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Abstract. The assessment of the seismic vulnerability of built heritage is still an open issue. 

Regarding this topic, in recent years many researchers have worked in the development of 

refined numerical models to simulate the behaviour of different building typologies subjected 

to seismic action. To be reliable, these models require in-depth knowledge of the building object 

of study.  

In many countries, such as Italy, where the widespread historical heritage is widely present, 

there is the need to define quick, but reliable, evaluation procedures, which allow, in advance, 

to assess the vulnerability of the historical heritage of an entire area using databases already 

present without necessarily proceeding with detailed investigations on each building.  

Based on procedures in the literature, the authors have developed an assessment 

methodology focused on the construction of fragility curves, safety factor vs PGA and 

vulnerability index, which allows to formulate hypotheses on the probable behaviour of a 

specific type of building, to any similar actions and the probable expected damage.  In the view 

of evaluating the seismic safety of a small historic centre in an area with a high seismic 

propensity, this procedure could be useful for prioritizing interventions in probabilistic terms. 
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1 INTRODUCTION 

The assessment of the seismic vulnerability of existing buildings not damaged by the 

earthquake is an important topic for the classification and subsequent safety of the historic 

buildings of the entire Italian territory. 

The procedure that leads to the large-scale vulnerability classification of existing buildings 

must necessarily be a simple and reliable procedure. It is believed that it should be able to 

provide elements in support of a possible classification starting from data that can be easily 

found in the municipal archives and in cards such as the CARTIS survey forms [1], without 

necessarily requiring visits and surveys on site (which, however, are not always possible). 

Over the years, approaches have been developed by the Italian scientific community that 

address the issue of studying the seismic vulnerability and the propensity to damage of the 

existing one, but often we start with the post-earthquake assessment [2-4]. The models proposed 

are often very refined models that require in-depth knowledge of the building, not always 

available, qualified professionals in the use of calculation processes and important processing 

times [5,6]. 

The purpose of this research is to look for a procedure for estimating the vulnerability of 

existing buildings not yet damaged by the earthquake, which is reliable and easily extendable 

to the assessment of an entire urban area. The procedure can be useful for public administrations 

as a tool on which to base maintenance planning. 

To this aim, rather than proposing a new method that would require a long and important 

validation, one already present in the literature was selected. The seismic assessment 

methodologies available are deterministic, hence it is necessary to incorporate them into a 

probabilistic framework.  

Two approaches seem to be easily applicable to vulnerability assessment both for single 

buildings and for widespread contexts: 

• The approach proposed by Borri and De Maria in [7-9] relating to three types of 

simplified verification: simplified gravity verification, simplified global horizontal 

loading verification and simplified local mechanisms verification. The results of the 

three simplified checks are compared with the safety levels required by the Italian 

NTC2018 [10] standards for the limit state of safeguarding human life (SLV) referred 

to the site in question, the building type considered and the intended use class. These 

results are expressed in terms of conventional safety factor and contribute to the 

inclusion of the building in a certain class of vulnerability. 

• The approach presented by Benedetti and Petrini [11] based on the classification of 

existing constructions through a vulnerability index, as well as the definition of the 

associated damage (acceleration associated with the start of damage and acceleration 

associated with collapse) through the construction of suitable vulnerability curves. 

The first approach is applied to each single building and provides a safety factor, SFVG, 

associated with the characteristics of the building and the seismic zone to which it belongs. The 

method is lean and can be applied to several buildings, but it is a deterministic method that does 

not give any information on the probable behaviour of the building as the seismic action varies. 

The second method provides, on a statistical basis, an indication of the level of damage that 

a specific type of building could suffer on a range of seismic accelerations. The estimate of the 

damage level depends not only on the characteristics of the building analysed, but also on 
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parameters determined on a statistical population considered reliable. 

In order to arrive at a probabilistic forecast of the damage as the acceleration varies, the 

authors thought to implement the first method with the construction of fragility curves that 

relate the decrease of the safety factor to the variation of the recorded acceleration. 

The proposed method is here applied to a simple residential building showing the typically 

Central Italy construction typology to evaluate the propensity to damage before the 1997 

earthquake and before the earthquake of 2016. The fragility curves, implemented here are used 

to evaluate the decrease in the safety factor for the considered range  of PGA, will be compared 

with the a more consolidated approach as the vulnerability curves proposed in [11] in order to 

check their alignment. The results are reported in the following sections. 

