
Real-Time Visualization of Wake-Vortex Simulations
using Computational Steering and Beowulf Clusters

�

Anirudh Modi1, Lyle N. Long2, and
Paul E. Plassmann3

1 Ph.D. Candidate, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802

anirudh@anirudh.net
http://www.anirudh.net/phd/

2 Professor, Department of Aerospace Engineering,
Pennsylvania State University, University Park, PA 16802

lnl@psu.edu
http://www.personal.psu.edu/lnl/

3 Associate Professor, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802

plassman@cse.psu.edu
http://www.cse.psu.edu/˜plassman/

Abstract. In this paper, we present the design and implementation of POSSE,
a new, lightweight computational steering system based on a client/server pro-
gramming model. We demonstrate the effectiveness of this software system by
illustrating its use for a visualization client designed for a particularly demand-
ing real-time application—wake-vortex simulations for multiple aircraft running
on a parallel Beowulf cluster. We describe how POSSE is implemented as an
object-oriented, class-based software library and illustrate its ease of use from the
perspective of both the server and client codes. We discuss how POSSE handles
the issue of data coherency of distributed data structures, data transfer between
different hardware representations, and a number of other implementation issues.
Finally, we consider how this approach could be used to augment AVOSS (an
air traffic control system currently being developed by the FAA) to significantly
increase airport utilization while reducing the risks of accidents.

1 Introduction

Parallel simulations are playing an increasingly important role in all areas of science
and engineering. As the areas of applications for these simulations expand and their
complexity increases, the demand for their flexibility and utility grows. Interactive com-
putational steering is one way to increase the utility of these high-performance simu-
lations, as they facilitate the process of scientific discovery by allowing the scientists
to interact with their data. On yet another front, the rapidly increasing power of com-
puters and hardware rendering systems has motivated the creation of visually rich and
�

This work was supported by NSF grants EIA–9977526 and ACI–9908057, DOE grant DG-
FG02-99ER25373, and the Alfred P. Sloan Foundation.

2 Anirudh Modi et al.

perceptually realistic virtual environment (VE) applications. The combination of the
two provides one of the most realistic and powerful simulation tools available to the
scientific community.

As an example of such an important application here is the problem of maximizing
airport efficiency. National Aeronautics and Space Administration (NASA) scientists
predict that by the year 2022, three times as many people will travel by air as they do
today [1]. To keep the number of new airports and runways to a minimum, there is an
urgent need to increase their efficiency while reducing the aircraft accident rate. Today,
the biggest limiting factor for airport efficiency is the wait between aircraft take-offs
and landings which are necessary because of the wake-vortices generated by the moving
aircraft. Moreover, according to the predictions by the United States Federal Aviation
Administration (FAA), if by the year 2015, the wake-vortex hazard avoidance systems
do not improve in any significant way, there is the potential for a significant increase
in the number of aviation accidents [2]. The ultimate goal of the work presented in this
paper is to create a wake-vortex hazard avoidance system by realistically simulating an
airport with real-time visualization of the predicted wake-vortices. If implemented, such
a system has the potential to greatly increase the utilization of airports while reducing
the risks of possible accidents. In this work, we utilize an easy-to-use, yet powerful
computational steering library to deal with the complexities of real-time wake-vortex
visualization.

To enable such a complex simulation, we will require a computational steering sys-
tem. A significant amount of work has been done on computational steering over the
past few years. Reitinger [3] provides a brief review of this work in his thesis. Some
of the well known steering systems are Falcon from Georgia Tech [4], SCIRun from
Scientific Computing and Imaging research group at University of Utah [5], ALICE
Memory Snooper from Argonne National Laboratory [6], VASE (Visualization and Ap-
plication Steering) from University of Illinois [7], CUMULVS from Oak Ridge National
Laboratory [8], CSE (Computational Steering Environment) from the Center for Math-
ematics and Computer Science in Amsterdam [9], and Virtue from University of Illinois
at Urbana-Champaign [10]. While they are all powerful, the major drawback of these
systems is that they are often too complex, are not object-oriented and have a steep
learning curve. To be productive with these systems by using them in existing scientific
codes is not an easy task, and may take a significant amount of time, especially for the
large number of computational scientists with no formal education in computer science
or software systems.

