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RESUMEN

Fn el analisis de laminas elastopldsticas se debe recurrir a tecrias de la plasticidad ad
hoe, no derivadas de la teorfa tridimensional general sino postuladas a priori y basadas
en muchas simplificaciones, o bien tratar el cuerpo como 3D. En este segundo caso, la
utilizacién de elementos convencionales en el Método de los Elementos Finitos (M.E.F.)
plantea importantes problemas numéricos, y requiere un tiempo de computacién excesivamente
dilatade. En este escrito se presenta un elemento finito 3D pensado especialmente para
superar estos inconvenientes. Su desarrollo consta de tres partes bien diferenciadas: la
obtencién de las matrices cinematicas necesarias para la resolucién del problema estatico de
un continuo 3D cualquiera, supuesta conocida la interpolacién del campo de desplazamientos;
la particularizacién de éstas al caso laminar, mediante el uso del modelo de comportamiento
transversal CT1 como funcién de interpolacién en el espesor; y la reorganizacién del algoritmo
resultante de las dos fases anteriores para evitar el aumento desmesurado del tiempo de
calculo cuando se incrementa el nimero de puntos de integracién en el espesor. Finalmente
se incluyen varios ejemplos que muestran el buen comportamiente del elemento presentado,
cuyas principales ventajas son: en primer lugar, que permite procesar un elevado nimero de
puntos de integracién en el espesor con un coste computacional razonable, y a continuacién, la
capacidad para tratar cualquier geometria de la superficie de referencia de modo muy sencillo
pero sin introducir simplificaciones, y la posibilidad de tratar otros tipos estructurales derivados
del laminar utilizando el mismo algoritmo.

SUMMARY

When dealing with elastoplastic shell analysis, we must appeal either to suitable theories
of plasticity, which aren’t the result of the general three-dimensional theory as they have been
formulated a priori and based on many simplifications, or to the treatement of the body as a
three dimensional one (3D).

In the second case, there are a lot of numerical problems arising from the use of conventional
elements in the Finite Element Method (F.E.M.), and also, a long time of computation is
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required.

In this paper we present a 3D finite element, which is aimed at overcoming the aforesaid
disavantages.

Its development is divided into three different parts, first of all the obtention of the
kinematic matrices required to solve a static problem of whatever 3D continuous medium,
once the interpolation for the displacement field is known. Secondly, their particularization to
the shell case, through the use of the model of transversal behaviour CT1 as the function of
interpolation in thickness. The third one is the reorganization of the resulting algorithm from
the two previous steps to avoid an excessive increase in the calculation time when the number
of integration points in thickness is raised.

Finally we include several examples showing the good results of the described element,
having some advantages such as: first, the processing of a high number of integration points
with a reasonable computational cost; secondly, the ability to deal with any reference surface
geometry in a very simple way, without introducing any simplification, and in the third place,
the possibility to deal with other kinds of structures derived from the shell model by using the
same algorithm.

INTRODUCCION

El andlisis estatico de estructuras laminares por el M.E.F. puede abordarse desde
dos puntos de vista diferentes, uno 2D y el otro 3D. El primero de ellos remarca el
caracter bidimensional de estas piezas, considerando el comportamiento global en el
espesor y requiriendo para ello la consideracién de ecuaciones constitutivas especiales;
supone, pues, una simplificacién en cuanto a la cinematica y, en general, también en lo
relativo a las ecuaciones constitutivas, asi como un tiempo de computacién necesario
bastante menor.

Por el contrario, el planteamiento 3D se basa en la determinacién precisa de
la respuesta en cada punto, utilizando las relaciones constitutivas convencionales y
sin requerir, en principio, ninguna simplificacién ni cinemdtica ni constitutiva; en
contrapartida, puede presentar problemas numeéricos, debido a la gran diferencia de
rigidez en unas u otras direcciones®, y requiere mayor tiempo de computacidn.

Desde el punto de vista de la cinematica, el enfoque 3D parece, a primera vista,
notablemente superior, porque no requiere simplificacién alguna. No obstante, esto no
es asi, porque considerando un solo elemento en espesor, como es habitual en laminas,
la funcién de interpolacién en esta direccién jugara un papel similar al de la hipétesis
cinematica en un modelo 2D, y la consideracién de varios elementos en ella agravara
los problemas de mal condicionamiento numérico y elevado coste computacional. Asi
pues, en este aspecto deben considerarse superiores los modelos 2D.

En cuanto a las ecuaciones constitutivas, en el dmbito de los materiales
hiperelasticos es posible desarrollar una versién 2D de ellas, es decir, una relacién
entre esfuerzos generalizados y deformaciones generalizadas, a partir de la 3D y
equivalente a aquella, por lo que se puede realizar un planteamiento global del problema
completamente 2D equivalente al 3D de partida'?®. Sin embargo, cuando se trata
de analisis elastopldsticos, no es posible, en el marco de la teoria del flujo plastico,
obtener una versién 2D de las ecuaciones constitutivas equivalente a la 3D inicial,
debido, por una parte, a que la consideracién de partes plasticas de las deformaciones
generalizadas implica un modo de extenderse la plastificacién en el espesor muy
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diferente del propio del andlisis 3D, y por otra, a que no puede determinarse una
superficie de plastificacién en esfuerzos generalizados (o deformaciones generalizadas)
partiendo de una dada en tensiones 3D (o deformaciones 3D)*. En consecuencia, en el
analisis elastoplastico, debera optarse por una formulacién 3D para poder introducir las
caracteristicas del material en forma convencional, pudiendo incorporar asi, sin mayor
complicacién, todos los avances que en este campo se produzcan a medida que ello
suceda, o bien recurrir a una teoria del flujo plastico de las laminas postulada a priori,
sobre la base de las simplificaciones necesarias, y sujeta a verificacién por contraste
con modelos 3D o por métodos experimentales. En esta tltima linea, justificada por
el menor coste computacional, cabe citar los modelos desarrollados por Ilyushin'®,
Ivanov'®, Cristfiels'™*®, Eidsheim y Larsen** y Bienik y Funaro®, a todos los cuales
es comun considerar comportamiento perfectamente plastico, despreciar la influencia
de los cortantes y partir del criterio 3D de Hubert-von Mises-Hencky.

En vista, pues, de que para mantener la generalidad suficiente en cuanto al modelo
de comportamiento del material, y no introducir formas aberrantes de extensién de
la plastificacién por el espesor en él, se hace necesario recurrir a una formulacién 3D.
Procede abordar a continuacién el comentario de sus inconvenientes y de los medios
que se proponen para eludirlos.

Es bien conocido que el anélisis de estructuras marcadamente bidimensionales
mediante elementos finitos 3D convencionales presenta importantes problemas
numéricos®.  Para solucionarlos diferentes autores han utilizado procedimientos
distintos, entre los cuales el que mayor éxito ha sido el de definir el campo
de desplazamientos del espacio laminar a partir exclusivamente de parametros
significativos en el movimiento de la lamina considerada como estructura 2D, es
decir, de los que definen el movimiento de su superficie media y la evolucién de la
normal. Tal método, en esencia supone admitir una hipétesis de comportamiento
transversal de la lamina, y con diferentes expresiones de ésta ha sido utilizado
por varios autores*®®"®°  Fn este escrito se presenta uno de estos elementos
(entendiendo como tal no la mera descripcién de unas funciones de interpolacién, sino
el procedimiento completo de obtencién de las matrices cinemdticas* que aparecen en
el M.E.F.), basado en el modelo de comportamiento transversal CT1 recientemente
presentado®*®, el cual se ha desarrollado siguiendo un método que permite aumentar
el nimero de puntos de integracién en el espesor considerablemente con muy poco
coste computacional adicional, por lo que se considera muy adecuado para el anilisis
en régimen elastopldstico que exige que este nimero sea elevado.

