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Abstract. Our goal in this paper, is the identification of initial condition in
a heat equation that contains a memory term from final data. To this aim,

we first establish the well-posedness of the direct problem. Then we prove the

continuity and the G-derivability of the cost function. Finally we validate the
results numerically by using a deep neural network. Our algorithm is meshfree.

1. Introduction

Inverse problems for parabolic PDEs with memory terms can be found in many
scientific and engineering applications, and it has become a very active and succeful
research area in recent years. This kind of equations occur naturally in geophysics,
oil exploration, optical instrumentation, and many other fields where the interior
of an object must be imaged by measuring the field in the domains available in real
measurement.
In particular in the theory of phase transition for materials with memory, we find
several models that have been recently studied from several points of view: for
example, as direct problems in Hilbert spaces and as dynamical systems. We list
below, without pretension of completeness, some articles and books in which one
can find some models and results involving the heat equation : [5], [6], [7], [8], [9],
[10], [11].

Extensive research has been conducted on various theoretical and numerical as-
pects of inverse problems, such as existence, uniqueness, stability and validation of
results by numerical simulations, etc...

In our present paper we will adopt a new approach, in the theoretical side we
will ensure the existence and uniqueness by showing some criteria verified by the
cost function and use deep-learning as numerical aspect to validate our results.

Deep neural networks are machine learning models that have achieved remark-
able success in a number of domains from visual recognition and speech, to natural
language processing and robotics [13]. Among recent works, [12] proposes to solve
PDEs using a meshfree deep learning algorithm. The method is similar in spirit to
the Galerkin method, but with several key changes using ideas from machine learn-
ing. The Galerkin method is a widely-used computational method which seeks a
reduced-form solution to a PDE as a linear combination of basis functions. The
deep learning algorithm, or Deep Galerkin Method (DGM), uses a deep neural net-
work instead of a linear combination of basis functions. The deep neural network
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is trained to satisfy the differential operator, initial condition, and boundary con-
ditions using stochastic gradient descent at randomly sampled spatial points. By
randomly sampling spatial points, the author avoid the need to form a mesh and
instead convert the PDE problem into a machine learning problem.

In the present paper, we study the inverse problem of determining the initial
state in a singular parabolic equation with a memory term from the theoretical
analysis and numerical computation angles. More precisely, we consider the follow-
ing problem:  ∂tu+A(u) = f, in Q,

u(x, t) = 0, x ∈ ∂Ω, t ∈]0;T [,
u(x, 0) = u0(x), x ∈ Ω.

(1.1)

A is the operator defined as

A(u) = −uxx(x, t)− a(x)

∫ t

0

u(x, s)ds,

Where Ω := (0, 1), Q := Ω× (0, T ), T > 0 is an fixed moment of time, u0 ∈ L2(Ω)
is the initial condition, a ∈ L∞(Ω) is a positive coefficient depends on the space
and f ∈ L2(Q) is the source term.

In the case where a(x) = 0 the problem (1.1) is already treated in [2] and more
generally in [3] even in the degenerate case.

Let assume

Aad = {h ∈ H1(Ω) : ‖h‖H1(Ω) 6 r}, where r is a real strictly positive constant.

Evidently, the set Aad is a bounded, closed, and convex subset of L2(Ω).
We have H1(Ω) ↪→

compact
L2(Ω). Since the set Aad is bounded in H1(Ω), then Aad is

a compact in L2(Ω). Therefore.
Let us define our inverse problem:

Inverse Source Problem (ISP). Let u be the solution to (1.1). Determine the
initial state u0 from the measured data at the final time u(T, ·).

Remark 1. It should be mentioned that we do not need the supplement distributed
measurements to obtain the numerical solution of the inverse problem.

We treat Problem (ISP) by interpreting its solution as a minimizer of the fol-
lowing problem

find u?0 ∈ Aad such that E(u?0) = min
u0∈Aad

E(u0), (1.2)

where the cost function E is defined as follows

E(u0) =
1

2T

∥∥u(T )− uobs
∥∥2

L2(Ω)
,

subject to u is the weak solution of the parabolic problem (1.1) with initial state
u0. uobs ∈ L2(Ω) is the observation data with noise.