To address these problems, we have developed a new lightweight computational
steering system based on a client/server programming model. In this paper, we first
discuss computational steering in section 2, then the details of wake-vortex simulations
in section 3, and finally some experimental results in section 4.

2 Computational Steering

While running a complex parallel program on a high-performance computing system,
one often experiences several major difficulties in observing computed results. Usually,
the simulation severely limits the interaction with the program during the execution

Wake-Vortex Simulations 3

and makes the visualization and monitoring slow and cumbersome (if at all possible),
especially if it needs to be carried out on a different system (say a specialized graphics
workstation for visualization).

For our simulations, it is very important for the predictions by the wake-vortex
code to be known in real-time by the Air-Traffic Control (ATC) in order for it to take
appropriate action. This activity is referred to as “monitoring,” which is defined as the
observation of a program’s behavior at specified intervals of time during its execution.
On the other hand, the weather conditions at the airport may keep changing and both the
number and the trajectories of the aircraft can change as they take-off and land. Thus,
there is a need to modify the simulation based on these factors by manipulating some
key characteristics of its algorithm. This activity is referred to as “steering,” which is
defined as the modification of a program’s behavior during its execution.

Software tools which support these activities are called computational steering envi-
ronments. These environments typically operate in three phases: instrumentation, moni-
toring, and steering. Instrumentation is the phase where the application code is modified
to add monitoring functionality. The monitoring phase requires the program to run with
some initial input data, the output of which is observed by retrieving important data
about the program’s state change. Analysis of this data gives more knowledge about the
program’s activity. During the steering phase, the user modifies the program’s behavior
(by modifying the input) based on the knowledge gained during the previous phase by
applying steering commands, which are injected on-line, so that the application does
not need to be stopped and restarted.

Our steering software, the Portable Object-oriented Scientific Steering Environment
(POSSE) [11], is very general in nature and is based on a simple client/server model. It
uses an approach similar to Falcon [4] (an on-line monitoring and steering toolkit devel-
oped at Georgia Tech) and ALICE Memory Snooper [6] (an application programming
interface designed to help in writing computational steering, monitoring and debugging
tools developed at Argonne National Lab). Falcon was one of the first systems to use the
idea of threads and shared memory to serve registered data efficiently. POSSE consists
of a steering server on the target machine that performs steering, and a steering client
that provides the user interface and control facilities remotely. The steering server is
created as a separate execution thread of the application to which local monitors for-
ward only those “registered” data that are of interest to steering activities. A steering
client receives the application run-time information from the application, displays the
information to the user, accepts steering commands from the user, and enacts changes
that affect the application’s execution. Communication between a steering client and
server are done via UNIX sockets and threading is done using POSIX threads. POSSE
has been completely written in C++, using several of C++’s advanced object-oriented
features, making it fast and powerful, while hiding most of the complexities from the
user. Fig. 1 shows a schematic view of how POSSE can be used. An on-going sci-
entific simulation is running on a remote Beowulf computing cluster. Any number of
number of remote clients can query/steer registered data from the simulation from the
DataServer thread. Two clients are shown, a visualization client and a GUI client that
provides a simple user interface to all registered simulation data.

