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Abstract. Accurate identification and assessment of damage in civil structures are crucial for 
ensuring structural integrity and public safety. Damage detection is one of the main aims of 
modal-based Structural Health Monitoring (SHM), which implies observing damage-sensitive 
features, such as natural frequencies, over time. However, those are typically sensitive not only 
to structural damage but also to environmental and operational variables (EOVs), such as 
humidity, operational loading, wind, and temperature. EOVs can cause changes in natural 
frequencies similar to those caused by actual damage, thus jeopardizing the reliability of 
automated damage detection by SHM systems. To address this challenge, several data 
normalization methods to be applied in the context of modal-based SHM have been proposed. 
These methods aim to mitigate the EOV effects, thereby allowing for more accurate and reliable 
damage identification. This research presents a comparative study of different methods: 
Multiple Linear Regression (MLR), linear Principal Component Analysis (PCA), and Kernel 
Principal Component Analysis (KPCA), evaluating their effectiveness using real-case data from 
the Z24 Bridge benchmark. Within the challenging context of the Z24 bridge, where EOVs 
induced a nonlinear behavior, the potential benefits of incorporating complementary 
techniques, such as clustering, to augment the efficacy of traditional methods are discussed.  

 
 
1 INTRODUCTION 

Over time, civil engineering structures are susceptible to processes of aging, environmental 
degradation, and fatigue. Moreover, they are vulnerable to the damage triggered by earthquakes, 
fires, or explosions. These factors collectively contribute to the potential deterioration of 
structures, ultimately affecting their safety. Thus, the accurate identification and assessment of 
damage in civil structures are crucial for ensuring structural integrity and public safety. 

Damage detection is one of the main aims of modal-based Structural Health Monitoring 
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(SHM), which implies analyzing damage-sensitive features, such as modal properties (natural 
frequencies, damping ratios, and mode shapes), over time. The basis of this approach is that 
damage-induced changes in structural properties lead to observable changes in modal properties 
[1,2]. Vibration-based damage detection methods fall into two categories: model-based and 
data-driven methods. The former use numerical models, such as Finite Element models, and 
compare predicted and actual structural behavior to detect damage [3]. The latter, on the other 
hand, analyze the collected data without strong structural assumptions, looking for anomalous 
patterns to identify damage. In SHM, data-driven methods are gaining attention due to their 
low-complexity requirements, resilience to structural changes, and reduced computational 
efforts. 

Data-driven damage detection commonly relies on eigenfrequencies as damage-sensitive 
features [4]. However, those are sensitive not only to structural damage but also to 
environmental and operational variables (EOVs), such as humidity, loading, wind, and 
temperature [5]. The influence of EOVs often matches or even surpasses that of actual damage 
[2,6]. For this reason, the reliability of modal-based SHM systems is often jeopardized. 

 Data normalization for damage-sensitive features aims to differentiate between damage-
induced changes and those stemming from EOVs. This involves creating models from data 
collected under healthy structural conditions to establish a baseline for understanding how 
EOVs affect the dynamic behavior. However, this represents a challenging task in SHM. Over 
the last few decades, several data normalization methods have been proposed [5,7] mainly 
falling into two categories based on whether environmental data are directly measured (input-
output methods) or not (output-only methods). Input-output methods analyze the relationship 
between EOVs (inputs) and structural responses (outputs) to predict and separate EOV-induced 
variations from the structural response. Regression analysis (RA) belongs to this class of 
methods [4]. Output-only methods rely on creating a black-box model of the structure using 
suitable output data acquired during exposure to EOVs. Some examples include principal 
component analysis (PCA) [8], factor analysis (FA) [9], second-order blind identification 
(SOBI) [10], and cointegration analysis (CA) [11]. To date, because of the attention this issue 
has garnered, significant research efforts have been spent to develop robust models using 
advanced approaches [10-15].  

