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Preface

Summary

Cell migration is a fundamental element in a variety of physiological and
pathological processes. Alteration of its regulatory mechanisms leads to loss of
cellular adhesion and increased motility, which are critical steps in the initial
stages of metastasis, before a malignant cell colonizes a distant tissue or organ.
Consequently, cell migration has become the focus of intensive experimental
and theoretical studies; however the understanding of many of its mecha-
nism remains elusive. Cell migration is the result of a periodic sequence of
protrusion, adhesion remodeling and contraction stages that leads to directed
movement of cells towards external stimuli. The spatio-temporal coordination
of these processes depends on the differential activation of the signaling net-
works that regulate them at specific subcellular locations. Particularly, proteins
from the family of small RhoGTPases play a central role in establishing cell
polarization, setting the direction of migration, regulating the formation of ad-
hesion sites and the generation of the forces that drive motion.

Theoretical models based on an independent description of these processes
have a limited capacity to predict cellular behavior observed in vitro, since their
functionality depends intrinsically on the cross-regulation between their sig-
naling pathways. This thesis presents a model of cell migration that integrates
a description of force generation and cell deformation, adhesion site dynamics
and RhoGTPases activation. The cell is modeled as a viscoelastic body capable
of developing active traction and protrusion forces. The magnitude of stresses
is determined by the activation level of the RhoGTPases, whose distribution
in the cell body is described by a set of reaction-diffusion equations. Adhe-
sion sites are modeled as punctual clusters of transmembrane receptors that
dynamically bind and unbind the extracellular matrix depending on the force
transmitted to them and the distance with ligands on the substrate.

On the theoretical level, the major findings concern the relationship between
the topology of a crosstalk scheme and the properties, as defined in [1], inher-
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ited by the associated reaction network as a gradient sensing and regulatory
system: persistent and transient polarization triggered by external gradients,
adaptation to uniform stimulus, reversible polarization, multi-stimuli response
and amplification. This leads to models that remain functional against the bio-
logical diversity associated to different cell types and matches the observed cell
behaviour in Chemotaxis essays [2, 3, 4, 5]: the capacity of cells to amplify gra-
dients, polarize without featuring Turing patterns of activation, and switch the
polarization axis and the direction of migration after the source of the external
stimulus is changed. The RhoGTPase model, derived on theoretical premises,
challenges a long held view on the mechanisms of RhoGTPase crosstalk and
suggests that the role of GDIs, GEFs and GAPs has to be revised. Recent
experimental evidence supports this idea[6]. In addition, the model allows
to recapitulate a continuous transition between the tear-like shape adopted
by neutrophiles and the fan-like shape of keratocytes during migration [7] by
varying the relative magnitudes of protrusion and contraction forces or, alterna-
tively, the strength of RhoGTPase Crosstalk. The second mechanism represents
a novel explanation of the different morphologies observed in migrating cells.
Differences in RhoGTPase crosstalk strength could be mediated by differences
between the activity or concentration of GEFs, GAPs and GDIs in different cell
types; an idea that can be explored experimentally.

On cell mechanosensing, a new hypothesis based on a simple physical prin-
ciple is proposed as the mechanism that might explain the universal preference
of cells (bar neurons) to migrate along stiffness gradients. The theory provides
a simple unifying explanation to a number of recent observations on force de-
velopment and growth in real time at cell Focal adhesions [8, 9, 10, 11]. The
apparently conflicting results have been attributed to the differences in experi-
mental set-ups and cell types used, and have fueled a longstanding controversy
on how cells prove the mechanical properties of the extra-cellular matrix. The
predictions of the theory recapitulate these experimental observations, and its
founding hypothesis can be tested experimentally. This hypothesis directly
suggests the mechanism that could explain the preference of cells to migrate
along stiffness gradients, and for the first time, a plausible biological function
for its existence. This phenomenon is known as Durotaxis, and its abnormal
regulation has been associated to the malignant behaviour of cancer cells.
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Dissertation outline

The thesis is structured in three main parts. The first presents the formulation of
the Regulatory and Biomechanical modules of the cell migration model, detailing
the experimental evidence that supports the founding hypothesis. The second
part introduces the numerical techniques used to solve the equations governing
the model. The third part of the thesis is devoted to analyze the results of com-
putational experiments replicating experimental essays. The predictions of the
model are compared with experimental observations and the biological implica-
tions are discussed. A CD containing the movies of the results that are better
understood in this form is provided in the physical form of this Thesis or can
be submitted upon request to the author. The figures in the main text for which
a movie can be found in the accompanying CD are marked with the symbol ⊗
preceding the caption. The contents of the chapters are summarized bellow:

• Chapter 1: provides a introduction to cell migration and its biological rel-
evance. Describes how external signals promote cell migration, the main
phases of the process and cellular structures involved. Particular atten-
tion is devoted to survey experimental essays focused on the study of cell’s
response to mechanical cues from the environment.

• Chapter 2: develops a set of reaction-Diffusion equations that describe the
spatio-temporal distribution and activation of the proteins of a Regulatory
network in a deforming body. The focus is narrowed to the study of the
RhoGTPase proteins, which are central regulators of the migration pro-
cess. The concept of crosstalk interaction between RhoGTPase proteins
is introduced, emphasizing the relationship between experimentally-based
hypothesis and the structure of the associated Interaction Scheme.

• Chapter 3: presents a mathematical description of cell deformation and mo-
tion on planar substrates in a continuum mechanics framework. This frame-
work is used to develop the constitutive laws governing the kinematics and
mechanics of the cell body and adhesion sites. Available data on the feed-
back channels that couple the dynamics of the RhoGTPases, cytsokeleton
and adhesion sites is summarized in order to guide their introduction in
the model. Based on this evidence, laws describing how the activation
level of RhoGTPases determines the forces that drive movement and how
adhesion-based signaling might guide the cell response to mechanical cues,
are stated.

• Chapter 4: develops the Finite Element formulation used to solve the model’s
equations. From a computational standpoint, cell migration models present
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numerous challenges associated to the resolution of the governing equations
in a complex geometry that varies over time as the cell migrates and the
interaction of multiple subsystems. As a result, theoretical models have
been then left with the option of simplifying the process to an extent in
which its usefulness to increase our understanding of migration might be
compromised, or alternatively, to consider a level complexity that tends to
shift the focus to the computational aspects of the problem. The Updated
Lagrangian formulation developed here is particularly suited to address
these issues. Thus, even though the focus of this work is not computational,
the method is comprehensively detailed and formulated in a general way
to provide a platform in which alternative models can be considered with
relatively modest programming work.

• Chapter 5: analysis of the polarization response of a particular model of
RhoGTPase regulation to different types of heterogeneous external signals.
This model predicts behaviors that are not consistent with experimental
evidence. Particularly, appearance of biologically meaningless patterns of
RhoGTPase distribution and reduced sensitivity to secondary stimuli. The
mathematical basis of this behavior is established and related to the founding
hypothesis of the model.

• Chapter 6: introduces the analytical tools, drawn from Matrix and Graph The-
ory, required to establish the conditions that alternative Regulation models
must fulfill to not feature the shortcomings discussed earlier.

• Chapter 7: a new class of RhoGTPase Regulation models is formulated sys-
tematically imposing the constraints derived from the previous results and
experimental evidence. The computational experiments of Chapter 5 are
repeated using a model of this class, showing the improved polarization re-
sponse of the New Class of models. More precisely, the New Class of models
reproduces persistent and transient polarization and feature the properties of
adaptation, reversible polarization, multi-stimuli response and amplification as
defined in [1]. The biological implications of the new assumptions and the
predictions of the model are particularly relevant for the interpretation of
experimental observations of RhoGTPase regulation and in the context of
recent experimental essays on Chemotaxis [2, 3, 4, 5]. Mechanisms of de-
termining the morphology of different cell types[7] during migration are
investigated cell shape.

