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ABSTRACT. An adaptive finite element strategy for nonlocal damage computations is presented.
The proposed approach is based on the combination of a residual-type error estimator and
quadrilateral h-remeshing . A distinctive feature of the error estimator is that it consists in solv-
ing simple local problems over elements and so-called patches. The paper focuses on how the
nonlocality of the constitutive model should be accounted for when solving these local prob-
lems. It is shown that the nonlocal damage models must be slightly modified. The resulting
adaptive strategy is illustrated by means of some numerical examples involving the single-edge
notched beam test.

RESUME. On présente une stratégie adaptative par éléments finis pour des calculs avec endom-
magement non local. La methode qu’on propose combine un estimateur d’erreur résiduel avec
un raffinement de type h pour des éléments quadrilatéres. Une des caractéristiques principales
de cet estimateur est que 'on résout des problémes locaux et simples, d’abord sur les éléments
et, ensuite, sur des domaines que 1’on appelle “patches”. L’article se centre dans la descrip-
tion du traitement de la caractéristique non locale du probléme dans ces problémes locaux.
On montre ainsi que la loi de comportement d’endommagement non local doit étre légérement
modifice. La stratégie adaptative qui s’en déduit est utilisée dans des exemples numériques
simulant le test de la poutre entaillée (“single-edge notched beam” ).
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1. Introduction

Damage models are nowadays a standard approach to model the failure of concrete
and other quasi-brittle materials [LEM 90]. To avoid the pathological mesh depen-
dence of numerical simulations carried out with local models, various regularisation
techniques may be used [BOR 93]. One possibility, considered in this work, is the use
of nonlocal damage models [P1J 87, BAZ 88 MAZ 89]. The basic idea of nonlocal
models is that the damage parameter that describes the loss of stiffness depends on
the strain state in a neighbourhood (associated to a characteristic length) of the point
under consideration.

To ensure the quality of the finite element solution, an adaptive strategy based on
error estimation was recently proposed by the authors [ROD 00]. A salient feature
of the approach proposed in that reference is the extension of an existing residual-
type nonlinear error estimator [DiE 98, HUE 00] to the context of nonlocal damage
models, where tangent stiffness matrices are not readily available.

Attention is focused here on the fact that the error estimator is based on local
computations over elements and so-called patches. It will be shown thatit is important
to account for the nonlocality of the damage model when solving these local problems.
These leads to a slight modification of the nonlocal damage model to be used during
error estimation.

An outline of paper follows. Nonlocal damage models are briefly reviewed in sec-
tion 2. Section 3 is devoted to the error estimator. After reviewing its main ingredients
in section 3.1, section 3.2 discusses the required modification of the damage model so
that its nonlocality is taken into account during error estimation. The resulting adap-
tive strategy is illustrated in section 4 by means of two numerical examples involving
the single-edge notched beam test. The concluding remarks of section 5 close the

paper.

2. Nonlocal damage models

The basic features of nonlocal damage models are briefly reviewed in this section.
For the sake of clarity, only isotropic elastic-damage models are considered. These
simple models are sufficient to illustrate how the error estimator based on local com-
putations takes into account the nonlocality of the model. However, the approach can
be extended to more complex nonlocal damage models, incorporating, for instance,
anisotropy and/or coupling with plasticity [MAZ 89].

The loss of stiffness associated to mechanical degradation of the material is repre-
sented by a parameter [2, according to

o=(1-D)C:¢, )

where ¢ and £ are respectively the Cauchy stress tensor and the small strain tensor,
and C is the tensor of elastic moduli (£: Young’s modulus; : Poisson’s coefficient).
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Parameter I? ranges between O (virgin material, with elastic stiffness) and 1 (com-
pletely damaged material, with no stiffness). For computational purposes, an upper
bound of Dy, = 0.99999 is set. In this manner, zero stiffness is avoided and it is not
necessary to remove the fully damaged elements from the mesh.

