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Abstract. In this paper, we present an analysis on optimization and
risk management in Communication Networks (CNs). The model is pro-
posed for offline traffic engineering optimization, which takes a central-
ized view of bandwidth allocation, performance control, and risk control
of network profit shortfall. First, we introduce a linear penalty cost in the
CN optimization model and derive the optimal bandwidth capacity with
the penalty cost. Then, we use the mean-variance approach to analyze
the profit shortfall risk in CNs. Finally, numerical results are shown to
reveal the impact of the penalty cost on the CNs performance.

1 Introduction

Traffic engineering is a process to optimize resource utilization and network
performance [1], [2]. It has greatly improved network performance by using the
emerging technologies, such as Multi-Path Label Switching and Optical Channel
Trails [3], [4].

There are two forms of traffic engineering: online planning and offline plan-
ning. In past works, the offline optimization problem was formulated as a deter-
ministic Multi-Commodity Flow (MCF) model, where demand of each channel
was given as a fixed quantity [5], [6].

Recently, there were some works concerning with the stochastic traffic engi-
neering. Mitra and Wang presented a stochastic traffic engineering framework
for optimizing bandwidth provisioning and path selection in CNs [7]. Mitra and
Wang also developed an optimization framework for the network service provider
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to manage profit in a two-tier market [8]. Mitra and Wang furthered their stud-
ies in [7], [8] and developed the efficient frontier of mean revenue and revenue
risk [9]. Wu, Yue and Wang presented a stochastic model for optimizing band-
width allocation in [10], which took a centralized view of bandwidth allocation,
performance control, and risk of network profit shortfall. They analyzed the loss
rate constraint and risk averseness in the CN optimization model and showed
the impact of the loss rate constraint and the risk averseness on the network
performance.

In this paper, based on the model presented in [10], we introduce a linear
penalty cost in the optimization model for network bandwidth allocation. When-
ever there is unsatisfied traffic demand with the limitation of network bandwidth,
a linear penalty function will be added in the objective function. Next, we study
the risk of the network profit shortfall by using the mean-variance approach [11],
[12]. Finally, numerical results are shown to reveal the impact of the penalty cost
on the network performance.

The rest of this paper is organized as follows. In Section 2, we present the
system model that we consider in this paper and present the notations and
preliminaries. In Section 3, we formulate the optimization model and derive the
optimal bandwidth capacity with the linear penalty cost. In Section 4, we analyze
the network profit shortfall risk by using the mean-variance approach. In Section
5, we give some numerical results to show the impact of the penalty cost on the
network performance. Conclusions are given in Section 6.

2 System Model

A Communication Network (CN) is supposed to have users and a service provider.
The CN should derive its unit revenue by serving demand including voice, packet
data, image and full-motion video. For unit bandwidth capacity allocated to the
network, a unit cost will be charged. For unsatisfied traffic demand with the
limitation of network bandwidth, a linear penalty cost will be added in the ob-
jective function. The objective of this system is to maximize the CN mean profit
of the network.

Let (N,L) denote a CN composed of nodes vi (vi ∈ N, 1 ≤ i ≤ N) and
links l (l ∈ L), where N is the set of all nodes and L is the set of all links.
Let V denote the set of all node pairs, v ∈ V denote an arbitrary node pair
where v = (vi, vj) and vi, vj ∈ N , Cl denote the maximal bandwidth capacity of
link l, R(v) denote an admissible route set for v ∈ V , ξs (s ∈ R(v)) denote the
amount of capacity provisioned on route s, Dv (v ∈ V ) denote the traffic load
between node pair v ∈ V , bv (v ∈ V ) denote the amount of bandwidth capacity
provisioned between node pair v, which can be routed on one or more routes,
then bv =

∑
s∈R(v)(ξs).