• Chapter 8: presents an hypothesis that might explain the currently unknown
mechanisms underling the almost universal preference of cells to migrate
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along gradients of substrate stiffness. The predictions derived from this
hypothesis are shown to explain a number of recent observations on force
development and growth at cell Focal adhesion[8, 9, 10, 11]. This hypothesis
directly leads to suggest the mechanism that could explain the migration
of cells along stiffness gradients. The mechanism is implemented in the
migration model to compare its predictions with recent Durotaxis essays
[12, 13] and suggests the biological function for cell durotaxis.

A cautionary note. Due to the scope of the topics covered, an important effort
has been made to make the Chapters as self-contained as possible. The reader
with a strong interest in biology is advised to focus on Chapters 7-8 (and the last
section of Chapter 3 for the development of the FA model), which contain the
more relevant predictions for the interpretation of unaccounted observations of
the cell migration process. For the reader with an interest in theoretical mod-
eling in biology and biophysics, Chapter 2-3 present the theoretical framework
where the cell migration model is developed and Chapters 7-8 their most relevant
predictions, and for those interested in the computational side, the details of the
numerical scheme used to solve the cell migration equations are presented in
Chapter 4. Finally, those interested in the foundations of the relationship between
the spatio-temporal dynamics of regulatory networks, dynamical systems and
cell gradient sensing advised to focus on chapters 5-6-7.
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”... lest our necessary and highly successful preoccupation
with cell fragments and fractions obscure the fact that the
cell is not just an inert playground for a few almighty
masterminding molecules, but is a system, a hierarchically
ordered system, of mutually interdependent species of
molecules, molecular groupings, and supramolecular
entities; and that life, through cell life, depends on the
order of their interactions”.

Paul A. Weiss, developmental biologist

Chapter 1

Introduction to cell migration and
durotaxis

1.1 Biological relevance and motivation

The study of the migration of biological cells has experienced a revolution in
the last decade. The existence of this form of cell movement had been docu-
mented by researchers in the area of inflammation and wound healing during
the XIXth century and of embryology in the early XXth century. However, the
widespread assumption was that cell movement was somewhat subsidiary of
the phenomenon of cell division and consequently cell migration attracted little
attention. Thirty years ago, the number of observations and experimental data
reached a critical stage that allowed the community of biologist to accept the
ability to crawl on a solid surface as a fundamental feature of metazoan cells [15].
The pioneering work by Harris and coworkers [16, 17] with fibroblasts migrating
on elastic sheets of silicone rubber constituted a turning point on cell migration
research. Their observations of the deformations of the substrate surface caused
by the fibroblasts movement provided a definitive evidence of the existence of a
complex physiological machinery responsible of the generation of strong traction
forces during cell crawling. Research groups around the world started to perform
similar experiments aimed to understand the biological, biochemical and physical
principles underlying cell movement.

The development of new imaging techniques and the outstanding improve-
ment of the experimental methods aimed to explore intracellular events in vivo,
lead to the establishment of a general descriptive theory of cell migration as a
succession of phases of protrusion, adhesion and contraction. These efforts lead
to a partial characterization of the main structures underlying these processes:
the different types of cytoskeleton filament networks that support the extension
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18 CHAPTER 1. INTRODUCTION TO CELL MIGRATION AND DUROTAXIS

of new protrusion and contraction structures, molecular motors which in associ-
ation with cytoskeleton filaments generate the forces that power migration, and
Focal adhesion sites, the small clusters of transmembrane receptors in which the
cell relies to adhere to the extracellular matrix and to gather biochemical and
mechanical information. At the same time, a wealth of new techniques brought
about by the advent of genomics and proteomics in the 90’s lead to a revolution
in molecular cell biology, which lead to the identification of most of the compo-
nents of the signaling networks that govern cell migration [18]. A particularly
important milestone was due to the work of Hall and coworkers, that resulted
in the identification of the RhoGTPase proteins as the central orchestrators of cell
migration[19]. Nowadays, cell migration is recognized as an essential process in
the cell cycle and to have an important role in many diseases. Wound healing and
embryological morphogenesis, for instance, depend on the precise distribution
and movement of cells to repair the damaged areas and to form the structures
that will become organs and tissues, respectively. Conversely, abnormal RhoGT-
Pase function has been associated to the deregulation of cell migration processes
that are involved in tumorigenesis and cancer [20] and it also plays a role in
cardiovascular disease [21]. The American Cancer Society estimates that 577,190
people in the US will die from cancer in 2012 [22], the leading cause of mortality
in persons younger than 85 and with metastasis being the ultimate cause of 90%
of these deaths [23]. Elucidating the processes underlying cell migration could
lead to the development of therapeutic strategies in cancer treatment. Potential
applications in the emerging field of tissue engineering include directing cells to
promote healing of spinal chord injuries or bone repair.

Consequently, cell migration has become a central research field in biology and
biomedical engineering; nonetheless, the comprehension of many of its mecha-
nism remains elusive. There are several reasons for this. Cell migration relies
on the activation of molecular components at restricted subcellular locations at
specific times and, also, on the precise coordination of the different migration
stages. Traditional biological tools are extremely good at identifying functions
and abundances of individual components, but the crossregulation of different cel-
lular structures and the spatio-temporal element that is essential to cell migration
can not be addressed by these approaches [18]. Hence, formulation of theoret-
ical models is indispensable to understand how cell migration results from the
dynamic interplay of physical and biochemical processes [24]. In addition, the
overwhelming complexity of the cellular mechanisms and molecular components
uncovered by the flood of data derived from new experimental techniques, defies
the intuition and insights gained from qualitative models. Again, computational
and theoretical approaches are necessary to integrate the available data into mod-
els where experimentally-based hypothesis can be tested and new predictions
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made [25]. This problem was brilliantly and humorously illustrated in a recent
commentary that considered how traditional biological approaches would fare
if applied to the problem of fixing a broken radio1 [26]. In summary, the im-
portance of cell migration in physiological and pathological processed can not
be overemphasized. Great advances made in the experimental techniques allow
us to observe the dynamics of subcellular structures, molecular functions and
interactions in real time. Theoretical and computational models are needed to
integrate these data and might aid to fill the gaps in our understanding of this
biological process. To this end, this work aims to shed light on some related open
questions: First, cell response to external stimuli depends on the precise distribu-
tion of protein activation and dynamic rearrangement of intracellular structures.
What are the biophysical mechanisms behind the spatial-temporal organization
of cell migration? Second, the signaling networks regulating the different pro-
cesses taking place during migration are extremely complex. Traditional meth-
ods of genetically targeting one molecule and assigning it a function according
to the observed cell behavior might overlook dynamical effects emerging at the
network-level and feedback loops between proteins in the network. What is the
connection between the wiring of a regulatory network, its dynamical behavior,
and its function? Finally, focal adhesion sites are known to act as local sensors of
the mechanical properties of the extracellular matrix. How do they work? What
are the mechanisms behind cell migration along gradients of stiffness?

1.2 Experimental motivation

Cell migration is nowadays recognized as a central element in the cell cycle, with
an important role in critical phsysiological processes such as the development of
the embryo, the immune response of an organism to infections or wound healing.
Conversely, abnormal regulation of cell migration and adhesion are involved in
the metastasis stage of cancer, coronary disease and other lethal pathologies. As
a consequence, cell migration has become a field that attracts increasing research
attention, yet many of its underlying processes remain poorly understood.

Cells remain stationary and adherent to a surface or start migrating depending
on external factors. Migration is the cell response to these external cues, that can
take the form concentrations of biochemical attractors, topographical features of
the environment or variations in density of ligands coating the surface of the extra-
cellular matrix. Directed migration in response to anisotropies of these properties
have received the name of chemotaxis, contact guidance and haptotaxis, respectively.