It is assumed that 17 depends on a state variable ¥, which in turn depends on the
strains:

Y =Y(e). 2

The basic idea of nonlocal damage models is averaging the state variable ¥ in the

neighbourhood of each point. In this manner, the nonlocal state variable Y is obtained:

¥ = / aldyyav / / o(d)dV | @)
v v

The weight function «, which depends on the distance d to the point under considera-
tion, is typically the Gaussian

2
a(d) = exp {— (?) } . “

where the characteristic length /.. is a material parameter of the nonlocal damage
model, which acts as a localization limiter and can be associated to the grain size
[PLJ 91]. The nonlocal state variable drives the evolution of damage,

D= D(Y). 5

Damage starts above a threshold Y} (thatis, 7 = (for Y < Yy) and it cannot decrease
(thatis, 7 > 0).

To define a particular model, it is necessary to specify the definition of the state
variable, equation (2), and the evolution law for damage, equation (5).

In the modified von Mises model [VRE 95] Y depends on the first strain invariant
I, the second deviatoric strain invariant .J; and the ratio k of compressive strength
to tensile strength. Regarding the damage evolution for ¥ > Yj, an exponential law
[P1J 91, ASK 00] is used. The modified von Mises model is summarized in table 1.
More details about this model can be found in [VRE 95, PEE 98].

3. The error estimator

In order to control the finite element discretization errors, an adaptive strategy is
employed [ROD 00]. Itis based on the combination of a residual-type error estimator
[D{E 98, HUE 00] and /-remeshing. The error distribution is computed with the error
estimator and translated into desired element sizes with a so-called optimality criterion
[DiE 99b]. An unstructured quadrilateral mesh generator [SAR 00] is then used to
build a mesh with the desired sizes. This iterative process stops (typically after 2 to 4
iterations) when the relative error of the solution (i.e. energy norm of the error divided
by energy norm of the solution) is below a prescribed threshold set a priori.
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State Varj.able: }’; = WI‘] \/( ) + ]&L),Jz

Damage evolution: 7 = 1 — YOU%‘} - Aexp [-—B (? - Yg):l

Table 1. Modified von Mises model

3.1. A residual-type error estimator based on local computations

The error estimator used in this work was first developed for linear problems
[DiE 98] and later extended to nonlinear problems [HUE 00, DiE 99a]. A detailed
presentation and analysis can be found in these references. Here, only a brief review
is given.

Using a mesh of characteristic size H, the finite element method provides the
discrete nonlinear equilibrium equation

£ (up) = £, ©)

where the unknown is the nodal displacement vector u j, f] ““ Y (ug) is the vector of
nodal internal forces associated with uy and £§5* is the dlscretlzed external force
term.

To estimate the error in uy, a finer mesh of size i (h <« H) is used as reference.
On this finer mesh, the problem reads

mt (uh) e f:xt . D
The error in displacements is defined as the difference between the two solutions:
€y =Up ~ Uy . &

Note, however, that computing uy, is computationally much more expensive than com-
puting uy, because it involves solving the nonlinear problem over the fine mesh, see
equation (7). For this reason, the basic idea of the error estimator is to approximate
e, by low-cost local computations over subdomains. This is a standard strategy in
residual-type error estimators.

The proposed approach consists of two phases. First, a simple residual problem
is solved inside each element of the coarse mesh (interior estimate). Note that ele-
ments are the natural subdomains for the local computations. To avoid the expen-
sive flux-splitting procedures of other residual-type estimators, homogeneous Dirich-
let boundary conditions are prescribed for each element (that is, e ,, = 0 in the element
boundary).



Figure 1. Patchassociated to a node of the coarse mesh subdivided into 4 x 4 elements
of the fine mesh

Of course, the error is not really zero in the element boundary. For this reason, a
second set of simple problems is solved. The idea is to use a different partition of the
computational domain into subdomains. A natural choice is to associate these subdo-
mains, called patches, to the nodes of the coarse mesh. Since four-noded quadrilateral
elements are used, a patch consists of one-fourth of each element sharing the node,
see figure 1. By combining equations (7) and (8), the nonlinear problem to be solved
on every element and every patch can be recast as

£ (wy + eu) = £ ©

These local problems are solved over the fine mesh of size . Every element of the
coarse mesh H is subdivided into 4 x 4 elements of size & (i.e. the fine mesh is nested
into the coarse mesh, with & = H/4). Due to the patch definition, every patch also
consists of 4 x 4 elements of size &, see figure 1. For the iterative solution of equation
(9), uy is taken as an initial approximation to uy (that is, the initial approximation
for the error is e,, = 0). This means that the final state obtained with the coarse
mesh of size H is taken as the initial state for solving the local problem over each
element/patch with the fine mesh of size /.

