Section 5 of the main part

of the paper. Figures A.1–C.6 correspond to the the case where the volatility shift occurs

late in the sample at τ = 0.8 (Figures A.1–A.6 for k̂c, B.1–B.6 for k̂e, and C.1–C.6 for k̂r),

while Figures D.1–F.6 are the histograms in the case where the volatility changes early in the

sample at τ = 0.2 (Figures D.1–D.6 for k̂c, E.1–E.6 for k̂e, and F.1–F.6 for k̂r).

Figure A.1 (k̂c, τ = 0.8, s0/s1 = 1/5, T = 400) is the same as Figure 1 in the main text

and Figure A.2 with T = 800 is quantitatively similar to Figure A.1; the sample splitting

approach based on the WLS method performs better than that based on the OLS method.

Figures A.3–A.6 show that there is virtually no difference between the distributions of the

estimates with and without volatility correction.

Figures B.1–B.2 (k̂e, τ = 0.8, s0/s1 = 1/5) demonstrate the local peak of τ̂e at an incorrect

location (at 0.6, the location of collapse), but volatility correction reduces this local peak and

increases the peak at 0.4, the correct location of bubble exuberance. For the cases where

s0/s1 = 1 and s0/s1 = 5 in Figures B.3–B.6, the results are virtually the same regardless of

the correction.

Figures C.1–C.2 (k̂r, τ = 0.8, s0/s1 = 1/5) demonstrate the local peak at an incorrect

location (at the end of the sample), but volatility correction reduces this local peak and

increases the peak at the correct location of the recovering date at τr = 0.7. Figures C.3–C.6

show no significant difference between the two methods.

For τ = 0.2 and k̂c, we observe the difference between the with and without correction

scenario only for the case of s0/s1 = 5 (Figures D.5 and D.6, the former of which is the same

as Figure 2 in the main text). Figures D.1–D.4 show similar results regardless of whether we

correct for volatility or not.

For k̂e, it is difficult to interpret the performance of the estimates for s0/s1 = 1/5 (Figures

E.1–E.2). For s0/s1 = 1, the results are virtually the same regardless of whether we correct

for the volatility or not (Figures E.3–E.4), whereas for s0/s1 = 5, the local peak becomes

higher around the true break fraction under volatility correction, as is observed in Figures

E.5 and E.6.
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For k̂r and s0/s1 = 1/5, Figures F.1–F.2 demonstrate the local peak at an incorrect

location (at the end of the sample), but volatility correction reduces this local peak and

increases the peak at the correct location of bubble exuberance. For the case s0/s1 = 1, the

results are similar regardless of whether we correct for the volatility or not (Figures F.3–

F.4). For the case s0/s1 = 5, volatility correction reduces the local peak at the incorrect

location (corresponding to the date of collapse) and increases the peak at the correct location

of resumption of the normal market (Figures F.5–F.6).
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A. τ = 0.8, k̂c

0.00

0.02

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) T = 400, ca = 4, cb = 6, s0/s1 = 1/5

0.00

0.02

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) T = 400, ca = 4, cb = 6, s0/s1 = 1/5

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) T = 400, ca = 5, cb = 6, s0/s1 = 1/5

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d) T = 400, ca = 5, cb = 6, s0/s1 = 1/5

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) T = 400, ca = 6, cb = 6, s0/s1 = 1/5

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f) T = 400, ca = 6, cb = 6, s0/s1 = 1/5

Figure A.1: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 1/5, T = 400
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Figure A.2: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 1/5, T = 800
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Figure A.3: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 1, T = 400
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Figure A.4: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 1, T = 800
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Figure A.5: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 5, T = 400
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Figure A.6: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 5, T = 800
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B. τ = 0.8, k̂e
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Figure B.1: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.8, s0/s1 = 1/5, T = 400
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C. τ = 0.8, k̂r
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D. τ = 0.2, k̂c
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Figure D.1: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1/5, T = 400
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Figure D.4: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1, T = 800
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Figure D.5: Histograms of k̂c for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 5, T = 400
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E. τ = 0.2, k̂e
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Figure E.1: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1/5, T = 400
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Figure E.2: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1/5, T = 800
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Figure E.3: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1, T = 400
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Figure E.4: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1, T = 800
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Figure E.5: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 5, T = 400
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Figure E.6: Histograms of k̂e for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 5, T = 800
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F. τ = 0.2, k̂r
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Figure F.1: Histograms of k̂r for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1/5, T = 400

33

Electronic copy available at: https://ssrn.com/abstract=4599250



0.00

0.01

0.02

0.03

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) T = 800, ca = 4, cb = 6, s0/s1 = 1/5

0.00

0.01

0.02

0.03

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) T = 800, ca = 4, cb = 6, s0/s1 = 1/5

0.00

0.01

0.02

0.03

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) T = 800, ca = 5, cb = 6, s0/s1 = 1/5

0.00

0.01

0.02

0.03

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d) T = 800, ca = 5, cb = 6, s0/s1 = 1/5

0.00

0.01

0.02

0.03

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) T = 800, ca = 6, cb = 6, s0/s1 = 1/5

0.00

0.01

0.02

0.03

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f) T = 800, ca = 6, cb = 6, s0/s1 = 1/5

Figure F.2: Histograms of k̂r for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1/5, T = 800
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Figure F.3: Histograms of k̂r for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1, T = 400
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Figure F.4: Histograms of k̂r for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 1, T = 800

36

Electronic copy available at: https://ssrn.com/abstract=4599250



0.00

0.05

0.10

0.15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) T = 400, ca = 4, cb = 6, s0/s1 = 5

0.00

0.05

0.10

0.15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) T = 400, ca = 4, cb = 6, s0/s1 = 5

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) T = 400, ca = 5, cb = 6, s0/s1 = 5

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d) T = 400, ca = 5, cb = 6, s0/s1 = 5

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) T = 400, ca = 6, cb = 6, s0/s1 = 5

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f) T = 400, ca = 6, cb = 6, s0/s1 = 5

Figure F.5: Histograms of k̂r for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 5, T = 400
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Figure F.6: Histograms of k̂r for (τe, τc, τr) = (0.4, 0.6, 0.7), τ = 0.2, s0/s1 = 5, T = 800
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