The problem (1.2) is ill-posed in the sense of Hadamard, some regularization
technique is needed in order to guarantee numerical stability of the computational
procedure even with noisy input data. The problem thus consists in minimizing a
functional of the form

J(u0) =
1

2T

∥∥u(T )− uobs
∥∥2

L2(Ω)
+
ε

2

∥∥u0 − ub
∥∥2

L2(Ω)
,
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here, ε being a small positive regularizing coefficient that provides extra convexity
to the functional J . ub an a priori (background state) knowledge of the state uexact0 .
The background error is then defined as: err =‖ uexact0 − ub ‖2. uexact0 is called the
true state, and is the state to estimate.

2. Well-posedness

Theorem 2.1. . Assume u0 ∈ L2(Ω) and f ∈ L2(Q), there exists a unique weak
solution which solves the problem (1.1) such that

u ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)
.

and we have the estimate

sup
t∈[0,T ]

‖u(x, t)‖2L2(Ω) +

∫ T

0

‖ux(x, t)‖2L2(Ω)dt ≤ CT
(
‖f‖2L2(Q) + ‖u0(x)‖2L2(Ω)

)
(2.1)

the constant C1 depending on Ω, and T.�

Proof of Theorem 2.1. the existence and uniqueness of the weak solution of (1.1)
is already seen in Proposition 3.1 in [1]( with the particular case µ = 0 ), here we
will show only the estimate (2.1).
We multiply the first equation of (1.1) by u and integrate over Ω, wet get∫ 1

0

ut(x, t) u(x, t) dx−
∫ 1

0

uxx(x, t) u(x, t) dx

=

∫ 1

0

(
a(x) u(x, t)

∫ t

0

u(x, s) ds

)
dx +

∫ 1

0

f(x, t) u(x, t) dx.

(2.2)

By integration by parts, we obtain

1

2

d

dt
‖u(x, t)‖2L2(Ω) +

∫ 1

0

u2
x(x, t) dx

=

∫ 1

0

(
a(x) u(x, t)

∫ t

0

u(x, s) ds

)
dx+

∫ 1

0

f(x, t) u(x, t) dx.

(2.3)

We have ∫ 1

0

(
a(x) u(x, t)

∫ t

0

u(x, s) ds

)
dx

≤
(∫ 1

0

(a(x) u(x, t))2 dx

) 1
2

(∫ 1

0

(∫ t

0

u(x, s) ds

)2

dx

) 1
2

≤ 1

2
‖a(x)‖2L∞(Ω)‖u(x, t)‖2L2(Ω) +

T

2

∫ t

0

‖u(x, s)‖2L2(Ω) ds,

(2.4)

and by the Cauchy-Schwarz inequality we obtain for every t ∈ [0, T ]∫ 1

0

f(x, t) u(x, t) dx ≤ 1

2
‖f(x, t)‖2L2(Ω) +

1

2
‖u(x, t)‖2L2(Ω),

by returning to the equation (2.3), we obtain
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1

2

d

dt
‖u(x, t)‖2L2(Ω) + ‖ux(x, t)‖2L2(Ω)

≤ 1

2
‖f(x, t)‖L2(Ω) +

1

2

(
1 + ‖a(x)‖2L∞(Ω)

)
‖u(x, t)‖2L2(Ω) +

T

2

∫ t
0
‖u(x, s)‖2L2(Ω) ds.

(2.5)
We integrate over [0, t] for all t ∈ [0, T ]

‖u(x, t)‖2L2(Ω) + 2

∫ t

0

‖ux(x, s)‖2L2(Ω) ds

≤ ‖f(x, t)‖2L2(Q) + ‖u0(x)‖2L2(Ω) +
(

1 + ‖a(x)‖2L∞(Ω) + T 2
)∫ t

0

‖u(x, s)‖2L2(Ω) ds.

(2.6)
Since

2

∫ t

0

‖ux(x, s)‖2L2(Ω) ds ≥ 0,

then

‖u(x, t)‖2L2(Ω)

≤ ‖f(x, t)‖2L2(Q) + ‖u0(x)‖2L2(Ω) +
(

1 + ‖a(x)‖2L∞(Ω) + T 2
)∫ t

0

‖u(x, s)‖2L2(Ω) ds.

