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Executive summary

This document presents a description of the octree mesh-generation capabilities and of
the parallel mesh adaptation kernel. As it is discussed in Section 1.3.2 of part B of the
project proposal there are two parallel research lines aimed at developing scalable adaptive
mesh refinement (AMR) algorithms and implementations. The first one is based on using
octree-based mesh generation and adaptation for the whole simulation in combination
with unfitted finite element methods (FEMs) and the use of algebraic constraints to deal
with non-conformity of spaces. On the other hand the second strategy is based on the use
of an initial octree mesh that, after make it conforming through the addition of template-
based tetrahedral refinements, is adapted anisotropically during the calculation.

Regarding the first strategy the following items are included:

• Description of the octree-based AMR kernel with space-filling curves.

• Description of a outer, wrapping AMR layer supporting FEM needs.

• Numerical results in a distributed environment.

Regarding the second strategy the following items are included:

• An outline of the anisotropic mesh adaptation algorithm.

• A description of the state of the art of the implementation.

• A discussion on the ongoing and future work.
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1 Introduction

This deliverable reports on the current state of mesh generation and adaptation capabili-
ties developed during the project. A general discussion of the two strategies to be followed
in the ExaQUte project was presented in Section 1.3.2 of part B of the project proposal.
At this stage of the project, there has been no deviation from these strategies and the
work proceeds as expected.

The first strategy is the use of octree-based mesh generation and adaptation for the
whole simulation in combination with unfitted finite element methods (FEMs). The
meshes produced by these algorithms are non-conforming, i.e one element may have more
than one neighbor per face and the so-called hanging nodes appear. The FEM can be
implemented imposing continuity weakly, using discontinuous Galerkin methods or alge-
braic constraints (as it is done in FEMPAR). By assuming this duty (imposing continuity)
the solver provides an extra freedom that AMR algorithms can exploit to increase scala-
bility. This framework is currently fully functional in FEMPAR and its p4est interface, as
described in Section 2, although some improvements are still on the road-map.

The second strategy is to use anisotropic conforming meshes that permit the construc-
tion of a very accurate FE interpolation, capturing strong gradients near boundaries. An
initial octree-based mesh is made conforming by subdivision of non-conforming cells and
this is the starting point for the anisotropic AMR algorithms. After that, a metric field is
produced by the application (Kratos) indicating the required refinement to the underly-
ing AMR library (MMG). This interfacing, already developed, is currently under testing,
profiling and robustification. The underlying anisotropic AMR algorithms are described
in Section 3.

2 Octree-based mesh generation and adaptivity

In this section, we present a software framework, being developed as one of the Ex-
aQUte project outcomes, which is suitable for scalable mesh generation, adaptation, and
partitioning in parallel distributed-memory computing environments. In particular, we
briefly overview its main design concept (Sections 2.1-2.3), report on the advances and
a selected set of computational results so far (Section 2.4), and discuss possible lines of
extension. This module is released as part of the FEMPAR scientific software project [2, 3].
In Appendix 2.4.2, we provide instructions to compile and execute, within a Dockerized
computing environment, the software used to generate the computational results in Sec-
tion 2.4. A full description of the adaptive mesh data structures and algorithms in the
framework, and a comprehensive set of numerical experiments can be found in [5].

The main mesh data structure is designed such that: (a) it supports AMR (a.k.a. h-
adaptivity) on computational domains that can be geometrically discretized as multiple
connected adaptive trees—forest-of-trees—, thus being suitable for the efficient modeling
of multi-scale problems; (b) it equips the FE discretization module with the geometrical
data and the topological relationships among the mesh cells and the lower-dimension
objects laying at their boundary (e.g., vertices, edges and faces in 3D) required to support
the construction of generic conforming FE spaces of arbitrary order, thus covering a wide
range of applications governed by PDEs; (c) it is highly scalable on current petascale
distributed-memory supercomputers, thus suitable for large-scale simulations.

In order two achieve these goals the framework follows a two-layered meshing approach,
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namely an inner, light-weight specialized meshing engine that handles a forest-of-trees,
and an outer representation of the adaptive mesh suitable for the implementation of
generic adaptive FE spaces. The ideas underlying the outer layer are general in that they
apply for general cell topologies and an arbitrary number of dimensions. In Section 2.1,
we briefly overview the inner layer, and in Sect. 2.2, the outer.