En un trabajo anterior®, los autores presentaban un procedimiento de obtencién
de las matrices cinematicas que intervienen en el problema estdtico de una ldmina
planteado por el M.E.F. basado en la descomposicién del proceso en dos bloques:
el primero de ellos permite obtener las citadas matrices cinematicas en funcién de
las primeras y segundas derivadas de Frechet del gradiente del desplazamiento en
la direccién de los incrementos de los parametros nodales, y es comin a cualquier
problema estatico de un continuo 3D; el segundo se encarga de calcular dichas derivadas

* se denominan matrices cinematicas a aquellas que dependen exclusivamente de la cinemaética del
movimiento de la pieza, es decir, N, N, B y B.




62 J. CASANOVA, J. MOYA, S. MONLEON Y P. FUSTER

de Frechet, siendo el dnico que tiene en cuenta el cardcter laminar de la estructura.
Este planteamiento presenta la ventaja de ser comin el primer bloque para cualquier
problema estatico 3D, y ser el segundo muy sencillo y basado exclusivamente en
conceptos elementales de andlisis tensorial y geometria diferencial, por lo que resulta
facil modificarlo para considerar otras hipdtesis cinematicas; por el contrario, presenta
el inconveniente de exigir un tiempo de computacién elevado cuando se procesa una
ldmina elastopldstica, puesto que el niimero de operaciones a realizar en cada punto de
integracién en el espesor es elevado.

En ¢l presente escrito, partiendo de un planteamiento similar, se combinaradn ambos
bloques para generar dos nuevos, el primero, con un nimero importante de operaciones,
se ejecuta una sola vez por punto de integracién considerado sobre la superficie de
referencia, y el segundo, muy simple y répido de ejecucién, consiste en una combinacién
polinémica de valores previamente hallados y es el finico que debe calcularse en todos y
cada uno de los puntos de integracién del espesor. Con este nuevo planteamiento se ha
perdido la posibilidad de facil modificacién del anterior, asi como la entidad conceptual
de cada uno de los bloques, pero a cambio se ha conseguido mayor velocidad de proceso
y la posibilidad de identificar los distintos términos de las matrices B y B con las
primeras y segundas variaciones, respectivamente, de las deformaciones generalizadas
que aparecen en una formulacién 2D.

En el primer capitulo se presentara la resolucién por el método de los elementos
finitos del problema estitico de un continuo tridimensional cualquiera, mediante una
formulacién lagrangiana total y basando el desarrollo en el método de Newton-Raphson;
el segundo se consagrard a estudiar el planteamiento adecuado para evitar los problemas
numéricos generados por el tratamiento mediante elementos 3D de laminas y el tercero
a resenar las modificaciones necesaria para conseguir la economia de tiempo a que se
ha hecho referencia. Por ultimo se presentardn algunos ejemplos ilustrativos de las
bondades del elemento descrito.

FORMULACION POR ELEMENTOS FINITOS DEL PROBLEMA DE
EQUILIBRIO DE UN CONTINUO TRIDIMENSIONAL

Un cuerpo B es una variedad tridimensional diferenciable, con contorno liso al
menos a trozos'. Sus elementos se denominan particulas y las coordenadas X que los
definen, coordenadas materiales.

Una configuracién X es una aplicacién del cuerpo B sobre el espacio geométrico
ordinario (es decir, el espacio afin euclideo R?), que es continua, invertible y preserva
la orientacién. Dicha aplicacién asigna a cada particula X la posicién x que ocupa en
el espacio

X:B-+R®

(1)
X(X)=x

En la formulacién lagrangiana total de cualquier problema se define una
configuracién privilegiada X, llamada configuracién de referencia, a la que se refieren
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todas las variables y parametros. Habitualmente se toma como tal la aplicacién unidad,
y se habla indistintamente de cuerpo o de configuracién de referencia. En este trabajo
se operara asi.

Cualquier proceso mecdnico que sufra un cuerpo implicard un cambio de
configuracion. El campo de desplazamientos d* asociado a tal proceso es el conjunto de
los vectores de R® con origen en los puntos de la configuracién de referencia y extremo
en su correspondiente imagen en la actual; sus componentes, por lo tanto, seran'!:

d‘

X(X) - Xo(X) (2)

y, conocida la configuracién de referencia, de la relacién anterior es evidente que
cualquier otra configuracién se puede definir mediante la aplicacién X o mediante el
campo de desplazamientos d* asociado.

En el planteamiento del problema estatico de un cuerpo B, de contorno 2 = 9B,
pueden aparecer dos tipos de condiciones de borde, las cinemdticas o de Dirichlet,
que definen la posicién actual d~ de una parte Q, del contorno, y las estéticas o de
Neumann, que determinan el vector de fuerzas por unidad de area t™ que actiia sobre
la parte del contorno 2, en la configuracién actual. Estas dos partes del contorno son
tales que

ﬁu U _Q-a =0

3
QN = { } )

es decir, que no se solapan y entre ambas cubren todo el contorno excepto algiin punto
o linea aislados (esto es, salvoun conjunto de puntos de medida nula).

Se define el espacio de configuraciones admisibles, en el que se investigara la solucién
del problema planteado, como'®

7 = {d*:B—- R¥det(F*)>0 y d*|p, = d'} (4)

donde F* representa el gradiente de la deformacién, es decir

siendo gf y G*!, respectivamente, la base natural del sistema de coordenadas
convectivas X en la configuracién actual y la base reciproca del mismo sistema de
coordenadas en la configuracién de referencia. La condicién det(F*) > 0 garantiza que
el cambio de configuracién conserva las propiedades de invertibilidad y mantenimiento
de la orientacién.

El espacio de variaciones cinemdaticamente admisibles alrededor de wuna
configuracién d* € 7 se define como'!:

V = {q":B - R*/q"|a, = 0} (6)

y es el espacio tangente a 7 en d* € 7.
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Por dltimo, partiendo bien del principio de los trabajos virtuales, bien de un
principio variacional adecuado, el problema estatico de un continuo 3D se puede
expresar como

Determinar d* € 7/G(d*,q") = 0 Vq" € V (7)

donde G(d*,g*) es un funcional definido como
G:txV —- R

. (8)
G(d*,q") = fT*:ﬁE* v - fb"‘-q" v - [ T.q dS
B B o
siendo T* el segundo tensor de tensiones de Piola-Kirchhoff, b* el campo de fuerzas de
volumen que acttian sobre el cuerpo, y §E* la variacién del tensor de deformacién de
Lagrange, es decir, la diferencial del Frechet de éste en la direccién q*,

* d * * . * *
§E* = [E(E +eq )L=o = sim [F* - grad q7] (9)
En esta 1iltima expresién sim representa la simetrizacién del contenido del corchete, y
grad el operador gradiente

* * *1 * aq.

gradq” = q; ® G" ; q; = Zr

Todas las variables que no se han definido explicitamente mantienen el significado

asignado con anterioridad. Por las propiedades de la diferencial de Frechet, (9) se
puede escribir como

(10)

§E* = E*(d")-q (11)

poniendo de manifiesto la linealidad de éE* en g*.

La resolucién analitica del problema integral (7) es harto dificil, si no imposible,
en la mayoria de los casos. No obstante, su solucién numeérica por el M.E.F. es
sencilla, puesto que la introduccién de una funcién de interpolacioén, postulada a priori
como solucién del problema a falta de determinar algunas constantes, lo transforma
en algebraico y resoluble por los métodos convencionales del Calculo Numérico. La
discretizacién en elementos finitos permite definir, de modo sencillo y elegante, una
funcién de interpolacién, tan compleja como se desee, en el dominio total, mediante
el ensamblaje de otras sencillas definidas sobre cada elemento; naturalmente, cuanto
menores sean los elementos, es decir, cuantos mas grados de libertad tenga la funcién de
interpolacién, mejor se aproximara la solucién del problema discreto a la del continuo
inicial (7). El nimero de elementos a considerar estd limitado por la precisién del
ordenador que se utilice y por el coste econémico (en tiempo de computacién y en
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memoria de ordenador) que suponga disminuir el error por debajo de un valor maximo
admisible.