 

2 MATERIALS AND METHODS 

The aim of the research is to evaluate the seismic vulnerability of a masonry structure starting 

from already available data. Following the application of the fragility curves concept it is then 

necessary to identify a damage index that is significant, but easily calculable starting from 

available data. 

The safety factor SFVG proposed in [7,8] has this characteristic, as it depends only on the 

distributional characteristics in plan and elevation and on the characteristics of the materials 

readily available from visual investigations or with non-destructive tests. Therefore, SFVG is the 

magnitude index of the damage that we are going to study from the probabilistic point of view.  

2.1 Definition of fragility curves 

The fragility curves are a forecasting method already used in the seismic field [12-17]. The 

method consists in the construction of curves that allow a probabilistic definition of the 

occurrence of a certain phenomenon when a certain condition varies, for example: the 

probability of reaching a certain damage threshold as the lifetime varies or the level of recorded 

acceleration varies [18-20]. 

The construction of these curves is quite simple, and the reliability seems good. Being a 

probabilistic method, it certainly suffers from uncertainties: epistemic uncertainties linked to 

the interpretation of the phenomenon and the consequent modelling, as well as to the sample 

size; random uncertainties linked for example (but not only) to the quality of the data.  

The construction of the fragility curves starts from the modelling, with an appropriate 

probability density function (p.d.f.), of the values of the chosen variable, in our case it will be 

SFVG, present in a certain range or detected for a certain value of the acceleration a*. 

Therefore, in the cases studied, the fragility curve defines the probability for a system to 

reach the loss of a certain value of SFVG at a certain acceleration 𝐴̅. 

Thus, having defined the damage threshold 𝑠𝑓̅̅ ̅, the probability that it is reached in the instant 

a*, is described in the area underlying the p.d.f. to the left of the threshold. On the contrary, the 

probability of exceeding this threshold is described by the underlying area to the right of the 

threshold itself (Figure 1a). 

By constructing the probability density for the chosen random variable for each of the 

selected intervals, or acceleration values, it is immediate to understand how it is possible to 

construct the fragility curve linked to the experimental evidence or experimental fragility curve 
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𝐹𝐴̅(𝑎
∗) (Figure 1b).  

 

 
  (a) (b) 

Figure 1: Qualitative probability of reaching and exceeding the threshold 𝑠𝑓̅̅ ̅: the probability of reaching 𝑠𝑓̅̅ ̅, 

defined by  𝐹𝑠𝑓(𝑆𝐹, 𝑡𝑎
∗) is dashed; in color the probability of exceeding the threshold 𝑠𝑓̅̅ ̅, defined by the survival 

function ℑ𝑠𝑓(𝑆𝐹, 𝑎
∗), (a) qualitative p.d.f. for a value of a*; (b) p.d.f. built for several values of a*. 

The area above the threshold 𝑠𝑓̅̅ ̅ is easily calculated using the survival function,  

 

ℑ𝑠𝑓(𝑆𝐹, 𝑎
∗) = Pr{𝑠𝑓 > 𝑆𝐹} = 1 − 𝐹𝑠𝑓(𝑆𝐹, 𝑎

∗)  (1) 

 
where 𝐹𝑠𝑓(𝑆𝐹, 𝑎

∗) the cumulative distribution of sf at each acceleration a*. It describes the 

probability that the variable, sf, takes on values greater than a certain value SF, in our case 

SF=𝑠𝑓̅̅ ̅: 

The area below the threshold 𝑠𝑓̅̅ ̅  is given by the cumulative distribution 

𝐹𝑠𝑓(𝑆𝐹, 𝑎
∗)=Pr{𝑠𝑓 ≤ 𝑆𝐹} , which describes the probability that sf can assume values not 

exceeding SF, in our case SF=𝑠𝑓̅̅ ̅. 

The computation of 𝐹𝑠𝑓(𝑆𝐹, 𝑎
∗), like the computation of its complementary ℑ𝑠𝑓(𝑆𝐹, 𝑎

∗), is 

possible through the numerical integration of the probability density function 𝑓𝑠𝑓(𝑆𝐹, 𝑡
∗) 

respectively in the intervals (-; 𝑠𝑓̅̅ ̅] and (𝑠𝑓̅̅ ̅; +). In this way, the areas calculated on different 

thresholds 𝑠𝑓̅̅ ̅ provide the experimental fragility curves, 𝐹𝐴̅(𝑎
∗), for each of the established 

performance thresholds Commercial codes of probability and statistics allow this integration to 

be carried out with ease. 

The investigated variable (SFVG safety factor) will be modelled with a normal distribution. 

