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SUMMARY -

Thls paper dea.ls wnth a numerlcal formulatron for eoup}ed thermoplastm problems mclud—
ing phase—change phenomena The final goa] is to get an accurate, efficient and robust numerical ..
" 'model, allowing the numerical simulation of solidification processes in the metal casting industry.
‘Some of the current issues addressed in the paper are the following. -A fractional step method
arising from an operator split of the governing differential equations has been used to solve the
nonlinear coupled system of equations, leading to a staggered product formula solution alge-
‘- -rithm. Nonlinear stability issues are discussed and isentropic and isothermal opera.t;or splits are
. formulated. Within the isentropic split, a strong operator split design constraint.is introduced, - .
by requiring that the elastic and plastic entropy, as well as the pha.se—change induced elastic
" "entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of
. the model has been consistently derived within a thermodynamic framework. The constitutive -
‘-behavior has been defined by a thermoelastoplastic free energy function, including a thermal
multiphase change contribution. Plastic response has been modeled by a J2 temperature de- :
" pendent model, including plastic ha,rdemng and thermal softenmg “A pressure and mean gas =
-1 temperature dependent thermal contact model has been used. ‘Additionally, a gap dependent -
“thermal model has been used to take into account surface heat transfer phenomena when the two.
bodies lose contact. Heat genera.tlon due to frictional dissipation has been also included. The
numerical model has been implemented into the computational Finite Element code COMET
.. developed by the authors. -A numerical assessment .of the isentropic. and isothermal operator
" splits, regarding the nonlinear stability behavior, has been performed for weakly and strongly
coupled thermomechanical problems, Numerical mmulatlons of so]1d1ﬁca.tlon processes show the_ h
performance of the computatxonal model ‘developed. R S P

1 INTRODUC‘TION

Numerlcal solutlon of coupled problems usmg staggered a,lgorlthms, 1s an efﬁment
procedure in which the original problem is partitioned into several smaller sub-problems
~which are solved sequentially. For: thermomechemcal problems the standard approach ex-
ploits a natural partitioning of the problem in a mechanical phase, with the temperature
- held constant, followed by a thermal phase at fixed -configuration.. As noted in S1MO &
MIEHE [1991] this class of staggered algomthms falls within the class of product formula
algorithms arising from an operator split of the governing evolution equations into an
isothermal step followed by a heat-conduction step at fixed configuration. A recent anal-
ysis in ARMERO & SIMO [1992A,1992B,1993] shows that this isothermal split does not
preserve the contractivity property of the coupled problem of (nonlinear) thermoelasticity,
leading to staggered schemes that are at best only conditionally stables. ARMERO & SIMO
[19924,19928,1993] proposed an alternatlve operator split, henceforth referred to as the
1sentrop1c spht. whereby f;he problem is partltloned 1nto an isentropic mechamcal phase,
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with total entropy held constant, followed by a thermal phase at fixed configuration. It
was shown by ARMERO & SIiMO [1992A,1992B,1993] that. such operator split leads to an
unconditionally stable staggered algorithm, which preserves the crucial properties of the
coupled problem.

The remaining of the paper is as follows. Secmon 2 deals with the formulatlon of the
local governing equations of the coupled thermoplastic problem, consistently derived within
a thermodynamic framework. An additive split of the strain tensor and the entropy has
been assumed. A particular J2-thermoplastic constitutive model, with temperature depen-
dent material properties, has been considered. Latent heat associated to the phase-change
phenomena has been incorporated to the thermal contribution of the free energy function.
Plastic response has been modeled by a J2 temperature dependent model including non-
linear hardening due to plastlc deformation and a thermal linear softening behavior. A
brief summary of the thermomechanical frictional contact model is. 1ncluded ThIS Section
ends with the variational formulatlon of the coupled problem. ' '

- In- Section 3, fractional step methods arising from an operator split of the governing
d1fferent1a1_ equations are considered. Isentropic and isothermal splits are introduced and
nonlinear stability issues linked to the splits are adressed. A key point of the formulation of
the isentropic split is the set up of the additional design constraints to define the mechanical
problem. These additional constraints motivate the definition of the sets of variables and
nonlinear operators introduced in the present formulation. Within the time discrete setting,
the additive operator splits lead to a product formula algorithm and to a staggered solution
scheme of the coupled problem. Finally, the time discrete variational formulation of the
coupled problem, using isentropic and isothermal splits, is introduced )

 Section 4 deals with a numerical assessment of the accuracy and stability properties of
the operator sphts for weakly and strongly coupled thermomechanical problems and with
the numerical simulation of solidification processes. Numerical results are compared with
available experimetal data.

Some concluding remarks are drawn in Section 5. For convenience, a step-by-step
formulation of the return mapping algorithms within the mechanical and thermal problems
arising from an isentropic split is given in an Appendix.

2. FORMULATION OF THE COUPLED THERMOPLASTIC PROBLEM

We describe below the system of quasi-linear partial differential equations governing
the evolution of the coupled thermomechanical initial boundary value problem, including
thermal multiphase change and frictional contact constraints. '

2.1. Local Governing Equations

Let 2 < ngim < 3 be the space dimension_ and I := [O,T] C R, the time interval of
interest. Let the open sets £2 C R"#™ with smooth boundary 842 and closure {2 := 20842,
be the reference placement of a continuum body B.

Denote by ¢ : 2 x T — R™™ the orientation preserving deformation map of the body
B, with material velocity V = dip = ¢, deformation gradient F := D¢ and absolute
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temperature 9 .Q >< ]I — R For each tnne te ]I the mappmg t E I, = <p( t)
" represents a one-parameter famlly of configurations indexed ‘oy time t, which ma.ps the
reference ‘placement, of body B onto its current placement Sy pe(B) C R*m,

The local system of partlal dlfferentlal equations governmg the coupled thermome-

_ _chanlcal initial bounda,ry value problem is defined by the momentum and energy balance

: _"_'equatlons, restrlcted by the inequalities arising from the second law of the thermodynam-

“ics, ‘This system must be supplemented by su1table constitutive equations. Additionaly,

i_one must supply sultable prescrlbed boundary | and 1n1t1a1 COIIdlthIlS, and consuier the
" “equilibrium equations at the contact interfaces. a

