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Abstract. We propose a surrogate model for predicting in-plane nonlinear structural deformations of
a compliant mechanism. Our model utilizing a 2-dimensional co-rotational beam element extracts the
essential deformation degrees-of-freedoms (DOFs) of bending flexible beams. The total number of DOF's
of nodes at both ends of a 2-dimensional beam is six, while the number of deformation DOF's is three,
i.e., axial extension, symmetric bending, and anti-symmetric bending. Therefore, it enables us to reduce
the computational cost, from six to three, associated with the models by using the essential deformation
DOFs s of the co-rotational beam element. Moreover, it is difficult to predict the nonlinear responses of
forces derived from displacements of a compliant mechanism due to bifurcation of the deformation-path.
To overcome the problem, we generate the datasets by applying external forces and use the inverse re-
sponse for constructing the surrogate models. In the numerical example, large-deformation behaviors
of several types of compliant mechanisms are predicted by our surrogate models constructed by three
typical learning algorithms: polynomial approximation, radial basis function, and neural network. The
prediction performances and computational costs are investigated for verifying that they can be benefi-
cial tools for designing a compliant mechanism with nonlinear elastic deformation behaviors.

1 INTRODUCTION

In a wide range of engineering fields, mechanical design problems crucially affect the total perfor-
mance of a product. In particular, designing a largely deformable structure is not a simple task due to
its geometrical nonlinearities. We traditionally design the structure with desirable deformation DOFs
by rigid-body mechanism, which is composed of rigid links and additional joints such as pin and roller.
While compliant mechanism can realize the desirable motions by the designers by utilizing elastic defor-
mation of each flexible member [1]. Compliant mechanisms have opened new avenues for the design and
fabrication of structures with complex deformation DOFs. Following Ref.[1], there are two main advan-
tages of using compliant mechanisms: (i) cost reduction and (ii) increased mechanical performance for
precise deformations. The former advantage leads to fabricating them monolithically. It contributes to
reducing the number of additional parts such as rotating and sliding joints, and it is possible to generate
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a lightweight structure rather than a rigid-body mechanism. The latter leads to reducing the errors and
damages due to backlash and friction of joints. However, there have been some difficulties in broadening
compliant mechanisms to general applications. Design of them is still hard for many designers, because
the sophisticated knowledge and techniques of computational modeling and analysis are required due
to their complex geometrical configurations and specific deformation behaviors. Moreover, numerical
simulation with geometrical nonlinearities can be a time-consuming task.

Pseudo-rigid-body model is often used for describing the large-deformation behaviors of a compliant
mechanism [1]. A basic idea of the pseudo-rigid-body model is based on a simple analyzing system for
reducing the deformation DOFs by using a combination of rigid bars and torsional springs, and it is also
associated with the rigid-body mechanism theory. However, it is necessary to construct a computational
model based on the geometrical shape of each structure by trial and error.

A data-driven approach can improve the simplicity of the design process of complex structures with
highly nonlinear deformation behaviors [2, 3]. Recent advances in data-driven approaches to design
structures have shown superior effectiveness for predictions of their mechanical properties. There have
been many developments for a surrogate model predicting elastic large-deformation behaviors of a com-
pliant mechanism. Malomo ef al. [2] proposed FlexMaps, which allow us to carry out fast and accurate
numerical simulation for large-deformation of a compliant mechanism. The idea of their method is that
they utilize the bending beam model, with the stiffness matrix constructed by the datasets of the non-
linear structural responses of a compliant mechanism, as an equivalent model to the original structure.
Papadopoulos et al. [3] predict the nonlinear deformation behaviors of a carbon nanotube by using
the surrogate model, which has the essential deformation DOFs, constructed by the scattered datasets
collected by finite-element simulations. A data-driven approach enables us to propose a method for
obtaining nonlinear deformations of a compliant mechanism without resort to sophisticated techniques
required for designing a complex geometrical configuration.