1The comparison is not as farfetched as one could think. By an large, the function of signaling
transduction pathway and a (russian) transistor are not that different
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In recent years, a new type of guiding cue has been discovered to have a central
role not only in migration, but also on specifying differentiation, gene expres-
sion, apopotosis and many other cell functions: the mechanical properties of the
environment. A striking manifestation of this phenomenon was revealed in the
experiments performed in 1997[27] and 2000 [28] by Yu Li Wang’s group. The
earlier essay was the first successful attempt to demonstrate that cells probe and
respond to purely mechanical properties of the substrate. The hypothesis was
tested by culturing epithelial normal rat kidney cells and 3T3 fibbroblasts on elastic
substrates of variable rigidity, coated with a homogeneous distribution of colla-
gen to ensure that the observed response was caused exclusively by mechanical
properties. The experiment showed a positive correlation between the rigidity
of the substrate and cell spreading, Focal adhesion size and motility. In their
second experiment, the addition of a gradient of stiffness showed that fibroblasts
migrated preferentially towards the more rigid areas, a phenomenon that they
called durotaxis. Ensuing studies have shown that durotaxis seems to be a univer-
sal guiding principle of cell migration, since this behavior is shared by virtually
all cell types[29, 30] 2 .

Figure 1.1: Ultra-thin PDMS membrane designed by A.Thangawng et al.to per-
form Durotaxis essays[33]

A related experiment, conducted by Abel Thangawng from Matt’s Glucksberg
group during my stay as Visiting Student at Northwestern University, provided

2The seminal papers by Pelham, Lo and Wang [27, 28] also proved that cells can sense externally
applied prestrain on the substrate. The large number of experiments carried on since has estab-
lished that durotaxis is a general property of animal cells (with the exception of neurons where the
opposite trend is observed), regardless of cell type, substrate materials, and range of Young’s mod-
ulus employed. Besides directional movement, the mechanical properties of the substrate have
an important influence or determine the stability of Focal Adhesions, cytoskeleton remodeling,
signaling pathways, migration speed, cell morphology, apoptosis[31] and metastatasis[32]
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further confirmation of this principle and the initial motivation of this Thesis. The
interest of the experiment consisted in the fact the stiffness gradient was created by
manufacturing ultra-thin elastic membranes that featured a row of increasingly
spaced ridges under the surface on which the cells were cultured. Therefore,
in this case the experimental set-up guaranteed that the observed response was
caused strictly by mechanical inputs. After non-confluent populations of human
embryonic kidney cells were plated on the upper surface and left to migrate for
several hours, the final distributions of cells clearly showed a regular trend to
accumulate in particular areas of the device.

Figure 1.2: Accumulation zones of HEK cells on the PDMS membrane observed
by A.Thangawng et al.[33] are framed in blue. Yellow and blue circles indicate
dead cells and those whose velocity was tracked. Green vertical lines correspond
to the areas where the membrane has a constant thickness of 1µm.

The striped pattern of cells accumulated on the membrane surface indicated
that the cells had migrated away from certain areas and come to a halt on oth-
ers. A simple calculation estimating the stiffness profile of the membrane, shown
in figure 1.3, revealed the guiding principle: cells were moving towards the
regions of higher rigidity, and the zones of cell accumulation matched the ar-
eas were the stiffness profile of the membrane was flat. These observations
were only preliminary, but ensuing experimental studies are characterizing the
cellular processes that bring about cell durotaxis with increasing detail: from
the relationship between gradient strength, polarization and migration pheno-
type; rigidity and forces at focal adhesions; to the molecular and genetic factors
involved[34, 35, 13, 36, 37, 14, 11, 38, 39]. However, the fundamental mechanisms
that allow cells to detect stiffness gradients and trigger migration along them are
not known. This Thesis proposes a theory of cell mechano-sensing and durotaxis.
The predictions of the theory match a number of experimental observations made
in the past two years that will be detailed in Chapter 8, and it suggests, to my
knowledge for the first time, a plausible biological function for the existence cell
durotaxis. To provide different cell types with an additional channel of informa-
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Figure 1.3: Effective Stiffness profile of the PDMS membrane calculated numeri-
cally with 1D beam Finite Elements of varying cross section (blue line) and Ansys
(red line).

tion to infer its location in an organism and find its way to the tissues that are
appropriate for their physiological functions. The capacity of cells to correctly
detect its position in an organism is a crucial process in the development of the
embryo[40]; conversely, malignant cancer cells have their sensitivity to mechan-
ical properties altered[41, 42], allowing them to proliferate and colonize tissues
alien to their function, in which cells under normal conditions would be pro-
grammed to die[32, 43, 44, 45]. Indeed, the theory predicts that there are two
ranges of rigidities determined by the cell type in which two markedly different
behaviors should be observed. First, a lower bound of rigidities bellow which a
particular cell type can not establish mature focal adhesions, which is know to
lead to apotosis. Second, an upper bound of rigidities where cells can no longer
detect stiffness gradients and remain stationary and adherent, which should match
the mechanical properties of the tissues in which this cell type is found in phys-
iological conditions. For the stiffness within these bounds, the theory predicts
that cell sensitivity to stiffness gradients is maximized, so that directed migration
along the gradient allows cells to move into a position matching the mechanical
properties of such tissues.
The experiment previously under discussion also illustrates the main cellular
processes and structures that a realistic model of cell migration has to consider,
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not only in the context of cell durotaxis but generally. Directed cell migration
is powered by a dynamic mesh of cytoskeleton filaments that provide the pro-
trusive and contraction forces that allow the cell move forward[46, 47]. This
requires a tight control of the formation and turnover of adhesion sites, known
as Focal adhesions[48]. This clusters of transmembrane proteins provide the
mechanical link with the substrate, required to pull on the substrate in order
to advance. Further, Focal adhesions are known to act as sensing and signal-
ing centers, particularly in the context of migration guided by mechanical cues
but also generally[49, 50, 51]. In turn, the dynamical rearrangement of the cy-
toskeleton and adhesion sites depends on a precise control and spatio-temporal
coordination governed by complex regulatory networks. The central node of this
network is constituted the family of small RhoGTPases[51, 52], which orchestrate
the periodic remodeling of the cytoskeleton and the adhesion sites[53, 54, 55]. Par-
ticularly, RhoGTPases are crucial in establishing a polarized state characterized
by an asymmetric distribution of protein activities and processes that is required
for directed migration.
Therefore, cell migration triggered by external cues comprises the intervention of
the corresponding sensing machinery and the dynamic interplay between forces,
the cytoskeleton and adhesion sites. These processes are governed and coupled
by a complex regulatory and signalling system, which in turn are cross-regulated
by the family of small RhoGTPases[56, 57]. Therefore, a complete understanding
of cell migration has consider the following set of coupled modules or processes:

Figure 1.4: Fundamental modules involved in cell migration triggered by external
signals. Bidirectional coupling between the sensing machinery and the regulatory
system are mediated by the so called mechanisms of outside-in and inside-out
signaling. Forces are coupled to these pathways by their influence in the dynamics
of focal adhesions

.

Regarding the regulatory apparatus of the cell, the focus is set to study the
family of RhoGTPases, whose theoretical description is developed in chapter 2.
Certainly, this is an abstraction of a much more complex system, partially justified
by the centrality of these proteins in cell migration, and partially, because the goal
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is to advance our knowledge of the general principles governing the dynamic
spatio-temporal organization of molecular effectors of cell migration.
The focus is further narrowed to two particular forms of cell migration triggered
by external cues: chemotaxis and durotaxis. The sensing machinery involved in
durotaxis, namely Focal adhesions, is explicitly modeled, together with a descrip-
tion of force development and cell movement in chapter3. Regarding chemotaxis,
the first layer of receptors is lumped into a signal transduced to the RhoGTPases,
and the focus is centered on the principles underlying the detection of chemotactic
gradients, cell polarization, and movement. These processes are shared by other
forms of cell movement, which leads to an idea that will be emphasized through-
out this work, and that is the notion of plasticity of cell migration[58]. This notion
refers to the idea that the different types of cell migration observed in vivo and in
in vitro, characterized by variations in motility mode, morphology, adhesivity and
other properties that define the migration of different cell types are manifestations
of the different arrangements of a common underlying machinery. This notion is
not just an interesting conceptual framework; it will be shown that is fruitful and
leads to predictions that can be tested experimentally. Two of the central results of
this Thesis stem from this idea. First, the fact that a common modeling framework
allows to match the observed behavior of cells in chemotaxis and durotaxis essays,
as discussed in chapters 7 and 8. The idea that common principles govern the
cellular response to both types of gradients is in fact increasingly recognized due
to the significant analogies observed in experiments[13]. A second example, is
the capacity of the theory developed to recapitulate the characteristic shapes of
different cell types observed during migration[7]. This result is shown at the end
of chapter 7, where a continuous transition from the tear-lie shape of migrating
neutrophile to the fan-like shape of migrating keratocytes is predicted by a varying
a single parameter in the model. This result directly suggests a plausible mech-
anism that might explain the different moprhologies exhibited by cells during
migration; for which there is no satisfactory explanation. It also illustrates the
power of the idea to find common and unifying principles in biological systems.