4 Anirudh Modi et al.

DataClient DataClient
thread thread

Visualization GUI
code code

DataServer
thread

Computation
code

Computation
running on

Beowulf
Cluster

Client 1 Client N

Server Child
thread

Server Child
thread

Data

Data

Request or
Steering command

Request or
Steering command

Fig. 1. A schematic view of POSSE

POSSE is designed to be extremely lightweight, portable (runs on all Win32 and
POSIX-compliant Unix platforms) and efficient. It deals with byte-ordering and byte-
alignment problems internally and also provides an easy way to handle user-defined
classes and data structures. It is also multi-threaded, supporting several clients simulta-
neously. It can also be easily incorporated into parallel simulations based on the Mes-
sage Passing Interface (MPI) [12] library. The biggest enhancement of POSSE over
existing steering systems is that it is equally powerful, yet extremely easy to use, mak-
ing augmentation of any existing C/C++ simulation code possible in a matter of hours.
It makes extensive use of C++ classes, templates and polymorphism to keep the user
Application Programming Interface (API) elegant and simple to use. Fig. 2 and Fig. 3
illustrate a simple, yet complete, POSSE client/server program in C++. As seen in
the figures, registered data on the steering server (which are marked read-write) are
protected using binary semaphores when they are being updated in the computational
code. User-defined data structures are handled by a simple user-supplied pack and un-
pack subroutine that call POSSE data-packing functions to tackle the byte-ordering and
byte-alignment issues. The programmer does not need to know anything about the in-
ternals of threads, sockets or networking in order to use POSSE effectively. POSSE
also allows a simulation running on any parallel or serial computer to be monitored
and steered remotely from any machine on the network using a cross-platform Graph-
ical User Interface (GUI) utility. Among other applications, we have successfully used
POSSE to enhance our existing parallel Computational Fluid Dynamics (CFD) code to
perform visualizations of large-scale flow simulations [13].

3 Wake-Vortex Simulation

One of the main problems facing the ATC today is the “wake-vortex” hazard. Just as
a moving boat or a ship leaves behind a wake in the water, an aircraft leaves behind a
wake in the air. These wake-vortex pairs are invisible to the naked eye and stretch for
several miles behind the aircraft and may last for several minutes. The aircraft wake is

Wake-Vortex Simulations 5

#include "dataserver.h"

int dummyInt = 0, n1, n2;
double **dyn2D;

REGISTER_DATA_BLOCK() // Register global data
{
REGISTER_VARIABLE("testvar", "rw", dummyInt);
REGISTER_DYNAMIC_2D_ARRAY("dyn2D", "ro", dyn2D, n1, n2);

}

int main(int argc, char *argv[])
{
DataServer *server = new DataServer;

if (server->Start(4096) != POSSE_SUCCESS) // Start Server thread
{
delete server;
exit(-1);

}
n1 = 30; n2 = 40;
ALLOC2D(&dyn2D, n1, n2);

for (int iter = 0; iter < MAX_ITER; iter++) {
server->Wait("dyn2D"); // Lock DataServer access for dyn2D

Compute(dyn2D); // Update dyn2D with new values

server->Post("dyn2D"); // Unlock DataServer access for dyn2D
}

FREE2D(&dyn2D, n1, n2);
delete server;

}

Fig. 2. A simple, complete POSSE server application written in C++

#include "dataclient.h"

int main(int argc, char *argv[])
{
DataClient *client = new DataClient;
double **dyn2D;

if (client->Connect("cocoa.ihpca.psu.edu", 4096) != POSSE_SUCCESS) // Connect to DataServer
{
delete client;
exit(-1);
}

client->SendVariable("testvar", 100); // Send new value for "testvar"
int n1 = client->getArrayDim("dyn2D", 1);
int n2 = client->getArrayDim("dyn2D", 2);
ALLOC2D(&dyn2D, n1, n2);
client->RecvArray2D("dyn2D", dyn2D);

Use(dyn2D); // Utilize dyn2D

FREE2D(&dyn2D, n1, n2);
delete client;

