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Abstract. This study aimed to evaluate the influence of different types of metakaolin and curing 
conditions on mortars depth of carbonation. To do so, prismatic mortar specimens were produced by 
using three different 1:2 mix proportions (binder: sand): a reference mix proportion (without mineral 
addition) and two mixes with partial replacement of the cement by metakaolin, in the content of 10% by 
mass of cement. Two types of metakaolin with different characteristics were used in order to verify their 
capacity of changing the mortar microstructure and the pore solution, modifying this way the 
carbonation behavior of these materials. Three curing conditions for the test specimens were defined: 
no wet curing and wet curing (by immersion in water) for 3, 9 and 28 days. After the accelerated 
carbonation procedure in a CO2 chamber (in an atmosphere of 10% of CO2), with a relative humidity 
of 70% and a temperature of 20°C, for a period of 7 days, the carbonation depth was measured by using 
pH-indicators based on phenolphthalein and thymolphthalein. The results indicated influence of the 
type of curing in the carbonated depth and the significant interaction between curing and the type of 
metakaolin. When wet curing was not performed, the carbonation was more intense in the reference 
mortar. The effect of curing in the mortars with metakaolin was much less significant compared to that 
in the reference mortar. A global discussion about carbonation behavior of metakaolin modified mortars 
will be performed, based on the characteristics of the metakaolins.  
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1  Introduction 
The durability of structures fits into an important context for building performance, as well as 
sustainability and economy.  

Among the phenomena responsible for the deterioration of reinforced concrete, there is the 
reinforcement steel corrosion due to carbonation or chloride attack. This pathological 
manifestation causes the most damage due to the technical difficulty of long-term recovery and 
to the cost involved (Castro et al., 2008). Carbonation is a natural phenomenon that occurs by 
the chemical reaction between carbon dioxide, presents in the atmosphere, with cement 
hydration products, thus reducing the concrete pH. As a result of the phenomenon, the 
depassivation of reinforcement steel occurs, facilitating the onset of corrosion. 

In this context, mineral additions play an important role in the improvement of concrete and 
mortars properties, regarding mechanical resistance and durability, since its use in concrete 
improves the interfacial transition zone, densifies the cement paste, refining pores and reducing 
their interconnectivity. On the other hand, when considering carbonation, additions can lead to 
a negative effect, namely: a reduction in the carbonation resistance of the concrete, due to the 
reduction of the "alkaline reserve" of the cementitious system. This effect is influenced by the 
type and content of mineral addition used, as well as by the water/binder ratio and curing 
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conditions (Cascudo; Carasek, 2011).  
Several authors have studied the effect of mineral additions on durability parameters, such 

as porosity, permeability, carbonation, chloride attack and others (Hossain et al., 2016; 
Papadakis, 2000; Lim; Mondal, 2015). Some authors report that the replacement of cement by 
metakaolin increases the carbonation depth (Meddah et al., 2018; Fikhailenko et al., 2018), 
whereas other researchers have observed smaller depths (Duan et al., 2012, 2013; Rossignolo; 
Oliveira, 2006). So, there are still divergences in relation to the behavior of concrete or mortar 
modified with metakaolin, with regard to its performance against carbonation.  

Thus, this work aims to analyze the influence of different metakaolins and curing conditions 
in the accelerated carbonation of mortars, trying to understand this behavior from the point of 
view of the characteristics of metakaolin. In addition, it was sought to analyze the relationship 
between the measurements of carbonated depth using two pH indicators: phenolphthalein and 
thymolphthalein based solutions. 

2  Experimental 

2.1 Materials 
The mortars were produced with a washed riverbed quartz sand, with a fineness module of 1.65 
and a maximum size of particles of 1.18 mm. The cement used was a Brazilian-type CP II F-40 
portland cement, with a specific surface area of 4120 cm²/g and chemical characteristics 
according to Table 1. A polycarboxylic ether based superplasticizer admixture (density of 1.09 
g/cm³ and solids content of 30%), water from public supply network, and two metakaolins 
derived from different deposits (Table 2) completed the constituent materials of the produced 
mortars. Brazilian-type CP II F – 40 is a portland cement similar to European CEM II/A-L 42,5 
R (NF EN 197-1: 2012), being composed of 75-89% of clinker and calcium sulfate, and 11-
25% in mass of limestone filler, according to the Brazilian standard NBR 16697: 2018. 
 