If I could remember the names of all
these particles, I’d be a botanist.

Enrico Fermi, physicist

Chapter 2

Mathematical description of the
biochemical regulation of cell
migration

2.1 Introduction to regulation of cell migration

Cell migration is triggered by external signals, such as gradients of mechanical
properties in the extracellularmatrix, spatially heterogeneous concentrations of
biochemical attractors or matrix ligands, and topological features of the substrate.
Movement results from the cyclical succession of phases of protrusion at the cell
front, continuous formation and remodeling of adhesion sites and contraction at
the trailing edge that are coordinated to generate directed movement towards the
stimulus[59].
To migrate, cells adopt a polarized state characterized by a prominent asymme-
try between the morphology and signalling activity at the leading front and the
trailing edge. Polarization reflects the spatial segregation at the subcellular level
of the different biochemical and biomechanical processes taking place at different
locations inside the cell. These processes, in turn, generate the different forces
and morphological changes at the cell front and rear required to move the cell
forward.
At the leading edge of the cell, actin filament polymerisation and depolymeri-
sation produce the protrusive structures and pushing forces required to extend
the cell front. Protrusion promotes the formation of integrin-based adhesive
contacts that stabilize the new extensions and provide a firm attachment to the
substrate. Focal adhesions, in turn, are not only the mechanical links and sensors
of extracellular cues, but they are also centers of signalling activity that modu-
late actin polymerization and the organization of the cytoskeleton. At the cell

25
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back, myosin-II motors associate with actin filaments to generate the contraction
forces necessary to disassembly adhesion sites and pull the cell body forward [57].
Hence, effective migration requires exquisite spatial and temporal coordination
of the signalling networks that regulate each of these processes.
Intensive research during the last two decades has resulted in the identification
of most of the molecular components that form these networks. Comprehensive
reviews of the biochemical machinery associated to focal adhesions dynamics [60]
and cell migration [61] give an idea of the complexity of the governing signalling
networks and the pathways coupling their dynamics during migration. However,
it is becoming increasingly clear that identifying individual components, their
effectors and targets, and assigning a static and linear effect inferred from experi-
ments to their interactions is not enough to understand how signalling networks
operate. This reductionist view is being replaced by one in which the individual
components of a regulatory network can generate multiple outcomes due to the
combinatorial overlap of their signals, where the topology, feedback structure and
spatio-temporal properties are essential to understand their complex dynamics
[62]. Particularly, for the networks governing the processes involved in cell mi-
gration, the spatial distribution and temporal dynamics of their signalling agents,
and the coupling between different networks are a fundamental element of their
regulatory function [63]. Amongst the different components of the regulatory
apparatus of cell migration, the family of small RhoGTPases is widely recognized
as the master determinants of the spatio-temporal organization of the process.
RhoGTPases proteins are the central hub that coordinates the biochemical ma-
chinery controlling the establishment of cell polarity, actin-based protrusion and
adhesion dynamics. These proteins not only play a critical role in the regulation
of cell migration, but also on other fundamental cellular processes such gene ex-
pression, differentiation and apoptosis [64]. Despite their biological importance
and the extensive efforts aimed at their study, our understanding of mechanisms
that govern their regulatory function remains incomplete[56, 65]. The biologi-
cal relevance of improving our understanding of the RhoGTPase cycle can not
be overemphasized, given their implication in cardiovascular disease [21] and
cancer [66, 20].

2.2 RhoGTPases distribution and function in cell mi-
gration

The proteins of the family of small RhoGTPases are found in all eukaryotic cells,
from the most primitive organisms such as yeast, to multicelular organisms like
mammals. Three members of the family, Cdc42, Rac and RhoA are known act
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as central regulators of the fundamental modules of cell migration, including the
spatial polarization of signalling pathways, actin cytoskeleton reorganization and
focal adhesion dynamics[55].
These processes are governed by the activation RhoGTPase proteins at specific
subcellular locations, where their activity is required. During migration, RhoGT-
Pases are distributed asymmetrically in the cell body according their function
during migration, with high concentration of active Cdc42 and Rac at the front
and high concentration of high RhoA at the back. Cdc42 is recognized as a mas-

Figure 2.1: Representation of the spatial segregation of RhoGTPases and their
function in a migrating cell

ter regulator of cell polarity and limits where the protrusive lamellipodia form.
Its inhibition can disrupt the correct alignment of the polarization axis during
migration, which suggest that Cdc42 is a direct target of the receptors that sense
external cues. Rac and its downstream targets control the biochemical machinery
that regulates actin polymerization and protrusion; during migration Rac is main-
tained active at the cell front. RhoA is responsible of myosin powered contraction
of the cytoskeleton at the cell rear [67], and the forces triggered by its signalling
activity are a main determinant of the fate of adhesion sites. Formation of small
adhesion contacts at the cell front has been associated to Rac activation whereas
their maturation at the back is linked to Rho signalling. However, adhesion sites
also regulate the activation of the RhoGTPases, in what constitutes a complex
bidirectional interaction that is poorly characterized [56]. Particularly, the mech-
anism by which cells coordinate the activation and inactivation of RhoGTPases
and how these processes are spatially restricted to the required locations is an
important open question [64].
There are two key levels of regulation in the RhoGTPase cycle, which includes the
dynamic regulation of their activation state and their distribution inside the cell.
First, the transition of RhoGTPases between different activition states, which is
controlled by regulatory enzymes specific for each transition but not necessarily
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for each protein. For instance, RhoGTPases could compete to bind the enzymes
that activate them or inactivate them, a possibility that is hinted by experiments
and also follows from the theoretical arguments presented in this work. Second,
the local modulation of the rates of activation due to the interaction between
RhoGTPase proteins, also know as crosstalk. It follows that crosstalk is a deci-
sive factor underlying the spatial segregation of activity zones of the RhoGTPases
found during migration. In addition, a third level of interaction involves the over-
lap of the signals of different RhoGTPases to a common target. The combination
of their signals could have a different effect than that observed with the avail-
able experimental techniques, that usually involve manipulating the signalling
activity of only one of the RhoGTPases[6]. The first two levels of the regulation
process are discussed in more detail bellow 1. The activation and inactivation

Figure 2.2: Accepted biological model of the RhoGTPase and corresponding
reaction equations.

cycle of the RhoGTPases has been compared to a molecular switch: in the Plasma
Membrane (PM), RhoGTPase proteins cycle between an inactive state bound to

1These two levels of RhoGTPase regulation are better characterized than the crosstalk through
the combination of their downstream signals, possibly due to the difficulty of studying it experi-
mentally
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GDP and an active state bound to GTP. In addition, they can be removed from the
Plasma Membrane and injected into the Cystosol (CS), which effectively acts as
a reservoir in which the proteins are stored and from which they can be inserted
back in the membrane in other locations of the cell.
Binding GTP activates the RhoGTPases and enables them to interact with down-
stream targets, setting off a cascade of signals that elicits the processes involved
in migration. Since the rate of spontaneous exchange of GDP for GTP in RhoGT-
Pases is very slow, the level of activity is controlled by a set of enzyme families
that accelerate the exchange reactions.
Activation is triggered by the a family of enzymes called GEFs, whereas the re-
verse reaction is catalysed by GAPs. The flow between the membrane and the
cytosol is controlled by another group enzymes. GDIs extract the RhoGTPase
proteins from the plasma membrane to the Cytosol and keep them locked in the
inactive state. Indirect evidence suggests the existence of another regulatory step,
in which the RhoGTPase-GDI complexes would be disrupted and inserted back
in the plasma membrane by GDFs [68].
The graphic representation of the transitions between states and the enzymes in-
volved in these reaction is shown in figure 2.2. The associated kinetic reactions are
shown in the equations (2.1) and (2.2). The reactions in the first set of equations
describe the state transitions in the plasma membrane, the first reaction accounts
for the inactivation catalyzed by GAPs, whereas the second accounts for the acti-
vation transition catalyized by GEFs.