In this paper, we propose a surrogate model for predicting in-plane nonlinear structural deformation be-
haviors of a compliant mechanism composed of multiple bending beams. The basic idea of our surrogate
model as briefly illustrated in Fig. 1 is that the use of an equivalent beam model with reduced deforma-
tion DOFs overcomes the computational task caused by a complex geometrical configuration and large
DOFs of detail model composed of multiple beams. Our surrogate model is constructed by the following
three steps: (i) preparing a structural component, with essential deformation DOFs, that is appropri-
ate for being incorporated into the numerical simulations based on finite-element analysis, (ii) carrying
out finite-element analysis with geometrical nonlinearities for sampling the datasets of static structural
responses of detail model composed of multiple beams, and (iii) learning the datasets for predicting
the nonlinear structural responses of a compliant mechanism. At step (i), we use a 2-dimensional co-
rotational beam element, which enables us to separate the DOFs into rigid and natural straining modes.
By using the co-rotational beam element with essential deformation DOFs corresponding to the natural
straining modes, the computational costs associated with dimensions of datasets can be reduced from six
to three. The datasets collected by numerical simulation at step (ii) are stress-strain relationships derived
from the natural straining modes of a co-rotational beam element. Our surrogate models are based on
three learning algorithms: polynomial approximation, radial basis function, and neural network. In the
numerical example, we investigate the prediction performances of our models and compare the compu-
tational costs and deformations with those of the detail models composed of multiple bending beams.
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Figure 1: Conversion of a compliant mechanism; (a) continuous model, (b) discretized detail model composed of
bending beams incorporated into numerical simulation by finite-element analysis, (c) equivalent model composed
of a single co-rotational beam element based on a surrogate model constructed by the scattered datasets of nonlinear
structural responses.

2 2-DIMENSIONAL CO-ROTATIONAL BEAM ELEMENT

Consider a 2-dimensional bending beam—Euler-Bernoulli beam—composed of two end nodes. The
DOFs on each node of a beam are three: two translations and one rotation; accordingly, the total number
of DOFs is determined as six for a single beam element. To reduce the DOFs, we use a 2-dimensional
co-rotational beam element as explained in Ref. [4]. Figure 2 illustrates the deformation modes of a
2-dimensional beam element. By introducing the idea of a co-rotational beam element, the deformation
mode of a beam can be separated into two parts: rigid body mode and natural straining mode. The
rigid body mode is composed of translation and rotation as illustrated in Fig. 2(b). While, the three
strains of the natural straining mode: axial extension, symmetric bending, and anti-symmetric bending,
as illustrated in Figs. 2(c)—(e), are represented as v = [u, @, (pa]T. The generalized forces corresponding
to v are introduced by t = [N, M, M,]".

The equivalent beam model with the nonlinear response between v and t [3] can be implemented into
the computational procedure that we deal with global coordinate displacements p, and forces (g obtained
by carrying out the following two coordinate transformations: (i) between the element and co-rotational
coordinate systems and (ii) between the co-rotational and global coordinate systems.

The transformations from displacements p, and forces q. in the element coordinate system to those in
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Figure 2: Deformation of a 2-dimensional beam element; (a) motion of beam element in global and element
coordinate systems, (b) rigid body mode: translation and rotation, (c) axial extension, (d) symmetric bending, (e)
anti-symmetric bending.

the co-rotational coordinate system are formulated as

p.=Sv and q,=St with S:[S1 ]: (1)

S,

where S and / denote transformation matrix and the current length of a beam, respectively. We also
introduce the transformation from displacements p, and forces g in the global coordinate system to p,
and q, by using a matrix R, as follows:

P = Repe = ReSV and q; = Reqe = ReSta (2)
where R, is expressed as a combined form with respect to the rotation matrix R and written by

R cosp —sinp O
R, = { R ] with R= | sinp cosp O |, 3
0 0 1
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where p denotes the rotation between the initial and current axes of a beam. Equations (1)—(3) represent
the transformation between global and co-rotational coordinate systems.