2.1 Tree-based AMR endowed with SFCs

Tree-based AMR with SFCs was originally proposed in [9] for the particular case of
octrees, and extended to general trees in [12]. AMR with SFCs can be seen as a two-level
decomposition of the computational domain Ω, referred to as macro and micro level, resp.
In the macro level, we assume that there is a partition Ch of Ω into cells K ∈ C such
that each of these cells can be expressed as a homeomorphism ΦK over a set of admissible
reference polytopes [3]. The mesh Ch, referred to as the coarse mesh, it is assumed to be a
conforming mesh, and can be generated from an standard (sequential) unstructured mesh
generator. In the micro level, each of the cells of Ch becomes the root of an adaptive tree.
This two-tier adaptive structure is referred to as forest-of-trees.

A particular adaptive mesh Th of Ω to be used for FE discretization is defined as
the union of all leaf cells (i.e., cells with no children) in the forest. Forest-of-trees can
be exploited to consider more complex physical domains than single-tree approaches, i.e.,
conforming coarse meshes Ch with multiple cells. In order for forest-of-trees meshing to be
efficient, scalable, and light-weight, the number of cells in the coarse unstructured mesh
must be small. In any case, for PDEs posed on complex domains, i.e., problems for which
it is not possible to fulfill this last requirement while still resolving the geometry/topology
of the domain with a small coarse mesh, one can use a single-tree mesh (i.e., a coarse mesh
composed of a single cell, such as a quadrilateral, or hexaedron) as a background mesh to
be used in combination with unfitted (a.k.a. immersed or embedded) FE discretization
methods (as, e.g., the finite cell [17], cutFEM [7], or agFEM methods [4]). In such a case,
the framework presented in this report can be used to control geometry approximation
errors by adaptation in regions of high geometric variability. This is indeed the approach
pursued in ExaQUte for the description of complex geometries.

The process that generates a forest-of-trees is essentially characterized by defining two
complementary ingredients, namely a refinement rule and an SFC index.

Refinement rule. A refinement rule prescribes how one may subdivide a cell K into
finer cells that span the same region as K. K is referred to as the parent cell, and the
latter ones, (its) children cells. The refinement rule is usually defined at the reference
polytope and then mapped to the physical space using ΦK . The reverse application of
the refinement rule, i.e., the replacement of the children cells by its parent, is referred
to as coarsening. Mesh generation in this context is a hierarchical process based on
the recursive application of refinement and coarsening. At each level in the hierarchy,
some cells are marked for refinement, and some other for coarsening. A cell marked for
refinement is replaced by its children cells following the refinement rule. On the other
hand, if all children cells of a given parent are marked for coarsening, they are collapsed
into the parent cell. As a result of this process for all cells in Ch, we obtain a forest of
tree-like refinement structures rooted at every K ∈ Ch.
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SFC index. The SFC index is formally defined as a map among the set composed
of all constructable cells, i.e., the cells that can be potentially constructed by means of
the recursive application of the refinement rule to the forest roots up to a prescribed
maximum level of refinement, and the set of natural numbers. A key motivation when
choosing an SFC index is that mesh queries that locally operate on a cell take constant
time, independently of the level of refinement of the cell. Local cell functions include
computing the SFC index of a cell, determining the SFC index of its parent, children, and
neighbors with the same refinement level, computing vertices coordinates, etc. Besides,
the exploitation of the SFC index has to result in significant memory savings with respect
to unstructured meshing, in which a list of neighbors has to be stored, as well as the
coordinates of all vertices in the mesh, for each cell. On the other hand, the SFC index
must be chosen such that the refinement rule preserves the ordering induced by the SFC
index, i.e., the new cells generated by means of refinement have an SFC index inbetween
the ones of those already existing in the forest. Therefore, the leaves of the forest at hand
can be uniquely arranged in a linear array in ascending order by their SFC index, so that
preserving this order when replacing a parent cell by its children or vice-versa becomes
easy to implement (and efficient). Apart from providing an efficient storage layout, SFCs
also provide a linear runtime solution to the partitioning problem of the geometrical
domain among processors. In particular, a cell-based partition of Th is simply generated by
dividing the leaves in the linear ordering into as many equally-sized segments as processors
involved in the computation. This in turn circumvents the high computational cost and
lack of parallel scaling proneness typically associated with dynamic load balancing via
unstructured graph partitioning algorithms [14].1