Para transformar el problema integral (7) en uno discreto equivalente, supéngase
que el campo de desplazamientos d* puede aproximarse mediante la funcién de
interpolacién d*, que depende de las coordenadas ¢ del punto que se esté considerando
y de un conjunto u de pardmetros de interpolacién (o pardametros nodales)

d*(¢') ~ d(¢',u) (12)

y es al menos continua a trozos, existiendo sus derivadas hasta el orden necesario en
todo el dominio con la posible excepcién de un conjunto de puntos de medida nula.
Aunque habitualmente se supone que d* es lineal en los parametros nodales, ello no es
una restriccion imprescindible!’**? | y en este apartado, por conveniencia para desarrollos
posteriores, se va a mantener el caracter no lineal de d* en u.

Al considerar la funcién de interpolacién (12) se esta aproximando el espacio de
configuraciones admisibles 7, de dimensién infinita, por un subespacio de dimensién
finita 7, C 7. Del mismo modo deberd aproximarse el espacio de variaciones
cineméticamente admisibles V por un subespacio de dimensién finita V, C V, siendo
ambos aproximaciones mutuamente coherentes. Ello se consigue interpolando q
mediante

q*(6') ~ §*(6',u) = DA*(¢',u|Au) = N(6'u)-Au (13)

donde Dd*(6,u|Au) representa la diferencia de Frechet de d* en direccién Au, y
Au es una variacién cinematicamente admisible de los pardmetros nodales. A primera
vista la ecuacién (13) puede parecer una restriccién excesiva del espacio de variaciones
cinematicamente admisibles, pues no sélo se va a imponer a q* la gestriccién cinematica,
sino también una forma determinada dependiente de la del campo de desplazamientos;
no obstante, como las variaciones de parametros nodales Au sélo estan obligadas a
satisfacer las condiciones de contorno, y no a guardar ninguna relacién con el campo
de desplazamientos real, la ecuacién (13) representa en cualquier punto del cuerpo
cualquier variacién admisible de los desplazamientos, siendo bien conocido, ademas,
que en la utilizacién de un método energético es suficiente considerar variaciones en un
entorno de la solucidén para determinar estal®.
Llevando (12) y (13) a (11) se puede expresar

SE" ~ E'(d"(6',u)): N(#',u) Au
= E(6',u): N(6',u)-Au = B(6',u)-Au -

y sustituyendo esta relacién en la definicién de G(d*, q*), teniendo en cuenta que T*,
b* y t*, por ser funciones conocidas de las coordenadas 6* y quizds del campo de
desplazamientos d*, pueden considerarse conocidos dependiendo de #* y u sin méis que
utilizar la relacién (11), se llega finalmente a
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G(d*,q") ~ R(u)-Au (15)

R(u) = fi‘*:BdV-/b*-Ndv-f N dS (16)
B B

o

que permite expresar la versién discreta del problema (7) como

Determinar u € E¥/R(u)-Au = 0 VAu € W¥ (17)

donde £N es el espacio de vectores de pardmetros nodales admisibles

¥ = {u € R/ulo, = W} (18)

¥y WY es el de variaciones cinematicamente admisibles de estos vectores

WY = {Au € RY/Aulg, = 0} (19)

En estas definiciones, ug, = u significa que los vectores de parametros
nodales son tales que sustituidos en la funcién de interpolacién (12) conducen al
cumplimiento automaético de las condiciones de contorno de desplazamiento impuesto,
y andlogamente, Aul, = 0 implica que la evaluacién de (13) en cualquier Au € wH
conduce a valores nulos de @* en los puntos de {2,. Finalmente, el problema (17) puede
expresarse como

Determinar u € EY/R(u) = 0 (20)

que, puesto que R no es sino el vector de componentes de la solicitacién activa segin
los grados de libertad (g.d.l.) considerados, es la condicién de equilibrio segiin se suele
expresar en Mecanica Analitica.

Puesto que el problema (20) es algebraico, su resolucién puede abordarse por los
métodos convencionales del Célculo Numérico. Suele utilizarse alguna de las variantes
del método de Newton-Raphson, que, como es bien conocido, supone sustituir la
resolucién de un problema no lineal por la de una serie de problemas obtenidos por
linealizacién de aquel alrededor de las sucesivas aproximaciones a la solucién.

Sea u,, € £V una aproximacién a la solucién de (20). La parte lineal del operador
R(u) en un entorno de u, puede expresarse como (11)

LR(u,,Au) = R(u,) + DR(u,|Au) (21)
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donde el segundo sumando del segundo miembro representa la diferencial de Frechet
de R(u) en la direccién Au € WX y en el punto u, € £V. Utilizando las propiedades
de la diferencial de Frechet puede escribirse

DR(u,|Au) = Kr-Au (22)

representando Kt la matriz de rigidez tangente, que a su vez suele descomponerse en
P i 1
otras cuatro®®®®*

Kr = Kgp + Ky — Kep — Ker (23)

que se obtienen sin mas que aplicar la definicién de diferencial de Frechet al operador
R(u) y agrupar términos convenientemente. En este proceso es interesante observar
que el campo de tensiones de Piola-Kirchhoff T*, que aparece en la primera integral de
(16), depende de los parametros nodales u exclusivamente a través de las deformaciones
de Lagrange E*, por lo tanto, su diferencial de Frechet se podra obtener, conocidas las
ecuaciones constitutivas, como:

DT*(u|Au) = DT*(E*|AE*)- AE* = C:AE* (24)

donde C es el operador constitutivo tangente, y AE* representa la diferencial de Frechet
del campo de tensores de Lagrange, dada por la ecuacién (14). En un caso hipereléstico,
en el cual se conoce ’i“: en funcién de E* exclusivamente, es inmediato determinar C.
En uno elastoplastico, T* depende del estado deformacional actual E*, pero también de
su parte plastica y de una serie de pardmetros internos que representan la historia de los
estados deformacionales anteriores, a través de un sistema de ecuaciones diferenciales
en derivadas parciales, sometido a la limitacién adicional de tener que pertenecer
obligatoriamente el estado final de cualquier proceso al dominio eldstico asociado a
dicho estado; todo ello, asi como la estrategia particular de integracién numérica que se
adopte para las ecuaciones del flujo plastico, debe ser tenido en cuenta en la obtencién
del operador C***'*, que en este caso se denomina operador elastoplastico tangente
coherente con el algoritmo de integracion utilizado. La obtencién del operador C es,
en este caso, un problema de cierta entidad, para cuya resolucién se refiere al lector a
la referencia®.

De modo similar a como se ha obtenido la variacién (diferencial de Frechet) de las
tensiones, se opera para determinar la de los campos de fuerzas de volumen b* y de
fuerzas de superficie sobre el contorno t”, si estos dependen de la configuracién actual,
estableciendo que

Db* (u,|Au) = Db* (d%|q") : Dq* (u.|Au) =8, - Au (25)

Dt™ (u,|Au) = Dt* (d%|q*) : Dq* (u,|Au) =+, - Au (26)

donde se ha calculado la variacién de estos campos alrededor de una configuracién
d, ~ d(u,), cuando esta varia en q* € V, y a continuacién se ha introducido la
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discretizacién definida en (12) y (13).
Considerando todo esto, los distintos términos de la matriz de rigidez tangente (23)
se pueden expresar:

matriz de grandes desplazamientos

K :/BT .C, : BAV (27)
B

matriz de tensiones iniciales
Krr = / T* : BdV (28)
B
— matriz de cargas dependientes de la deformacién

KCD:/NT:ﬁn:NdVJr NT :#,: NdS (29)
B Qs

matriz de cargas iniciales

chsz*-ﬁdv+ T.NdS (30)
B Qs

donde todas las funciones que intervienen estidn evaluadas en u, € &V. Las
componentes de las matrices cinematicas B,B N yﬂ' , asi como las de los distintos
términos de la matriz de rigidez, se resumen en la Tabla I.