(A) Local form of momentum and energy balance equations. The local form of the

momentum and energy balance equations can be written, in a first order system form, as
o=V

pon_ DIV[cr]-I—B s m @xr (1)

where £o '} !2 - R+ is the reference den81ty, B are- the (prescrlbed) body forces. per umt

reference volume, DIV[-] the reference divergence operator, o the Cauchy stress tensor, H
the entropy per unit reference volume, @ the (nominal) heat flux, R the (prescribed) heat
source and D;y,; the internal dissipation per unit reference volume. Formally, the governing

- equations for a quasi-static case, may be obtained just by settmg po = 0in (1)

(B) Dissipation inequalities. The specific entropy H and the Cauchy stress tensor &

are defined via constitutive relations, typically formulated in terms of the 1nternal energy

E, and subjected to the following restriction on the internal dissipation

- ’Dmt—a E+@H E>0 . 111 .Qx][ S (2)

- where € := sYMM[F. —I] is the 1nﬁn1te31me,1 strain tensor.. I—Iere SYMM[] denotes the

symmetric operator and I is the second order. identity tensor. i
‘The heat flux @ is defined via constitutive equatlons, say Fourler s law, _subjected to

; _'ﬁhe restrlctlon on the d1531patlon by conductlon L

.beoe..:—gGRAD[_@].QEO'."'Z;m G g

(C) Thermoplastic constitutive equations. Micromechanically based phenomenolog-

"-"1ca1 models of infinitesimal strain plastlclty adopt a local additive decomposmon of the

strain tensor into elastic and plastic parts. I—Iardemng mechamsms in the material takmg
place at a microstructural level are characterized by an additional set of phenomenologlcal
internal variables collectively denoted here by £,. In the coupled thermomechanical theory,
an additive split of the local entropy into elastic and plastic parts is adopted, where the
plastic entropy is viewed as an additional internal variable arising as a result of disloca-
tion and lattice defect motion. This additive split of the local entropy was adopted by
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ARMERO & SiM0O [1993]. The above considerations, motivate the following additive split
of the infinitesimal strain tensor € := €® + €” and local entropy H := H® + H? and the
following set of microstructural internal variables G := {e?, H?,&,, }.

- The internal energy function B depends on the elastic part of the strain tensor €, the
hardening internal variables £, and the configurational entropy H®, taking the functional
form B = F(e¢, H, &y, ). Introducing the functional form of the internal energy into the
expression of the internal dissipation, taking the time derivative, applying the chain rule
and. using the additive split of the infinitesimal strain tensor total entropy, a straightfor-
ward argument yields the following constitutive equations and reduced internal dissipation
inequality

o= 0eB(e®, H®, &),  ©:=0uE(ef HO &),  B% = -0, E(e®, HE, L),
Dint = Dmech + Diher > 0, with Dpeep 1= o : €8 + % écx >0 and Dyper = OH".
(4)
Using the Legendre transformation ¥ = E — @H €, the free energy function takes the
functional form ¥ = W(e 0,84, ). Taking the time derrva,tlve of the free energy function

and applying the chain rule, a straightforward argument ylelds the followmg alternative
expressmns for the constrtutrve equatlons - :

o= 36653’(6 :@?ga)) - H®:= “3@97(681@:50:), pe = “aﬁa!ﬁ(ee:@:ga)' (5)

Assuming a yield function of the form & = &(c, 8, @), the evolution laws of the
internal variables, assuming associated flow, take the form . .

& =y 0o P(a,8%,0), €yi=78paP(o,0%0), HP:=v0ed(c,B%0), (6)

and the following Kuhn-Tucker v > 0,8 < 0,7® = 0 and consistency y$ = 0 conditions
must be satisfied for a rate-independent plastic model.

Additionally, the heat flux is related to the absolute temperatute through the Fourier’s
law, that for the isotropic case takes the form Q@ = —K GRAD|®].

REMARK 1. Equir/alent forms of the en'ergy bal'ance eqnatfon. Using the additive split
of the total entropy into elastic and plastic parts and the additive split of the internal
dissipation into mechanical and thermal, the reduced energy equation can be expressed as

QH® = —DIV[Q] + R + Dmech- (7)

Alternatively, using the constitutive eqﬁation of the elastic entropy, taking its time
derivative and applying the chain rule, the temperature—form of the reduced energy equa-
tion can be written as

" 9@ = —DIV[Q] + R+ Dimeer — H®  with
0 1= —O8%eW(e%,0,8);, HP 1= 005 ¥(€%,0,60) : € ~ 003, ¥(€°,0,L0) : &a,
. . (8)
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where co is the reference heat capac1ty and ’H‘”’ the structural elastoplastlc heatmg D

REMARK 2. Thermal phase—change contnbutrons The free energy functlon fora coupled

- thermomechanical model including phase change can be splitted into thermoelastic ¥,

thermoplastic Wy, thermal (excluding phase change) ¥, ‘and thermal phase change Yipe

L contrlbutlons taklng the functional form, ¥ = !Ifte( @) + !Ptp(@ £a) + LT/t (9) + !Ptpc(@)

Collectmg into a thermoelastoplastlc part Wtep(e 6,¢,) all the terms appearmg into

. -the free energy function, excluding the thermal phase change contribution, ‘and setting
CH® = HE,, + Hf,, with Htep _ 3@!Ftep(e ©,&,) and Hipe = 3@!Ptpc(@), the reduced

energy balance equatlon in entropy form, can be wrrtten as '

T -@Hteep ; DIV{Q} +- R+ Dmech - IHPC_ Wif’.h

. 9
HP =L = @Htpc @aeelptpc(e)‘e. N

- where HP¢ = I, is the phase change heatlng grven by the. rate of latent heat L per unit

reference volume.
- Similarly, the reference heat capacity can be splitted into ¢y = €ogep + Cotpe Where

Cotep mga@@d)}te?’ (€%,0, &) and cospe = @.a(_za@?:ztpc(@), and the temperature form of
the energy balance equatlon takes the form o B _

B cotep@ = _—~DIV[Q] + R + ’Dmech - :’Hep ’Hpc W1th

o (10)
% L Cotpc@"""" @aeelptpc(@) @ D

REMARK 3. Mechanical modehng of the hqurd phase.  The mechanrcal beha\fior in the
liquid, for an isothermal liquid-solid phase change at the solidification (melting) tempera-

. ture Oy, or in the liquid and mushy zone for a non isothermal liquid-solid phase change,

given by the liquidus and solidus temperatures €; and ©,, respectively, has been modeled
by using a modified shear modulus in the hqurd phase deﬁned as G; (1 - f;)_G, where

e [0,1] is the liquid fraction.