In this paper, we consider the CN to be a whole system. We let b > 0
denote the amount of bandwidth capacity provisioned in the CN, then we have
b =

∑
v∈V (bv). Let D > 0 denote the traffic demand in the whole CN, then

we have D =
∑

v∈V (Dv), which is characterized by a random distribution with
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its probability density function f(x) and cumulative distribution function F (x).
b ∧ D is the actual traffic load transmitted in the CN, where ∧ represents the
choice of the smaller between b and D. Let r denote the unit revenue by serving
the traffic demand, so the total revenue of the CN is r × (b ∧ D). Let c denote
the unit cost for unit bandwidth capacity allocated in the CN, so the total cost
is c× b. Let q denote the linear penalty cost for each unsatisfied traffic demand,
so the total penalty cost is q× (D− b)+, where “+” represents the choice of the
positive part of (D − b). To avoid unrealistic and trivial cases, we assume that
r > q > 0, r > c > 0.

3 Optimal Bandwidth Capacity in the CN with Penalty
Cost

Based on the model presented in [10], in this paper, we add a linear penalty
cost in the optimization model for network bandwidth allocation to evaluate the
system performance. We let q denote the unit penalty cost for the unsatisfied
traffic demand.

Let π(b,D) denote the random profit function by serving traffic demand in
the CN with the linear penalty cost, namely,

π(b,D) = r(b ∧ D) − q(D − b)+ − cb. (1)

Let Π(b,D) denote the mean profit function with the linear penalty cost as
follows:

Π(b,D) = r

∫ b

0

xf(x)dx + rb

∫ +∞

b

f(x)dx

−q

∫ +∞

b

(x − b)f(x)dx − cb. (2)

The objective function of the system is

Π∗ = max
b>0

{Π(b,D)} (3)

subject to
P (b ≥ δD) ≥ 1 − ε (4)

and
b ≤ Cmax (5)

where Π∗ is the optimal profit function. P (b ≥ δD) ≥ 1 − ε is the loss rate
constraint with δ (0 ≤ δ ≤ 1) and ε (0 ≤ ε ≤ 1) as the parameters defined in
[10]. Cmax > 0 is the maximal capacity that can be allocated in the CN.

With the above formulation, we can derive the optimal capacity of band-
width allocation. First, we analyze the property of the CN mean profit function
Π(b,D).
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The first order derivative of Π(b,D) with respect to b is given as follows:

dΠ(b,D)
db

= (r + q − c) − (r + q)F (b). (6)

The second order derivative of Π(b,D) with respect to b is given as follows:

d2Π(b,D)
db2

= −(r + q)f(b). (7)

With the assumptions in Section 2, we know that f(b) ≥ 0, r + q > 0, hence,

d2Π(b,D)
db2

≤ 0. (8)

Therefore, we can say that Π(b,D) is a concave function of b. So, the optimal
bandwidth capacity without constraints is

F−1

(
r + q − c

r + q

)

(9)

where F−1(·) is the inverse function of F (·).
Finally, if we consider the loss rate constraint and the maximal capacity

constraint as in [10], the optimal bandwidth capacity for the CN is
[

F−1

(
r + q − c

r + q

)

∨ δF−1(1 − ε)
]

∧ Cmax. (10)

where ∨ represents the choice of the larger value between the two components.

4 Risk Analysis in the CN with Penalty Cost

The mean-variance analysis, which was first introduced by Markowitz [11], had
been a standard tool in financial risk management. It uses a parameter α (0 ≤
α ≤ 1) to characterize the risk averseness, which is a quantitative balance be-
tween the mean profit and the risk of its shortfall [12]. When α increases from 0
to 1, it indicates the willingness to sacrifice the mean profit to avoid risk of its
variance.

Due to the random arrival users, the profit is also uncertain and is dependent
on the distribution of the demand. So, in many cases, the optimal profit can not
been obtained as desired. Based on this, we define the risk as the deviation from
the optimal profit in this paper.