Por tltimo, la resolucién por el método de Newton-Raphson del problema (20),
conocida una aproximacion inicial up a la solucién, se reduce a

u, «— U
Repetir
Determinar Au € WY /LR(u,, Au) =
=R(u,) + Kr(u,) - Au=0 (81}
U, «— /u, + Au

Hasta convergencia

Nétese que la aproximacién inicial puede ser ug = 0, y entonces la primera iteracién
equivale a resolver el problema con geometria lineal y comportamiento elastico.
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VARIABLE COMPONENTES
d* d=(0™) = (0™, u4)
N di =5
N dﬁ!n = %
2 Basj = Hdijya+ o+ i iy + 4 - diyi)
B Buais = 5Hdfa Gipsn + difn Ghgin + Gjast

7 Jxk T The* Jue
Bian T Lias iy T 40 dkils’,m}

R Ry= [gT9Ba; dV — [gb; d% dV — [ T d¥} dS
Kep (Kep)up = Jg Bai; C7¥ Bpy dV
Krr (ET1)45 = I8 Tijéwii dv
Kep (Kop)an = Jo &% Bij 43 dV + fo, &5 7 45 dS
Ker (Kor)as = Jabi dip AV + fo, T d7ip dS

TablaI. Matriz de rigidez tangente y vector de residuos.

Con lo expuesto en este apartado se estd en disposicién de resolver el problema
estdtico de un continuo 3D cualquiera, conociendo previamente sdlo la interpolacién
del campo de desplazamientos y la definicién del propio problema.

EL ANALISIS POR M.E.F. DE ESTRUCTURAS LAMINARES:
LA HIPOTESIS CINEMATICA Y LA FUNCION DE FORMA

Cuando se analizan estructuras marcadamente bidimensionales, como es el caso
de placas y laminas, utilizando elementos finitos 3D convencionales, debido a que las
deformaciones en la direccién del espesor son mucho menores que las que se presentan
segiin las direcciones paralelas al plano tangente a la superficie de referencia, aparecen
coeficientes de rigidez de orden de magnitud muy diferente segin el g.d.1. considerado,
lo cual, inevitablemente, conduce a sistemas de ecuaciones mal condicionados para
su resolucién numérica. Para eludir este inconveniente se ha recurrido a introducir
funciones de penalizacién, o a utilizar elementos 3D no convencionales, basados bien en
definir g.d.l. diferentes en una y otra cara de la ldmina, o bien en hacerlo sélo sobre la
superficie de referencia®. Este iltimo procedimiento supone, en definitiva introducir una
hipétesis cinematica, del mismo modo que se hace en los métodos clasicos de anélisis
y utilizarla como funcién de forma en el espesor. Esto es lo que se hace, en 1ltima
instancia, en las referencias®>®"®, aunque ello no se enfoque de gste modo, y en *°, con
este mismo planteamiento.
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|
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i o9

J___I__

0

Figura 1. Cinematica de la lamina. Modelo CT1.

El modelo de comportamiento transversal CT1, que es el de primer orden de los
de una familia jerarquica desarrollada en **, establece que las normales a la superficie
de referencia en la configuraciéon de referencia ¥, permanecen rectas en cualquier otra
configuracién, aunque no necesariamente normales a la superficie de referencia § en
ella, y puede variar la longitud del segmento de estas rectas contenida en el espacio
laminar. Matematicamente, se expresa mediante la siguiente relacién:

d*(6%,n) = d(6%) + 7v(6%) (32)

donde 6%, a = 1, 2 representa las coordenadas gaussianas de un punto de £ (o de S),y n
la coordenada segiin el espesor, todas ellas en el sistema convectivo. d*(6%,7) representa
el desplazamiento de un punto (6,62, n) cualquiera del espacio laminar, d(6%) el de un
punto (6, 0%) de la superficie de referencia y v un vector director de la recta en que se
transforma la normal a ¥, que contiene ademas la informacidn relativa al alargamiento
en esta direccién. Este modelo se utilizara como funcién de interpolacién en el espesor
en el elemento finito 3D para analisis de ldminas que se presenta, para cuya completa
definicién no resta sino admitir conocidas las funciones d(6%,u) y ¥(8%, u), mediante
las cuales se interpolan los campos vectoriales d y v, pudiéndose entonces escribir

d*(6%,7,u) = d(6%,u) + 7v(6%,u) (33)

La ecuacién (33) es la particularizacién a este caso de la funcién de interpolacién d*
que aparecia en la relacién (12) del punto anterior, a partir de la cual se ha desarrollado
el algoritmo del M.E.F.. Bastard, pues, para tenerlo completamente definido evaluar
las expresiones que aparecen en la Tabla I en funcién de las componentes de d y v.

Los vectores y tensores que intervienen en la definicién del funcional G(d*,q*),
ecuacién (8), y consecuentemente en la del vector de componentes de la solicitacién
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activa segin los g.dl. considerados, R(u), ecuacién (16), pueden expresarse en
cualquier sistema de coordenadas del espacio, aunque, en el caso de las laminas, la
referencia més natural, y por lo tanto la mas cémoda para trabajar, serd la formada
por las coordenadas gaussianas de la superficie de referencia £, ' y 62, y la coordenada
n en el espesor®. Operar de este modo significa expresar el vector d*, a partir del cual
se han definido las matrices cineméticas, en la base natural G** de este sistema de
coordenadas, y los vectores d y v, definidos sobre X, en la particularizacién de G} alos
puntos de esta superficie (de ecuacién 7 = 0 en el sistema de coordenadas adoptado).
Dicha particularizacién conduce a los vectores A,, @ = 1,2 , base natural asociada a
las coordenadas gaussianas 6%, a = 1,2, en Z, y A3 dado por

A])(Ag

—_— 34
A1 x Aq] (34)

A3 =
donde x representa el producto vectorial y ||.|| el operador médulo. La relacién entre
los vectores de la base G} en cualquier punto del espacio laminar y su particularizacién
A; a la superficie de referencia viene dada por el tensor de Krauss g y su inverso g

p=GIOA = 4l A;QA (35)
B=A®G" = i} A;® A’ (36)

cuyas componentes se expresan como*??

g = 8§-nBy  aBe{1,2}

B3 = px =0  VYae{l,2} (37)
gy =1
1
Ag = ;[5§+W(B§—2H5§)] o,B €{1,2}
BA=m=0 Va € {1,2} (38)
B =1

donde Bj son las componentes mixtas del tensor de curvaturas de X, 63 las deltas de
Kronecker, p el determinante de las componentes mixtas del tensor de Krauss, dado
por

p = 1-2Hn+ Kq? (39)

* Si la estructura constase de varias laminas, éstas serian las coordenadas locales en cada una de ellas, que
bastaria transformar en un paso final, antes del ensamblaje de la matriz de rigidez global, al sistema de
coordenadas global adoptado.
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H es la curvatura principal de ¥

H = tr(Bg) (40)
y K la curvatura total o gaussiana de esta superficie

K = det(Bj) (41)

siendo la relacién entre las bases a que se ha hecho referencia

G = plA; A = HG;
. S . (42)
G*t — 'E;AJ AJ = ng*%

que es inmediata de obtener a partir de (35) y (36).
Por definicién, las componentes d** del vector d* en la base G} se calculan mediante

é*i s &* 2 Gtz‘ (43)

donde no hay més que sustituir la ecuacién (33), expresar los vectores d y V por sus
componentes en la base A; y hacer uso de las relaciones (42) para llegar a

d¢ = (& + ni?) (44)

donde
& = d-A’ (45)
¥ = v.A? (46)

En (44), d* depende de 62, 7 ¥y u, mientras di y 9 sélo lo hacen de 6~ y
u, y ;_L'J sélo de 6* y 5. Las funciones d* son las componentes del campo de
desplazamientos en la base G}, que se trataban de obtener, y las funciones d y o,
que en adelante se denominaran “desplazamientos caracteristicos”, se pueden interpolar
mediante cualquier funcién de forma 2D convencional, que, aunque ello no es necesario?,
se supondra lineal en los pardmetros nodales u. Puesto que, conocidas d* y 9, su
derivacién respecto a los pardmetros nodales es inmediata, también lo es la obtencién
de las matrices N y N (véase Tabla I). Si, con la notacién habitual del M.E.F., se
escribe

d(6%, )
¥(6%,u)

d(6%) -u (47)
9(6%) -u (48)

donde d y © son matrices de 3 x N, siendo N el nimero de g.d.1. considerados, entonces
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= p(d + nv) (49)
N =0 (50)

siendo 0 la matriz nula de 3 X N y p la de componentes del inverso del tensor de Krauss
(8 % 3).