Despite the extensive research conducted on data normalization techniques, most of these 
studies have primarily focused on the development of new methods. Only a limited number of 
studies have focused on the comparative performance assessment of different methods [16,17]. 
This study evaluates different data normalization models using real-case data from the Z24 
Bridge benchmark [18]. The paper first illustrates the theoretical background of the examined 
normalization models. The obtained results are comparatively discussed afterwards, also 
exploring the potential benefits of incorporating complementary techniques, such as clustering, 
to augment the efficacy of traditional methods. This extensive evaluation aims to provide 
valuable insights into the selection of data normalization approaches in SHM applications. 

3 DATA NORMALIZATION AND NOVELTY ANALYSIS 

Detecting anomalies or novel patterns in a structure's dynamic behavior requires comparing 
the predictions of trained models, built from data associated with the healthy state of the 
monitored structure, and newly collected data. The core purpose of such a model is to capture 
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the EOV-induced variations in the selected feature, isolating only the damage-sensitive part. 
The above is often formulated through the error matrix 𝐄 ∈ ℝ  which contains the residues 
in the data associated with the novel patterns. The Euclidean norm of the vector 𝐄  is calculated 
to estimate the overall error at a given time instant tk. 

‖𝐄 ‖ 𝐘 𝐘  (1) 

In this context, we have the observation matrix 𝐘 ∈ ℝ , containing N-length time histories 
of n selected damage-sensitive features. On the other hand, 𝐘 ∈ ℝ  represents the model 
predictions, constituting a central focus within novelty analysis. To address this, four different 
methods are applied in the context of the present paper for comparative assessment purposes. 

3.2 Multiple Linear Regression 

One of the most straightforward approaches to establish a relationship between damage-
sensitive features and EOVs is through the Multiple Linear Regression (MLR) method. This 
method is typically categorized as an input-output technique, making it suitable when 
comprehensive input data (EOV measurements) are available. In mathematical terms, the 
relationship between damage features and EOVs is expressed as follows: 

𝐘 𝛃𝐙 (2) 

where 𝑌 ∈ ℝ  represents the estimated values for the i-th instance 𝑖 1, 2, … , 𝑡  of the 
damage-sensitive features, 𝛽 ∈ ℝ  holds the j-th set of MLR coefficients, and 𝑍 ∈
ℝ  holds the corresponding values of the EOVs, often referred to as predictors. 
Estimating the 𝛃 coefficients commonly employ the Least-Square Method (LSM). 

3.2 Principal Component Analysis 

In case obtaining EOV measurements is challenging, adopting only-output methods 
becomes a practical approach. These methodologies prove highly effective in extracting 
valuable insights from the available structural response data, disregarding the input data 
consideration. Principal Component Analysis (PCA) is a statistical method used for 
dimensionality reduction, transforming a dataset into a lower-dimensional space while keeping 
the utmost variability within the data. The initial Principal Component (PC) accounts for the 
highest amount of variation, with each subsequent component accounting for a progressively 
lesser degree of variation [8]. The PCA method aims to project the original data Y in the PC 
space and then remap back to the original space (𝐘) by retaining only the subset of the largest 
PCs as follows: 

𝐘 𝐏 𝐙 (3) 

𝐘 𝐏 𝐏𝐘 (4) 

where the transformation matrix, 𝐏 ∈ ℝ , contains the singular vectors of the covariance 
matrix of 𝐘, 𝐙 ∈ ℝ  is a matrix with the projections of 𝐘 in the PC space. By retaining 
the first 𝑛  columns of 𝐏, a rectangular reduced transformation matrix 𝐏 ∈ ℝ  is obtained. 
Defining 𝑛  in PCA is crucial, striking a balance between accounting EOV-induced variability 
(sufficient size) and enhancing anomaly detection sensitivity (sufficiently small). A common 
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criterion involves retaining a given percentage of the total variance [2].  