The random profit function and the mean profit function of the CN are given
by Eq. (1) and Eq. (2) presented in Section 3, respectively. By using the method
of integral by parts, Eq. (2) becomes

Π(b,D) = −(r + q)
∫ b

0

F (x)dx − q

∫ +∞

0

xf(x)dx

+(r + q − c)b. (11)
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The variance profit function can be obtained by the formula given as follows:

V ar[π(b,D)] = E[(π(b,D))2] − (Π(b,D))2 . (12)

By using the mean-variance approach to investigate the risk of profit shortfall,
the objective function, which is denoted by Φ∗, is given as follows:

Φ∗ = max
b>0

{
Π(b,D) − αV ar[π(b,D)]

}
(13)

where α is the risk averseness parameter, π(b,D) is the random profit function
given by Eq. (1), Π(b,D) is the mean profit function given by Eq. (11), and
V ar[π(b,D)] is the variance function given by Eq. (12).

We consider a fully distributed communication network, where the traffic
demand offered to the whole CN forms a Poisson process with arrival rate λ > 0.
The interarrival times are exponentially distributed with rate λ. Let X be a
random variable representing the time between successive demand arrivals in
the Poisson process, then we have the probability distribution function FX(x)
and the probability density function fX(x) of X as follows:

FX(x) =
{

1 − e−λx, x > 0
0, x ≤ 0,

(14)

fX(x) =
{

λe−λx, x > 0
0, x ≤ 0.

(15)

The mean and varianceof the exponential distribution are 1/λ and 1/λ2,
respectively.

Based on the assumption of the traffic demand, Eq. (11) can be obtained as
follows:

Π(b,D) = −r + q

λ
e−λb +

r

λ
− cb. (16)

By using the definition of expectation and method of integral by parts, we
can obtain the first component in Eq. (12) as follows:

E
[
(π(b,D))2

]
= e−λb

(

−2b

λ
r2 − 2

λ2
r2 +

2
λ2

q2 +
2qcb

λ
+

2rcb

λ

)

−2rqb

λ
e−2λb +

2r2

λ2
− 2rcb

λ
+ c2b2. (17)

With the similar method, we can obtain the second component in Eq. (12)
as follows:

(Π(b,D))2 = e−λb

(

−2r2 − 2rq

λ2
+

2rcb + 2qcb

λ

)

+
r2

λ2

−r2 + 2rq + q2

λ2
e−2λb − 2rcb

λ
+ c2b2. (18)
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Substituting Eqs. (17) and (18) into Eq. (12), we can obtain that

V ar[π(b,D)] = e−2λb

(

−r2 + 2rq + q2

λ2
− 2qcb

λ

)

+
r2

λ2

+e−λb

(
2rq

λ2
+

2q2

λ2
− 2br2

λ

)

. (19)

5 Numerical Results

In this section, based on the assumption of traffic demand in a CN presented in
Section 4, we give some numerical results to show the impact of the penalty cost
on the network performance.

According to the engineering experience, we choose several different arrival
rates to represent the different cases of traffic load in the CN as follows: λ =
0.01, 0.1, 0.5, 0.9. Where λ = 0.01 represents the case that the traffic load in the
CN is low, λ = 0.1 and λ = 0.5 represent the cases that the traffic load in the
CN is normal, and λ = 0.9 represents the case that the traffic load in the CN is
heavy.

Fig. 1. Impact of penalty cost on bandwidth capacity of the CN

5.1 Impact on the Bandwidth Capacity

In this subsection, we study the impact of the penalty cost on the optimal band-
width capacity of the CN. Note that the optimal bandwidth capacity without
penalty cost presented in [10], is F−1

(
r−c

r

)
. However, in this paper the optimal

bandwidth capacity with the penalty cost is given by Eq. (9).
Based on the above preparation, we show the numerical results. We choose

the unit revenue r as the benchmark of the linear penalty cost q. The horizontal
axis (q/r) of Fig. 1 corresponds to the increase of the linear penalty cost. The
ordinate axis (b/b∗) of Fig. 1 corresponds to the percentage difference of the
optimal bandwidth capacity from the benchmark b∗, where b∗ is the optimal
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Fig. 2. Impact of penalty cost on mean profit function of the CN

Fig. 3. Impact of penalty cost on mean profit function of the CN

bandwidth capacity without the penalty cost, and b is the optimal bandwidth
capacity with the linear penalty cost. Our numerical results include the optimal
bandwidth capacity obtained without penalty cost presented in [10], which is
one point in the ordinate axis corresponding to q/r = 0.0 in Fig. 1.