Para obtener las matrices B y B se deberdn expresar, en primer lugar, d:“ ;

tf’_'i’j en funcién de parametros que dependan de d y 9, tal como se hizo con d** e
(44). Procediendo andlogamente al caso anterior, se parte de la definicién de derivada
covariante en la métrica G}; = G} - G} (representada por )

dj; = d5-Gi : (51)
d;-G" = d (52)

se sustituye aqui la ecuacién (33), expresando los vectores d y v en la base A;, se deriva
haciendo uso de las férmulas de Weingarten y Gauss (véase, por ejemplo, las referencias
1,4 0 19), se utilizan las relaciones (42) para determinar los productos escalares de los
vectores de una y otra base y, por iltimo, se reordenan convenientemente los términos
para obtener

I = m (854 n8h) (53)
:H.'i = pb (€kj + nZk;) (54)

donde los sistemas éi; y Z; se definen mediante

= (5 +n5) Ak = (s +nds;) A* (55)

y se han determinado a partir de la aplicacién de las férmulas de Weingarten y Gauss
a (33), teniendo en cuenta (45) y (46), llegando a

A __ 3 13 pa )
s = djg — &°Bg
3
o

& = d% — d'Bya (56)
*":fs = ]
8% = 955 — 9°B% |
é:t:n = ‘}i'x - iﬁB’ra ¢ (57)
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representando (|) la derivacién covariante en la métrica A;; = A;- A;. Las expresiones
desarrolladas de los sistemas é’; y 2°; se recogen en la Tabla II Notese que dichos
sistemas dependen excluswamente de las coordenadas 0%, a = 1,2, y de los parametros
nodales u, siendo lineal la dependencia respecto a estos iiltimos, por serlo la de d* y .
Finalmente, como la derivacién de estos sistemas respecto a los parametros nodales es
inmediata, también lo es la obtencién de las matrices B y B, con lo que concluye la
parte de preparacién de las expresiones analiticas a incorporar al programa.

Componentes Expresién

ey d' + T},d! + T},d? - BYd®
Y d’ + T1,d* + T},d* - BYd®

él ol

é2 d +T'%d' + T%,d? — B4d®

é% 0??2 +T2,d! + r%zfp — B%d®

&4 92

&3 d% + Bnid! + By d?

é% dgz + By2d! + Byyd?

& o3

9‘:?’2 f: + Id 21} +I'22'ET 3_12‘53

i‘:'la 0

&% 3430 + le"’ - B%4?

&% 9% + I'2,9! + I'%,0% — B%9°

5:?3 0

5?2 1:13 + Blz'U + Bzz’U

33, 0

Ils=A"-A,s , simbolosde Christoffel de segunda especie

Bop = Az-Aup , segunda forma fundamental

TABLA II. Componentes de las derivadas del campo de desplazamientos.
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El algoritmo de obtencién de la matriz de rigidez y vector de residuos, en la parte
que afecta a este articulo, consta de cuatro fases fundamentales (véase Figura 2):

A

~

FUNFORM
]
DEFORM 2D

—

PEFORM_3D

MAT- CINEM
|
RESTO

®
® |

1- Bucle sobre los puntos de integracion en el espesor

2- Bucle sobre los puntos de integraciéon en la superficie media

Figura 2. Algoritmo inicial.

~ Una primera (FUNFORM) en la que se obtendran las funciones d¢, ¢, df‘a, f.'fm
a = 1,2, y las derivadas de todas ellas respecto a los pardmetros nodales, en el
punto de integracién sobre la superficie de referencia que se esté considerando.

— A continuacidn, en el mismo punto, se obtendrén los sistemas éfj, :i:fj-, (Tabla II),
y sus derivadas respecto a los pardmetros nodales (DEFORM-2D).

— En tercer lugar, (DEFORM-3D), y en cada uno de los puntos de integracién en el
espesor que correspondan al que se estaba tratando en la superficie de referencia,
se deberdn determinar las funciones d*, .;”j’ &7}‘3 y sus derivadas respecto a los
parametros nodales (ecuaciones (44), (53) y (54)).

— y en cuarto lugar, con los resultados anteriores, se determinan las matrices N, N,

B y B (Tabla I, subrutina MAT-CINEM).

Una vez realizado lo anterior, resta multiplicar por operadores que dependen de las
cargas, las tensiones o las caracteristicas del material, y por los pesos de las férmulas de
integracién y los jacobianos correspondientes, y ensamblar la matriz de rigidez global.
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Todo ello no afecta al problema objeto de este escrito, y se ha representado, en el
esquema anterior, por la subrutina RESTO.

LAS LAMINAS ELASTOPLASTICAS Y EL TIEMPO
DE COMPUTACION

El procedimiento de obtencién de las matrices cinematicas descrito en las secciones
precedentes presenta ciertas ventajas frente a otros mas habituales, basados en
la determinacién explicita previa de las expresiones de todas y cada una de sus
componentes en funcién de los pardmetros nodales y posterior programacién de tales
relaciones, entre las que cabe citar:

~  Su caracter algoritmico, entendiendo por tal el hecho de constar el método varios
pasos sencillos, definidos por una serie de expresiones compactas, susceptibles
de ser programadas directamente (las ecuaciones cuarta y quinta de la Tabla I,
conjuntamente con las niimero (49) y (50), para el bloque MAT-CINEM, las niimero
(44), (53) y (54), asi como sus correspondientes derivadas respecto a los pardmetros
nodales para el DEFORM-3D, o las ndmero (56) y (57) para el bloque DEFORM-
2D). Este rasgo permite eludir la programacién de expresiones farragosas, con el
riesgo de cometer errores de dificil localizacién que ello conlleva, sustituyéndola
por la de otras més sencillas, con menor probabilidad de error, y por trabajo del
ordenador.

-~ La utilidad de estas mismas rutinas de calculo para la resolucién de una amplia

gama de problemas. La primera de ellas, MAT-CINEM, es comin a todos los
problemas estaticos 3D basados en una formulacién lagrangiana total, asi como
a los que, siendo esencialmente 1D o 2D, pretendan analizarse, por los motivos
que sea, como 3D (éste es el caso de la tipologia que nos ocupa); la segunda,
DEFORM-3D, lo es a todos los casos posibles de andlisis laminar, abordados por
este procedimiento, en que la hipdtesis cinematica sea una funcién lineal en 7.
La validez total de las rutinas anteriores sean cuales sean las funciones de
interpolaciéon escogidas para cada desplazamiento caracteristico, ya que éstas
s6lo intervienen en la subrutina FUNFORM, la cual puede disponer de un
catdlogo de éstas tan extenso como se precise y sencillisimo de ampliar. Ello
supone, por una parte, que el procedimiento descrito permite disponer de toda
una familia de elementos finitos 3D basados en la misma hipétesis cinemaitica,
segin cuales sean las funciones concretas escogidas para interpolar los distintos
desplazamientos caracteristicos dt y 9%, y por otra, que es posible analizar modelos
estructurales derivados del laminar con el mismo programa, simplemente omitiendo
la interpolacién de alguno de los desplazamientos caracteristicos citados, por
ejemplo, vigas y arcos si no se consideran d? y 2, o lajas en tensién (o deformacién)
plana si sélo se utilizan d! y dZ.

- La capacidad del modelo para representar cualquier geometria, ya que ésta se
define exclusivamente a través del tensor métrico, el de curvaturas y los simbolos
de Christoffel de la superficie de referencia ¥, que se determinan en la subrutina
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adecuada.