3.1 Kernel Principal Component Analysis 

Real structures often exhibit complex and nonlinear dynamic behavior. These nonlinearities 
can pose challenges for traditional linear normalization techniques, which may struggle to 
capture such complexities effectively. Thus, kernel-based approaches have been proposed for 
handling data with nonlinear relationships. They involve embedding the data (𝐘 ) into a higher-
dimensional feature space (𝚽 𝐘 ), where patterns can be more effectively identified as linear 
relationships. In the case of Kernel Principal Component Analysis (KPCA), PCA is applied 
within a feature space defined by a kernel through the dual representation. 

In KPCA the damage-sensitive feature vector (𝐘𝒌) is mapped into a higher-dimensional 
feature space through a nonlinear embedding mapping (𝚽 ∙ ); the model (Eq. 5) is defined in 
terms of the EOV sequences (𝐮 ) and the misfit between data and model predictions (𝐞 ). 

𝚽 𝐘𝒌 𝐇𝟎𝐮𝒌 𝐞𝒌 (5) 

𝐞𝒌 𝚽 𝐘𝒌 𝐇𝟎𝐮𝒌 𝚽 𝐘𝒌 𝚽 𝐘𝒌  (6) 

Identifying patterns within a feature space without explicit computation of the mapping 
function is enabled by a kernel function (𝜅) as per Mercer's theorem, which stands that any 
positive semi-definite symmetric kernel function can be represented as an inner product in a 
high-dimensional feature space, resulting in a linear transformation (dual representation), Eq. 
7.  

𝐊 𝜅 𝐘 ,𝐘 〈𝜙 𝐘 ,𝜙 𝐘 〉, 𝜙: 𝑥 ↦ 𝜙 𝑥 ∈ 𝐹, for  𝑖, 𝑗 1, … , ℓ (7) 

The dual representation method, facilitated by the kernel, allows for the estimation of 
covariance relationships between 𝜙 𝐘  and 𝜙 𝐘  in the high-dimensional feature space, 
allowing PC computation. Separating the eigenvectors 𝐔 ∈ ℝ  associated with the 𝑛  
largest eigenvalues (𝚺 ∈ ℝ ), and the remaining ones 𝐔 ∈ ℝ  with the 
corresponding eigenvalues (𝚺 ∈ ℝ ), the error term can be computed as follows: 

‖𝐞 ‖ 𝚽 𝐘𝒌 𝚽𝐔𝟐𝐔 𝚽 𝚽 𝐘𝒌  (8) 

and it is uncorrelated with the unknown EOVs. The Gaussian or Radial Basis Function 
(RBF) kernel (Eq. 9) is often employed in the context of SHM applications [14]. The parameter 
𝜎 controls the bandwidth of the inner product matrix 𝐊. 

𝑘 𝐘 ,𝐘 exp
𝐘 𝐘

2𝜎
 (9) 

The kernel width (𝜎) and the number of extracted PCs (𝑛 ) are crucial parameters in KPCA. 
Some authors have suggested maximizing the information entropy of the inner product 𝐊 (𝐼 ) 
to obtain the optimal 𝜎 value [14]. 

3.2 Local PCA using Gaussian Mixture Model 

In the last decades, some authors have introduced clustering techniques with anomaly score 
functions for damage detection. Yan [8] proposed a PCA-based damage detection method under 
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varying environmental conditions, involving a two-step procedure: data clustering and Local 
PCA (L-PCA) analysis. This approach captures the nonlinear behavior of vibration features 
attributed to EOVs by applying L-PCA separately to each subregion. Subsequently, they 
identified structural damage by analyzing the residual error of the reconstructed data. 

In this study the Gaussian Mixture Model (GMM) is adopted as a clustering method. It relies 
on the assumption that the underlying data distribution is a mixture of multiple Gaussian 
distributions. It provides a probabilistic framework for clustering, where each data point is 
associated with a probability of belonging to each cluster. A Gaussian Mixture is a function 
composed of several Gaussian distributions, each identified by 𝑘 ∈ 1, … ,𝐾 , where 𝐾 is the 
number of clusters of the dataset. Each Gaussian 𝑘 in the mixture is defined in terms of its 
parameters 𝜇, 𝛴 and 𝜋, where 𝜇 is the mean, 𝛴 is the covariance, and 𝜋 is the mixing probability.  