}

Fig. 3. A simple, complete POSSE client application written in C++

6 Anirudh Modi et al.

generated from the wings of the aircraft and consists of two counter-rotating swirling
rolls of air which are termed “wake-vortices”. In Fig. 4, we show a photograph depicting
the smoke flow visualization of wake-vortices generated by a Boeing 727. It is to be
noted that these are not contrails (i.e., condensation trail left behind by the jet exhausts).
The strength of these vortices depends on several factors, including weight, size and
velocity of the aircraft. The strength increases with the weight of the aircraft. The life of
the vortex depends on the prevailing weather conditions. Typically, vortices last longer
in calm air and shorter in the presence of atmospheric turbulence. The study of these
vortices is very important for aircraft safety [14]. The rapid swirling of air in a vortex
can have a potentially fatal effect on the stability of a following aircraft. Currently,
the only way to deal with this problem is the use of extremely conservative empirical
spacing between consecutive take-offs and landings from the same runway, which has
been laid down by the International Civil Aviation Organization (ICAO) and FAA. In
instrument flying conditions, aircraft may follow no closer than three nautical miles,
and a small aircraft must follow at least six nautical miles behind a heavy jet such as
a Boeing 747. But, despite these spacings being extremely conservative, they are not
always able to prevent accidents owing to the several unknowns involved, primarily the
exact location and strength of the vortices. The US Air Flight 427 (Boeing 737) disaster
which occurred on September 8, 1997 near Pittsburgh is attributed to this phenomenon,
wherein the aircraft encountered the wake-vortices of a preceding Boeing 727 [15]. The
more recent Airbus crash on November 12, 2001 in New York is also believed to be, at
least partially, a result of wake-vortex encounter from a preceding Boeing 747.

Fig. 4. B-727 vortex study photo (Courtesy: NASA Dryden Flight Research Center)

To tackle this problem of reduced airport capacity which is a direct fallout of these
overly conservative spacing regulations, and to address the concerns of the aircraft in
circumstances when these regulations fail to meet the safety requirements, NASA re-
searchers have designed a system to predict aircraft wake-vortices on final approach, so
that the aircraft can be spaced more safely and efficiently. This technology is termed

Wake-Vortex Simulations 7

AVOSS or Aircraft VOrtex Spacing System (AVOSS) [16]. AVOSS, in spite of per-
forming a rigorous simulation of the wake-vortices, does not implement any system for
their visualization. It only provides the ATC with the aircraft spacing time for each air-
craft which is all the current ATC systems can handle. Thus, at present, it is unable to
provide alternate trajectories for the take-off and landing of aircraft.

This work attempts to fill in the gaps left by AVOSS by creating a wake-vortex
hazard avoidance system by realistically simulating an airport with real-time 3D vi-
sualization of the predicted wake-vortices generated by the moving aircraft. Aircraft
will be able to adjust their flight trajectory based on the information obtained from the
visualization system to avoid the wake-vortices and operate more safely and efficiently.

3.1 Wake-Vortex Theory

For the wake-vortex simulations described in this paper, we use potential theory to
predict the strength of the wake-vortex elements [17]. The circulation generated by the
lift is assumed to be contained in two vortices of opposite signs trailing from the tips
of the wing. The wake is assumed to consist of a pair of vortices which are parallel and
the longitudinal axis of the tracked airplane is assumed to be parallel to the vortex pair.
The centers of the vortices are on a horizontal line separated by a distance of bs � π

4 bg,
a result of assuming an elliptic distribution, where bs is the separation of the vortices
in the wake-vortex pair, and bg is the span of the airplane wing generating the wake
vortex [18]. The magnitude of the circulation of each vortex is approximately

�
Γ
� � 4

π
Lg

ρVgbg �
where Lg and Vg are the lift and the velocity of the aircraft, respectively. References [19,
20, 17] deal with more details on the numerical simulation of these aircraft vortices.