Activation cycle

rPM
GTP+GAP KGAP

−−−→ rPM
GDP (2.1a)

rPM
GTP

KGEF

←−−− rPM
GDP +GEF (2.1b)

The next two reactions govern the protein flow between the membrane and
the cytosol. The first reaction describes the extraction by GDI enzymes of inactive
RhoGTPases from the membrane to the cytosol pool, and the second is the reverse
reaction that insert the proteins back to the membrane where they can be activated
again.
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PM - CS transfer

rPM
GDP + GDI KGDI

−−−→ rCS
GDP (2.2a)

rPM
GDP

KGDF

←−−− rCS
GDP + GDF (2.2b)

A second level of regulation controls where RhoGTPase activation occurs in-
side the cell. During directed movement, areas of high Cdc42 and Rac activity
appear at the cell front and remain low at the back, whereas the opposite dis-
tribution is found for RhoA. Polarization is necessary for movement, for each
RhoGTPase has to be targeted to specific areas of the cell to perform a particu-
lar process [54]. Spatial segregation of areas of high activation of the different
proteins is also observed in the processes of wound healing and cell division,
showing that spatial organization at the subcelular scale is an essential element
of RhoGTPases function [69]. The mechanism underlying the appearance of dif-
ferentiated activity zones is crosstalk, the activating and inhibiting interactions
between the members of the RhoGTPases family.

The generally accepted dogma is that crosstalk is mediated only by the sig-
nalling of active RhoGTPases, whose downstream targets modulate the GEF ac-
tivity associated to the other RhoGTPase members, thereby controlling their acti-
vation level [70]. Consequently, a mathematical model based on this hypothesis
assumes that the kinetic rates of activation kGEF depend only on the local concen-
trations of active RhoGTPases. In this state, RhoGTPases are bound to GTP and
inserted in the plasma membrane, where transport is slowed down by the lipid
bilayer and the presence of embedded proteins. Therefore, the diffusion rates of
the only carriers of crosstalk are small, which is an important ingredient of these
regulation model, because the signals that they emit remain spatially bounded
instead of rapidly spreading to the whole cell. In this way, the standard view
on RhoGTPase regulation accounts for the heterogeneous distribution of active
proteins found during migration, which stems from the local cross-modulation of
the rates of activation by the GTP-bound proteins.
An example of a model based on such hypothesis was suggested by the obser-
vations of Giniger’s lab [71] and formulated by Jilkine and coworkers [72]. The
graphical representation of the interaction scheme is shown in figure 2.3. This
interaction scheme assumes that crosstalk is carried out by the dependence of the
kinetic rates on the active concentration activated RhoGTPases in the membrane.
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Figure 2.3: Giniger scheme mediated only by active RhoGTPases. Arrows and
bars at the end of a line represent up-regulation and down-regulation.

Mathematically, this assumption results in kinetic rates that are functions that
depend only of the concentration of active RhoGTPases.

kGEF = kGEF(rPM
GTP) (2.3)

where rPM
GTP represents the concentration of activated Cdc42, Rac, or Rho. In

this view, the kinetic rates affecting the speed of inactivation or endocytosis2 of a
RhoGTPase protein are not influenced by the concentrations of the other proteins.
Increasing experimental evidence showing that GAPs and GDIs are active players
in Rho regulation, added to the theoretical arguments presented in the remaining
of this thesis, lead to propose a new class of interaction schemes, in which the reac-
tion rates associated to GAPs and GDIs are also actively regulated by RhoGTPase
signaling.

kGEF = kGEF(χ) (2.4a)

kGAP = kGAP(χ) (2.4b)

kGDI = kGDI(χ) (2.4c)

where the variable χ can represent the concentrations of rPM
GTP, rPM

GDP or rCS
GDP.

2Extraction of a proteins from the membrane to the cytosol
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2.3 Mathematical description of RhoGTPase regula-
tion of cell migration

The remaining of this chapter presents a mathematical description of the RhoGT-
Pase cycle that provides a general framework to formulate alternative models of
RhoGTPase regulation. Their predictions might allow to validate or refute the un-
derlying hypothesis on crosstalk mechanisms and on the existence of interaction
pathways between members of the network.

2.3.1 Derivation of the reaction-diffusion equations for a regula-
tory protein

The general form of the equation describing the dynamics of a signaling molecule
inside the deforming body of a cell is derived in this section. This mathematical
framework will then be used to formulate a general description of the RhoGTPase
cycle in which particular hypothesis can be implemented to validate or rule out
alternative models.
A starting assumption is that the number of molecules is large and can be de-
scribed by a continuous concentration field. In this description, fluctuations and
the stochastic nature of biochemical reactions are not considered, although they
could be included adding a noise term. Let ∆a be the number of molecules con-
tained in a small material portion of the cell body that at time t occupies the
volume ∆Ωt. The concentration field is then defined as:

r(x, t) = lim
∆Ωt→0

∆a
∆Ωt

(2.5)

The total number of molecules contained at any time t in the an arbitrary ma-
terial volume Ωt is given by:

a =

∫
Ωt

r(x, t)dΩ (2.6)

The change in concentration in Ωt is driven by diffusive flow of molecules
outside the material volume and the reactions that might increase or decrease
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its concentration. In addition, the possible volumetric changes of the material
volume associated to cell deformation can lead to an effective change in concen-
tration. Active transport by motors or vesicles are not considered.

Figure 2.4: Reaction, diffusion and volumetric changes drive the change in con-
centration

The processes that bring about changes in concentration of the molecule a
inside a cell material volume are depicted in figure 2.4.
It has been assumed, for the sake of clarity but without loss of generality, that
molecule a undergoes a simple reversible reaction that transforms it into another
molecule or state b. The concentration of b in Ωt is denoted by s(x, t). The bio-
chemical reactions that constitute the regulatory machinery of cell migration are
assumed to follow the Mass Action Law, so that the variables that determine
the reaction rates are the concentration of the reactants. Hence, in the example
reaction involving molecules a and b, the reaction term f (r, s) is a scalar function
of the cocentrations r = r(x, t) and s = s(x, t) equal to the increase or decrease in
number of molecules a per unit of time and volume.
The diffusive flow is mathematically described by a vector j̄r(x, t) that gives the
number of molecules per unit of area and time crossing the surface of the material
volume in each of the spatial directions. Then, the change in the content of a in
the portion of the cell that occupies the volume Ωt, determined by the processes
described above, can be mathematically expressed as:

d
dt

∫
Ωt

r(x, t) dΩ =

∫
Ωt

f (x, t) dΩ −

∫
Γt

~n · ~jr dΓ (2.7)
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where Γt is the surface boundary of the material volume. The operator d
dt

is the material derivative and should not be confused with the standard spatial
derivative. The material derivative gives the rate of variation of a property in a
material point moving with velocity v(x, t), as opposed to a fixed spatial point, as
it would be measured by an observer traveling with the particle.

d
dt

=
∂
∂t

+ v(x, t) · ∇ (2.8)

The reason to follow the concentrations at a set of imaginary material points of
the cell is that in a Lagrangian description the system’s boundary is automatically
tracked as the cell moves3. In addition, in the complete model of cell migration,
protein concentrations at a particular point of the cell will determine its material
property changes and active cell forces. Thus, using a system of reference that
follows these imaginary particles facilitates the treatment of constitutive laws stat-
ing the relationship between protein concentration, forces or any other variable
of interest at these points. This is a description known as Updated Lagrangian:
balance laws are stated in the deformed configuration of the cell, and measures
of protein concentration, physical stress or any other variable are also defined
in a fixed spatial reference system, although after formally transforming them
to functions of the material coordinates, the solution of the governing equations
provides their values at material points. This point will be explained in more
detail in Chapter 3, where the constitutive for the cell cytoskeleton is introduced.
Taking the material derivative inside the volume integral in the left hand side of
eq.2.7 [73, see chapter 5], transforms the balance equation into:

∫
Ωt

[
dr(x, t)

dt
+ r(x, t) ~∇ · ~v(x, t)

]
dΩ =

∫
Ωt

f (x, t) dΩ −

∫
Γt

~n · ~jr dΓ (2.9)

The divergence theorem allows to transform the surface integral associated to
diffusive flow as an integral over the cell volume:

3A lagrangian description also facilitates the treatment of history dependent constitutive laws
an eliminates the need to deal with convection.
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∫
Γt

~n · ~jr dΓ =

∫
Ωt

~∇ · ~jr dΩ (2.10)

The diffusive transport of proteins inside the cell cytosol and the plasma mem-
brane is assumed to follows Fick’s law.