𝑝 𝑧 1|𝑥
𝑝 x |𝑧 1 𝑝 𝑧 1

∑ 𝑝 x |𝑧 1 𝑝 𝑧 1
𝜋 𝒩 𝑥 |𝜇 ,Σ

∑ 𝜋 𝒩 𝑥 𝜇 ,Σ
γ 𝑧  (10) 

The GMM clustering algorithm iteratively estimates the parameters using the Expectation-
Maximization (EM) algorithm. In the generic EM step, the algorithm calculates the probability 
of each data point belonging to each cluster based on the current parameter estimates. The 
GMM algorithm continues these iterations until convergence, where the parameter estimates 
𝜃 𝜋, 𝜇,Σ  stabilize.  

4 CASE STUDY 

The Z24 Bridge benchmark is a unique dataset of long-term (nearly a year, from November 
11, 1997, to September 11, 1998) continuous monitoring of the dynamic behavior of a full-
scale structure and the associated environmental and operational conditions. A detailed 
description of the bridge can be found in [18]. Towards the end of the monitoring period, 
controlled gradual damage was induced on the structure, allowing to assess whether realistic 
damage had a measurable influence on bridge dynamics. Collectively, these factors contributed 
to the significance of the Z24 Bridge as a benchmark, enabling researchers to gain valuable 
knowledge about the structural behavior and performance under realistic conditions.  

Eigenfrequencies are a frequent choice as damage-sensitive features owing to their inherent 
sensitivity to structural damage, ease of acquisition, and extensive validation for damage 
detection. For these reasons, the identified frequencies of the Z-24 bridge were selected as 
damage-sensitive features in this study. Modal identification carried out by Peeters and De 
Roeck [4] resulted in four modes with sufficient accuracy. The reported differences in the 
identified frequencies (14-18%) in the healthy state is assumed to be related to EOVs [4].  

The duration of the training stage is a critical parameter in modeling, and it is typically set 
at one year, which is recognized as sufficient for effectively capturing variations induced by 
EOVs [2]. However, the Z24 bridge benchmark reported that the first damage occurred on 
August 05, 1998. Thus, the data recorded before this date was regarded as the healthy state of 
the structure. For model training purposes, the first 3000 data points, comprising roughly 50% 
of the available data (6 months), were utilized. 

It is noteworthy that nonnumeric values were identified within the dataset, thus prompting 
the need for cleaning or preprocessing. Reynders et al. [14] used linear interpolation between 
the boundary values of non-numeric data to complete the missing information; herein, a similar 
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approach was adopted. 

5 RESULTS AND DISCUSSION 

5.1 MLR 

Analyzing the correlation between the identified frequencies and the temperature of the 
pavement exhibits a bilinear behavior around 0°C (Fig. 1a). To maintain the assumption of 
linearity within the MLR model, only data associated with temperatures above 0°C was 
considered, minimizing any potential bias. 

In this study, the relationship between a single dependent variable (pavement temperature) 
and a set of independent variables, represented by identified natural frequencies, has been 
established. The obtained regression model coefficients are shown in Table 1, and the results 
of the overall error of the predicted model are shown in Fig. 1(b). 

Table 1: MLR model coefficients. 

β f1 f2 f3 f4 
1 4.1290 5.3031 10.4580 11.1561 
2 -0.0226 -0.0205 -0.0547 -0.0580 

 
The MLR model shows poor performance in reproducing the variance induced by EOVs 

(Fig. 1b). Results associated with the training stage (blue dots) as well as test data indicate a 
noticeable influence of EOVs, making it difficult to distinguish between the damaged (yellow 
crosses) and undamaged (orange triangles) states. This may suggest that the measured 
temperature is not representative of the temperature field in the structure, thus introducing bias 
in the MLR model.  

(a) (b) 
Figure 1: (a) The region of the dataset exhibiting approximate linearity and (b) overall MLR model misfit. 