The experimental fragility curves will be constructed using the cumulative distribution 

function, 𝐹𝑠𝑓(𝑆𝐹, 𝑎
∗) and then considering the hatched areas in Figure 1.  

2.2 Definition of vulnerability index 

The construction of the trilinear vulnerability curves proposed in [11,21] is also based on the 

analysis of a series of information collected in technical data templates [22] for buildings of the 

same construction type and damaged by the earthquake. 

The vulnerability is estimated on the basis of a certain number of parameters considered 
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representative of the predisposition of the building to suffer damage as a result of a seismic 

event. For masonry buildings, the parameters identified as significant for the estimation of a 

vulnerability index are 11. For each parameter found in the building, a detailed description is 

given in the technical data templates that allows it to be classified in a specific damage class 

(from A best class, a D worst class). To construct the numerical index, V, each class was 

assigned a score pi, different from parameter to parameter, and a weight wi which measures the 

impact that this parameter has on the global vulnerability of the building. 

The vulnerability index is therefore defined as the weighted sum of the scores of each 

parameter: 

 

V = Σi pi wi   (2) 

 

Scores and weights are determined through statistical analysis of damage data collected on the 

occasion of earthquakes that have occurred [21]. 

The damage index associated with this procedure is obtained by means of a weighted average 

of the type: 

 

d = Σij SiFjDij   (3) 

 

where Dij is the damage index in the i-th construction component (vertical structures, horizontal 

structures, stairs, partitions) located in the j-th floor, Si and Fj are weight coefficients that 

characterize the component and the floor. In this case too, the information is obtained from the 

already mentioned technical data templates. 

The vulnerability index V and the damage index d are finally used to define the relationship 

between damage, vulnerability and seismic action a. The relationship d (V, a) is obtained 

through the statistical analysis of the survey data on damaged buildings. From this relationship, 

the different damage-acceleration curves for buildings with different vulnerability index values 

are obtained (Figure 2). The construction of analogous curves will be used as a comparison with 

the proposed methodology. 

 

 
Figure 2: Trilinear vulnerability graphic for masonry buildings with parameters estimated on the basis of data 

collected after seismic events in Italian municipalities [23] 
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3 CASE STUDY 

As a first case study to test the effectiveness of the methodology, a small, isolated stone 

masonry building was chosen, in the historic centre of Campi Alto di Norcia (PG), an area of 

high seismicity [24,25]. The subsoil is rather rigid and rocky; according to the Italian legislation 

it can be classified in Soil Class A [10]. The territory has slopes with an inclination between 

15° and 30° so, for the Italian Design Code the site has to be considered in topographic class 

T3.  

The site was hit by a moderately strong earthquake in 1997 but also in 1979. The building, 

selected as a case study, underwent several damages and strengthened in early 2000. In 2016 

Campi Alto suffered a new strong earthquake and the case study again suffered major damage 

despite the seismic strengthening of early 2000. 

In the following the computed seismic vulnerability is compared to observed damage in 1997 

(ag/g=0.2275) and 2016 earthquake (ag/g = 0.30256g), using data recorded before the seismic 

event. The aim is to investigate the ability of the developed method to assess the probable level 

of damage associated with recorded levels of PGA. 

3.1 Structural unit  

The unit consists of a simple structural unit of about 60 m3 per floor, on 3 floors, two of 

which are basements, and a barrel-vaulted floor on the ground floor (Figure 3). The building 

consists of load-bearing compact limestone masonry, of the “Roughly cut stone masonry (even 

irregularly shaped) with good texture", according to the definition in circular no.7 of 21-

01.2019 of [10], with timber floor and roof. It is noted here that the building in the past has 

been located at the end of a series of houses arranged in a row along one of the many contour 

lines that characterize the steeply sloping territory of Campi Alto, and now all of them were 

absent and collapsed in past times. 

The earthquakes that hit Campi di Norcia along history are many, but a part of the building 

has been able to resist and at the end of the twentieth century. Two buttresses of different size 

are present in the South-East corner (Figure 4), while the other corner of the facade features a 

good connection between orthogonal walls. The buttresses probably served to stabilize a wall 

originally part of the adjacent structural unit, which no longer exists. The building, before the 

restoration presented iron tie rods in the upstream-valley direction and one parallel to the 

façade. 