As a consequence, information must be projected from the coarse mesh H to the
fine mesh /4. To ensure the consistency between the various projected fields, the fol-
lowing projection strategy is employed: (1) Displacements and damage are projected
over the fine mesh. To project the nodal field of displacements, the finite element ap-
proximation based on mesh H is used. The damage field must be projected from the
Gauss points of the coarse mesh to the Gauss points of the fine mesh. A very simple
and efficient strategy is used: the value of damage at each Gauss point of the coarse
mesh is assigned to all the Gauss points of the four corresponding elements of the
fine mesh, see figure 2. With this projection strategy, the risk of unrealistic values of
damage (i.e. I? < 0 or I > 1) is precluded; (2) strains and stresses are not projected,
but computed from the projected displacements and damage. In this manner, the con-
sistency between all the “projected” quantities (displacements, damage, strains and
stresses) is guaranteed. To keep the notation simple, these fields are still denoted with
an H subscript denoting they are associated to the solution of the global problem over
the mesh of size H, even though they are now supported by the mesh of size /.
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Figure 2. Projection strategy for the damage field. The value at each Gauss point of
the element of size H is assigned to the four associated elements of size h

3.2. Accounting for the nonlocality of the model

At this point, it is important to remark that the proposed error estimator for nonlo-
cal damage models is based on local computations over subdomains (i.e. elements and
patches). The nonlocality of the damage model must be accounted for when solving
the local problems. Note that, upon mesh refinement, the element size may become
smaller that the characteristic length /.. With the proposed approach, the interaction
between adjacent elements is considered (thanks to the loop over patches, that overlap
elements), but not the interaction between more distant elements. However, this is not
regarded as a significant drawback of the suggested approach; due to the weighting
function « of the nonlocal average, see equation (4), the error in one element has a
limited influence on the error in distant elements. Moreover, accounting for the inter-
action between distant elements during the error estimation would destroy the most
attractive feature of the suggested approach: it consists of solving independent local
problems. Note, for instance, that the error estimation algorithm has a computational
costof O(N) (with N the number of elements) and can be parallelized.

On the other hand, it is essential that these local problems are solved taking into
account the current mechanical properties (i.e. the damaged stiffness) of each el-
ement/patch. As discussed in the following, this implies that the nonlocal damage
model must be slightly modified.

The standard and the modified nonlocal damage models are summarized in table
2. In the standard model —that is, the one used for solving the global problem, see
equation (6)—, the error in strains e, is computed as the symmetrized gradient of the
error in displacements e, and added to the strains £ to produce the strains £ over
the element/patch. After that, the local state variable Y, is computed and averaged
into the nonlocal state variable Y. Finally, damage Dj, is obtained. Note that the
nonlocal average that transforms Y}, into Y}, is over a local support (the element/patch
under consideration). This fact leads to non-physical responses, especially in zones

6



Standard model Modified model

e = V¥(e,) Errorin strains e, = V*{e,)
Ep = Ex +e. Strain gp =€y + e
s . dy , |
Yy, = Y(ep) Local variable Yy, =~ Yy + g{e;;)ef
de

¢y: Brrorin Y
Yy 17,? Nonlocal variable ey — eg 3 fh = f";; +eq

(—: nonlocal average over local support)

Dy = D(?h) Damage Dy = D(ﬁ:)

Table 2. Standard and modified nonlocal damage models

of large damage gradients. Assume, for instance, that the error in strains is small and
€, ~ £p. A small variation in Y is also expected. However, it may happen that
Yy <« Yy, because Y7, contains no information about nearby zones.

This point is illustrated in figure 3, which depicts the local state variable, the non-
local state variable and the damage parameter for a given time increment in a zone of
the coarse mesh with large gradients. The circled element has a very small local state
variable Y, see figure 3(a), below the threshold Y. However, since the elements to
the right have large values of Y, it has a relatively large (above Y}) nonlocal state
variable Y, see figure 3(b), which leads to damage, see figure 3(c). If the standard
model is used to solve the local problem on the circled element during error estima-
tion, a small error in strains leads to a small variation in the local state variable which,
after nonlocal averaging over the element, results in a low value of the nonlocal state
variable (thatis, ¥ <€ Yy). As a consequence, damage cannot increase in the circled
element during error estimation. When estimating the error for the circled element,
the nonlocal state variable Yy, rather than the local state variable Yy, is representative
of its mechanical properties.