5.2 PCA 

In the application of PCA to set the model of environmental variability of natural 
frequencies, the first two principal components, which roughly seize 97% of the total variance, 
were considered. As shown in Fig. 2, the model falls short in fully mitigating the impact of 
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environmental factors. This was expected because PCA is designed for linear data analysis. 
This shortfall is exhibited in the undamaged stage, where the influence of EOV-induced 
variance is noticeable.  

(a) (b) 
Figure 2: PCA: (a) explained variance and (b) overall model misfit. 

5.3 KPCA 

In KPCA, the initial step involves determining the optimal value for the hyperparameter 𝜎 
of the kernel function. This is obtained in agreement with the procedure outlined in [14]. After 
setting the optimal hyperparameter 𝜎 to the optimal value (0.405, which is consistent with the 
findings reported in [14]), PCA is carried out in the kernel space after data centering [14]. The 
error between the KPCA model predictions and the measured data is shown in Fig. 3.  

The KPCA method exhibits higher effectiveness to capture and compensate for EOV 
influence compared to linear methods (Fig. 3), allowing to effectively distinguish between the 
damaged and undamaged states.  

 
Figure 3: KPCA model misfit. 
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5.4 LPCA-GMM 

The Local PCA method requires definition of both the number of clusters and the number of 
principal components to retain in each cluster. In this application we used GMM clustering on 
the training dataset with three distinct clusters based on the relationship between 𝑓  and 𝑓  
(Figure 6a). It is worth mentioning that the choice of feature pairs for data clustering may result 
in different clusters. Subsequently, PCA was applied to each cluster, projecting it onto the entire 
dataset to obtain the misfit for each. A minimum distance criterion is then applied to compute 
the overall error of the model. 

(a) (b) 
  

Figure 4: LPCA-GMM model results: (a) resulting clusters, (b) overall model misfit. 

The application of clustering techniques effectively mitigates the inherent limitations of the 
PCA method when applied to nonlinear problems (Fig. 4b). This leads to a significantly 
improved capacity for compensating EOV-induced effects, surpassing the performance of 
conventional PCA. The comparison of the normalized overall model misfit of KPCA and 
LPCA-GMM shows a remarkable similarity (Fig. 5). However, during the training phase, 
KPCA exhibits better performance. This outcome was expected, as the kernel deals with 
nonlinearity, while LPCA-GMM seeks to approximate the transformation of nonlinear 
problems into linear ones by segmenting the dataset into subsets. 

4 CONCLUSIONS 

In this paper, four different normalization techniques, including MLR, PCA, KPCA and 
LPCA-GMM, were evaluated to comparatively assess their effectiveness in the compensation 
of EOV-induced effects. These methods were applied to the dataset of the Z24 Bridge 
benchmark. Among the considered normalization methods, LPCA is a widely known technique 
that often employs clustering based on Euclidean distances or similar metrics. However, in this 
paper, the utilization of GMM was attempted, obtaining satisfactory results.  

As expected, the linear methods (MLR and PCA) poorly perform due to the nonlinearity of 
the dataset, reducing their practical usefulness to compensate for EOVs efficiently. KPCA 
exhibits higher efficiency compared to traditional linear methods. This is attributable to the 
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leveraging of the kernel approach to capture the non-linear behavior by mapping data into 
higher-dimensional spaces where linear separability is achieved.  

Despite LPCA-GMM achieved a similar result to KPCA, meaning that mixing clustering 
techniques with linear methods may improve their performance, KPCA model can still be 
considered more effective in removing the EOV-induced effects because the performance of 
LPCA-GMM heavily depends on the choice of the feature pair for data clustering. On the other 
hand, the computational efforts associated with KPCA are relatively higher than for the other 
evaluated methods. This may raise difficulties in applying KPCA in complex cases with 
extensive data processing requirements. 

 
Figure 5: Comparisons between the misfits obtained by LPCA-GMM and KPCA. 
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