Using Gronwall’s inequality, we get

‖u(x, t)‖2L2(Ω) ≤
(

1 + ‖a(x)‖2L∞(Ω) + T 2
)
eT
(
‖f(x, t)‖2L2(Q) + ‖u0(x)‖2L2(Ω)

)
.

(2.7)
From (2.6) and (2.7), ther exists a constant M > 0 such that :∫ T

0

‖ux(x, t)‖2L2(Ω) dt ≤M
(
‖f(x, t)‖2L2(Q) + ‖u0(x)‖2L2(Ω)

)
. (2.8)

From (2.7) and (2.8), there exists a constant CT > 0 such that

sup
t∈[0,T ]

‖u(x, t)‖2L2(Ω) +

∫ T

0

‖ux(x, t)‖2L2(Ω)dt ≤ CT
(
‖f‖2L2(Q) + ‖u0(x)‖2L2(Ω)

)
.

�

Lemma 2.1. Let u is the weak solution of (1.1) with initial condition u0. The
function

φ : u0 ∈ L2(Ω) −→ u ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)

is Lipschitz continuous.

An automatic result of the Lemma 2.1 is the following theorem

Theorem 2.2. Under the same assumptions of the Theorem 2.1 , the functional
J is continuous on Aad, and there exist a unique minimizer u?0 ∈ Aad, ie

J(u?0) = min
u0∈Aad

J(u0).

Proof of Lemma 2.1. Let δu0 ∈ L2(Ω) be a small perturbation of u0 such that
u0 + δu0 ∈ Aad.
Consider δu = uδ − u, where uδ and u are respectively the weak solutions of (1.1)
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with initial condition uδ0 = u0 + δu0 and u0. Consequently, δu is the solution of the
variational problem :

∫ 1

0

(δu)t v dx+

∫ 1

0

(δu)x vx dx =

∫ 1

0

(
a v

∫ t

0

δu ds

)
dx, ∀v ∈ H1

0 (Ω),

δu(0, t) = δu(1, t) = 0 ∀t ∈ [0, T ],
δu(x, 0) = δu0 ∀x ∈ Ω.

(2.9)
Hence, δu is the weak solution of (1.1) with initial condition δu0 and source term
δf = 0. We apply the estimate in Theorem 2.1, we obtain :
there is a constant CT > 0 such that

sup
t∈[0,T ]

‖δu‖2L2(Ω) +

∫ T

0

‖δu(t)‖2L2(Ω)dt ≤ CT ‖δu0‖2L2(Ω).

Then

‖δu‖2C(0,T ;L2(Ω)) ≤ CT ‖δu0‖2L2(Ω),

and

‖δu‖2L2(0,T ;H1
0 ) ≤ CT ‖δu0‖2L2(Ω).

This ends the demonstration. �

Proof of Theorem 2.2. The continuity of functional J is deduced from the continu-
ity of the evolution function

φ : u0 ∈ L2(Ω) −→ u ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)
,

established in the Lemma 2.1.

And since J is continuous, on the compact Aad, then there exist a unique min-
imizer u?0 ∈ Aad for J . �

Proposition 2.1. Let u is the weak solution of (1.1) with initial condition u0. The
function

φ : u0 ∈ L2(Ω) −→ u ∈ C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)

is G-differentiable, which gives that the functional J is G-derivable on Aad.

Proof of Proposition 2.1. Let δu0 be a a small amount such that u0 + δu0 ∈ Aad,
we define the function :

F ′(u0) := δu0 ∈ Aad → δu, (2.10)

where δu is the solution of the following variational problem :
∫ 1

0

(δu)t v dx+

∫ 1

0

(δu)x vx dx =

∫ 1

0

(
a v

∫ t

0

δu ds

)
dx, ∀v ∈ H1

0 (Ω),

δu(0, t) = δu(1, t) = 0 ∀t ∈ [0, T ],
δu(x, 0) = δu0 ∀x ∈ Ω.