‘For an 1sotherma1 phase change, the 11qu1d fractmn takes the form f; (@) H (@ On),

.where H{(-) is the Heaviside function. In this case, the gradient of the liquid fractlon must
. be interpreted in a distributional sense an(i takes the forrn V f; ((9) =4 (9 @ ) Where
6( ) is the Dirac delta. fnnctron e

For. a non-lsothermal phase change, a snnple defimtron of the hquld fractmn is a
p1ecew1se-l1near C° function. Alternatively, a C* regularized liquid fraction function may
be introduced, leading to a more convenient modehng from the pomt of v1ew of the rate

‘of convergence of the numerlcal solutlon 0

2.2. AJ 2 Thermoplastlc constltutlve model

Here the following J2-thermoplastic constitutive model described in Box 1 and BoxX

2 has been c0n31dered As it is shown in the model, all the thermomechanical properties

may be temperature dependent A particular interest has been placed in considering the




6 On the Formulation of Coupled Thermoplastic Problems with Phase-change

case in which the specific heat is temperature dependent and the latent heat is non-zero.
Note that in this case the functmnal related to the pure thermal contnbutlon is obta,med
' usmg an 1ntegral expressmn R : i e :

- 2. 3 Thermomechanlcal contact model

Here oniy a brief summary of the constltutlve thermomechanical contact formula-
tion will be presented. The interested reader is addressed to AGELET DE’ SARACIBAR
[1997 A 1997B], and references there in, for further details.

Mechanical contact has been modeled by using a penalty reguiarxzation technique.
Contact pressure ¢y has been characterized by a constitutive equation of the form,

.. o 1
tN = '——";;U-}.(QN): 1.e., _ U+(QN) = §€N(gN)2, (11)

where gy is the normal gap and ¢y is a normal penalty parameter.
The frictional constitutive response is governed by the following constramed problem
of evolution

EvT T = ET'UT - fyeTBtzwé(tT,tN,‘f), } : (12)

£ = 'Y[ltl?l‘.ll,
where tléw is the frictional traction, 'u?p is the relative slip velocity, £ is the slip harden-
ing/softening internal variable, here chosen to be the (accumulated) frictional dissipation,
er is a tangential penalty parameter, £, (-) denotes the Lie derivative along the flow gen-
erated by the relative slip velocity and ~ and @(tT, ty, €) are the slip consistency parameter

and slip function, respectively, subjected to the followmg Kuhn-Tucker complementarity

and: consistency conditions _

Y2 0 é(t!}’tl\r’g) <9, 'Yé(tgf‘:tl\f:&):oa | ( )
. ' 13

B(tr,tn,€) =0 if B(th,tn,€) =0,

'Ydt

We refer to LAURSEN [1992], LAURSEN & SiMO [1991,1992,19934,19938B] and
AGELET DE SARACIBAR [1997A,19978], for further details on the formulation of fric-
tional contact problems. o B ' '

A thermal contact model at the contact interface is considered, taking into account
heat conduction flux through the contact surface, heat generation due to frictional dissi-
pation and heat convectlon between the interacting bodles when they sepa,rate one from
each other. '

Heat conduction through the contact surface Qheond has been assumed to be a function

of the normal contact pressure ¢y, the mean gas temperature @¢ and the thermal gap geo,
of the form

Qheond = Peona(tn, Oc) go. (14)

Heat convection between the two bodies arise when they sepa_rat;e from each other due
to a shrinkage process taking place during solidification. Heat convection coefficient has
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BOX 1 J 2 Thermoplastic constltutwe model
SRR Free energy functlon

= Free energy functlon

ii.

iii.

. e
T(@)wf@ 75(6)48, To(0) = - j@ lpoes (@) + ()%

iv

(e, 6,6) = (e, 6) + Jit(e, 6) + 1(6) + K(6,0)
'Li.n.éa.r: Hyﬁereiastic response (p(@)> ..0, n(@) > 0},
W (e, ©) = W(dev]e?), ©) + Ue, ©)
W (dev[e), ©) = u(6) dev?[e]], U(e,8) = %n(@)e{
here ¢ = '_t_r[ce_] = T
'fher;llllolelléslil;i(:: lcoﬁfl)lzing:,. o
M(e,0) = ~31(0)(0)(O — Op)e.
Thermal contribution (cs(@) > 0),
IF (cs(Q)mconstant AND L(@) = () THEN
T(8) = pocsl(© - 90) 910%(9/@0)] |

ELSE

_ ®i| @

END IF

. Hardening _po_t;e_ntial

K(¢,0)= (@)5‘*’ [yo(@) yoo(e)]ﬂ(s),
where_ .

= {57070 G
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Box 2. J2-Thermoplastic constitutive model
Thermoelastic and thermoplastic responses

®» Thermoelastic response

i. Cauchy stresses,

o =plz+ s,
s = 2u(O0)dev[e®], p = k(B)e — 3x(O)a(O)O — Oq).

ii. Elastic entropy,
IF (cs(@)=constant AND L(@) = 0) THEN

He® = poc,; log(@/6g) + 36(@)a(O)e — K@(é)
— Wo (€, 0) + 3[k(€)d/ (©) + £'(@)a(O)(O — Oy)e,

BELSE
1= [ oo, (8) + (@))% +35(6)a(6)e - (e
(e, 0) + 3[x(0)/(O) + K (@)a(O)](O — Go)e,
END IF

m Thermoplastic response

i. Von Mises yield criterion with flow stress oy (@) := y0(©),

$,0,6) = ldevloll ~ 2o (©) ~d) <o.
ii, Hardening variable g conjugate to £,
q 1=~ = —[(O)¢ — (yo(O) — Yoo (©))(1 — exp(—6))].
iii. Linea,r. thermal softening,

%0(€) = y0(Bo)[1 — wo (O — o)),
Yoo ) = Yoo (o)1 — weo (@ — G0)},
h(@) - h(@o)[l — wh(@ - 90)]




......