   
                      Ground Floor               1st floor                      2nd floor             single pitch roof 

Figure 3: Plans on the selected case study (dashed lines for collapsed masonry portions after 1997 earthquake). 
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3.2 Earthquake damages 

After the 1997 earthquake, it appeared without roofing and with a large part of the masonry 

at the top collapsed, some diagonal cracks and vegetation inside, therefore floors certainly 

partially collapsed (Figure 4a). In the early 2000s, a structural consolidation intervention was 

undertaken that brought the building back to being inhabited, but the material transformations 

were numerous (Figure 4b). Due to the 2016 earthquake, the municipal archives, necessary to 

understand the exact type of structural interventions carried out, cannot be consulted. However, 

a consolidation of the ground floor with the preservation of the masonry barrel vault can be 

recognized, but with an additional r.c. floor above it and the consolidation of the external stone 

masonry lief with and additional new one made with clay block masonry inside. The earthquake 

of 26th and 30th October 2016 seriously damaged it again, highlighting the new vulnerabilities 

of the intervention, perhaps also linked to the type of intervention performed (Figure 4c). The 

renovated part above the barrel-vaulted ground floor is rotated rigidly, destroying the ground 

corners of the façade and only the lower part of the façade has overturned out-of-plane. 

 

              

Figure 4:  Photos of the case study: a) after 1997 earthquake b) after the restoration in 2000s c) after the 

earthquake in 2016. 

4 RESULTS 

The analyses carried out two simulations: the first to predict the propensity of the building 

to be damaged before the 1997 earthquake (with the floor and wooden roof still present and 

with active iron tie-rods) and then to verify the result in the light of the damage recorded. The 

same investigation will then be done for the building repaired after 1997 (with the addition of 

modern brickwork within the two upper floors and the insertion of reinforced concrete floors) 

and damaged again by the 2016 earthquake. The aim is to investigate the ability of the 

expeditive method to assess the probable loss of performance associated with recorded levels 

of PGA. 

4.1 Fragility curves 

Following the procedure described above, the fragility curves were then constructed for each 

building describing the probability of passing certain thresholds of loss of the SFVG safety factor 
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as a function of the varying PGA (Figure 5). The acceleration interval chosen is between 0.036 

ag/g and 0.28 ag/g as it is representative of the accelerations of the Italian territory. The step 

adopted for the analysis is 0.02 ag/g. The safety factors, SFVG, recorded for each step of the 

interval are modelled with a normal probability distribution. The construction of the 

experimental fragility curve is obtained as presented in the previous paragraphs using the 

cumulative distribution function 𝐹𝑠𝑓(𝑆𝐹,𝑎∗). 

 

Table 1: Safety factor SFVG for different values of PGA and the adopted  parameter for gamma distribution. 

      Gamma distribution 

SFVG 70% 50% 30% 10%    

  PGA(g) 0.117 0.129 0.167 0.215  7.8309 0.0185 

        

 

 
Figure 5: Fragility curve of the probability of reaching a value SFVG ≤ SFVG * (for SFVG * = 32.5%, Soil 

Category A, Topography T3). 

4.2 Performance loss thresholds 

The fragility curves were also studied as the transition probability of a given threshold of 

values for the overall safety factor SFVG. The methodology used is that developed by Garavaglia 

et al. [18]. 

The range of accelerations and the step of analysis are the same of the previous section: 0.06-

0.28ag/g and step of 0.02 ag/g. The values of the SFVG recorded for each interval are modelled 

with a normal probability distribution. The construction of the experimental fragility curves is 

obtained as presented in the previous paragraphs using the cumulative distribution function 

𝐹𝑠𝑓(𝑆𝐹, 𝑎
∗). 

It was considered that significant limit thresholds for loss of the safety factor SFVG could be: 

 

𝑠𝑓̅̅ ̅=SFVG=20%; 𝑠𝑓̅̅ ̅=SFVG=40%; 𝑠𝑓̅̅ ̅=SFVG=60%. (4) 

 

In Figure 6 are reported the experimental fragility curves defined on 5 intervals: (0.1-0.14]; 

(0.14-0.18]; (0.18-0.22]; (0.22-0.26]; (0.26-0.30] g. These curves define the probability of 

reaching a value SFVG less or equal to the assumed threshold 𝑠𝑓̅̅̅̅ . Therefore, the experimental 

 
PGA (g)  
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curve 𝑠𝑓̅̅̅̅ =SFVG=20% suggests that for PGA less than 0.12g, there is a 40% probability that the 

safety factor, SFVG, has lost 20% of its initial value.  

 

 
Figure 6: Experimental frailty curves describing the probability of loss of performance, 

evaluated in terms of SFVG, for different thresholds of possible loss (Soil Category A, 

Topography T3). 