~jr = −Dr~∇r(x, t) (2.11)

Note that diffusion of molecules in the membrane is slower than in the cytosol
due to the obstacles presented by lipid rafts and transmembrane proteins. This
results in smaller diffusion constants associated to the flow of biomolecules in the
membrane than in the cytosol. Combining the last two equations and inserting
them in eq. 2.9, the following expression is obtained:

∫
Ωt

[
dr(x, t)

dt
+ r(x, t) ~∇ · ~v(x, t) − f (x, t) −Dr∇

2r(x, t) ]dΩ = 0 (2.12)

Since this equality holds for any material volume inside the cell, the integrand
must vanish and the local form of the balance equation follows:

dr(x, t)
dt

+ r(x, t) ~∇ · ~v(x, t) = f (x, t) + Dr∇
2r(x, t) (2.13)

Equation 2.13 is a nonlinear reaction-diffusion equation with a volumetric
term associated to the deformation of the cell. Indeed, if ∇ · ~v(x, t) > 0 the mate-
rial volume under consideration expands and the effective concentration of the
biomolecules decreases, whereas ∇ · ~v(x, t) < 0 is associated to a compression of
the volume and an increase in concentration. If the cell is assumed to be incom-
pressible, the second term in 2.13 vanishes because by definition ∇ · ~v(x, t) = 0.
Finally, the reaction-diffusion equation governing the spatio-temporal evolution
of the concentration of the biomolecule is given in non-dimensional form. In-
troducing a unit of concentration r0, a characteristic length of the cell lcell, and a
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reference rate of reaction f0, equation 2.13 becomes:

dr(x, t)
dt

+ r(x, t) ~∇ · ~v(x, t) = f (x, t) +
1

Φ2∇
2r(x, t) (2.14)

The Thiele modulus Φ is a non-dimensional parameter defined as the ratio of
characteristic times of reaction to diffusion:

Φ2
≡ f0 ·

l2
cell

Dr
=

TD

TR
(2.15)

Thus, the Thiele modulus provides information about which of the processes
dominates the dynamics of a reaction-diffusion system. It follows that if Φ � 1
the characteristic times of reaction are much shorter and dominate the dynamics
of the system, whereas if Φ� 1 the dynamics are dominated by diffusion.
In order to simplify the expression of the reaction-diffusion equations in the
lagrangian description, the generalized material derivative of a field α(x, t) in par-
ticle traveling with velocity v(x, t) is defined as:

d̃α(x, t)
d̃t

=
dα(x, t)

dt
+ α(x, t)∇ · v(x, t) (2.16)

In an incompressible material, this operator becomes the standard material
derivative.

2.3.2 General formulation of the RhoGTPase cycle

The mathematical counterpart of the Rho GTPase cycle described previously in
2.2 is introduced in this section. The state of the cell’s regulatory system is defined
by the fraction and spatial distribution of each of the possible forms of Cdc42, Rac
and Rho. The concentrations in a particular cell location change as a result of
two processes: the transitions between the active an inactive states described in
section 2.1, triggered by their associated enzymes, and the diffusion in the Plasma
membrane and Cytosol. The reaction rates are assumed to follow the Mass Action
Law, and therefore are proportional to the local concentration of RhoGTPases and
enzymes. Protein diffusion inside the cell is assumed to follow Fick’s law both
in the cytosol and the membrane, although in the later is 10-100 times slower,
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according to experimental estimations. These assumptions are consistent with
the framework developed in the previous section. Therefore, for each of the 3
RhoGTPases, the evolution of the concentration of its three possible states can be
described by a set of 3 nonlinear Reaction-Diffusion equations of this form:

d̃r
PM
GTP

d̃t
= kGEFrPM

GDP − kGAPrPM
GTP +

d
Φ2∇

2rPM
GTP (2.17a)

d̃rPM
GDP

d̃t
= kGAPrPM

GTP − (kGEF + kGDI)rPM
GDP + kGDFrCS

GDP +
d

Φ2∇
2rPM

GDP (2.17b)

d̃rCS
GDP

d̃t
= kGDIrPM

GDP − kGDFrCS
GDP +

1
Φ2∇

2rCS
GDP (2.17c)

The non-dimensional diffusion d = DPM/DCS < 1 is the ratio between the
diffusion rates at the cell membrane and cytosol. The variables ry

x denotes the
concentration of Cdc42, Rac and Rho when ry

x takes the values rx
y = cx

y, rx
y , ρ

x
y ,

with x = GTP , GDP specifying the state of activation and y = PM , CS the con-
centrations in the plasma membrane and the cytosol. Thus, the complete model of
the RhoGTPases comprises a set of 9x9 PDEs, with each of the proteins described
by a subsystem reaction-diffusion equations of the form of 2.17. The kinetic rates
kz of transition between states will be denoted by f z , gz and hz in the subsystems
associated to Cdc42, Rac and Rho, respectively, with z = GAP,GEF,GDI,GDF
specifying the corresponding transition in the RhoGTPase cycle.

Modulation of the rates of reaction for a particular RhoGTPase by crosstalk
is modeled through the variation of the kinetic rates with the concentration of
the other proteins, as specified in equation 2.4. This part of the modelling frame-
work is better illustrated with an example. Two previous models proposed by
Jilkine et al.[72] and Otsuji et al[74], later analyzed to illustrate the need to revise
our views on RhoGTPase regulation, the reactions were assumed to follow Hill
kinetics, which leads to kinetic rate coefficients that are nonlinear functions of
the proteins involved in crosstalk. The interaction scheme from figure 2.3 is the
graphical representation of the crosstalk interaction assumed in Jilkine’s model for
the RhoGTPases. The interaction scheme postulates that downstream signaling of
activated Cdc42 inhibits or downregulates Rho. How is this assumption included
in the mathematical description of the system? In this framework, signaling from
cPM

GTP could induce Rho inhibition either by decreasing the kinetic rate hGEF con-
trolling the activation rate of Rho mediated by GEF catalysis, or by increasing
hGAP, which represents the inactivation rate of Rho mediated by GAP hydrolysis.
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Consequently, the kinetic rates could incorporate the experimentally observed in-
teraction between the two proteins in one of the two following functional forms,
consistent with the assumed Hill kinetics:

hGEF = hGEF
0

1
1 + (cPM

GTP)n
(2.18a)

hGAP = hGAP
0

(cPM
GTP)n

1 + (cPM
GTP)n

(2.18b)

Hence, the assumed crosstalk scheme guides the selection of the kinetic rates
for each protein in any model in this theoretical framework according to this
principle. The underlying hypothesis and postulated interactions are then encap-
sulated in the Kinetic matrix, that includes the kinetic rates of all the reactions
taking place in the system:

K(r) = diag[FC,GR,Hρ] (2.19)

The blocks associated to Cdc42, Rac and Rho in the Kinetic matrix are defined
in 2.20. Despite the block diagonal structure of the Kinetic Matrix, the dynamics
of the three proteins are coupled through crosstalk, which is reflected in the de-
pendence of the Kinetic matrix on the vector of RhoGTPase concentrations.