To carry out the gradient-based simulation e.g. Newton-Raphson method, the global coordinate tangent
stiffness K, is derived from the co-rotational tangent stiffness Ky = g—‘t, via the coordinate transforma-

tions. Note that the element stiffness matrix K, is divided into the following two terms:

K, =SK,S" +K,. 4)
The second term K, is computed by
0 -0 O
Kr Kr s r r r r 1
K, = [K}I KP] with Kj; =Ky = —Kj, = —K3, = 7 -0 N 0, o)
21 22 0 0 0

where Q(= —2M,, /1) represents shear force complementing the equilibrium system in the anti-symmetric
bending mode of a co-rotational beam element. The global coordinate tangent stiffness matrix K, is
finally computed by using the element stiffness matrix K, and rotational transformation matrix R, as

K, =R.K.R}]. (6)

3 GENERATION OF DATASETS

In this section, we explain how to generate the datasets used for training our surrogate models for pre-
dicting in-plane deformations of a compliant mechanism. The procedure for generating the datasets is
divided into the following three steps: (i) generate n random samples of t with the Latin hypercube sam-
pling (LHS) method, (ii) carry out large-deformation analyses, corresponding to n sampled datasets of t,
of a compliant mechanism composed of multiple beams under the boundary condition as shown in Fig.
3, and (iii) store the datasets consist of pairs of the co-rotational coordinate strains v and stresses t, which
are derived from the displacements and forces at both ends of a compliant mechanism, respectively, as
follows:

u N
v=| ¢®—¢* | and t=| MB-_M" |, (7

where N, M*, and M? denote external force and moments applied to node A and B, respectively, as
illustrated in Fig. 3(a); u, (pA, and (pB denote translation at node B and rotations at nodes A and B,
respectively, as illustrated in Fig. 3(b). Note that node A of a detail model has a pin-support and node B
is roller-supported that can move along X-direction.

We apply external forces instead of forced displacements to end nodes of a detail model for sampling
datasets, because multiple deformed equilibrium states can be obtained by bifurcation of the deformation-
path, which means that it is unfavorable to construct a surrogate model due to the noise. To overcome the
problem due to bifurcation, the Newton-Raphson method is used for solving the numerical simulation,
because we can eliminate the ’ill’ datasets, which cause the disturbance such as steepness on the whole
datasets, by utilizing the divergence of the simulations.
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Figure 3: Boundary condition given to a detail model for generating datasets; (a) initial state, (b) deformed
equilibrium state.

4 SURROGATE MODELS

Surrogate model is appropriate for expressing approximately a highly complex function of disordered
(scattered) datasets, which are difficult to be represented in any analytical form. Constructing a surrogate
model corresponds to finding a feasible set of hyperparameters determined by minimizing the errors be-
tween the target and prediction outputs. It is crucial to use a differentiable function as a basis function of
surrogate model, because its derivatives are required to find a feasible solution for the optimization prob-
lem minimizing the errors. We construct three surrogate models: polynomial approximation, radial basis
function (RBF), and neural network (NN), because they are typical learning algorithms for estimating a
nonlinear function and have been used for solving a wide range of engineering problems. Note that input
and output used for learning of our surrogate models are strains and stresses, respectively.

4.1 Polynomial approximation

The nonlinear response t(v) of a single equivalent beam element is estimated by using polynomial
approximation. Based on a constitutive equation of a co-rotational beam element, the E-dimensional
Taylor expansion of t(v) has the following canonical expression:

t(v) = Y Keve, (8)
&=1

where K¢ € R**3He denotes stiffness matrix corresponding to the Eth term. Letting /.0.1 stand for higher
order terms, Eq. (8) is rewritten by using the components of v; as
T
t (V) :Kl [”7 Oy, (Pa]T + KZ [u27 (Ps27 (Paza UQPy, UQP,, Qs, M(Pa]
T
+Kj3 [“37 (Ps3a (paS ) MZ(Ps, uz(Pa; M(Pszy u(Pazv (Psz(Pay (Ps(pazy u(ps(Pa] +h.o.t. )

The total dimension E of our polynomial approximation is specified as the value, where the best predic-
tion performance is obtained, in the range of 1 < X < 10.
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4.2 Radial basis function