(2.11)
We pose

Φ(u0) = F (u0 + δu0)− F (u0)− F ′(u0)δu0. (2.12)

We want to show that

Φ(u0) = O(δu0). (2.13)
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It is easy to see that Φ verifies the following variational problem :
∫ 1

0

Φt v dx+

∫ 1

0

Φx vx dx =

∫ 1

0

(
a v

∫ t

0

Φ ds

)
dx, ∀v ∈ H1

0 (Ω),

Φ(0, t) = Φ(1, t) = 0 ∀t ∈ [0, T ],
Φ(x, 0) = δu0 − (δu0)2 ∀x ∈ Ω.

(2.14)

In the same way used in the proof of continuity, we deduce that

‖Φ‖2C(0,T ;L2(Ω)) ≤ CT ‖δu0 − (δu0)2‖2L2(Ω),

and

‖Φ‖2L2(0,T ;H1
0 ) ≤ CT ‖δu0 − (δu0)2‖2L2(Ω).

This completes the proof of the proposition. �

3. Stability

. In this section, we will establish the stability of the solution of the inverse problem

Lemma 3.1. Let u?0 be a minimizer of the functional J , then there exists a set of
functions (u?, w, u0) such that

u?t (x, t)− u?xx(x, t) = a(x)

∫ t

0

u?(x, s)ds+ f(x, t), ∀(x, t) ∈ Q,

u?(0, t) = u?(1, t) = 0 ∀t ∈ (0, T ) ,
u?(x, 0) = u0(x) ∀x ∈ (0, 1) ,

(3.1)


wt(x, t)− wxx(x, t) = a(x)

∫ t

0

w(x, s)ds, ∀(x, t) ∈ Q,

w(0, t) = w(1, t) = 0 ∀t ∈ (0, T ) ,
w(x, 0) = κ(x)− u?0(x) ∀x ∈ (0, 1) ,

(3.2)

and ∫ T

0

∫ 1

0

w(x, T ) (u?(x, T )− ũ(T )) dx dt+ ε

∫ 1

0

u?0 (κ− u?0) dx ≥ 0 (3.3)

for any κ ∈ Aad

Proof. For any κ ∈ Aad and 0 ≤ δ ≤ 1, we pose

uδ0 = (1− δ) u?0 + δ κ ∈ Aad.

Then there exist a solution uδ of the equation (1.1) with the initial condition uδ0
satisfying

Jδ = J(uδ) =
1

2

∫ T

0

‖uδ(x, T )− ũ(T )‖2L2(Ω) dt+
ε

2
‖uδ0‖2L2(Ω).

Now taking Frchet derivative of Jδ with optimal solution u?0, we have

dJδ
dδ
|δ=0 =

∫ T

0

∫ 1

0

(u?(x, T )− ũ)ûδ dx dt+ ε

∫ 1

0

u?0(κ− u?0) dx ≥ 0, (3.4)
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where ûδ =
du

dδ
|δ=0 the Frchet derivative of u, which verifies the following equation

: 
(ûδ)t(x, t)− (ûδ)xx(x, t)− a(x)

∫ t

0

ûδ(x, s) ds = 0 (x, t) ∈ Ω× [0, T ],

ûδ(0, t) = ûδ(1, t) = 0, ∀t ∈ [0;T ] ,
ûδ(x, 0) = κ(x)− u?0(x), ∀x ∈ [0; 1] .

(3.5)
Set w = ûδ, then w satisfies :

wt(x, t)− wxx(x, t) = a(x)

∫ t

0

w(x, s)ds, ∀(x, t) ∈ Q,

w(0, t) = w(1, t) = 0 ∀t ∈ (0, T ) ,
w(x, 0) = κ(x)− u?0(x) ∀x ∈ (0, 1) ,

(3.6)

Combining (3.4) and (3.6), one can easily obtain that∫ T

0

∫ 1

0

w(x, T ) (u?(x, T )− ũ(T )) dx dt+ ε

∫ 1

0

u?0 (κ− u?0) dx ≥ 0.

�

Theorem 3.1. Suppose that ũ1(T ) and ũ2(T ) are two given functions in L2(Ω).
Let v1 and v2 the minimzer of J corresponding to ũ1(T ) and ũ2(T ) respectively, If
there exists a point x0 ∈ Ω such that v1(x0) = v2(x0), then we have the following
estimate :

‖v1(x)− v2(x)‖2L2(Ω) ≤ Λ

∫ T

0

‖ũ1(T )− ũ2(T )‖L2(Ω)dt,

where the constant Λ only depends on Ω and ε.