Non-conformity and 2:1 balanced forest-of-trees Tree-based meshes provide multi-
resolution capability by local adaptation, i.e., neighboring cells in K ∈ Th might be located
at different refinement levels. However, these meshes are (potentially) non-conforming,
i.e., they contain the so-called hanging Vertices, Edges, and Faces (VEFs). These occur
at the interface of neighboring cells with different refinement levels. For FE applications,
mesh non-conformity hardens the construction of conforming FE spaces, and the sub-
sequent steps in the simulation [5]. However, common practice in order to significantly
alleviate this extra complexity consists on enforcing the so-called 2:1 balance constraint
(a.k.a. balance or mesh regularity condition). In a nutshell, geometrically neighboring
cells may differ at most by a single level of refinement. In particular, one enjoys the follow-
ing two cornerstone benefits: (a) only single-level (a.k.a. direct) hanging node constraints
are required when constructing global conforming FE spaces; (b) in a distributed-memory
context, all such constraints can be resolved locally with a single layer of ghost cells [5].

Forest-of-trees handler operations In practice, parallel tree-based AMR using SFCs
is a specialized feature that applications typically outsource to an external adaptive mesh-
ing engine. In the interface among these, a set of core application-level operations have
been identified as cornerstone in order to fully realize this functionality in numerical ap-
plications. These are briefly outlined in the sequel. (a) New: creates a new uniformly

1Dynamic load balancing is the ability of an adaptive mesh to be re-distributed in the presence of an
unacceptable amount of load imbalance, e.g., the one generated by means of AMR in a highly localized
region of Ω.
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refined forest, up to a user-provided level, from a data structure describing the connectiv-
ity of mesh cells in Ch; (b) Adapt: refines and coarsen the current forest accordingly to a
user-provided criterion; (c) Partition: redistributes the forest leaves among processors
for dynamic load balancing; (d) Balance: ensures the 2:1 balance condition among neigh-
boring cells by local refinement where required; (e) Ghost: creates a data structure that
contains layer of off-processor leaf cells that are neighbors of cells in the current processor;
(f) Iterate: given a 2:1 balanced forest, provides a mechanism to iterate over its leaf cells,
and a subset of the inter-cell interfaces, while letting applications get local neighborhood
information of each interface visited, including both conforming and non-conforming cell
interfaces.

State of the art software packages There are essentially two software packages
around that are grounded on the tree-based AMR with SFCs approach. As an evidence
of the potential of this approach, both libraries have been shown to efficiently scale up to
hundreds of thousands of computational cores. On the one hand, p4est [9, 13] provides
parallel forest-of-octrees (thus restricted to either quadrilaterals or hexahedra) grounded
on the standard 1:2d isotropic refinement rule and the Morton SFC index [9]. On the
other hand, t8code [12] is an ambitious, on-going software effort, which provides abstract
tree-based AMR with SFCs algorithms for the operations outlined above. By means of
implementing a set of low-level local-to-cell operations, these algorithms may be extended
to work with general polytopes (e.g., lines, simplices, bricks, prisms, pyramids, etc.). For
triangles and tetrahedra, it is grounded on Bey’s red-refinement rule, and the recently
proposed Tetrahedral Morton (TM) SFC index [8]. In its current status, t8code only
provides facet-oriented variants of the main operations above (e.g., Balance is restricted
to d−1-balance), and thus cannot be readily used for the implementation of generic FEs.
For this reason, in this report we restrict to p4est as a practical demonstrator.

2.2 A general FE-suitable parallel adaptive mesh data structure

As mentioned above, our approach for scalable mesh handling follows a two-layered mesh-
ing approach, namely an inner light-weight layer encoding the forest-of-trees, already
overviewed in Sect. 2.1, and an outer rich FE-suitable mesh representation, that we briefly
overview in this section. In particular, we have developed an specification for a distributed
adaptive mesh representation that supports generic FE spaces built atop. The sort of data
it needs to handle, and how it is internally laid out, has resulted from our experience in
accommodating the requirements of a wide range of state-of-the-art FE discretizations
within a single framework [3]. The concepts underlying this specification are not tailored
to a particular tree-based AMR with SFCs technology or cell topology.