In a wide range of engineering problems, the RBF has been generally used as an approximation for
estimating a response surface for large scattered datasets [5]. The basic idea of this approach is to
generate the response surface as a linear combination composed of multiplications of weights and RBF.
The obtained response surface passes on the target datasets. The basis function ¢(x,c) with respect
to an input variable x is defined as a real function depending on the distance from the RBF center ¢
to X. A general form of ¢(x,c) can be described by ¢ (x,¢) = 0 (||x —¢||). We use Gaussian function

o(x,¢) = exp [—S(HX— c| ])2} as RBF, where ¢ is the hyperparameter defined as the ’influence’ of a

single training data on all datasets. Here, RBF centers ¢ are kpy,x strains vyq,..., v sampled from the
generation of datasets. The interpolation function is written by the following linear combination:

kmax

FO) =Y wo(|[v—wil]), (10)
k=1

where wy, is the RBF weights on the kth relationship between the input and output. To find a feasible set
of the components of weight vector w = [w1, ..., Wimax], the interpolation function satisfies the condition
f(vi) = t; for the kth dataset. We finally obtain the RBF weights w by carrying out least squared method
for minimizing the differences || f(vx) — t|| for all k.

4.3 Neural network

NN, an artificial network model inspired by a combination of biological neurons [6], can be utilized as
a surrogate model for predicting nonlinear responses of large-deformation behaviors of an elastic beam
model [3]. We use multilayer perception (MLP), which is a general form of NNs and consists of fully
connected multiple layers composed of units. The network constructed in this paper has a single hidden
layer following a classical MLP, and the hidden layer has 50 units, as shown in Fig. 4. The units in the

Hidden Layer € R

Figure 4: Architecture of our NN based on a classical MLP with one hidden layer composed of 50 units.
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hidden layer denoted by h,,; m = 1,...,50 are computed as

3 1 1
=0 | Yowlvi+by |, (11)
=1

where 6(-), WE,:I), and b,(n1 ) denote activation function, weight parameters, and bias parameters, respec-

tively. Superscript (1) in Eq. (11) indicates that the parameters consist of the first layer of our NN.
We choose the logistic sigmoid function 1/(1+e™"), which is differentiable, as 6(-) for all connections
between the units in two neighboring layers. The units in the output layer are written by

50 3

t1(v,w,b) =0 (Z wl(,zn)cs (Z wfnll)vl —i—bﬁ,})) —i—b;z)) ) (12)
m=1 =1

where w and b represent vectors composed of weight and bias parameters, respectively.

The learning process of NN is classified into two phases: the training and test phases. We randomly
assign 90% of datasets to the training phase and 10% to the test one. During the training phase, the loss
function defined as mean squared error Zi“;“‘f |[tx — t&||? /kmax is minimized based on error backpropaga-
tion, which is a computational procedure to obtain the partial derivatives of predictions with respect to
variables from outputs to inputs. kpn,x is the number of datasets collected by large-deformation analysis
with the detail model composed of multiple beam elements, and t; and f; represent the kth target and
prediction outputs, respectively. We choose the batch size equal to the total number of datasets; batch
learning is performed. Optimization is therefore carried out via gradient descent. Learning rate is 0.0001.
Training our NN is performed until 500000 epochs. The set of hyperparameters is determined manually
by trial and error. We use PyTorch [7], a Python library of NN, for constructing the architecture of our
NN and carrying out the learning process.

5 RESULTS

To investigate the prediction performances of the three surrogate models as introduced in Sec. 4,
we carry out the training and test of scattered datasets for nonlinear responses between strains v and
stresses t of four types of compliant mechanisms: Simple beam, Kazaguruma, Spiral, and Rhombus.
The numbers of datasets for Simple beam, Kazaguruma, Spiral, and Rhombus are 1000, 1000, 487, and
1000, respectively. Note that we eliminate the datasets not converged in the numerical simulations with
the detail model of Spiral.