Table 1. Chemical characterization of cement (C) and metakaolins (J1 and J2). 

Chemical (%) 

 Al2O3 SiO2 Fe2O3 CaO MgO SO3 
Loss 
Ignit. 

Free 
CaO 

Insoluble 
Residues 

Alkali 
Content 

C 4.24 18.48 2.63 61.02 4.33 2.76 4.99 0.78 1.10 0.66 

J1 37.1 52.7 2.3 0.1 1.0 --- 2.7 --- --- 1.5 

J2 39.5 47.6 5.3 0.1 0.3 --- 4.7 --- --- 0.5 

 

The two metakaolins showed different chemical compositions. J1 has higher SiO2 content 
and the reddish coloration of metakaolin J2 is explained by the higher iron oxide content in this 
material. Regarding fineness, J2 is 30% finer than J1. Despite these differences, the two 
metakaolins studied showed very similar pozzolanic activity (modified Chapèlle - NF P18-513: 
2012).  



Helena Carasek, Mônica E. Jungblut, Paulo M. Passos and Oswaldo Cascudo 

 3 

Table 2. Metakaolins’ complementary characterization. 

Metakaolin Aspect/Colour Specific gravity 
(g/cm³) 

BET Fineness 
 (m²/g) 

Chapèlle  
(mg CaOH2/ g) 

J1 

 

2.58 22.13 1037 

J2 

 

2.60 28.71 1075 

2.2  Preparation of Specimens and Test Methods 
Three different mortars were produced, one as reference and the other two with 10% 
replacement of cement by metakaolin J1 or J2, in mass. The mortars were produced with a 1:2 
mixture (binder:sand, in mass), since this is a mix proportion commonly used in the mortar 
fraction of various concrete mix designs (1:2:3-binder:sand:gravel). The consistency index was 
maintained in 320±20 mm (according to ASTM C230: 2014). After mixing, two mortar 
specimens were cast, under controlled conditions, in prismatic dimensions of 40x40x160 mm 
(ASTM C349: 2018). The mortars’ composition and identification are shown in Table 3. 

Table 3. Mortars’ identification and composition (kg/kg). 

Identification  Cement Metakaolin Sand Water/Binder 
Superplasticizer 

Admixture 
A – R 1.0 0,0 

2 0.55 
0 

A - J1 
0.9 

0.1 (J1) 0.022 

A - J2 0.1 (J2) 0.037 

After 24 hours of molding, the specimens were demolded and subjected to four different 
curing conditions: no wet curing and curing by immersion in lime saturated water for 3, 9 and 
28 days. For the specimens without wet curing, they were packed in PVC plastic after 
demolding and stored in a laboratory until the tests performing. For those specimens cured for 
3 and 9 days, they were air-dried for about two hours (after the curing period) and then packed 
by means of PVC plastic until they reached the testing age of 28 days, in order to prevent natural 
carbonation. 

At 28 days of age, the accelerated carbonation test (7 days) was started. Before the start of 
carbonation, the specimens were preconditioned with humidity (70±5%) and temperature 
(20±1°C) controlled (no CO2), according to standard ISO 1920-12 (2015). It was used one CO2 
incubator, model 6034-1, Caron brand, with temperature of (20±1)°C, relative humidity of 
(70±5)% and CO2 content of 10%. The carbonation depth was measured by spraying the pH 
indicators (thymolphthalein and phenolphthalein-based solutions) and using a digital calliper 
with an accuracy of 0.01 mm, as shown in Figure 1. Each specimen was sliced two times, 
resulting in a four-sided measurement of 40 x 40 mm, a specimen. In 2 faces the 
phenolphthalein was applied, and in the other two it was the thymolphthalein. On each side 4 
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measures were taken (in the central region on each side), which implies that the mean results 
of carbonation depth were obtained using 16 individual measures. 