The adaptive mesh Th is distributed among processors such that each processor owns
a set of local cells, and a layer of off-processor cells which are in touch with the local cells
of the processor. Using this overlapped mesh partition information, and a description
of neighboring relationships between cells in the adapted mesh (apart from hierarchical
relationships) provided by the inner layer, the outer layer mesh data structure is able to
reconstruct a suitable-for-mesh-non-conformity set of topological and neighboring rela-
tionships among the mesh cells and the lower-dimension objects laying at their boundary.
It also identifies the mesh objects into those which which are interior to the local portion
of the processor, lay at the processor boundaries with other processors, or at the exterior,
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while gluing together the mesh objects which lay at processor boundaries by means of
a distributed algorithm which generates a global labeling of the mesh objects across the
whole domain. It also classifies these objects into regular and hanging, is able to describe
the cells in the vicinity of objects, including the coarser cells and objects on which these
objects are in turn hanging in the case of non-conforming cell interfaces, thus providing
the required mesh information to a FE discretization module for the set up of hanging
DOF constraints. We refer to [5, Sect. 3] for a detailed description of the outer layer
mesh data structure in our framework.

2.3 Mesh handling primitives

Users of our FE framework are provided with a distributed mesh data structure that hides
the high complexity underlying the specialized tree-based AMR engine. To this end, it is
equipped with three high-level mesh handling primitives:

• Create. Creates a new, yet unadapted forest-of-trees mesh provided a coarse mesh
Ch. The coarse mesh can be either described manually by the user for simple do-
mains, or generated by an unstructured mesh generator and imported into the frame-
work.

• Refine and coarsen. Adapts the forest-of-trees mesh based on cell flags set by the
user, while transferring data that the user might have attached to the mesh objects
(i.e., cells and VEFs) to the new mesh objects generated after mesh adaptation.
The mesh data structure provides a set of mechanisms that, prior to the execution
of this primitive, lets them walk through over the mesh cells and associate a per-cell
flag that tells the framework whether a cell is to be refined, coarsened, or kept as it
is.

• Redistribute. Dynamically balances the computational load by redistributing the
forest-of-trees mesh among processors involved in the parallel simulation. The de-
fault criteria is to balance the number of cells in each processor. Alternatively, the
user might associate to each cell a partition weight. In this case, the primitive bal-
ances the sums of the cell partition weights among processors. The data that the
user might have attached to the mesh objects (i.e., cells and VEFs) is also migrated
among processors. This latter operation only involves non-blocking point-to-point
message exchanges among processors (see discussion below).

The implementation of these mesh handling primitives is grounded on the following tree-
based AMR operations; see Sect. 2.1. Create invokes New and Ghost, Refine and coarsen

invokes Adapt, Balance, and Ghost, and Redistribute invokes Adapt, Partition, and
Ghost. We note that these three mesh handling primitives also have to: (a) retrieve from
the inner layer a description of neighboring relationships between cells in the adapted
mesh; (b) call the algorithm which reconstructs the topological and neighboring rela-
tionships among the mesh cells and the lower-dimension objects that our FE-suitable
adaptive mesh representation keeps track off; see Sect. 2.2. The process underlying (a) is
implemented by means of invocations to Iterate (Sect. 2.1).

As mentioned above, the Redistribute mesh handling primitive is in charge of mi-
grating the data that the user might have attached to the mesh objects (i.e., cells and
VEFs). The underlying tree-based AMR engine may have a built-in mechanism that lets
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users to attach, cell-wise, application-related data to the forest leaves, and migrate them
in one-shot during the call to partition. This is indeed the approach followed by [9]
atop p4est in order to migrate, not only mesh-related data, but that within any other
data structure built on top of the mesh (such as, e.g., the nodal values of FE functions
involved in the simulation). However, in our framework, we preferred to implement the
communication pattern among processors required to carry out the data migration. This
full control over data migration provides greater flexibility as we do not require the data to
be migrated (e.g., FE function nodal values, or application-related cell-wise data arrays)
to be fully available whenever the user calls to Redistribute.