By carrying out standardization, a statistical procedure to tune the variables of datasets, the mean is
set as 0 and standard deviation 1 for each variable. To eliminate the deterioration of the performances
due to the different scales and types of variables, standardization is to be carried out prior to the learning
process. Computation is carried out on a PC with Intel Core i7-9750H 4.50 GHz, 32.0GB RAM, and six
cores.

5.1 Comparison of our surrogate model predictions

In the following examples, we use a material with Young’s modulus 300 MPa and Poisson’s ratio 0.3.
The beam has a rectangle section with width 2 mm and height 4 mm. The initial length of each beam
element is 100 mm. We investigate the following average differences between the numerical simulation
results with detail models and the surrogate model predictions: (i) distance of vectors t = [N, M, S,MG}T =
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(a) (b)

(©) (d)
Figure 5: Geometrical configurations of compliant mechanisms used for investigation of prediction performances
of our surrogate models; (a) Simple beam, (b) Kazaguruma, (c) Spiral, (d) Rhombus.

t1,t2,63]T and t = [N, M, M,|" = [f1,1>,73]", (ii) axial stresses, (iii) symmetric bending stresses, and (iv)
anti-symmetric bending stresses, which are defined as

1 kmax t _f 1 kmax t _f
1% =%l 100 (%) and =

% 100 (%) (13)

kmax k=1 HtkH kmax k=1 ‘tlk|

with [ € {1,2,3}.

Table 1 shows the average differences of forces at both ends of the detail model and the equivalent beam
model based on our surrogate models. For all compliant mechanisms, the polynomial approximation and
NN are not performed better than our RBF. Our trained RBF can produce good prediction performances
of the numerical simulation with the detail models. The average differences obtained from our RBF for
all compliant mechanisms are lower than 1%. Notably, the prediction performances of RBF constructed
for Rhombus are good, and the average differences of the force vector and its components are lower than
1.0 x 1073%. As seen in the results, the in-plane nonlinear structural responses of the four compliant
mechanisms can be predicted practically by our RBF.

5.2 Comparison of computational time of detail and surrogate models

We compare the computational time of numerical simulations with the detail model and prediction
with our RBE. Three compliant mechanisms, whose initial shapes are straight and composed of single,
five, and ten Spirals, are set to serve as our benchmark. We set ten random cases of boundary conditions
applied to both ends of the compliant mechanisms, and measure the average computational time required
for a convergence of a numerical simulation.

The average times of the detail model and our RBF are 116.2 ms and 7.5 ms for single, 7278.2 ms and
45.7 ms for five, 86358 ms and 227.4 ms for ten Spirals, respectively. The large-deformation analyses for
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Table 1: Average differences between the numerical simulation results with detail models and our surrogate model
predictions for nonlinear structural responses of four types of compliant mechanisms.

(unit: %) Polynomial approximation =~ RBF NN
t 1.5150 0.0022  0.1891
Simple beam N 10.553 0.0505 2.0564
M; 0.8086 0.0009 0.4382
M, 0.1281 0.0002  1.1381
t 0.7994 0.0010  0.1483
Kazaguruma N 0.2562 0.0067  0.2365
M; 0.9572 0.0012  0.3847
M, 3.3246 0.0029  0.7026
t 0.0007 0.00003 0.0124
Rhombus N 0.0065 0.0002  0.0380
M; 0.0012 0.00003  0.0575
M, 0.0005 0.0002  0.0263
t 0.2684 0.0003  0.1311
Spiral N 0.1090 0.0002  0.1050
M 0.8005 0.0010  0.2636
M, 0.3026 0.0004  0.2405

single, five, and ten Spirals are approximately 16, 160, and 380 times faster using the equivalent beam
model based on our trained RBF than the detail model, respectively.

5.3 Prediction of in-plane deformation behavior of compliant mechanisms composed of multiple
Spirals

We further validate the proposed surrogate model in two numerical examples: Straight model and
Grid model. Our RBF trained with a single Spiral is implemented for predicting in-plane deformation
behaviors of the examples.