No obstante, cuando se trata de realizar andlisis elastoplasticos, que requieren
utilizar un nimero elevado de puntos de integracién en el espesor, (seis, ocho o diez
frente a los dos que son suficientes en el caso elastico*), el tiempo de computacién crece
de forma importante con dicho nimero de puntos, haciéndose excesivamente largo. Esta
caracteristica hay que considerarla como un inconveniente serio del método, puesto que
hace tediocso el cdlculo e incrementa su coste, pudiendo causar, en ultimo extremo, el
que se relegue el modelo 3D al contraste de los modelos elastopldsticos 2D aproximados,
asumiendo los inconvenientes de éstos en los restantes calculos. No obstante, puesto
que es en el andlisis elastoplastico donde realmente interesa considerar el cardcter 3D de
la ldmina, para tener una interpretacién correcta del fenémeno, se ha tratado de paliar
este inconveniente, buscando un modo de abordar la determinacidon de las matrices
cinemdticas tal que permita incrementar considerablemente el niimero de puntos de
integracion en el espesor sin aumento apreciable del tiempo de computacién. Para ello se
han reorganizado las subrutinas DEFORM-3D y MAT-CINEM anteriores, de tal modo
que el grueso de las operaciones a realizar se efectiie en una nueva rutina MCINEM-
2D, que depende de los puntos de integracién sobre la superficie de referencia, pero no
de los del espesor, y otra muy sencilla, MCINEM-3D, que depende de estos tltimos.
Esta reorganizacién, como el lector podré deducir mas adelante, sélo puede efectuarse
sobre las matrices B y B, cuyas componentes dependen del tensor de Kraus, el cual es
una expresién polinémica en 7, y no sobre N y N, que lo hacen de su inverso, ya que
éste es racional (representable, por lo tanto, por una serie de infinitos términos), en
dicha variable. Ello no es un inconveniente grave, ya que con el modo de interpolacién
admitido, N es idénticamente nula, y N es mucho menos costosa de calcular que B y
B, interviniendo, ademads, sélo en el vector de cargas, que se determina una sola vez
en todo el proceso, y en la matriz de cargas dependientes de los desplazamientos, que
en la mayoria de los casos también es idénticamente nula, puesto que las solicitaciones,
habitualmente, no suelen depender de dicho campo.

Al efectuar la modificaciéon que se estd tratando se pierde la generalidad de la
subrutina MAT-CINEM comentada, puesto que tras ella el algoritmo resultante ya
solo es valido para problemas de laminas cuya hipdtesis cinematica sea una expresién
lineal en 5, y para los derivados de dicho modelo. :

La reforma citada del algoritmo es facil de imaginar: puesto que el inconveniente
detectado deriva del elevado nimero de operaciones que se incluyen en el bucle sobre
los puntos de integracidn en el espesor, se trata simplemente de reorganizar las distintas
relaciones que intervienen, expresindolas como polinomios en 77, cuyes coeficientes seran
funcién del punto considerado sobre la superficie media, por lo que su determinacién
podra efectuarse fuera del citado bucle, quedando sélo en la combinacién polindmica.
El proceso a desarrollar es el siguiente: se sustituyen las derivadas adecuadas de (53)
y (54) en las relaciones cuarta y quinta de la Tabla I, y (37) en el resultado de esta
operacién, agrupando, a continuacién los términos independiente, lineal y cuadritico
en 7n; la determinacion de estos términos constituird la subrutina MCINEM-2D, que no
necesita estar incluida en el bucle sobre los puntos de integracién en el espesor, y su
combinacién constituird la subrutina MCINEM-3D, muy sencilla de programar y rdpida
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de ejecutar, que es la tnica parte del algoritmo incluida en dicho bucle. El diagrama
de flujo resultante se representa en la Figura 3, en la cual las restantes subrutinas son
las mencionadas en el apartado anterior.

%

FUNFORM

DEFORM.2D

MCINEM. 2D

—

MCINEM. 3D

|

RESTO
®

®

1- Bucle sobre los puntos de integracion en el espesor.
2- Bucle sobre los puntos de integracion en la superficie media.

Figura 3. Algoritmo modificado.

Ademas de lo descrito hasta aqui, se incluird en cuanto sigue la descomposicién
de B y B en dos matrices cada una, denotadas por un superindice 0 o 1, que seran,
respectivamente, sus partes lineal y no lineal en los desplazamientos. Sean, pues

(B = %{fi}‘;;,-,,; + & .} (58)
(B, = 5 (Whon-digs + di%dipsd (59)
(B)ass = 5 (iian + Gjiast (60)
(B )= %{‘i]ﬁ,n cdiis + Dl diia + difias - digs + 4l digsas) (61)

donde (A),; significa el elemento 4i; de la matriz A.
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Por simplicidad de notacién, se adoptard en cuanto sigue el siguiente convenio:

A=A + 14, + WzAu.r (62)
donde A representa cualquiera de las matrices B°, B, B’ o B Que todas ellas
admiten una descomposicién de este tipo puede comprobarlo el lector sin mas que

realizar con cada una de sus componentes el proceso descrito anteriormente, que se
presenta, a modo de ejemplo, para la Aaf de la matriz B®. Llevando (54) a (58)

1 . " i A
(BO)Aaﬁ = E {pfca (ekﬁ + m’kﬁ):,. + lufﬂ (eka + qzkﬂ),}.}

teniendo en cuenta, ahora (37) y que el tensor de Krauss no depende de los parametros
nodales

1 5 . 2 i
(B°) 408 = 5 {(82 — nB2) (éxg,a + NEap,a) + (5,% = “?Bfa) (Exc,a + 18raa)} =
i " 5 5 n «
= 5 {(%ap.at €pa,a) + N(Zapa+Epaa = Béxg,a — Blérau) +

+ 7° (= Badapa = Blsdraa)}

(63)
de donde
0 I P

(B1)aag = 2 (éap,a + €Ba,4) (64)

L . . . .
(B?I)Aaﬂ == '2_ (zaﬁ.ﬂ + Za,a — }-_"i:x":'.)\;f3.n*l = B.}ieha.d) (65)

0 1 5 A x

(Bm)mﬁ =3 (—Bo®r8,4 — B_ﬁx;\alﬁ) (66)

Del mismo modo se procede con las restantes componentes de esta matriz y con
todas las de las otras, cuyo desarrollo no se incluye pues no aporta nada nuevo.
Simplemente, en los términos cuadrédticos en desplazamientos debe observarse que,
mientras dj,. depende del tensor de Krauss (54), dﬁ; lo hace de su inverso (53), y
en el producto de ambos, por lo tanto, no aparecen términos relacionados con él, como
se puede ver facilmente

difi - dy = Fon(€F + 087k (éni + néni)

(é’;‘ + néT)(ém; + némi)
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Las componentes de las matrices B%, B, ﬁ‘; y BL, R=1,11,111,se incluyen en
las Tablas ITI, IV y V. Volviendo a la Figura 3, las operaciones a realizar en MCINEN-
2D son las descritas en estas tablas, y las de MCINEN-3D las dadas por (62).

Matriz Componentes EXPRESION

B? Aaﬁ %( .a,ﬁ,A + éﬁa,d)
Aad %(530:.4 + éa,A)
A33 ﬁi,

B?I Aaﬁ %(éaﬁ,;& + iﬁa,d - B_Xqélﬂ,d. - ngéla,.d.)
Aa3 %(i:a:;.A ~ B 4)
A33 0

B{J)H Aafl % (_B.J:xékﬁ.a - ng;éAa,A)
Aal 0
A33 0

B} Aaf %(éf{x.jéiﬂ,‘l + éfaé:'ﬂ,n)
Aa3 3(0%48ia + 1°€in4)
A33 ot U3, 4

By, Aap (&% 8rp,a + ek, uBkp + €5 4Eka + E55Eka,a)
Aa3 %(ﬁf}aéia + ﬁiﬁgalj)
A33 0