The execution of the communication pattern required for data migration is easily
implemented in terms of non-blocking point-to-point MPI communication primitives. The
determination of such pattern is more involved. To this end, Redistribute performs a
(temporary) copy of the forest-of-trees data structure right before calling partition. This
copy consumes only a (temporary) small amount of extra memory due to the low memory
footprint of tree-based AMR with SFCs. We stress that neither the full forest-of-trees
mesh connectivity, nor the data structure storing ghost cells has to be copied. Then,
Redistribute invokes partition on one of these two copies, so that it ends up with
the same forest-of-trees, but (potentially) distributed differently among the processors
involved. The algorithm that builds the communication pattern in turn relies on an
algorithm that takes as input two instances of the forest-of-trees data structure. Let us
refer to these as the “first” and “second” forest-of-trees, although we stress that they
correspond to the same forest, but distributed differently among processors. On each
processor p, the algorithm performs two passes over the leaf cells locally owned by p in
the first forest. In a first pass, the algorithm determines, for each of these leaves, whether
the leaf is still locally owned by p in the second forest, or by a remote processor q. This can
be determined, for each leaf, in O(log2(P )) operations [9]. A second pass lets processor
p know the number and list of remote processors q that now own leaves in their local
portion of the second forest, and how many leaves per processor. It can be easily seen
that the send side of the communication pattern is determined if we call the algorithm
with the first and second forest being the forest before and after calling partition, resp.,
while the receive side, the other way round.

2.4 Numerical experiments

In this section we leverage the mesh generation, adaptation, and partitioning capabilities
developed so far for the numerical FE solution of a benchmark PDE problem. We will in
particular focus on the parallel strong scalability of the mesh-handling related algorithms,
although the one of the other stages in the FE simulation pipeline are reported as well. The
data structures and algorithms for numerical integration, assembly and preconditioned
iterative solution of the discrete system of linear equations resulting from FE discretization
are part of FEMPAR as well, and rely on the services provided by the FE-suitable adaptive
mesh representation presented in this report.

2.4.1 Experimental environment

The numerical experiments are run at the Marenostrum-IV (MN-IV) supercomputer,
hosted by BSC. This petascale machine is equipped with 3,456 compute nodes intercon-
nected together with the Intel OPA HPC network. Each node has 2x Intel Xeon Platinum
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8160 multi-core CPUs, with 24 cores each (i.e. 48 cores per node) and 96 GBytes of RAM.
With respect to the software, we used FEMPAR, linked against p4est v2.2 as its forest-of-
octrees manipulation engine. These software were compiled with Intel v18.0.1 compilers
using system recommended optimization flags and linked against the Intel Message Pass-
ing Interface (MPI) Library (v2018.1.163) for message-passing and the BLAS/LAPACK
and PARDISO available on the Intel MKL library for optimized dense linear algebra ker-
nels and sparse direct solvers, resp. All floating-point operations were performed in IEEE
double precision.

2.4.2 PDE problem description

We consider the solution of a Poisson problem a 3D cube domain Ω = [0, 1]3 with homoge-
neous Dirichlet boundary conditions (strongly) imposed over the entire domain boundary.
The problem is discretized using a global Lagrangian FE space Vh ⊂ H1

0 (Ω). The weak
formulation of this problem reads: find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh), ∀vh ∈ Vh. (1)

The right-hand-size f(x, y, z) is a piece-wise function defined as:

f(x, y, z) =

{
1 z > 1

2
+ 1

4
sin(4πx) sin(4πy)

−1 z ≤ 1
2

+ 1
4

sin(4πx) sin(4πy)
.

The discontinuity in f leads to a solution that is non-smooth along a sinusoidal surface
through the domain, so that very localized AMR is required in order to reduce the error
in that area while keeping the computational requirements reasonably low.

2.4.3 Experiment design

We start with a coarse mesh that is obtained after uniformly refining the root octant of
the octree up to four times. This mesh has 16 cells (hexahedra) per coordinate direction,
and 4096 cells in total. Then, the Poisson problem is solved on a hierarchy of meshes
where the mesh at a given level is obtained from the one at the previous one by means
of the Refine and coarsen mesh handling primitive presented in Sect. 2.3. With load
balancing in mind, the mesh is dynamically redistributed at each level by means of the
Partition primitive right after each call to Refine and coarsen. For a given (fixed)
number of AMR levels, we measure the elapsed time (i.e., wall clock time) spent in each
of the stages in the simulation of process, aggregated across all levels, and evaluate at
which rate they are reduced with increasing number of CPU cores (i.e., strong scalability
test). The number of AMR levels is adjusted such that a “sufficiently large” problem size
at the last level is obtained for the CPU core range on which we run the strong scaling
test.