Figure 6 shows the initial and deformed shapes of the detail models composed of multiple beam mem-
bers and the equivalent beam models based on our RBF for predicting the deformation behaviors of Spi-
ral. The geometrical configurations of the detail models are illustrated by black piecewise linear curves,
and the equivalent beam models blue lines. Straight model, which is unstressed in the initial state, is
arranged along x-axis. The detail model has five Spirals, pin-supported at one end, and roller-supported
at the other end allowing translational displacement in x-direction. The equivalent beam model has six
nodes, and the boundary conditions are equivalent to the detail one. We apply external forces of —0.0033
N along the axial direction and symmetric and anti-symmetric moments of 0.21107 Nmm and 0.026528
Nmm at both ends of the model, respectively.

Grid model has 200 x 200 (mm) square boundary and four internal Spirals intersecting at the center.
The detail model is composed of twelve Spirals, and the equivalent beam model has twelve co-rotational
beam elements arranged in the grid. The three nodes in the left column are fixed, and the others can
move in xy-plane. Forced displacements of 100 mm are applied at the node connecting the two Spirals
in the right column towards the opposite direction of the center node of the grid.

As seen in Figure 6(b), we can see that the coordinates of all nodes between the detail and equiv-
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Figure 6: Initial and deformed shapes of compliant mechanisms with multiple Spirals. (Grey) Detail model. (Blue)
Equivalent beam element based on our RBF; (a) initial shape of Straight model, (b) deformed shape of Straight
model, (c) initial shape of Grid model, (d) deformed shape of Grid model.

alent beam models of Straight model are almost the same. The average and maximum differences in
x-direction are 0.0056 mm and 0.0099 mm, respectively, and those in y-direction are 0.0026 mm and
0.0059 mm, respectively. The differences are sufficiently small for the total length of Straight model.

Also, Fig. 6(d) shows that the coordinates of all nodes between the detail and surrogate models of Grid
model are very close. The average and maximum differences in x-direction are 0.1055 mm and 0.7906
mm, respectively, and those in y-direction are 0.0844 mm and 0.3710 mm, respectively. Although the
differences for Grid model are larger than those for Straight model, they are small for practical use of the
proposed model for finding better candidate solutions.

6 CONCLUSIONS

The main purpose of this paper is to propose a surrogate model for predicting nonlinear deformation
behaviors of a compliant mechanism. We use a 2-dimensional co-rotational beam element, with the
three essential deformation DOFs, for reducing computational costs of large-deformation analysis of a
detail model composed of bending beams, with six DOFs at each end. This procedure can degenerate the
dimensions of inputs and outputs, from six to three, used for training our surrogate models. The datasets
used for constructing the surrogate models are firstly sampled as forces and displacements by carrying
out the numerical simulation by finite-element method with the detail model, and they are converted into
stresses and strains associated with the three essential deformation DOFs in the co-rotational coordinate
system. We adopt the LHS method for generating random sets of forces applied to both ends of the detail
model. Note that the forces and displacements at both ends of the detail model correspond to inputs and
outputs for the sampling datasets, respectively; however, the co-rotational coordinate strains and stresses
correspond to inputs and outputs for constructing a surrogate model, respectively. In the numerical
example, we investigate the prediction performances of the constructed surrogate models for the four

11
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types of compliant mechanisms: Simple beam, Kazaguruma, Spiral, and Rhombus. Comparing the
differences of the target and prediction outputs, the results show that our RBF exhibits better prediction
performances than our polynomial approximation and NN. Notably, our RBF has great performance
for predicting in-plane deformation behaviors of Spiral and Rhombus. To validate that our surrogate
models enable us to resolve high computational costs for carrying out large-deformation analysis with
the geometrical nonlinearities, we measure the computational time of the detail model and our RBF
for the different sizes of Spirals. As a result, the use of our RBF for Spiral can significantly reduce
computational costs. Furthermore, the average differences of coordinates of all nodes between the detail
model and our RBF for Straight and Grid models are sufficiently small. The results suggest that our
surrogate model can be an alternative solver for obtaining candidate in-plane deformation behaviors of a
compliant mechanism.
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