For this reason, a modification of the nonlocal damage model is proposed here, see
table 2. The difference resides in the way the nonlocal state variable Y7, is computed.
By means of a first-order Taylor expansion, the local state variable Y7, is expressed as
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Yy plus an error term ey. The derivative % is computed analytically by means of

the chain rule
dy dY L  dY ],
dﬁf - CU] &3 dJ‘g &3 ‘
In equation (10), £; denotes a component of the strain vector €. All the derivatives in
the RHS are very simple to compute from the definition of the local state variable Y,
see table 1 and of the strain invariants 7, and .7,.
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The error term ¢y is averaged over the element/patch into ¢ 4. As a consequence,

ﬁ, is computed as the addition of a reference value ?‘};, which describes the real
damaged stiffness, and an error term ¢¢. For doing so, it is necessary to project —by
means of the same projection strategy used for the damage field, see figure 2— Yy
and %(e ) into the fine mesh.

With this modified model, a small variation in strains does result in a small vari-
ation in the nonlocal state variable (that is, ¥ & Yy). Going back to figure 3, this
means that the damage level of the circled element may either remain constant (for
Yy < Yy) orincrease (for Yy, > Yyy) during error estimation.

To sum up: the standard model is not capable of capturing the spread of the dam-
aged zone associated to error estimation.

4. Numerical examples: the single-edge notched beam

The proposed adaptive strategy is illustrated here by means of the single-edged
notched beam (SENB) test [CAR 93]. The geometry, loads and supports are shown in
figure 4. A plane stress analysis is performed. The concrete beam is modelled with the
modified von Mises model with exponential damage evolution, see table 1. The steel
loading platens are assumed to be elastic. Two sets of material parameters are used,
see table 3. For material 1, there is a significant post-peak softening in the stress-strain
law for concrete. For material 2, on the contrary, the softening is very slight, so the
residual strength almost coincides with the peak strength [PEE 98].

Material 1 Material 2

Parameter | Concrete Steel Concrete Steel

E 28000 MPa 280000 MPa | 35000 MPa 350 000 MPa

v 0.1 0.2 0.2 0.2

Yo 1.5 % 1074 6.0x% 1073

A 0.8 0.08

B 9000 8200

I 10 mm 10 mm

Table 3. The two sets of material parameters: (a) large softening; (b) very slight

softening
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Figure 3. Fields in a zone of large gradients: (a) local state variable Y ; (b) nonlocal
state variable Y ; (c) damage. The damage threshold is Yy = 1.5 % 1074,

4.1. Test with material 1

The results with material 1 are shown in figures 5 to 7. The initial mesh is shown
in figure 5(a). Note that this mesh is relatively coarse, with only one element in the
notch width. The final damage distribution and deformed mesh (amplified 300 times),
corresponding to a CMSD (crack-mouth sliding displacement) of 0.08 mm, is depicted
in figure 5(b). The curved crack pattern observed in experiments [CAR 93] is clearly
captured. The error estimation procedure discussed in section 3.2 is employed to
compute the error field of figure 5(d). The error is larger in the damaged zone and
near the loading platens. The global relative error (i.e. energy norm of the error in
displacements over the energy norm of displacements) is 3.96%, above a threshold set
a priori of 2%, so adaptivity is required.

The error field of figure 5(d) is translated into the mesh of figure 6(a). Note the
element concentration in the crack and the central supports. This finer mesh leads to a
better definition of the damaged zone, see figure 6(b). The error estimator now detects
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Figure 4. Single-edge notched beam: problem statement. All distances in mm
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Figure 5. SENB test with material 1, initial approximation in the adaptive process. (a)
Mesh 0: 659 elements and 719 nodes; (b) final damage distribution; (c) final deformed
mesh (x300); (d) error distribution. The global relative error is 3.96%

that the largest errors are associated to the edges of the cracked zone, see 6(d). The
global relative error of 2.11% is still slightly above the error goal, so another adaptive
iteration is performed.