The decision of which cells to be refined, coarsened, or untouched (previous step re-
quired for the Refine and coarsen primitive) is performed as follows. Given the solution
of the linear system, each processor computes independently of each other an error indica-
tor for its local cells using the a-posteriori error estimator in [15]. Then, given user-defined
refinement and coarsening fractions, denoted by αr and αc, resp., we find the thresholds
θr and θc such that the total number of cells with error indicator larger (resp., smaller)
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than θr (resp., θc) is (approximately) a fraction αr (resp., αc) of the total number of cells.
Besides, we set αr = 0.15 and αc = 0.03, so that, the number of cells is at least doubled at
each AMR level (assuming that no cells can be coarsened). The actual number of cells at
each mesh in the hierarchy, however, also depends on the algorithm within p4est that 2:1
balances the forest-of-octrees, as it may need to apply more refinement in order to keep
this constraint. Fig. 1 shows the adapted octree mesh after the application of 5 AMR
sweeps, the computed FE solution for a 2D variant of Prob. (1), an the partition of the
mesh into 4 subdomains.

Figure 1: Single-octree mesh after 5 AMR sweeps. Left: FE solution. Right: partition of
the mesh into 4 subdomains.

2.4.4 Numerical results

Fig. 2 shows the strong scalability of the algorithms and data structures subject to study
for problem (1) discretized with trilinear (Q1(K)) Lagrangian FEs. In particular, the
curve labeled as Mesh includes the calls to the Refine and coarsen and Partition

primitives; see Sect. 2.3. For readability purposes, Fig. 2 also provides the ideal strong
scaling slope (solid black line). The more parallel a given strong scaling curve is to
the ideal slope the more strongly scalable the corresponding stage is. Two different
global problem sizes suitable for the [48, 12228] and [384, 30672] CPU cores range were
tested. In particular, the results in Fig. 2 (a) correspond to a problem in which the AMR
hierarchy has 13 levels, resulting into a 49.8 MDOFs problem size at the last level, while in
Fig. 2 (b), we report the ones for a 16 AMR levels hierarchy, and a 415.5 MDOFs problem
size.2 These DOFs counts, and the ones in the rest of the paper, include both regular and
hanging DOFs. The averaged load per core at the last level ranges, in Fig. 2 (a), from
1.04M DOFs/core to 4.06K DOFs/core, and, in Fig. 2 (b), from 1.08M DOFs/core to
13.53K DOFs/core.

Overall, the computational time reduction with the number of cores is very signifi-
cant for the Mesh stage. The parallel efficiency only decays to 16% and 26% for the
largest number of cores tested in Fig. 2 (a) and Fig. 2 (b), respectively, despite the Mesh

2We stress that this is by no means a parallel scaling limit of the algorithms proposed, but the
largest number of cores we can exploit on MN-IV provided the access constraints that we have to this
supercomputer. We expect the algorithms proposed to be able to scale up to hundreds of thousands of
cores in the solution of hundred of billions DOFs problem sizes.

Page 15 of 23



Deliverable 2.2

102 103 104

Number of cores

10−2

10−1

100

101

102

103

W
al

lc
lo

ck
tim

e
[s

]

103 104 30.7K

Number of cores

10−1

100

101

102

103

W
al

lc
lo

ck
tim

e
[s

]

Mesh
FE-Space Sub-assembly
FE-Space Full-assembly

Assembly Sub-assembly
Assembly Full-assembly
Error-Estimator

Total Sub-assembly
Total Full-assembly
Ideal slope

Figure 2: Strong scaling test results on MN-IV. Poisson problem with Q1(K) Lagrangian
FEs. (a) 13 AMR levels, 49.8 MDOFs, up to 12.2K cores. (b) 16 AMR levels, 415.5
MDOFs, up to 30.7K cores.

stage involves significantly more communication volume (relative to local work) than, e.g.,
Assembly Sub-Assembly.