After the strength of these vortices are computed, the effect due to the prevail-
ing weather data is applied to the prediction. The vortex filaments propagate with the
freestream wind conditions and the induced velocity due to the other vortex elements.
The decay of the vortex strength is based on a simplified version of the model suggested
by Greene [21]:

Γt � ∆t � Γt � 1 � ∆tVt

8bg

�
�

where Vt is the vortex velocity at time t and is given by

Vt � Γt

2πbg 	
Here Γt represents the strength of the vortex element at time t and Γt � ∆t represents the
strength of the vortex at time t
 ∆t (next time-step).

3.2 Simulation Complexity

The wake-vortex prediction for an entire fleet of aircraft taking-off and landing at a busy
airport is an extremely computationally intensive problem. As such, a parallel solution

8 Anirudh Modi et al.

for the same is required to maintain a real-time response of the simulation. For exam-
ple, a typical metropolitan airport in the US is extremely busy with several take-offs and
landings occurring every few minutes. Dallas/Fort Worth, the country’s third busiest air-
port, has seven runways that handle nearly 2 � 300 take-offs and landings every day. For
the wake-vortex code to track the vortices shed by an aircraft for 5 miles after take-off,
assuming that a vortex core is stored every 5 meters, 5 � 1 � 600 � 5 � 2 � 3 � 200 vortex
filaments have to be tracked. For 2 � 300 take-offs and landings every day, it implies that
3 � 200 � 2 � 300 � 24 � 306 � 667 vortex filaments have to be tracked every hour. Since the
vortices may take as long as 15 minutes to decay significantly, vortices due to typically
half the take-offs and landings every hour need to be tracked at any given time. This
amounts to roughly 153 � 333 vortex filaments. While this may not seem to be a very
large number on its own, the problem gets complicated by the presence of an O � N2 �
calculation for the induced velocity of every vortex element on every other vortex ele-
ment, where N represents the number of vortex elements. Even if the induced velocity
effect due to vortices from the other aircraft are ignored, this still amounts to as much
as 3 � 200 � 3 � 200 � 10 	 24 million computations for each airplane at every timestep. For
2 � 300 planes/day, this comes out to 10 	 24 � 2 � 300 � 24 � 2 � 490 	 7 million calculations
per timestep for the induced velocity, a very large number indeed for a conventional
uniprocessor system. And with each timestep being, say 0 	 2 seconds, this amounts to
2 	 45 billion calculations per second. Although this number can be reduced by as much
as a factor of 100 by making simplifying assumptions for the induced velocity calcu-
lations (wherein, we say that any vortex element is only affected by a fixed number
of neighboring elements, say k, rather than all the other elements), this still amounts
to a large computation considering that each induced velocity calculation consists of
200 � 300 floating point operations. This takes our net computational requirement to
approximately 5 � 8 Gigaflops, necessitating the need of a parallel computer. Hence,
our wake-vortex prediction code, based on the potential flow theory described above, is
written in C++ with MPI for parallelization.

Pseudocode for the simulation is given in Fig. 5. Each vortex element has two main
properties associated with it, strength and position. The initial strength (Γ) is calcu-
lated based on the potential flow theory and the initial position is based on the posi-
tion of the aircraft. The strength then decays as a function of time and the prevailing
weather conditions, and the position changes due to the velocity induced by neighbor-
ing vortex elements and the prevailing wind velocity. Fig. 6 depicts a diagram of the
complete client/server simulation system. The simulation system consists of the Wake-
vortex Server, Airport Data Server and the Sound Server. The Wake-vortex Server is
the actual simulation code enhanced using POSSE. The Airport Data Server is another
POSSE server that serves the positions of the aircraft in the vicinity of the airport as
well as the prevailing weather conditions. The Sound Server is an optional component
in the system for simulating the noise-level at the airport. The wake-vortex code has
been parallelized to track vortex elements from each aircraft on a different processor
in such a way that we get an almost real-time solution to this problem with tolerable
lag no more than the time-step ∆t in our simulation. The first processor acts as the
master doing a round-robin scheduling of any new aircraft to be tracked among the
available processors (including itself). The master, therefore does the additional work

Wake-Vortex Simulations 9

of distributing and collecting vortex data from the slave nodes. It is also ensured that
the master is always running on a Symmetric Multi-Processor (SMP) node with at least
two processors so that the POSSE server thread runs on an idle processor and does not
slow down the master node because of the constant monitoring of the vortex data by the
visualization client.