Proof. In the estimate (3.3) of Lemma 3.1 we take κ = v2 and u?0 = v1 and we take
κ = u1

0 and u2
0 = u?0, we get∫ T

0

∫ 1

0

w1(x, T ) (u?1(x, T )− ũ1(T )) dx dt+ ε

∫ 1

0

v1 (v2 − v1) dx ≥ 0, (3.7)

and ∫ T

0

∫ 1

0

w2(x, T ) (u?2(x, T )− ũ2(T )) dx dt+ ε

∫ 1

0

v2 (v1 − v2) dx ≥ 0. (3.8)

Where {u?i ;wi} (i = 1, 2) are solutions of systems 3.1 and 3.2 with initial condition
u?0 = vi (i = 1, 2), respectively. Setting

U = u?1 − u?2, W = w1 + w2,

Then U and W satisfy by taking κ = v2 and κ = v1
Ut(x, t)− Uxx(x, t)− a(x)

∫ t

0

U(x, s)ds = 0, ∀(x, t) ∈ Q,

U(0, t) = U(1, t) = 0 ∀t ∈ (0, T ) ,
U(x, 0) = v1 − v2 ∀x ∈ (0, 1) ,

(3.9)


Wt(x, t)−Wxx(x, t)− a(x)

∫ t

0

W (x, s) ds = 0, ∀(x, t) ∈ Q,

W (0, t) = W (1, t) = 0 ∀t ∈ (0, T ) ,
W (x, 0) = 0 ∀x ∈ (0, 1) ,

(3.10)
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By the extremum principle we know that (3.10) only has zero solution and thus

w1(x, t) = −w2(x, t). (3.11)

Moreover, w1 satisfies the following equation
(w1)t(x, t)− (w1)xx(x, t) = a(x)

∫ t

0

w1(x, s)ds, ∀(x, t) ∈ Q,

w1(0, t) = w1(1, t) = 0 ∀t ∈ (0, T ) ,
w1(x, 0) = v2 − v1 ∀x ∈ (0, 1) ,

(3.12)

By noticing ( 3.9 ) and ( 3.12 ) we have

U(x, t) = −w1(x, t). (3.13)

From ( 3.7 ), ( 3.8 ), ( 3.11 ) and ( 3.13 ) we have

ε

∫ 1

0

|v1(x)− v2(x)|2dx

≤
∫ T

0

∫ 1

0

w1(x, T )(u?1(x, T )− ũ1(T )) dx dt+

∫ T

0

∫ 1

0

w2(x, T )(u?2(x, T )− ũ2(T )) dx dt

≤
∫ T

0

∫ 1

0

U(x, T ) w1(x, t) dx dt+

∫ T

0

∫ 1

0

(ũ2(T )− ũ1(T )) w1(x, T ) dx dt

≤ −
∫ T

0

∫ 1

0

|w1(x, t)|2 dx dt+
1

2

∫ T

0

∫ 1

0

|w1(x, t)|2 dx dt

+
1

2

∫ T
0

∫ 1

0
|ũ1(T )− ũ2(T )|2 dx dt

≤ −1

2

∫ T

0

∫ 1

0

|w1(x, t)|2 dx dt+
1

2

∫ T

0

∫ 1

0

|ũ1(T )− ũ2(T )|2 dx dt.

(3.14)
Then

‖v1(x)− v2(x)‖2L2(Ω) ≤ Λ

∫ T

0

‖ũ1(T )− ũ2(T )‖2L2(Ω)dt, (3.15)

with Λ =
1

2 ε
�

Remark 2. From the Teorem 3.1, we can easily deduce that if the final measure-
ments of the systems (1.1) and (3.1) are equal, then the data u0 can be determined
uniquely almost everywhere.

4. Numerical experiments

Consider the objective function:

J(y) =
1

2
‖A(y)− f(x, t)‖2L2(Ω) +

1

2
‖y(x = 0)‖2L2(0,T ) +

1

2
‖y(x = 1)‖2L2(0,T )

+
1

2
‖y(t = T )− ũ‖2L2(Ω) +

ε

2
‖y(t = 0)− ub‖2L2(Ω).