2.5 Possible lines of extension

With the octree-based adaptive meshing capabilities in its current status we are able to
cover, among others, the following scenarios: (1) PDEs in which the area that requires
high-resolution is known a priori, the presented adaptive mesh data structure can be
adapted before starting the actual numerical simulation; PDEs in which solution features
evolve spatially over time, and that are known only during the actual numerical simula-
tion, it can be adapted dynamically, driven by a posteriori error estimates [1] during the
actual simulation; PDEs posed on complex domains, and in combination with embedded
FE discretization methods, as, e.g., the finite cell [17], cutFEM [7], or agFEM methods [4],
they can be used to control geometry approximation errors by adaptation in regions of
high geometric variability. While the first two families of embedded FE solvers can be
implemented using the current services of our adaptive mesh data structure, the latter
one will require additional services that we may consider as future lines of extension.
AgFEM is relevant to ExaQUte as it has been proven to be a very promising approach
for addressing the ill-conditioning issues associated to badly cut cells. In particular, given
which cells of the adaptive mesh are exterior, cut, and interior to the embedded compu-
tational domain, the mesh data structure should be able to: (a) build the cell aggregates
of agFEM methods [4]; (b) extend the notion of ghost cells to also consider root cells of
cell aggregates which are owned by remote processors. Such cells are required in order to
be able to resolve locally on each processor the agFEM methods DOF constraints [4].
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Figure 3: Mesh distribution on processors and subdivision into groups.

3 Anisotropic mesh adaptation

This section first provides the method of parallelization, then, it describes the state of
art of the first release of ParMmg, including the API functions available to the project
partners. It concludes with the ongoing work for the next months.

3.1 Outline of the algorithm

The user mesh (centralized on one processor or distributed on several ones) is divided
into sub-meshes (here called groups). Groups are equidistributed on different processors,
groups interfaces are fixed and each group is remeshed through a call to the sequential
remesher Mmg [11]. In order to adapt on previously frozen regions, groups are modified
so that old interfaces are moved inside the domain for the next mesh adaptation iteration.
The aim of the algorithm is to converge on the full adapted mesh (where the effects of the
previously freezed interfaces is not anymore appreciable). Similar algorithms have been
successfully used by [6], [16], [10] (among others).

In particular, our algorithm is build by the following steps:

1. Root process distribute the mesh on all the available processes (optional, only for
centralized initial meshes):

(a) Dual graph construction (1 mesh element = 1 graph node);

(b) Call to the graph partitionner (Metis) asking nproc colours (nproc being the
number of processes). Metis colours the graph nodes;

(c) Mesh subdivision into groups;

(d) Group communication to each target process;

2. While the stopping criterion is not reached, on each processor:

(a) Group subdivision into subgroups (3);

(b) Sequential remeshing of each group, the interfaces between groups being freezed
(4);
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Figure 4: Sequential remeshing of each group .

Figure 5: Graph .

(c) Input size map interpolation (because this size map is modified by Mmg);

(d) Load balancing:

i. New subdivision into smaller groups (smaller granularity for the graph
partitionner);

ii. Metis graph construction with groups as graph nodes (5);

iii. Adding of weights to the nodes / edges of the graph to ensure the dis-
placement of the previously freezed interfaces inside the new groups (6);

iv. Graph gathering on root process;

v. New group coloration using Metis;

vi. Check of the colour contiguity and correction of the colours if needed (to
ensure the remesher robustness);

vii. Merging of groups of same colours;

viii. Group communication to the target process.

(e) Go back to step 2;
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Figure 6: Weighted graph .

Figure 7: Final mesh after few steps of mesh adaptation .

3. Groups packing (deletion of empty positions in the meshes);

4. Group merging over each process;

5. Centralization if asked by the user:

(a) Groups gathering over the root process;

(b) Groups merging and packing (7).

3.2 State of art of the implementation

3.2.1 Setting of the development framework

At the beginning of the project, we give a particular attention to the setting of a framework
favorable to collaborative development:

• Continuous integration with CTest runned by Jenkins and on cloudstack slaves;

• Automatic compilation using CMake;
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• Merge Request git workflow;

3.2.2 Improvement of the Mmg library

Modification of the management of the mesh adaptation near freezed boundaries to avoid
the mesh degenerescence (leading to very poor qualities and long CPU times):

• Computation of the size to impose at required nodes as a mean of the length of
required edges passing through the node;

• Size map smoothing from required entities toward non required ones;

3.2.3 Core functions

All the needed modules have been implemented in C99 and all the parallel mesh adapta-
tion kernel functions benefits from the updates available in the last release of the Mmg
remesher.