_ .assumed to be modeled as o
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been assumed to be a function of the mechamcal gap Then the heat convectron has been

-thom,1 = Econfu(gN.) g@- _— ' (15) .

We refer to WRIGGERS & MIEHE [1992 1994] and AGELET DB SARAC{BAR [199713]

for further details on the formuletlon of therma,l contact models and thermomechanlca,l
"_:conte,ct formulatlons o S : :

2 4-_Varrat10nai formulatlon R

Usmg standard procedures, ‘the weak form of the momentum bala,nce (we will.as-
sume the quasi-static case for srmphclty) and reduced energy equations take the following

: _expressmns :

- {o, GRADIno]) = (B, no) + (¢, "”IO)Pcr + (t ﬂe)rmc

(@He Co) (Q:GRAD[CO]) = (R+Dmech,C0> (Q CO)PQ (Q Co)nc o)

B Whrch rnust hold for any admlssrble dlsplacement and temperature functrons 0 and Co,

respectively.  We refer to AGELET DE SARACIBAR [19978] for notation and further details

“.on the derivation of these weak forms and, partrcularly, on the expressrons related to the

thermomechanical frictional contact constributions.:

3. TIME INTEGRATION OF THE .~ .
COUPLED THERMOPLASTIC PROBLEM -

.. The numerical solution of the coupled thermomechanical IBVP.-invo_Ives.the .trensfor-
mation of an infinite dimensional dynamical system, governed by & system of quasi-linear
partial differential equations into a sequence of discrete nonlinear algebraic problems by

 means of a Galerkin finite element prOJectmn and a time marching scheme for the advance-
'ment of the prlmary nodal verlables ie. dlsplacernents and temperatures, together w1th

a return mapplng a,lgorlthm for the advancement of the 1nterna1 varlables

Here attention will be placed to the time mtegratmn schemes of the govermng equa—
tions of the coupled thermoplastic problem. In particular, we are interested in a class of
unconditionally stable staggered solution schemes, based ‘'on a product Jormula algorithm

arising from an operator split of the governing evolutlon equatlons These methods fall

within the classical fractional step methods
3.1. Local_ev_olut_i_o_n_ _pr_ob__le_m_ S

Consider the following (homogeneous) ﬁrst order constrained dissipative local problem
of evolution

giz A[Z,T] in 3% [0,T],

thmg = Zo in .Q,

(17)
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along with

%r 'yG[Z r} in 2x[0,T],

F1t=o = 0 in Q,

where Z, lying in a suitable Sobolev space Z, is a set of primary independent variables,
I' is a set of internal variables, A[Z, I'| and G{Z, I'] are nonlinear operators and v > 0
is a multiplier subjected to the classical Kuhn-Tucker conditions for a rate-mdependent
plasticity model. In the formulation of the fractional step method described below, it is
essential to regard the set of internal variables I' as implicitly defined in terms of the vari-
ables Z via the evolution equations (18). Therefore Z are the only independent variables
and their choice becomes a crucial aspect in the formulation of the fractional step method.
We refer to SiMO [1994] for further details.

Consider the set of conservation/entropy/latent heat variables Z and the set of internal
variables I'" defined, respectively, as

(18)

Z:={pp,H° B L} end I ={&&}| (19)

where @ is the deformation map, p := poV denotes the material linear momentum, H®
and HP are the elastic entropy (including phase change contributions) and plastic entropy
per unit reference volume, respectively, I is the latent heat per unit reference volume, €
the plastic strain and £, the strain-like hardening variables. The choice of Z becomes
motivated by the design constraints introduced in the isentropic operator split described
below.

All the remaining variables in the problem can be defined in terms of Z and I' by
kinematic and ConStitutive equations. In particular,
i. The elastic strain €° := € — €.
it. The Oauchy stress tensor o= 86.3 ( € H¢ £,) and stress-like hardening variables
ﬁa = “-—85 E(Ge He ga) : :
iii. The temperature Q= Ope B (ef, He, ¢,) and nominal heat flux Q=-K GRAD[O)].

With these deﬁmtxons in hand, and assuming zero body fcrces and zero heat sources,
the governing evolution equations of the thermoplastic problem can be written in the form
given by (17)-(18) where the nonhnear operators A[Z F] and G{Z 1"‘] take the form

‘—P
DIV[U] 3 o
A[Z: P] = '““_ DIV[Q] + Dmech H G[21 P] - {g;g;?((aa.’ ﬁﬁa’ %)) } ’ (20)
"_ Dthe‘r ’ ’

‘Hp“
where the phase-change heating HP¢ is. given by
HPC 1= —002 ¥ (O) - O, | (21)
and the mechanical dissipation D,,ecr, and thermal dissipation Diper are given by

Dinech =72 : G[Z, r'] >0, Diner = 7966&5(0': B, @)1 (22)
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- _where, usmg a compact nota,tlon we denoted as ST [ ﬂ"‘] the generahzed stresses

S 3.2 A-prlOI‘l stablllty estlmate

For nonhnear dzsszpatwe problems of evolution nonlmeor stabzlzty can be phrased in
terms of an a—pmom estzmate on the dynanncs of the forrn :

- Ta
-_-d

“where L(-) is a non-negative Lyapunovhke functlon C

For nonlinear thermoplasticity, see ARMERO & SIMO [1993] consider an extended
canonical free energy functional £(-) defined as- o o

42,1 = [ [+ Be % ) — GV + Vo), (24

“and assume that the"followmg conditions hold,"

1. Zero heat sources, i.e., R =0, L
il. Conservative mecha,mcal loading with potential Vemt( ) Le. B = —0,Veat(),
iii. Dirichlet boundary conditions for the temperature field with prescnbed constant tem—
perature &g > 0, i.e., @ = Oy on 82 x L and I'g = B. '
Then, L£(-) is a non-increasing Lyapunov-like function along the flow generated by the

_thermoplastic problem and a stralghtforward computatlon shows that the following a-

priori stability estzmate holds

r:(z r) f O, mech+Dcon]dQ<0 in [0 T] o (25)

Th1s cond1t1on is regarded see ARMERO & SIMO [1993] as a fundamental a-pmorz

estzmate for the thermoplastm problem of evolutlon wh1ch must be preserved by the tlme—
: "_':stepplng algor1thm 3'_ L : SRR : o :

_ 3. 3. Operator sphts _ :
Consader the d1ss1pat1ve problem of evolutlon glven by (17) (18) Wlth the assoc1ated

non-increasing Lyapunov-hke function £(-) given by (24). Consider an additive operator
split of the vector field 4 = A(l) + A(Z) lea.dlng to the followmg two sub-problems

Probleml =~ .~ Problem?2
= . AWz, T, L Z= . A®)[zZ, r] (26)
I'=q@lz,1,f = T'=yGZT]

. The eritical restriction on the design of the operator spht is that each one of the
sub- problems must preserve the underlymg dzsszpatwe stmcture of the orzgznal problem,

_1e,

%C(zfa),ﬂa)) <0, a=1,2 (27)
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where ¢ — (Z(%), I'(®)) denotes the flow generated by the vector field A, o =1,2.