(4.1)
The DGM algorithm approximates u(t, x) with a deep neural network y(t, x; θ)
where θ ∈ Rk are the neural network’s parameters. The goal is to find a set of
parameters θ such that the function y(t, x; θ) minimizes the error J(y). If the
error J(y) is small, then y(t, x; θ) will closely satisfy the PDE differential opera-
tor, boundary conditions, and initial condition. Therefore, a θ which minimizes
J(y(·; θ)) produces a reduced-form model y(t, x; θ) which approximates the PDE
solution u(t, x).
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In this sense, we recall the following theorem

Theorem 4.1. [12] Let the L2 error J(f) measure how well the neural network f
satisfies the differential operator, boundary, initial and observability condition.

Define Cn as the class of neural networks with n hidden units and let fn be a
neural network with n hidden units which minimizes J(f).

there exists fn ∈ Cn such that J(fn) −→ 0, as n −→ ∞, and fn −→ u as
n −→∞.

Network architecture:

The first layer and the last of this neural network are fully connected. the rest
is made up of GRU cells [4], which is a simplified version of the LSTM cell (Figure
1 ):

Figure 1. GRU cell

We found the following network architecture:

z(t) = tanh(wTxzx(t) + wThzh(t−1) + bz)
r(t) = tanh(wTxrx(t) + wThrh(t−1) + br)
g(t) = tanh(wTxgx(t) + wThg(r(t) ⊗ h(t−1)) + bg)

h(t) = z(t) ⊗ h(t−1) + (1− z(t))⊗ g(t)

The main steps for descent method at each iteration are the following:
- Generate random points (tn, xn) from Q and θn.
- Take a descent step at the random point (tn, xn):
θn+1 = θn − αn∇θJ(tn, xn; θn)
- Repeat until convergence criterion is satisfied.

Parameters are updated using the well-known ADAM algorithm with a decaying
learning rate schedule.

4.1. The noise resistance of the proposed method. The data ub and uobs are
assumed to be corrupted by measurement errors, which we will refer to as noise.
In particular, we suppose that ub = uexact(t = 0) + e and uobs = uexact + eobs. Let

err = ‖e‖2
‖uexact(t=0)‖2 and errobs = ‖eobs‖2

‖uexact‖2 . We did two tests:

In the first, we suppose errobs = 0, and we study the impact of err on construction
of initial state. In the second test, we suppose err = 0, and we study the impact
of errobs on construction of initial state.
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4.1.1. Impact of err on construction of initial state.

Figure 2. Test with err = 0%. This figure shows
that we can rebuild u0 (left), and J converges to 0
(right).

Figure 3. Test with err = 5%. This figure shows
that we can rebuild u0 (left), and J converges to 0
(right).

Figure 4. Test with err = 10%. u0 begins to move
away from uexact(t = 0) (left).

These tests (Fig. 2 to 4) show that the proposed algorithm is uniformly stable
to noise.

4.1.2. Impact of errobs on the construction of the initial state.

Figure 5. Test with errobs = 3%. This figure shows
that we can rebuild u0 at time (t=0) (left) and at
(t=T) (middle), and J converges to 0 (right).
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Figure 6.Test with errobs = 5%. This figure shows
that we can rebuild u0 at time (t=0) (left) and at
(t=T) (middle), and J converges to 0 (right).

Figure 7. Test with errobs = 10%. u0 begins to move
away from uexact(t = 0) at time (t = T ) (middle),
and J converges to 0 (right).

Figure 8. Test with errobs = 15%. u0 begins to be
far from uexact(t = 0) at time (t = T ) (middle) , and
J converges to 0 (right).

These tests (5 to 8) show that the proposed algorithm is uniformly stable to
noise. And we can rebuild u0 with errobs ≤ 10% and err ≤ 5%. Also we notice
that J always converges to 0.

5. Conclusion

In this paper a new approach has been adopted, in the theoretical side we have
shown the existence, uniqueness and stability of the inverse problem concerning
the determination of the initial condition of parabolic problem with memory term
from final observations, verifying some criteria verified by the cost function. In the
numerical part, we used deep neural networks to validate our results, which proves
that the proposed algorithm is uniformly stable to noise. This method proves to
be effective in reducing the execution time.
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