Bl Aafs 3(@5 aks + 25 E0p.4)
Aal 0
A33 0

Tabla III. Componentes de la matriz B. BL, R =1I,1II, III.
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Matriz Componentes EXPRESION ll
=0 = = i
B, ABaf %(%58,43 + é8a,48) '
ABa3 %(éas,aa + "}a,AB)
AB33 s
B ABap Y(5h an+ Bos.am— 855 an— Bh8ra o)
Ir 2\%af},AB P, AB o :Aﬁ,AB BEre, 4B
ABQ3 %(éaﬂ,.&ﬂ = Béx?}‘\,dg)
A33 0
-0 . .
B ABap % (—Bi;zm.m - B_.stka,‘i&g)
ABa3 0 :
AB33 0
Tabla IV. Componentes de la matriz Bi. R=LT I JII1.
Por otra parte, de (14) y (62) se tiene que
6E‘ = B-Al.l = (BI+??BII+T?2-BIII)'A“ i
= BI'AU+7?B;;‘A“+??2.B;;;;‘A“ (68)
= 0E; 4+ néE;; + ﬂzaEu:
donde
By = Bg + BY
(69)
dEp = 'EE.?1 + 6E}1

R =1,II,III. Ahora bien, en una formulacién 2D del problema\: laminar, partiendo de
la misma hipédtesis cinematica, las deformaciones 3D se pueden expresar en funcién de

las generalizadas como

por lo que

1,2,4,10

E* = E + 7k + 7’Q i

§E* = 6E + nék + %00 |

(10)

(71)
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Matriz Componentes - EXPRESION
=1 = wd  om i . nd in
B, ABof %(efa,aeiﬂ,ﬁ *+ e?a,neiﬁ.ﬁ +* efa,ABel-ﬁ i 3faeiﬁ,43)
ABa3 %(T}f‘éia.}? + ﬁfaéia,j + i}fABéiu + ﬁiél’a,dﬁ')
AB33 (ﬁfaﬁi,n + ﬁif’i,as)
=1 s Ta— 3 o
B, ABaf %(efea.azkﬁ,s P e'.ka,szkﬁ.d + ef‘:B,Azka;B+

sk - ale - ale a
+3_5.53ka,4 + €o,48ZkB T €oTkp,ant

ke . ok a
+e.ﬁ,453er 1 e_pzka,xa)

ABa3 %(i'}ili','alg + ﬁfBé;a!l + '&f,u;éia + i’iifq'iﬂ)
AB33 0
=1 i - - - 5 = wl
B, ABaf %(r’fea,nwkﬁ,ﬂ + zfea,nzkﬁ,d + z?ﬂ,ABmkﬁ ‘s zﬁxzkﬁ.ﬂﬂ)
ABa3 0
AB33 0

Tabla V. Componentes de la matriz B..R = I, II, I11.

que comparada con (68) conduce a la inmediata identificacién de las matrices B,
B;; y B, con las derivadas de Frechet de las deformaciones generalizadas E, k y
Q respectivamente, con lo cual se pueden establecer comparaciones entre uno y otro
caso, realizar analisis paramétricos sobre la influencia de determinados términos de
deformacién generalizada con este elemento finito o despreciar el efecto de los que se
saben inapreciables por otros analisis 2D paralelos.

Por ultimo, para ilustrar el éxito en la disminucién del tiempo de computacién que
se consigue con el método propuesto, se incluye en la Figura 4 la comparacién entre
el que se requiere para procesar un mismo elemento laminar, con nimero creciente de
puntos de integracién en el espesor, con los algoritmos descritos en la Figuras 2 (inicial)
y 3 (modificado). Para independizar los resultados de las caracteristicas del ordenador
con que se ha procesado el ejemplo se presentan adimensionalizados dividiendo por
el tiempo usado para un solo punto en el espesor por el algoritmo modificado. Cabe
destacar que, mientras el tiempo necesario para procesar un problema con 8 o 10
puntos de integracién en el espesor (necesarios en un caso elastoplastico) es 2.2 y 2.6
veces, respectivamente, el necesario para hacerlo con 2 puntos (suficientes en un caso
eldstico), si se usa el algoritmo modificado, si se utiliza el inicial es 3.9 y 4.8 veces
aquel. La determinacién de todos estos tiempos se ha realizado tomando la Ley de
Hooke Generalizada como ecuacién constitutiva, puesto que se trataba de comparar el
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Figura 4. Tiempo de montaje de la matriz de rigidez en funcidén del nimero de puntos
de integracién en el espesor (Newton-Raphson puro).

tiempo empleado en el ensamblaje de las matrices cinematicas, para lo cual no sirve un
ejemplo elastoplastico, puesto que en él hubiese incluido también el tiempo utilizado
para la integracién de las ecuaciones del flujo plastico, el cual es variable segin el
proceso sea elastico o elastoplastico en cada punto, y, en este ultimo caso, segin las
iteraciones requiridas por el algoritmo que efectie dicha integracién. Esto significa
que al procesar un ejemplo elastoplastico no crecerd el tiempo segin lo prescrito en la
tabla anterior, sino mas rdpidamente y sin una ley fija, en funcién del progreso de la
plastificacién, pero el tiempo adicional sobre el determinado en dicha Tabla es propio
del tratamiento de las ecuaciones constitutivas y no puede modificarse actuando sobre
el elemento finito, sino sobre el algoritmo de integracién de estas, quedando, por lo
tanto, fuera del alcance de este escrito.

Asimismo, otro modo de disminuir el tiempo global de proceso es prescindir de
la matriz de tensiones iniciales, sustituyendo entonces el método de Newton-Raphson
puro por otro derivado de aquel, que ha mostrado buen comportamiento. La Figura
5 presenta la misma comparacion de tiempos anterior en este caso, bajo las mismas
condiciones. El algoritmo modificado sigue mostrandose netamente superior al inicial,
aunque no en la proporcion del caso anterior. La gran ventaja de este modo de proceder
estriba en la disminucién del tiempo global de cémputo conseguida al omitir una de
las subrutinas mas laboriosas. A titulo de ejemple se indica que procesar el problema
de un solo punto (referencia de tiempos), con el algoritmo modificado, ha requerido en
este caso un 18% del tiempo que se necesité en el anterior. La importancia de esta
cifra es muy relativa, ya que estd muy condicionada por el equipo utilizado, puesto
que en el primer caso el montaje de la matriz de tensiones iniciales, por necesidades de
espacio en memoria, utilizaba abundantemernte el almacenamiento secundario, con un
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Figura 5. Tiempo de montaje de la matriz de rigidez en funcién del nimero de puntos
de integracién en el espesor (Newton-Raphson modificado).

nimero importante de accesos a disco, que ralentizan notablemente el proceso, y esto
con otro equipo puede no ser asi; lo que es indiscutible es que prescindiendo de esta
matriz se disminuye considerablemente el tiempo requerido por cada iteracién, aunque
la cuantificacién de tal decremento dependerd de la miquina y el programa.

EJEMPLOS

El elemento que se ha presentado es muy sencillo comparado con otros de los
utilizados en el andlisis de ldminas con cinematica no lineal y relacién canto/luz
moderada o grande, pues en lugar de las componentes del director v que aqui se han
utilizado suelen usarse como desplazamientos caracteristicos los angulos entre la normal
inicial y la deformada, con lo cual el papel de las variables que aqui se han interpolado
lo representan en otros casos combinaciones de las razones trigonométricas de estos
angulos, conduciendo a expresiones mucho mas complejas (véase, por ejemplo®*®). No
obstante, con este elemento se obtienen buenos resultados, sin necesidad de mallas
excesivamente finas, y es razonable pensar que, dado que es mas simple, su proceso
serda mas rapido. Los ejemplos que a continuacién se presentan, contrastados con
otros conocidos en la literatura técnica, demuestran este buen comportamiento. Se
han procesado con material eldstico, puesto que a los efectos de lo que se trata de
mostrar es suficiente, como se razoné en el punto anterior, y las ventajas para el
andlisis elastopldstico, que no son sino de tiempo de proceso, quedaron sobradamente
demostradas en dicho punto.