The compressive strength test (ASTM C349:2018) was performed with the mortars 
subjected to wet curing for 28 days. 

a)    b)  
Figure 1. Measurement of carbonated depth using a) phenolphthalein and b) thymolphthalein. 

For result analysis, the data was treated with Dixon statistic test (ASTM E178: 2016) in 
order to remove spurious values, and then analyzed using variances analysis (ANOVA) to 
identify the study’s significant variables. In addition, multiple comparisons of means were 
performed by the Duncan test. 

3  Results and Discussion 

3.1  Compressive Strength 
Table 4 presents the results of mortars’ compressive strength. It can be noted that the metakaolin 
mortars achieved higher strengths compared to the reference mortar; in addition, there was no 
significant difference in strength between A-J1 and A-J2.  

Table 4. Compressive Strength at 28 days of age. 
Mortar A - R A – J1 A – J2 

Compressive Strength - mean (MPa) 34 43 42 
Standard Deviation (MPa) 10.4 5.0 2.7 

3.2  Carbonation 
The results of mortars’ carbonation depth, for different curing situations, are presented in Figure 
2. The carbonation depth is reduced with wet curing, showing the importance of performing 
curing in order to increase the durability of reinforced concrete. Comparing carbonation depths 
of mortars submitted to wet curing for 28 days and mortars not submitted to wet curing, it is 
possible to observe a reduction in carbonation up to 70% for A-R, and 45 % for A-J1 and A-J2. 

The increase of wet curing time from 3 to 28 days reflected in a less pronounced depth 
reduction, about 50%, 25% and 30% for mortars A-R, A-J1 and A-J2, respectively. It is 
interesting to note that the type of curing exerts a greater influence on the reference mortar than 
on the metakaolin mortars (A-J1 and A-J2). It was found that concretes modified with 
metakaolin without the application of any curing procedure show superior carbonation 
resistance compared to reference concretes. From the literature, it is known that mineral 
additions such as blast furnace slag and fly ash require wet curing for a long time to consolidate 
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the pozzolanic reactions (Sulapha et al., 2003), and that superpozzolans such as silica fume, 
nanosilica and metakaolin are generally not sensitive to wet curing (Couto et al., 2003). This 
was verified in the present work for metakaolin and the main argument on the issue is based on 
the physical transformation capacity of the cement paste by the action of pozzolan, which 
reduces porosity and refines pores, thus increasing the volume of micropores capable of 
retaining water in its capillary structure (Duan et al., 2013). In these cases, it can be said that 
self-healing occurs due to changes in the material's microstructure. 

The analysis of variance - ANOVA (Table 4) confirms the statement that the type of curing 
exerts a strong influence on the carbonation depth, while type of mortar did not present 
significant effect on the results of this research. 

Table 4. Carbonation depth ANOVA. 

Efect SQ GL MQ Fcalc Ftab 
Result 

(5% significance) 
Model 652.73 11 59.34 78.5 1.8 Significant 
Residual Error 278.02 368 0.76    
Total 930.75 379     
Type of curing 574.50 3 191.5 253.5 2.6 Significant 
Mix design 2.80 2 1.40 1.9 3.0 Not Significant 
Type of curing x Mix design 64.14 6 10.69 14.2 2.1 Significant 
Residual Error 278.02 368 0.755    
Coefficient of Determination (R2) = 0.70    Coefficient of Correlation (R) = 0.84   

The multiple comparison of means (Figure 2), where dashed lines indicate separation into 
different groups, shows that the mortars with metakaolin present a tendency to be similar 
regarding the carbonation for all the curing conditions. The behavior similarity of mortars A-
J1 and A-J2 can be explained by the fact that the metakaolins presented similar reactivity 
(Chapèlle - Tab. 2), confirmed by the compressive strength results (Tab. 4), despite the 
chemical, coloring and fineness differences of the two pozzolans. When comparing the 
metakaolin mortars with the reference mortar (A-R), a distinct behavior is observed. In 
intermediate curing, the three mortars show same pattern from the statistical point of view. 