Two different operator splits will be considered here. First, following ARMERO &
SmMo [1992A,1992B,1993], an isentropic operator split, which satisfies the critical design
restriction mentioned above, is considered. This split is compared next with an 1sothermal
operator split, which does not satisfy the design restriction.

(A) The isentropic operator split. Consider the following additive isentropic-based
operator split of the vector field A[Z,I']:

AlZ, I =AMz, 1+ A(”

8c t5€

Zz,1), (28)

where we define the vector fields AL and A(z)

_!«,_ . 0
) V[ | 0
ARz, =1 0 b, AQIZ IT= -~ gDV[QI+ §Dmeen o (29)
0 Dther
0 'HP ‘.
and consider the following two pfdblemé of evolution:.
Problem 1 | o Problem 2
Z = AQ)(2,1), } Z = A)2,T), } (30)
F:fyG[Z,F], meyG{Z,F].

Within this operator split, Problem 1 defines a mechanical phase at fixed entropy and
Problem 2 defines a thermal phase at fixed configuration. Note that a strong condition
has been placed in the Problem 1, by the additional reqmrement that not only the entropy
must remain fixed, but also the elastlc and plastic entropy, as well as the latent heat, must
remain fixed. Note also that the evolution of the plastic internal variables I' is imposed in
both problems.

Denoting by ¢+ (Z() 1"(0‘)) the flow generated by the vector field A,Eg‘e), a=12a
straightforward computation shows that the following estimates hold:

Go@®,r®) = [ D) 4e <o,

&
@(2)

(31)

Loz, r®) = [ 2o, + p@)aa <o,

mec con

where ’Dﬁngch, D&?),, and @) are the mechanical dissipation, thermal heat conduction

dissipation and absolute temperature, respectively, in Problem o, o = 1, 2.

Thus, the isentropic split preserves the underlying dissipative structure of the original
problem,
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(B) The xsothermal operator spht; Con31der the followmg addltlve zsothermabbased

' 'Operetor Spht of the vector field AlZ,I):-

180 %30

| ----A[zr] A‘“[z r1+A<2)[z r]   ’(32)

where we define the vector ﬁelds A( ) and A(Z) a8

1,.90 %80

7P 0

. DIV(e] . U
A7 D)=y B, AQIZ T = ~PIVIQI Y &Pt =) 1

. 0 NI Dther_ '
o0 ?ipc- ¥
and consider the following two problems of evolution: . .. :
Problem 1 - . S "ProbIem 2
7 =AWz, 1), }  z=49z,1, } (34)
_ F =7 G[Z ry, Jo F = G[Z 1"].

Wlthm thls operator spht Problem 1 deﬁnes a mechamcal phase at ﬁxed temperature
and Problem 2 defines a thermal phase at fixed configuration. Note also, that the evolutlon
of the plastic mternal variables I" is imposed in both problems.

Denoting by ¢ =3 (Z () I‘("‘)) the flow generated by the vector field A o= 1,2, a

180}

: _strailghtforward computatmn shows that the followmg_estlmates_hold _

- d - 1 -
dtc( (1) 11(1) /’D,'(nechdﬁ-kf(l— (1))7{ P(l)dﬂﬁﬂ

d

e ERRRREEt 1(35)
& 2 : €
20(2, <2’)— — @(2)lvt2ch+vcﬁtdn f a- (2))% p@%mgo

-Where Df,?e)ch, S,.f,",l He ("‘) and @(0‘) are the mechamcal d1331pat10n, thermal heat conduc-
- tion dissipation, structural elast0plast1c heatmg a.nd absolute temperature, reSpectrvely, in
~Problem o, a=1,2.. N s ST

The contrrbutlon of the stmctuml elastoplastzc heatmg to the evolutlon equatrons of

* each one ‘of the problems arising from the 1sothermal operator spht breaks the underlyzng
B dzsszpatwe structure of the omgmal pmblem B - -

3 4. Product formula algorlthms __ _.

The addltlve operator spht of the govermng evolutlon equatlons leads to a product
formula algorlthm and to a staggered solution scheme of the coupled problem, in which
each one of the subproblems is solved sequentially. Remember that the set of internal

variables I' is viewed as implicitly defined in terms of the set of variables Z, which are
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considered to be the only independent variables. Therefore, our interest here is placed on
the time discrete version of the evolution equation (17), and the update in time of the
variables Z using a time-stepping algorithm.

Consider algorithms Kfﬁ) [] being consistent with the flows t — (Z(“), )y, o=1,2,
and dissipative stables, i.e. which inherit the a-priori stability estimate on the dynamics
given by (27). Then the algorithm defined by the product formula:

Kal)= (K& okQ)1 (36)

is also consistent and dissipative stable. For dissipative dynamical systems if each of the
algorithms is unconditionally dissipative stable, then the product formula algorithm is
also unconditionally dissipative stable. This product formula algorithm is only first order
accurate. A second order accurate product formula algorithm can be defined through a
double pass technique given by, see STRANG [1969],

Kael] = (Kg/z oKy o Kf;t)/z)[] (37)

Note that, according to (31) and (35), algorithms based on the isothermal opera-
tor split will result in staggered schemes at best only conditionally stables and only an
isentropic operator split leads to uncondltionally (dlSSlpatzve) stable product formula al-
gorithms.