El primero de los ejemplos que se presenta, definido en la Figura 6, consiste en un
cilindro sometido a dos cargas puntuales en direccién radial. Los datos del problema, asi
como los resultados de comparacién, se han tomado de D.G. Ashwell??, y J.F., Moy4a!,
Se ha procesado s6lo un octante de la pieza, por razones de simetria. En primer
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lugar se presentan las flechas en el punto de aplicacion de la carga, en régimen lineal,
para distintas mallas, comparandolas con las obtenidas por otros autores (Tabla VI),
observandose un comportamiento similar al de otros elementos, pese a la simplicidad
de éste. Seguidamente se recoge la trayectoria de equilibrio de esta flecha para cargas
crecientes, con la malla de 1 x 9, que dié el mejor resultado en el caso anterior, y ya
con cinemdtica no lineal (Figura 7).

4._
MALLA 1x 2

n

=r

7 d
Longitud total L = 10.35(in) E=10.5x%10° (b/int
Radio R=43953(in) V= 03125
Espesor h=0.094(in}

Figura 6. Definicion del ejemplo niimero 1.
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Figura 7. Trayectoria de equilibrio de las flechas en el punto de aplicacién de la carga.
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Malla en Modelo |Cantiny |Bogner |Ashwell | Thomasy |Cantin | Moya
un octavo |propuesto | Clough | & Al. |y Sabir | Gallagher
1x1 — — 0.0025 | 0.1040 0.0048 — -
1x2 0.0137 = 0.0802 — — — —
1x3 0.0512 0.0297 —_ — = = 0.0954
1x4 0.0784 — 0.1087 | 0.1106 0.1107 — —
1x5 0.0920 0.0769 — —_ — — a
1x7 0.1030 0.0987 — —_ — — —
1x8 — — —_ — 0.1119 — —
1x9 0.1068 0.1057 —_ — = — —
2x2 — — 0.0808 | 0.1103 — 0.1103 —
2x3 0.0514 — = = — — 0.1108
2x9 —_ 0.1073 — — - — —
4x4 — — == 0.1129 i 0.1126 =
6x6 — — — 0.1135 — 0.1137 —
8x8 — — — 0.1137 — 0.1139 —
10x10 — — — 0.1137 — 0.1139 —
3x 49 — 0.1128 —_ — — — —

TABLA VI. Comparacién de resultados de diversos autores (Ejemplo 1).

A continuacién se presenta el andlisis de un sector de cilindro apoyado en sus
generatrices extremas y sometido a una carga puntual en el centro de la luz (Figura 8),
cuyos datos y contraste se han tomado de K.S. Surana®. Aprovechando la simetria, se
ha procesado sélo un cuarto de la pieza, con malla de 3x3. La trayectoria de equilibrio
de la flecha en el punto de aplicacién de la carga (Figura 9) presenta un excelente
acuerdo con la dada por Surana, pese a ser nuestro elemento mucho mas simple que el
suyo. Asimismo, los resultados son practicamente coincidentes con los de Oliver®.

Por 1ltimo se presenta el analisis de una placa simplemente apoyada, de 200x200
cm, sometida a carga uniforme de 0.01 kg/cm?, para distintos espesores y mallas, en
régimen eléstico y con cinemadtica lineal. La definicién del problema se da en la Figura
10. Se ha procesado con dos tipos de condiciones de contorno, imponiendo que el giro
de torsién en los cuatro lados es nulo (apoyo fuerte), o dejandolo libre y haciendo nulo,
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por lo tanto, el momento torsor (apoyo débil). En la Figura 11 se representa la flecha
adimensional en el centro de la luz, dada por

wD

& = —=

gat

(donde w representa la flecha, D la rigidez de la placa, ¢ la carga repartida y a
el lado del cuadrado) frente a la relacién canto/luz, con los valores obtenidos con
nuestro elemento para malla de 3x3 y los obtenidos por Reddy®® mediante series.
Esta flecha adimensional, para el caso de apoyo fuerte y con malla de 3x3, fue de
4.0299x10~3 en nuestro caso, con relacién canto/luz de 1/100 (placa delgada), frente al
valor 4.0694x10~2 obtenido por Reddy mediante desarrollos en serie, con un error del
1%, y de 4.1077x10~2 frente a 4.1150x10~2 (error 0.2%) para placa gruesa de relacién
canto/luz de 1/20. Para finalizar, en la Tabla VII, se presentan los valores de esta flecha
adimensional obtenidos con nuestro elemento frente a los de Tocher y Kapur (tomados
de Zienkiewicz®) y el valor tedrico de Reddy, para una relacién canto/luz de 1/100.

2

R=2540 mm E=310275 KN/mm
Lz 254 mm V=03

t=12.7mm (espesor)

8=01rd

Figura 8. Definicién del ejemplo 2.

Con los ejemplos anteriores se muestra el excelente comportamiento del elemento
finito presentado, tanto para piezas delgadas como gruesas, aunque hay que remarcar
que es mejor en estas ultimas, y que las primneras requieren una discretizacién mas fina,
lo cual no es un problema dada la simplicidad del elemento y velocidad de proceso que
permite, y también tanto con geometria lineal como no lineal, y con desplazamientos
muy importantes.

NOTA ADICIONAL

El lector habra observado que en el apartado segundo se dijo que se mantenia
el caracter no lineal en los pardmetros nodales de la funcién de interpolacién con
conveniencia para desarrollos posteriores, y ello no ha sido utilizado. Se ha procedido
asi para que las expresiones finales de dicho apartado (Tabla I), le sean qtiles para



88 J. CASANOVA, J. MOYA, S. MONLEON Y P. FUSTER

-

Punfo g~

Puntes

P(KN) /
3 OModelo propuesto
/ mmmms, LA

AR

0 -5 -10 -5 =20 125 430 =35

d*(mm)
Figura 9. Trayectoria de equilibrio en el punto de aplicacién de la carga (Ejemplo 2).
1 200cm i
| 1

SRLLLLLLLL ELLLEL Pl L 8L L LL L L
g

o

simple apoyo

Y

/]

-
T

200cm

NN S S
T

!

CPPE PP EIT AL T Fidirrsile

E=21 x‘loékpfcm carga transversal: ool ltp.*{:m2
v=03

Figura 10. Definicién del ejemplo 3.

desarrollar, si lo desea, un elemento similar pero basado en la Hipétesis de Love-
Kirchhoff,

d"Y =d + n(a3—A3) (72)

en lugar del modelo CT1 (32), ya que en este caso d* resulta no lineal en dichos
parametros. En (72), ag es el vector normal unitario a la superficie de referencia en
configuracién actual, y A3 el mismo vector pero en configuracién de referencia. Las
expresiones de dichos vectores, asi como las de los sistemas e;; y z;; en este caso pueden
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Figura 11. Flecha adimensional en el centro de la luz para distintas relaciones
canto/luz y condiciones de contorno.

Malla | Tocher y Kapur | Modelo propuesto
1x1 3.446x107° —
2x2 3.939x1073 3.9061x10~%
3x3 — 4.0429x107%
4x4 4.033x1073 4.0655x10~3
6x6 4.050x10~3 —
8x8 4.056x1072 —

Exacta (Reddy): 4.06923x107°

TABLA VII. Flecha adimensional en el centro de la luz, para diversas mallas de
discretizacién (Ejemplo 3). h/L = 1072,
consultarse en °.

CONCLUSIONES

Se ha presentado un elemento finito 3D para analisis de estructuras laminares,
basado en el modelo de comportamiento transversal CT1, cuya principal caracteristica
es que permite aumentar notablemente el nimero de puntos de integracién considerados
en el espesor sin un incremento notable del tiempo de cdlculo empleado en la
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terminacién de las matrices geométricas, lo que le hace muy adecuado para los analisis

elastoplasticos. Asimismo, una parte del trabajo realizado es 1util para desarrollar otros
elementos, con la misma metodologia, basados en otra hipétesis cinematica. Es notable

la

versatilidad para analizar con el mismo modelo otros tipos estructurales derivados

del laminar, y la sencillez con que permite tratar las mas diversas geometrias de la
superficie de referencia. Por tltimo, con diversos ejemplos, se ha mostrado el buen
comportamiento de este elemento con distintas relaciones canto/luz y con cinemética
lineal y no lineal, incluso con grandes desplazamientos.

o
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