V /0
t 0
Foreach aircraft A on a different processor

While (A in specified range from airport) do
read updated aircraft position from airport data server
read updated weather condition from airport data server
V V ��� newly created vortex element from wing using potential theory �
Foreach vortex element (vi � V)

vi � inducedvel 0
Foreach vortex element (� v j � V ���� vi & � j � i ��� k)

vi � inducedvel vi � inducedvel � InducedVelocity � vi � v j �
Endforeach
vi � position vi � position � ∆t � vi � inducedvel
vi � position vi � position � ∆t � (prevailing wind velocity)
vi � strength vi � strength � DecayFunction � ∆t � Weather Conditions �
If (vi � strength � threshold) then

V V � vi
Endif

Endforeach
t t � ∆t

Endwhile
Endforeach

Fig. 5. Algorithm for Wake-Vortex prediction

For the real-time simulation, the parallel wake-vortex code has been augmented with
POSSE, so that it can remotely run on our in-house 40 processor PIII-800 Mhz Beowulf
Cluster1 [22], the COst-effective COmputing Array 2 (COCOA-2) [23]. For a steering
client, a visualization tool has been written in C++ using the OpenGL API for graphics
and CAVELib [24] API for stereo-graphics and user interaction. The monitoring code
runs as a separate thread in the visualization client retrieving new vortex data whenever
the simulation on the remote cluster updates. A screenshot of the program depicting
the Wake-Vortex simulation for a single aircraft is shown in Fig. 7. Another screen-
shot (Fig. 8) shows several aircraft flying above the San Francisco International airport
(SFO). The colors represent the relative strength of the vortices with red being max-
imum and blue being minimum. The Reconfigurable Automatic Virtual Environment
(RAVE) from FakeSpace Systems [25] driven by an HP Visualize J-class workstation
is then used as the display device.

1 A cluster of commodity personal computers running the LINUX operating system.

10 Anirudh Modi et al.

Current position
of aircraft

QueryCurrent
Vortex

Data

Sound dB
level

Query for
Vortex Data

Reply

Requests

Beowulf Cluster

Beowulf Cluster
running

Wake−Vortex
code

Steering
and

Visualization
Client

Sound
Server

Airport
 Data
Server

Fig. 6. Wake-Vortex Simulation System

Fig. 7. Screenshot of the Wake-Vortex simulation for a single aircraft from a visualization client

Wake-Vortex Simulations 11

Fig. 8. Screenshot of the Wake-Vortex simulation for several aircraft flying above the San Fran-
cisco (SFO) airport

4 Experimental Results

POSSE has been extensively tested using various platforms for stability and perfor-
mance. Tests demonstrating both the single and multiple client performance for POSSE
are discussed here.

4.1 Single Client Performance

Fig. 9 shows a plot of the effective network bandwidth achieved by varying the size
of a dynamic 1-D array requested by a steering client. These tests were carried be-
tween machines connected via a Fast Ethernet connection having a peak-theoretical
network bandwidth of 100 Mbps. The communication time used to calculate the effec-
tive bandwidth includes the overheads for byte-ordering, data packing and other delays
introduced by the querying of the registered data. The average latency for query of any
registered data by the client has been found to be 38 ms. As can be seen, there is a
noticeable decrease in the bandwidth (about 10 Mbps) when communicating between
machines with different byte-ordering (i.e., Little Endian vs. Big Endian) as opposed
to machines with the same byte-ordering. This reflects the overhead involved in dupli-
cating the requested data and converting it into the byte-order of the client machine
for communication. In the same byte-order case, as the size of the requested data in-
creases to about 5 MB, the effective bandwidth approaches 80 Mbps, which is 80% of
the peak-theoretical bandwidth.