- 3.5. Time discrete variational formulation

~ The use of an operator split, applied to the coupled system of nonlinear ordinary
differential equations, and a product formula algorithm, leads to a staggered algorithm in
which each one of the subproblems defined by the partition is solved sequentially, within
the framework of classical fractional step methods. We note that contrary to common
practice, the evolution equations for the microstructural internal variables are enforced in
both phases of the operator split. A Backward-Euler (BE) time stepping algorithm has
been used and two different operator splits have been considered:

(A) Isentropic split. In the isentropic split, first introduced by ARMERO & SIMO
[1992,1993], the coupled problem is partitioned into a mechanical phase at constant en-
tropy, followed by a thermal phase at fixed configuration, leading to an unconditionally
stable staggered scheme. The additional design constraints of constant elastic and plastic
entropy and latent heat, in the isentropic mechanical phase have been introduced. An ef-
ficient implementation of the split can be done using the temperature as primary variable.
See ARMERO & SIMO [19924,19928B,1993] and Simo [1994] for further details.

i. Mechanical phase. The mechanical problem is solved at constant entropy. For
the sake of simplicity, only the quasi-static case will be considered. According to the
definition of Z given by (19) and the operator split given by (28)-(30), the additional design
constraints of constant elastic and plastic entropy and latent heat, have been introduced.
The evolution of the temperature can be computed locally. The time discrete weak form
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of the momentum ba.la.nce and the loce,l updates of elastlc and plastlc entropy, latent heat
‘and internal varla.bles ‘take the form: -

A{Fnt1, GRAD[WO]) = (B,mo) + (tn+1: 770)1"‘ + (th, no)Pmc
n-i~1 = o i : i :
En-i—l Ln, s
JIA:In+1 = Pn‘{‘;}"n—i—l én_+1s : . J

and the temperature is locally updated accer_ding to én+~1 = BH;E(E; w1 Hy, Ean-i—l)-
ii. Thermal phase. Using a BE scheme the time discrete weak form of the energy

" balance equation and updated elastic and plastic entropy, latent heat and internal variables

in the thermal phase take the form

| zl*z<@+<ﬂ 1= HE), o) = (Qn-;-l:GRAD[CO]) SR .
L (R + Dmechn+1? CO) (Qn-i—lyCO) .(Qn_"f'..l_? C_U)_Ptc . o .
e '_"Hn+1 = maelp(ﬁn-i-l’ n+1:.€an+1) S

o At : ; A .'.(39)
Hp+i = Hp =+ o Dthern,+1¢ o
- kLo
Lo --L(Q +1); - R K AR SRR R
Fn+1 - I‘ + ’Yn+1 Gn-i—l o S SR o , RATIEERN

(B) Isotherma] spht In the 1sothermal 5pl1t; the coupled system of equatlons is par—
tltloned into a mechanical phase at constant temperature, followed by a_ thermal phase at
fixed conﬁguratlon Note that, within the context of the product formula algorithm, using
the entropy form of the energy equation, the: elastic entropy computed at the end of the

mechamcal partltlon i8 used as initial condition for the solutlon of the thermal partltlon

i Mechamcal phase Notlng that under 1sotherma1 condltlons the plast1c entropy

- and latent heat remain constant, the time discrete weak form of the momentum balance
- equatmn, updated elastrc and plastic entropy, latent heat and 1nternal va.rlables take the
'-'form o '

(0n+1,GRAD[?10]) (B "Jo)+(tn+1,no)r +(tn+1m0)1“mc_'
Hﬂ+1 = "69W(€n+179na£an+1) .

H£+1—H SN (40)
: Iln-{z-l = I.‘ +'Yn+1 Gn+1} : ._ ,.

and the temperature remains constant 9n+1 = @,.
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. T_I_lermal phase. Using a BE scheme the time discrete weak form of the energy
balance equation and updated elastic and plastic entropy, latent heat and internal variables
take the form:

1 ) .o -
’A‘E(Qn+1(er;+1 - ;+1): CO) - (Qn+1: GRAD[CO]) =
(B + Dmechnt1 — Hoh1:C0) — {@nt1: o) ro — (@n+1, Co) e

H3+1 = —3@W(62+1,9n+1,fan+1), >
At

HY,, =HE+ o Diherntts
n+1

Ln+1 == L(@n-i-l): :
ny1 =1+ Tn+1 Gn+1

(41)
4. NUMERICAL SIMULATIONS

The formulation presented in the previous Sections is illustrated here in a number of
representative numerical simulations. First a numerical assessment of the accuracy and
stability behavior of the isothermal and isentropic operator splits is presented in the con-
text of quasi-static and fully dynamic cooling analysis of a thermoelastic and thermoplastic
pressurized thick walled cylinder. Next, the goals are to provide a practical accuracy as-
sessment of the thermomechanical model and to demonstrate the robustness of the overall
coupled thermomechanical formulation in a number of solidification examples, including in-
dustrial processes. The computations are performed with the finite element code COMET
developed by the authors. The Newton-Raphson method, combined with a line search
optimization procedure, is used to solve the nonlinear system of equations arising from
the spatial and temporal discretization of the weak form of the momentum and reduced
dissipation balance equations. Convergence of the incremental iterative solution procedure
was monitored by requiring a tolerance of 0.1% in the residual based error norm.

4.1. Numerical assessment of the operator split algorithms

(A) Cooling of a thermoelastic/thermoplastic thick walled cylinder. In this problem
a quasi-static and fully dynamic cooling analysis of a thermoelastic and thermoplastic
pressurized thick walled cylinder is presented. The goals here are to provide a numerical
assessment of the accuracy and stability behavior showed by the isothermal and isentropic
operator splits, in weakly (Case 1) and strongly (Case 2) coupled problems. To get a
strongly coupled problem, the thermal expansion coefficient o has been, unrealistically,
multiplied by a factor of 6 in the quasi-static cases and by a factor of 3 in the fully
dynamic cases. '

FIGURE 4.1 depicts the initial geometry of the problem, as well as the prescribed
boundary conditions. Plane strain conditions are assumed in the axial direction, so that
a unit band of axisymmteric finite elements need only be condidered. The inner and
outer radii adopted are R; = 100 mm and R, = 200 mm, respectively. The material
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properties are assumed to be (linearly) temperature dependent The initial temperature
of the cylinder is 593 °K, while the reference (ambient) temperature is 293 °K. Different
(constant) convection coefficients are considered for the inner, h = 1.16 N/mm s °K,
and outer, h = 0.01 N/mm s K, surfaces. The simulations are performed by applying a
pressure of 200 N/mm? at the i inner face of the cyhnder Sta,ndard bi- lmear 1sopa.rametr1c
ax1symmetrlc ﬁmte elements are employed = :

>\<4 ' o o . Insulated
Py =200 N'mm? R o
¥4 " :
——
B — 3
X —¥
—»]
R, = 100 mm —— g =
o T,=320°C
\/\ R,=200mm . . .-I

FiGURE 4.1. Cooling of a pressurized th1ck-walled cyhnder Imtlal geometry
and boundary.conditions.