For comparing with the model presented in [10], we choose the CN system
parameters as follows: the unit revenue r = 7.5, the unit cost c = 1.5. Let the
percentage difference of the penalty cost increase from 0.0 to 1.0 by 0.1 each
step with all other parameters unchanged.

From the numerical results shown in Fig. 1, we can conclude that:

(1) In all curves, the impact of the penalty cost on the bandwidth capacity
increases as the penalty cost increases.

(2) The curve with a smaller arrival rate has a quicker increasing speed than
the curve with a larger arrival rate.

(3) With the same penalty cost, the heavier the traffic load in the CN is, the
less the impact of the penalty cost on the bandwidth capacity will be.

Comparing with the results presented in [10] without linear penalty cost, the
numerical results in our paper reveal a distinct impact of linear penalty cost on
the network bandwidth capacity. It implies that if we consider the penalty cost,
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the CN needs to be allocated more bandwidth capacity to guarantee the network
performance.

5.2 Impact on the Mean Profit Function

In this subsection, we study the impact of the penalty cost on the mean profit
function. Note that the mean profit function Π(b,D) without penalty cost, which
is presented in [10], is given as follows:

Π(b,D) = r

∫ b

0

xf(x)dx + rb

∫ +∞

b

f(x)dx − cb.

However, in this paper the mean profit function with the penalty cost is given
by Eq. (2).

We choose the same system parameters as those given in Subsection 5.1. Let
the percentage difference of the penalty cost increase from 0.0 to 1.0 by 0.1 each
step with all other parameters unchanged.

We choose the unit revenue r as the benchmark of the penalty cost q. The
horizontal axes of Figs. 2 and 3 correspond to the increase of the penalty cost
q/r. The ordinate axes of Figs. 2 and 3 correspond to the mean profit Π(b,D)
presented in Eq. (16). The unit of the ordinate axes of Figs. 2 and 3 corresponds
to a unit price of the mean profit. Our numerical results include the mean profit
obtained without penalty cost presented in [10], which are the points in the
ordinate axes corresponding to q/r = 0.0 in Figs. 2 and 3.

From the numerical results shown in Figs. 2 and 3, we can conclude that:

(1) In all curves, the impact of the penalty cost on the mean profit function
increases as the penalty cost increases.

(2) The curve with a smaller arrival rate has a quicker decreasing speed than
the curve with a larger arrival rate.

(3) With the same penalty cost, the heavier the traffic load in the CN is, the
less the mean profit will be.

Comparing with the model without the penalty cost presented in [10], the
numerical results in our paper reveal a distinct impact of the penalty cost on the
network optimal profit. Moreover, the numerical results with different arrival
rates almost have the same increasing speed and impact on the mean profit
function.

6 Conclusions

In this paper, we presented a stochastic model for optimizing bandwidth allo-
cation in Communication Networks with the linear penalty cost. The model is
proposed for offline traffic engineering optimization taking a centralized view of
bandwidth allocation, performance control, and risk of profit shortfall. We have
derived the optimal bandwidth allocation capacity with the linear penalty cost.
We have analyzed the risk averseness in the CNs in the mean-variance frame-
work. We have given numerical results to compare our model with the previous
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model presented in [10] and shown the impact of the linear penalty cost on the
network performance. We can conclude that the linear penalty cost has distinct
impact on the network performance. The implications presented in this paper
have good insights for traffic engineering design and planning.
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