4.2 Trilinear vulnerability curves 

The method proposed in [11,21] is applied in the selected case study. The vulnerability index 

is calculated as a weighted sum of the numerical values expressing the ‘seismic quality’ of 

structural and non-structural elements which play a significant role in the seismic response of 

the structure. 

The obtained vulnerability index is computed for two cases:  

a) Pre 1997 seismic event, 

b) Pre 2016 seismic event. 

 The obtaining parameters based on the data collected with vulnerability index survey form 

are reported in Table 2. 

Table 2: Vulnerability Index VI global parameter. 

 Damage onset PGA 

yi 

Collapse PGA 

yc 

Vulnerability 

index V 

Pre 1997 earthquake 0.037 0.325 33.99 

Pre 2016 earthquake 0.0423 0.379 25.85 

 

These data are reported in Figure 7 in terms of two graphs expressing the damage in function 

of recorder PGA. About the situation pre-earthquake of 1997 the graphic indicates an early 

damage acceleration of 0.037 ag/g and a collapse acceleration of 0.325 ag/g with a vulnerability 

index V=33.99. The structural interventions carried out in 2000s improves the vulnerability 

index of the building by increasing the collapse PGA to 0.379 with V=25.85. 

Compared to the acceleration recorded in 1997, ag/g=0.2275, the method predicts a damage 

up to 0.6. Considering the earthquake of 2016, ag/g=0.30256g, the damage predicted in the 
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structure is still high despite the improvements made in early 2000s. However, if we compare 

the two graphs, we note that if there had been no improvements, the damage, the building would 

have suffered, would have been 0.9.  

The computed vulnerability of the structure before the 1997 and before the 2016 earthquakes 

matches the damage observations. In particular, during 1997 earthquake moderate damage was 

observed on the top of the building, despite the lack of maintenance, while near collapse 

conditions were observed during 2016 earthquake, despite the seismic strengthening.  

The results in Figure 7 show that the maintenance performed has improved the vulnerability 

index and lowered the probability of damage as the acceleration varies, but due to the intensity 

of the 2016 earthquake, a propensity to damage close to 0.78 is still noted. However, the damage 

recorded is much higher and is close to collapse almost as if maintenance had not been 

performed. This suggests that the interventions carried out, although of an ameliorative nature 

of the vulnerability, were incompatible with the type and materials of the original construction. 

This raises in an important way the problem of the evaluation of the new consolidation 

techniques for the protection of the historical heritage, as well as now finding a solution to 

repair it again, without demolishing it. 

 

 
Figure 7: Damage degree as a function of peak-ground-acceleration before 1997 and 2016 earthquake Following 

approach [7]. Blue arrow:  expected damage for an acceleration equal to that of the 1997 earthquake. Red arrow: 

expected damage for an acceleration equal to that of the 2016 earthquake. 

5 CONCLUSIONS 

The research developed in the present study aims to define a procedure for estimating the 

seismic vulnerability of historic residential buildings before a seismic event occurs. The 

procedure should be characterized by simplicity, reliability and use of the data derived from the 

current survey forms to be applied to large urban areas (e.g. a historic centre). 

The choice of adopting parts of approaches already tested in literature and extending them 

to a probabilistic reading, made it possible, on the basis of data available in a national database, 

such as CARTIS, to evaluate the structural safety of masonry structures. The chosen procedure 

allows to compute a safety factor, SFVG calculated on the basis of the geometric, material and 
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site characteristics of the buildings examined. It was extended here in a probabilistic framework 

with the concept of the fragility curves, which helped to formulate hypotheses on the possible 

loss of performance of the building, measured as a decrease in the safety factor SFVG, as the 

intensity of shaking increases. The procedure was then programmed through VBA and Excel 

in order to automate all the steps into a simple tool. 

The procedure was applied in a case study in Campi di Norcia, hit by earthquakes in 1997 

and 2016 and for which pre-earthquake and post-earthquake information was available. The 

results show that the predicted loss of performance matches quite well the observed structural 

response. Furthermore, the results were always compared with trilinear vulnerability curves (a 

consolidated method proposed by Benedetti and Petrini [11] three decades ago). Even in the 

case the results between the two methods are quite aligned. 

The comparison between the two methods seems to validate the assumption of the safety 

factor as a quantity of damage index of the damage for an undamaged building and it seems to 

suggest a combined use of the fragility curves and the vulnerability index to arrive at a seismic 

classification of the buildings. 

Future work will aim in the application to apply the developed procedure in large urban areas 

for seismic vulnerability prediction. 
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