4.2 Multiple Client Performance

Fig. 10 shows a plot of the effective bandwidth achieved by varying the number of
clients simultaneously requesting data. In this test, both the clients and the server were

12 Anirudh Modi et al.

machines with the same byte-ordering. The server had a registered 4-D array with
200 � 000 double elements (1 	 6 MB of data). All the clients were then run simultane-
ously from two remote machines on the same network and were programmed to request
the 1 	 6 MB 4-D array from the server. The effective bandwidth in this case is obtained
by dividing the total amount of data served by the server with the total wall-clock time
required to serve all the requests. It can be seen that the network performance of POSSE
is very good (84 Mbps) even when dealing with over 500 client requests simultaneously.

For the wake-vortex simulation system, the amount of data communicated to the client
after every update is 420 bytes for every aircraft and 56 bytes for every vortex element.
For 10 aircrafts each having 2 � 000 elements tracked, this amounts to 1 	 12 MB of data.
From Fig. 9, we can see that this corresponds to a data-rate of approximately 62 Mbps,
or 145 ms of communication time. Thus, we can get updated data at a rate of almost 7
fps from the server. The wake-vortex simulation runs with a ∆t of 0.2 seconds which
can be maintained for up to 2 � 000 vortex elements per aircraft on COCOA-2. The par-
allel code has very good scalability for up to 15 processors (tracking 15 aircrafts) after
which it linearly deteriorates due to the overhead borne by the master for distributing
and collecting data from the slave nodes. At this point, the simulation has only been
qualitatively checked and seems to be consistent with the theory. The simplification of
using k neighbors for induced-velocity computation works very well with an error of
less than 1% when compared to the original O � N2 � case. Since the weather conditions
play a substantial role in the determination of the vortex strength, a more sophisticated
weather model like the one used in AVOSS will definitely improve the accuracy of the
simulations.

Size of data requested by client (MB)

E
ff

ec
tiv

e
N

et
w

or
k

B
an

dw
id

th
(M

bp
s)

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Same Byte Order
Different Byte Order

Fig. 9. Effective Network Bandwidth vs. Size of data requested by client

Wake-Vortex Simulations 13

Number of simultaneous clients

E
ff

ec
tiv

e
B

an
dw

id
th

(M
bp

s)

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

max # of socket
connections
allowed by OS!

Fig. 10. Effective Network Bandwidth vs. Number of simultaneous clients

5 Conclusions

The coupling of computational steering to our parallel simulation makes the real-time
visualization of the wake-vortex simulations possible. It opens a new way for the ATC
to effectively deal with the wake-vortex hazard problem and to improve the capacity and
safety of large airports. Our steering system, POSSE, has proven to be a very powerful,
yet easy to use software with a high rate of acceptance and approval in our research
group. If scientists are given an easy to use software system with a mild learning curve,
they will use it. At a more basic level, this ability to interact and visualize a complex
solution as it unfolds and the real-time nature of the computational steering system
opens a whole new dimension to the scientists for interacting with their simulations.

References

1. Hypotenuse Research Triangle Institute. Wake Vortex Detection System: Engineered for
Efficiency and Safety. http://www.rti.org/hypo etc/winter00/vortex.cfm, 2001.

2. T. S. Perry. In Search of the Future of Air Traffic Control. IEEE Spectrum, 34(8):18–35,
August 1997.

3. Bernhard Reitinger. On-line Program and Data Visualization of Parallel Systems in
a Monitoring and Steering Environment. Dipl.-Ing. Thesis, Johannes Kepler Univer-
sity, Linz, Austria, Department for Graphics and Parallel Processing, http://eos.gup.uni-
linz.ac.at/thesis/thesis.pdf, January 2001.