 However, when no wet curing is performed, the reference mortar presents a higher 
carbonation depth than the mortars with metakaolin. When wet curing is performed for 28 days, 
this behavior is reversed; this explains the significant interaction between Type of curing x Mix 
design found in ANOVA (Tab. 4). The approximately 50% increase in carbonation depth for 
A-J1 and A-J2 regarding A-R, in the wet curing for 28 days situation, can be explained by the 
hydration process and the pozzolanic reactions, in which the increased time of wet curing 
allowed better conditions for the hydration and pozzolanic reactions to occur, improving 
mortars’ microstructure, but with pozzolanic reactions there is also reduction in alkaline reserve 
of mortars with mineral additions (Thomas; Matthews, 1992; Cascudo; Carasek, 2011). In 
contrast, the shorter depth for A-J1 and A-J2 without wet curing, regarding A-R, can be 
explained by the greater influence of curing on reference mortar, in addition to the filler and 
pozzolanic effects of mineral additions, which refined the mortars’ porosity and microstructure 
(Duan et al., 2013), as previously discussed.  
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Figure 2. Carbonation depth results analyzed with multiple comparison of means. 

3.3  Relationship Between pH Indicators 
Figure 3 shows the relationship between the carbonated depth measurements made with 
thymolphthalein and phenolphthalein, and the strong correlation between these two variables 
(R² = 0.89). It is noted that, in general, the thymolphthalein indicated greater depths than the 
phenolphthalein, which can be attributed to the difference between the indicators’ pH turning 
ranges (phenolphthalein from 8.0 to 9.8 and thymolphthalein from 9.3 to 10.5). Other authors 
(such as: Kazmierczak; Lindenmeyer, 1996; Yu; Lee; Chung, 2010, Reis; Camões; Ribeiro, 
2016; Revert et al., 2016, Thiel; Gehlen, 2019) have worked with indicators and discussed the 
relationships between the measurements obtained. 

 

 
Figure 3. Relationship between carbonated depths with different pH indicators. 
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The equation obtained for this correlation can be highlighted; the carbonated depth readings 

with phenolphthalein are equivalent to 0.9 times the readings taken with thymolphthalein. An 
interesting aspect, and perhaps new, was noticed: this relationship between the variables 
matches the relationship between the two extremes of the pH ranges nominated by the different 
pH indicators (9.3 / 10.5 = 0.9; where 9.3 is the maximum pH indicated by phenolphthalein and 
10.5 is maximum by thymolphthalein). 

4 Conclusions 
Based on the research presented, the following conclusions can be drawn: 

Despite of the chemical, coloring and fineness differences of both metakaolins studied, there 
were no statistically significant differences regarding the carbonated depths of the mortars 
prepared with them. These metakaolins had similar pozzolanic activity (measured by the 
Chapèlle method), showing that this characteristic is very relevant to explain the carbonation 
of mortars with metakaolin. 

The curing condition had a strong influence on carbonated depths of mortars. This depth is 
reduced with wet curing and with the increased time of immersion in water, showing the 
importance of wet curing for increasing the durability of reinforced concrete. However, 
metakaolin mortars are less affected by wet curing when compared to the non-pozzolan mortars 
(reference cementitious mortars). This is certainly due to a self-healing action exerted by a 
microstructure with refined pores, referring to systems with metakaolin, with greater water 
retention capacity. 

As for the carbonate depth measurements performed with phenolphthalein and 
thymolphthalein based indicators, a strong linear correlation was observed between the two 
variables (R² = 0.89). The carbonated depth readings with phenolphthalein are equivalent to 0.9 
times the measured readings with thymolphthalein. This relationship between the variables is 
exactly the relationship between the two extremes of the indicators’ pH turning ranges 
(phenolphthalein = 9.8 and thymolphthalein = 10.5). 
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