The results obtained for the quasi-static analyses are collected in FIGURES 4.2 and
4.3 for a thermoelastic and a thermoplastic constitutive response, respectively. FIGURES
4.4 and 4.5 collect the results obtained for the fully dynamic analysis, assuming a ther-
moela,stlc and a thermoplastlc constitutive response, respectively. In each of these Figures,
it is shown for the Cases 1 and. 2, the radial displacement and temperature evolutions
at the inner and outer surfaces, obtained using isentropic and isothermal operator splits.
As expected, these Figures show that for strongly coupled problems (Case 2) the isother-
mal split leads to a completely unstable behavior ending with a blow-up ‘of the solution,
while the isentropic split provides the right solution. Despite this fact, for weakly cou-
pled problems the two splits provide practically the same solution, This behavior has been
shown in quasi-static and dynamlc analyses as Well as for thermoelastlc and thermoplastlc
constxtutlve responses. : - -

4.2, Numencal 51mu1at10ns of sohdlﬁcation processes

(A) Cylindrical aluminium Sohdlﬁcatmn test This example taken from CELENTANO,
OLLER & ONATE [1996], is concerned with the solidification process of a cyhndrlcal alu-
minium specimen in a steel mould. The geometry of the problem is shown in FIGURE
4.6. Assumed starting conditions in the numerical simulation are given by a completely
filled mould with aluminium in liquid state at a uniform temperature of 670°C. The initial
temperature of the mould is 200°C. T he matenal propertles for the alumlmum have been
assumed to be temperature dependent, while constant material properties have been as-
sumed for the steel mould. The external surfaces of the mould as well as the upper surface
of the casting metal have been assumed perfectly insulated. A constant heat transfer coef-
ficient heo = 10 N/mm s °K and a gap dependent convection-radiation coeflicient between
the aluminium and the steel mould has been assumed. Only gravitational forces have been
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FIGURE 4.2. Quasi-static cooling of a thermoelastic pressurized thick-walled
cylinder. Radial displacement and temperature at the inner and outer sur-
faces, using isentropic and isothermal operator sphts for a wea.kly coupled
{Case 1) and strongly coupled (Case 2) cases. :
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FIGURE 4.3, Quasi-static .'(:Oc')i'i_n'g_: ofa thermqylastic breSsuriz_éd thick-walled
. cylinder. Radial displacement and temperature at the inner and outer sur-

faces, using isentropic and isothermal operator splits, for a weakly coupled
(Case 1) and strongly coupled (Case 2) cases.
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FIGURE 4.4. Dynamic cooling of a thermoelastic pressurized thick-walled
cylinder. Radial displacement and temperature at the inner and outer sur-
faces, using isentropic and isothermal operator spllts, for a weakly coupled
(Case 1) and strongly coupled (Case 2) cases.
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FIGURE 4.5. Dynamic cooling of a thermoplastic pressurized thick-walled
cyhnder. Radial displacement and temperature at the inner and outer sur-
faces, using isentropic and isothermal operator splits, for a weakly coupled
(Case 1) and strongly coupled (Case 2) cases.
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assumed. Further details on the geometrical and material data can be found in the above
reference. IR
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F1GURE 4.6, Solidification of an aluminium cylinder in a steel mould. Ge-
ometry of the problem.

Spatial discretization of the casting cylinder and the mould has been done using a
finite element mesh of axisymmetric 3-noded triangles. Numerical simulation was done up
to 90 secs. of the solidification test using a time increment of 1 sec.
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FIGURE 4.7. Solidification of an aluminium cylinder in a steel mould. (a)
Temperature evolution at the casting center, casting surface and mould surface
for an intermediate section. {b) Radial displacement evolution at the casting
surface and mould surface for an intermediate section.
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FIGURE 4.7A shows the temperature evolution at the casting center, casting surface
and mould surface for an intermediate section. A typical temperature plateau due to
the release of latent heat during solidification can be seen in the casting center point
of this section up to 15 secs. approximately, FIGURE 4.7B shows the evolution of the
radial displacements at the casting and mould surfaces for the same intermediate section.

- The difference between the two curves gives the gap distance evolution at the chosen

section. Temperature and air gap evolution predicted by the model compare very well
with experimental results. A data sensitivity analysis has shown a strong influence of the
heat convection coefficient between aluminium and mould in the temperature evolution.

(B) Solidification of a Renault Clio crankshaft. This example deals with the numerical
simulation of the solidification process of an industrial part, in this case, a Renault Clio
crankshaft. Geometrical and material data, as well as experimental results, were provided
by Renault. FIGURE 4.8 shows a view of the finite element mesh used for the part, consist-
ing of nearly 15,000 4-noded tetrahedral elements. The sand mould has been discretized
using around another 30,000 4-noded tetrahedral elements.

FiGURE 4.8. Solidification of a Renault Clio crankshaft. Finite element
mesh of the part.

The temperature distribution at the part at different stages of the analysis, using a
quarter section view, is shown in FIGURE 4.9. FIGURES 4.10 and 4.11 show the temper-
ature distribution on sections x-y and x-z, respectively, of the deformed shape of the part.
In these Figures it is also clearly shown the evolution of the gap between the part and
the mould. The evolution of the mushy zone, given by the temperature evolution at the
liquid-solid transition phase, is shown in FIGURE 4.12. A comparison between the com-
puted and the experimental temperature evolution at different points is shown in FIGURES
4.13A and 4.13B, where a good agreement is observed.