4. W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter, and N. Mallavarupu.
Falcon: On-line Monitoring and Steering of Large-Scale Parallel Programs. Proceedings of

14 Anirudh Modi et al.

the Fifth Symposium on the Frontiers of Massively Parallel Computation, pages 433–429,
February 1995.

5. S.G. Parker, M. Miller, C.D. Hansen, and C.R. Johnson. An Integrated Problem Solving
Environment: The SCIRun Computational Steering System. IEEE Proceedings of the Thirty-
First Hawaii International Conference on System Sciences, 7:147–156, 1998.

6. I. Ba, C. Malon, and B. Smith. Design of the ALICE Memory Snooper.
http://www.mcs.anl.gov/ams, 1999.

7. D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. VASE : The Visualization and Application
Steering Environment. Proceedings of Supercomputing ’93, pages 560–569, 1993.

8. G. A. Geist, II, James Arthur Kohl, and Philip M. Papadopoulos. CUMULVS: Providing
Fault Tolerance, Visualization, and Steering of Parallel Applications. The International Jour-
nal of Supercomputer Applications and High Performance Computing, 11(3):224–235, Fall
1997.

9. Robert van Liere and Jarke J. van Wijk. CSE : A Modular Architecture for Computational
Steering. In M. Göbel, J. David, P. Slavik, and J. J. van Wijk, editors, Virtual Environments
and Scientific Visualization ’96, pages 257–266. Springer-Verlag Wien, 1996.

10. E. Shaffer, D.A. Reed, S. Whitmore, and B. Schaeffer. Virtue: Performance Visualization of
Parallel and Distributed Applications. IEEE Computer, 32(12):44–51, December 1999.

11. Anirudh Modi. POSSE: Portable Object-oriented Scientific Steering Environment.
http://posse.sourceforge.net, 2001.

12. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. (UT-CS-
94-230), 1994.

13. A. Modi, N. Sezer, L. N. Long, and P. E. Plassmann. Scalable Computational Steering
System for Visualization of Large Scale CFD Simulations. AIAA 2002-2750, June 2002.

14. Barnes W. McCormick. Aircraft Wakes: A Survey of the Problem. Keystone Presentation at
FAA Symposium on Aviation Turbulence, March 1971.

15. Airdisaster.com. Investigation: USAir Flight 427.
http://www.airdisaster.com/investigations/us427/usair427.shtml, 1997.

16. D. A. Hinton. Aircraft Vortex Spacing System (AVOSS) Conceptual Design. NASA TM-
110184, August 1995.

17. Fred H. Proctor and George F. Switzer. Numerical Simulation of Aircraft Trailing Vortices.
Ninth Conference on Aviation, Range and Aerospace Meteorology, September 2000.

18. Eric C. Stewart. A Comparison of Airborne Wake Vortex Detection Measurements With
Values Predicted From Potential Theory. NASA TP-3125, November 1991.

19. G. F. Switzer. Validation Tests of TASS for Application to 3-D Vortex Simulations. NASA
CR-4756, October 1996.

20. S. Shen, F. Ding, J. Han, Y. Lin, S. P. Arya, and F. H. Proctor. Numerical Modeling Studies
of Wake Vortices: Real Case Simulations. AIAA 99-0755, January 1999.

21. G. C. Greene. An approximate model of vortex decay in the atmosphere. Journal of Aircraft,
23(7):566–573, July 1986.

22. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
BEOWULF: A Parallel Workstation for Scientific Computation. Proceedings of the 24th
International Conference on Parallel Processing, pages 11–14, 1995.

23. Anirudh Modi. COst effective COmputing Array-2. http://cocoa2.ihpca.psu.edu, 2001.
24. VRCO. CAVELib Users Manual. http://www.vrco.com/CAVE USER/caveuser program.html,

2001.
25. CAVE. Fake Space Systems. http://www.fakespacesystems.com, 2001.