The outcome of this second iteration is shown in figure 7. The qualitative results
of iteration 1 are confirmed: (1) small elements are needed to control the error in the
damaged zones and close to the loading platens and (2) erroris larger in the edges than
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Figure 6. SENB test with material 1, after one iteration in the adaptive process. (a)
Mesh 1: 1155 elements and 1228 nodes; (b) final damage distribution; (c) final de-
Jormed mesh (x300); (d) error distribution. The global relative error is 2.11%
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Figure 7. SENB test with material 1, after two iterations in the adaptive process.
(a) Mesh 2: 1389 elements and 1469 nodes; (b) final damage distribution; (c) final
deformed mesh (< 300); (d) error distribution. The global relative error is 1.77%

in the centre of the crack. The global relative error of 1.77% is below the threshold of
2%, so the adaptive iterative process stops.

The relation between damage and error is illustrated by figure 8, which depicts
profiles of these two fields along the crack. Note thatthe two error peaks are associated
to the edges of the damaged zone (i.e. large damage gradients). This indicates that
the damage gradient, rather than damage itself, is a good error indicator [HUE 99] for
these models.

11



Mesh O Mesh 1 Mesh 2

£ .
! {

Lol

Figure 8. SENB test with material 1. Profiles of damage (dashed line) and error (solid
line) across the crack. The two error peaks are associated to large damage gradients

4.2. Test with material 2

The SENB test is now reproduced with material 2, see table 3. The small value of
parameter A leads to a stress-strain law with almost no softening. A very similar law
has been employed to simulate the SENB test with gradient-enhanced damage models
[PEE 98].

cocooooo
-
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Figure 9. SENB test with material 2, initial approximation in the adaptive process. (a)
Mesh 0: 659 elements and 719 nodes; (b) final damage distribution; (c) final deformed
mesh (x300); (d) error distribution. The global relative error is 3.66%

The results are shown in figures 9 to 11. The initial mesh is the same as before,
see figure 9(a). The change in the material parameters lead to a completely different
failure pattern, dominated by bending of opposite sign in the two halves of the beam,
see figures 9(b) and 9(c). A crack at the notch tip is also initiated, but it is only a
secondary mechanism. The error estimation procedure has no difficulties in reflecting
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Figure 10. SENB test with material 2, after one iteration in the adaptive process. (a)
Mesh 1: 776 elements and 848 nodes; (b) final damage distribution; (c) final deformed
mesh («x300); (d) error distribution. The global relative error is 2.46%
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Figure 11. SENB test with material 2, after two iterations in the adaptive process. (a)
Mesh 2: 870 elements and 954 nodes; (b) final damage distribution; (c) final deformed
mesh (x300); (d) error distribution. The global relative error is 2.13%

the change in the failure mode, see figure 9(d). The global relative error is 3.66%, so
adaptivity is required.

Figures 10 and 11 illustrate the adaptive process. Note that meshes 1 and 2 are
quite different from the ones obtained with material 1. The global relative errors are
2.46% and 2.13%. This value is still slightly above the threshold of 2%. However,
an additional iteration is considered not necessary for the illustrative purposes of this
test.

A final comparison between the two sets of material parameters is offered by figure
12, where the total load is plotted versus the CMSD for meshes 0 and 2. The results
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Figure 12. Total load versus crack-mouth sliding displacement (CMSD) for meshes 0O
(solid line) and 2 (dashed line): (a) with material 1; (b) with material 2 (see table 3)

obtained with material 1 —a peak load of around 60 kN and post-peak structural
softening, see figure 12(a)— are in good agreement with the experiments [CAR 93].
With material 2, on the other hand, the peak load is quite higher and no softening is
observed, see figure 12(b).

5. Concluding remarks

An adaptive strategy based on error estimation for nonlocal damage models has
been presented. The constitutive model has been slightly modified in order to account
for its nonlocality during the error estimation procedure, see table 2. The basic idea
of the modification is that the error in the local state variable, rather than the variable
itself, is averaged. By doing so, the error estimation takes into account the real me-
chanical properties of the damaged material, while retaining its most attractive feature:
it consists in solving simple, independent problems over elements and patches.

The resulting adaptive strategy has been illustrated by means of the single-edge
notched beam test. With two sets of material parameters leading to very different fail-
ure modes, /-remeshing concentrates elements where needed according to the error
estimator, until the global relative error falls below an error threshold. By keeping the
discretization error under control, it is possible to ensure the quality of the FE solution
and assess the influence of the material parameters in an objective way.
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