5. CONCLUDING REMARKS

A formulation of coupled thermoplastic problems with phase-change has been pre-
sented. The formulation has been consistenly derived within a thermodynamic framework.
A particular J2 thermoplastic model has been considered in which the material properties
have been assumed to be temperature dependent. Operator splits of the governing dif-
ferential equations, and their nonlinear stability properties, have been discussed. Within
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FIGURE 4.9. Solidification of a Renault Clio crankshaft. Temperature dis-
tribution at different stages of the solidification process.
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FIGURE 4.10. Solidification of a Renault Clio crankshaft. Temperature
distribution at different stages of the solidification process. Section x-y.
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CIMNE
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FIGURE 4.11. Solidification of a Renault Clio crankshaft. Temperature
distribution af different stages of the solidificafion process. Section x-z.
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CIMNE crankshaft. Mushy zone
Section xy Section xx
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RN
FIGURE 4.12. Solidification of a Renault Clio crankshaft. Evolution of the
mushy zone. Temperature distribution at different stages of the solidification
process. Sections x-y and x-z.
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FIGURE 4.13A. Solidification of a Renault Clio crankshaft. Temperature
evolution at different points. '
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FIGURE 4.13B. Solidification of a Renault Clio crankshaft. Temperature
evolution at different points,
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~.the isentropic operator split, additional split.design constraints have been introduced. A

" numerical assessment of the accuracy and nonlinear stability properties -of the isentropic
- and isothermal splits has been performed, Numerical results obtained in the simulation of
. SOlldlﬁC&thIl processes show a good agreement w1th the experlmental da.ta a,vallable
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APPENDIX I. RETURN MAPPING ALGORITHMS

In this appendix we summarize the main steps involved in the return mapping algo-
rithms for the mechanical and thermal problems arising from the isentropic operator split.
Note that for the mechanical problem an isentropic return mapping algorithm is performed,
while for the thermal problem the classical isothermal return mapping is performed.
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e
et e

iv.

I.A. Mechanical 'p.r.oblem & :

. Step 1. Trial state (kinematics).

Given the initial data. {en, n} a.nd databa.se {e §_n_} at time ¢, and prescribed €41
at time t,41, set : . O S . '
.ep t'r'ml — P

n+l- T ne
trial ,__
&n_—{-l e g'ns_ )
e trial L © _ptrial
€rt1 T €pp1 T €pgr -

. Step 2. Trial temperature.

IF {constant material properties) THEN

O 1= Oleny, HY, 414 with

en+1 = tr[en+1] and He = He(en,@n,ﬁn)
ELSE
Solve for @i the implicit nonlinear equation:
_F“Ie(e etrial tmal) He 0.
i+l Yndl n+1 =
END IF
Step 3. Trial (generalized) stresses.
sirial = devlolTiy]) = 2pirigdovles ),

trial trial : trial _ trial f oytrial
Ppt1 = Bpg1bntl — 3"‘9n+1 Gl (9n+1 — o),

trial ., trial trial
qn+1 -_.—." K€(£n+1 39 +1)

Step 4. Trial yield function.

i+ = Bt ol On) = nsm‘u \f [1o(@0) = a5
IF $iiel <O THEN

Set ()n41 = ( )ff.ff{l and update database
RETURN

END IF
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v. Step 5. Isentropic return mapping.

vi.

{F (constant material properties) THEN
Solve for 7,41 the implicit nonlinear equation::
gp'.v‘t.—i—], P = @(Un—l-l:Qn-E—la@n) =0 with

@n-{—l = é(tgn+1, Hﬁ,: Eﬂ-l-l):
ELSE B
Solve for v,41 and @41 the implicit nonlinear set of equations:

gZS?'I—?—I = gis(G'n+1') dn+1, @TL) = 0:
ﬂ—e(en-i—l: @n+1,5n+1) - Hs. = 0:

END IF o
) 1 2
Ppg1 1= Iisffﬁl“ M;ja; = 2t 1041 — A/ 3[40(On) — @],
Hrgd 3

- 2
bnr1 = EF + \/;’erl:
On+i = ‘“ffe(fnﬂ, Ont1)-

Step 6. Update database and compute stresses.

P . p trial trial
€+l = € + Yrt+1Tnq1
_ trial Hnt1 trial
Sn4l = Spq1 rial 2Mﬂ+1'}'n+1nn+]_ )
Hnil

P+l = Bnti1€nt1 = 3kn+10n+1(Ont1 — o),
Ont1 = Pntl 33+ Sng1,

where

il = sirisllsizial.

[.B. Thermal problem

. Step 1. Trial state (kinematics).

Given the initial data {€,,©,} and database {€f,&,} at time ¢, and prescribed

p trial | __ _p

n+1 - En’
trial .__

‘fn+1 A gm

e trial . _
€ntl T lntl — €xpy
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il.

il

Step 2. Trial (generalized) stresses.

trial .__ trialy ... e irial
Sn-l—l T dev[ n+1] 2Un+1dev[€n+l ]:

trial |

l
qn—l-l ﬂ —Kﬁ(ﬁsﬁ a9n+_1)_- :

| :Step 3 Trml yzeld functwn

trial trwl trmt
45n+1 = ‘p(o'nﬂ ) Unt :@n+1

= 1|8gﬂ1” - \/‘ [?JG n+1 qf,r.ﬁl]
IF @Lﬂ"ﬂl <0 THEN

| 'Séﬁ (- )n+1 = ( )t”‘“ and update database
o RETURN '

END IF

. ‘Step 4. 'Isother'rnql return mapping. s : 3
Solve for ;41 the implicit nonlinear equation:

¢n+1":é(o'n+1sQn+1, n+1) mO 'With :

Dy 3:”33‘4{%‘” - 2”n+17n+1 - f[yo @n+1) = Gn1l,

o= 5:33‘ \@ml,_.:.

e _f-—-.K,é (#f.nﬁr_l»._-@nﬂ)-

- where ...

el . p trial trial .
n+1 €n+1 : +'Yn+1nn+1s e

i = sﬁfi‘i‘/!lsﬁ:‘fi‘ll

vi. Step 6. Plastic mechanical 'dissipation. SRR

2
Dmechn+1 = \/;’Ywi-l yo(@n-i-l)/At-
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FIGURE 4.13A. Solidification of a Renault Clio crankshaft. Temperature evolution at
different points.

FIGURE 4.13B. Solidification of a Renault Clie crankshaft. Temperature evolution at
different points.