3.2.4 API functions

The implemented API functions aim to provide the project partner with the tools to couple
their computational mechanics solvers with the parallel mesh adaptation library. The
requirements for these API functions can be found in the Deliverable 2.1 As such, the API
functions fall into the three main categories described in the following paragraphs. Basic
tutorials are available with the source code, and a complete documentation is underway
on the gitlab project webpage.

Functions to initialize and recover a sequential or distributed mesh
These functions closely match the analogous API functions available in the Mmg

remeshing library to initialize pointers to Mmg data structures and to set/get mesh enti-
ties (nodes, elements, boundary triangles) one-by-one or by arrays. The user is required
to set mesh elements (tetrahedra) and nodes, together with boundary triangles on each
local mesh.

Functions to set and get the interface entities of a distributed mesh
In order to be able to work both with node-centered and element-centered computa-

tional mechanics solvers, two separate sets of API functions are available to initialize
either interface faces or nodes (if both are provided, nodes information are discarded).
The user is asked to provide an array with the indices of interface faces/nodes in the local
input mesh, together with an array with the global indices of the same entities (provided
in the same order). This information is internally used to reconstruct the communication
graph among processes.

Functions to check the correctness of the set interface entities against input data are
also provided.

Main parallel mesh adaptation function
Two library functions are provided in order to run the parallel mesh algorithm starting

from a sequential or a distributed mesh.
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3.3 Coupling with the Kratosmultiphysics solver

The parallel remeshing library, with the previously described API functions, has been
made available to the project partner CIMNE, where the Kratosdevelopers team is taking
care of the coupling with the Kratosmultiphysics solver.

3.4 ongoing work

The short term roadmap is:

• profiling and speedup;

• robustification.
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A Software compilation and execution

In order to illustrate the usage of the octree-based meshing capabilities implemented in
this project task, and to obtain the computational results in Sect. 2.4, we developed a
FEMPAR driver program. This driver program is distributed as part of the official Git
repository of the FEMPAR software project3. In Fig. 8 we list the set of Linux shell com-
mands to be used in order to compile and execute the driver program within a Dockerized
computing environment.

1 # You must Sing up at https://hub.docker.com/ to get your_username_at_dockerhub
2 $ docker login --username=your_username_at_dockerhub
3 # Get Docker image from Docker Hub
4 $ docker pull fempar/fempar -env:gnu_debug_p4est -parallel
5 $ docker run -ti fempar/fempar -env:gnu_debug_p4est -parallel
6
7 # ****** COMPILATION INSTRUCTIONS ******
8 $ WORKDIR=/data
9 $ SOURCES_DIR=$WORKDIR/sources

10 $ FEMPAR_DIR=$WORKDIR/FEMPAR
11 $ git clone --branch preparing_fempar_dealii_comparison_experiment \
12 --recursive https://gitlab.com/fempar/fempar $SOURCES_DIR
13 $ cd $WORKDIR
14 # invokes CMake while setting up appropriate values for CMake variables
15 # run $SOURCES_DIR/Tools/configure -h to get an informative message on screen
16 $ $SOURCES_DIR/Tools/configure -s $SOURCES_DIR/SuperBuild -c GNU --with -tests
17 $ make
18
19 # ****** EXECUTION INSTRUCTIONS ******
20 $ cd $WORKDIR/FEMPAR/bin
21 # get informative message on screen
22 $ mpirun -np 1 par_test_h_adaptive_poisson -h
23 # run the program with:
24 # x 5 MPI tasks (-np 5)
25 # x 2D Poisson problem (--dim 2)
26 # x Biquadratic Lagrangian FEs (-order 2)
27 # x 7 AMR sweeps (-num_refs 7)
28 # x Generate simulation data files for visualization
29 # using e.g. ParaView (-wsolution .true.)
30 $ mpirun --oversubscribe -np 5 par_test_h_adaptive_poisson -l 2 \
31 --dim 2 -order 2 -num_refs 7 -wsolution .true.

Figure 8: Instructions to compile and execute the FEMPAR’s driver program that we used
in order to obtain the computational results in Sect. 2.4.
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