FC =

 − f GAP f GEF 0
f GAP

− f GEF
− f GDI f GDF

0 f GDI
− f GDF

 (2.20a)

GR =

 −gGAP gGEF 0
gGAP

−gGEF
− gGDI gGDF

0 gGDI
−gGDF

 (2.20b)

Hρ =

 −hGAP hGEF 0
hGAP

−hGEF
− hGDI hGDF

0 hGDI
−hGDF

 (2.20c)
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The definitions of the vector of RhoPTPase concentrations r(x, t) and the diffu-
sion matrix D consistent with the ordering and notation adopted for the Kinetic
Matrix, are:

r =
[

cPM
GTP cPM

GDP cCS
GDP rPM

GTP rPM
GDP rCS

GDP ρPM
GTP ρPM

GDP ρCS
GDP

]
(2.21a)

D = diag[ d d 1 d d 1 d d 1 ] (2.21b)

The system of reaction-diffusion equations that describe the evolution of the
full regulatory system, constituted by the 3 sets of PDE’s in 2.17 associated to the
three RhoGTPases , is then given in matrix form by:

d̃ r
d̃t

= K(r) · r +
1

Φ2 D∇̄2r (2.22)

The dynamics of the Cdc42, Rac and Rho are coupled through reaction term,
whose dependency on the complete concentration vector is shown explicitly in
equation 2.22.
An important element of the description is the effect of external stimuli in the
activation of the regulatory proteins that govern cell migration. The mechanism
of sensing and transduction of external cues involves a complex chain of mem-
brane receptors and mediators that signal to the RhoGTPases and other targets
to initiate the migration response. In the models by Jilkine[72] and Otsuji[74], for
instance, the cascade of signals induced by the external stimulus is lumped into
a functionΨ that linearly shifts the kinetic rates of activation of the RhoGTPases
to K(r) + Ψ(x, t). In the more general framework presented in this Thesis, the
stimulus functionΨ(x, t) represents the spatio-temporal distribution of an exter-
nal stimulus, such as the concentration of a chemo-attractant or the gradient of
stiffness of the extracellular matrix, and the signal is transduced by a primary
layer of receptors and modulates the kinetic rates in a generic form K(r) ⊗Ψ(x, t)
to be derived later :

d̃ r
d̃t

= [K(r) ⊗Ψ(x, t)] · r +
1

Φ2 D∇̄2r (2.23)
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Hence, independently of the nature of the external signal, the stimulus matrix
is assumed to effectively increase or reduce the kinetics rates of one or several
RhoGTPases, displacing the equilibrium of the cell’s regulatoy system.
Assuming that genetic transcription of new RhoGTPases does occur during the
short time spans characteristic of migration and considering that there is no flow
of proteins outside the cell, the total amount of each protein is conserved.

rTOT =

∫
ΩCELL

(rPM
GTP + rPM

GDP + rCS
GDP)dΩ r = c, r, ρ (2.24)

Consequently, the system of equations 2.23 is solved imposing homogeneous
Neumann boundary conditions at the cell membrane.
Stationary cells, unperturbed by external signals, are unpolarized and feature a
homogeneous distribution of RhoGTpases. Therefore, the initial state is char-
acterized by a concentration of proteins r0 that is constant throughout the cell
body. Hence, the initial state is an homogeneous steady state of the full reaction-
diffusion system. These states are determined by the steady states of the ODE
system associated the reaction term in eq. 2.22, called the Kinetic system:

dr(t)
dt

= K[r(t)] · r(t) (2.25)

where the operator d/dt represents in this case the ordinary time derivative.
The concentration values in the initial state r0 are then found solving the set of
algebraic equations K(r0) · r0 = 0. This set of algebraic equations is not indepen-
dent, due to the conservation of total protein stated in 2.24. In order to obtain
the initial state, the initial concentration of rCS

GDP can be set to their experimentally
measured values.
An important aspect of the model is that the nonlinearity of the kinetic rates
might endow the system with several solutions for a given value of the inactive
fraction of the proteins. Thus, the equilibrium concentrations of active RhoGT-
PAses might be different at different parts of the cell, even if the concentration
of the fast-diffusing inactive RhoGTPases is uniform or almost uniform. This
property, known as multistationarity [75], is a necessary condition for the system
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to reproduce cell polarization. Hence, the reaction-diffusion system is required to
be multistable, so that there exist at least two stable steady states corresponding
to the high an low activation levels found in a polarized cell. The initial state is
selected amongst the stable steady states found.

2.3.3 QSSA aproximation and the Edelstein-Keshet Model

The next chapter will analyze the response to external signals of the mathemat-
ical model of RhoGTPase regulation proposed by Jilkine, Edelstein-Keshet and
coworkers in [72]. A similar and contemporary model proposed by Otsuji[74]
and coworkers is not discussed further because is explicitly derived to obtain
diffusion-driven instabilities as the underlying mechanism to support RhoGT-
Pase polarization. This mechanism of biological pattern formation, first proposed
in a groundbreaking paper by Allan Turing[76] has been proven to orchestrate
digital patterning in the early stages of limb morphogenesis[77], but it is not
suitable as a mechanism to control the dynamic spatio-temporal organization of
protein distribution during migration. Several properties of models based on
this pattern-forming mechanism are in clear contradiction with the dynamics ob-
served in migrating cells; this topic will be discussed throughly in the remaining
of this Thesis.

This section gives an overview of Jilkine’s model and its main hypothesis.
This interesting study was one of the first theoretical attempts to describe the
complete system of Cdc42, Rac and Rho in the context of cell migration. It is also
a paradigm of the dominant view on how RhoGTPases interact and organize in
a spatially polarized fashion. New experimental evidence suggest that this view
might need to be refined, and the results presented in the chapter 5 point also in
this direction.
The model postulates the interaction scheme depicted in 2.3, which is based on
experimental observations, as the mechanism of RhoGTPase crosstalk. A central
hypothesis is that crosstalk is mediated only by GTP-bound RhoGTPAses, whose
signals control the activity of GEF enzymes. This hypothesis has two important
consequences: the only kinetic rates that are modulated by crostalk are kGEF , and
they are functions only of the activated RhoGTPase concentrations. Thus, the
general framework for the kinetic rates given in eq. 2.4 is reduced to:

kGEF = kGEF(χ) χ = rPM
GTP (2.26)
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The model makes the additional assumption that the flow of inactive RhoGT-
Pases between the plasma membrane and the cytosol is very fast compared with
the characteristic times of reactions in the plasma membrane. This hypothesis,
known as the quasi-steady state approximation (QSS), is equivalent to assume
that rCS

GDP and rPM
GDP are in quasi-equilibrium.

kGDIrPM
GDP − kGDFrCS

GDP ≈ 0 (2.27)

Defining the total concentration of inactive protein rGDP = rCS
GDP + rPM

GTP as the
sum of the concentration of inactive protein inserted in the membrane and in the
cystosol, rPM

GDP and rCS
GDP can be expressed in terms of the new variable.

rPM
GDP =

kGDF

kGDF + kGDI rGDP (2.28a)

rCS
GDP =

kGDI

kGDF + kGDI rGDP (2.28b)

The quasi-steady state approximation leads to a simplification of the system
of PDEs describing the dynamics of each protein. Substitution of 2.27 in eqs. 2.17
and addition of the second and third equations allows to replace them by a single
equation describing the evolution of the total amount of inactive protein. Thus,
the reaction-diffusion equations describing the spatio-temporal distribution of the
active and inactive fractions of a RhoGTPase in the QSS approximation become:

d̃rGTP

d̃t
= +(Ψ + kGEF)(kI)rGDP − kGAPrGTP +

d
Φ2∇

2rGTP (2.29a)

d̃rGDP

d̃t
= −(Ψ + kGEF)(kI)rGDP + kGAPrGTP +

D
Φ2∇

2rGDP (2.29b)
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where averaged kinetic rates of Insertion kI and Extraction kE are defined in
terms of the GDI and GDF kinetic coefficients as:

kI
≡

kGDF

kGDF + kGDI (2.30a)

kE =
kGDI

kGDF + kGDI (2.30b)

and the averaged diffusion constant of the inactive fraction is given by:

D = kI
· d + kE

· 1 (2.31)

In the QSS approximation the kinetic matrices defined in 2.20 to express the
equations in matrix form take the following structure:

Kr =

[
−kB kA

kB
−kA

]
r = c , r , ρ (2.32)

where the combined activation rate is defined as kA = kGEF
· kI, and kGAP has

been renamed kB to simplify the notation. The Quasy-steady state approximation
rests on the assumption that the flow of RhoGTPases between the membrane and
the cytosol is very fast. Thus, it is important to remark that if, as the experi-
mental evidence suggests [78] , the flow of proteins between the membrane and
the cystosol is actively regulated, the assumption might not hold. Furthermore,
even if the transfer of proteins between the membrane and the cytosol is very fast
compared to the rest of the kinetic processes, there still might be a mechanism of
active control of the ratio of inactive proteins inserted in the membrane to those
destined to the cytosol reservoir. The equilibrium point of the two fractions then
would be balanced by the modulation of the kinetic rates kGDI and kGDF, controled
by signals from the regulatory system of the cell. This scenario can be naturally
accommodated in the QSSA framework by considering the explicit dependence of
the combined activation rate kA on the kinetic rates kGDI and kGDF and the current
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availability availability of inactive protein in the membrane. This notion will be
central in the derivation of an alternative class of RhoGTPase regulatory models
that .

In Chapter 5, the polarization response to several types of external stimuli
of the Jilkine-Keshet model regulatory model is analyzed. This model and also
the model proposed by Otsuji[74] are based on the assumption that Crosstalk is
mediated only by GTP-bound RhoGTPases, and that it affects only GEF activ-
ity. Certain predictions of this class of models are inconsistent with experimental
observations. The shortcomings of such models also indicate that a more sophis-
ticated mechanism regulates RhoGTPase activity during cell migration, and that
some of the dominating biological hypothesis need to be refined.

The second central element in which these models are founded is the topology
of the Crosstalk scheme, which are constrained as a result of the first hypothesis.
These models require the existence of direct feedback loops between the proteins,
such as the mutual inhibition loop between Cdc42 and Rho of the scheme pro-
posed by Giniger[71] (depicted fig.2.3) and adopted in the model authored by
Jilkine and Edelstein-Keshet[72]. In this study, it is stated that this is a necessary
condition for the system to capture the spatial segregation of the RhoGTPases
during cell polarization. The switch between the initial homogeneous state and
a polarized state is supported by the high level of active Cdc42 that suppresses
Rho at one end of the cell, while at the other end the level of Rho is high and sup-
presses Cdc42. Two main arguments are given to support or disregard alternative
models of Crosstalk interaction proposed in the literature. The first is based on
the evidence of RhoGTPases inhibitory and activating interactions gathered from
experiments; the second is given on theoretical grounds described above, stating
that the existence of a mutual inhibition loop is a necessary condition for the
system to have multiple equilibrium states and the capacity to reproduce spatial
segregation. Regarding the first, it is increasingly clear that the current interpre-
tation of the experiments from which the wiring of the RhoGTPase network is
inferred has to be revised, evidenced by recent experimental evidence[6, 79] that
will be summarized in section 7.2.2. As to the second, a new Class of Models
that bypass these topological requirements is developed in Chapter7. This new
Class will be shown to endow the associated RhoGTPase reaction network with
properties as a gradient sensing and regulatory system that are not shared by the
studies discussed previously, but are, however, observed in experiments.



It seems that if one is working from the
point of view of getting beauty in one’s
equations, and if one has really a
sound insight, one is on a sure line of
progress.

Paul A.M. Dirac, physicistChapter 3

Mathematical description of cell
movement

This chapter presents a mathematical model that describes cell deformation and
motion during migration. The founding assumption behind this model is that
the whole cell can be represented as a continuous material, and accordingly cell
kinematics and motion will be described within the framework of continuum
mechanics. First, the conservation of momentum in a cell body that deforms and
moves over time is stated for a general constitutive law. Motion is the result
of the balance between internal forces and external forces. Next, a particular
constitutive law is introduced. The cell is modeled as a viscoelastic body capable
of developing active traction and protrusion forces. The magnitude of the forces
is determined by the activation level of the RhoGTPases, whose distribution in
the cell body is described by the set of reaction-diffusion equations introduced
in chapter 2. Adhesion sites are modeled as punctual clusters of receptors that
dynamically bind and unbind the ECM depending on the force transmitted to
them and the ligand-receptor distance.

3.1 Deformation, Motion and Momentum balance

Let Ω0 be the volume occupied by the cell at time t0, with Γ0 denoting the boundary
of such volume. The position of every point P in the cell at t0 is given by a vector
X = [X1, ...,Xd], where d is the number of spatial dimensions that the model
considers and Xi are the components of the position vector in some rectangular
coordinate system. The position of the point at t0 can be used to identify it
in subsequent times, and for this reason the vector X provides a convenient
label for every point in the cell, usually known as the material or Lagrangian

45
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coordinates. The position of the cell points at any posterior time t, as the cell
moves, is given another vector x(t) = [x1, ..., xd] expressed in the coordinate system
introduced previously. The dependence on t of the current position of P has been
written explicitly to stress the difference with the material coordinates, that are
not dependent on time.

Figure 3.1: Cell modeled as a continuum material. Different structures, such as
focal adhesions (red dots) and the nucleus, can be included in this description

The motion of the cell is then fully described by a mapping ϕ providing the
position of the cell material points X at any time:

x = ϕ(X,t) ∀X ∈ Ω0 (3.1)

which satisfies the condition ϕ(X, 0) = X. The deformation of the cell during
its motion can be obtained from this mapping. Let P and Q be two neighboring
cell material points separated in the initial configuration by the vector dXPQ. In
the current configuration, the relative position of these two points changes as the
cell deforms, and their relative positions will then be given by another vector
dxPQ. This idea leads to the definition of the deformation gradient, a second-order
tensor that characterizes the local deformation in the cell continuum:
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F =
∂x(X, t)
∂X

(3.2)

Deformations are caused by the existence of active forces exerted by the cell
and by passive forces that resist the deformation of the cell body. A fundamental
hypothesis of continuum mechanics is that the forces at any point inside the con-
tinuum can be described defining a second order tensor σ, called the Cauchy stress
or physical stress [80, Chap. 1]. Consider an arbitrary plane with unit normal n̂
cutting through a point P inside the material. The Cauchy stress principle states
that the force per unit area of this plane acting on point P is given by:

n̂ · σ = t (3.3)

where t is the force per unit area on the plane defined by n̂, that is, the traction
force or stress. Different assumptions on how the action of forces determines the
deformation of the cell, described mathematically by a constitutive relationship
σ(F) between the stress and some function of the deformation gradient, is the
fundamental hypothesis that will define alternative cell models. A viscoelastic
constitutive law will be introduced later, but the developments of this section are
general.
The value of any other physical property, such as the density, velocity or the
concentration of the RhoGTPases, can also be described by the corresponding
continuous field ρ(X,t), v(X,t) and r(X,t), defined in the whole cell domain for any
time t > t0. Particularly, the displacement field u(X,t) is difference between the
position of a particle at the current time and its initial position:

u(X,t) = x(X,t) − X (3.4)

The velocity is the rate of change in time of the position of the particle, given
by the time derivative of the displacement

v(X,t) =
∂u(X,t)
∂t

(3.5)
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and the acceleration is the rate of change of the velocity of the cell point:

a(X,t) =
∂2u(X,t)
∂t2 (3.6)

All these fields have been defined with the material coordinates as their in-
dependent variables; for a fixed X they provide the time evolution of the corre-
sponding variable at this particular material point. This description is known
as Lagrangian, it follows the material points of the body and is commonly re-
served for solid-like materials, where a reference to an undeformed configuration
is generally needed to define deformation, and stresses at material point might
be history-dependent. Alternatively, one could be interested in the value of these
fields for a fixed spatial position. In this case, the appropriate description is the
Eulerian, in which the fields of interest are defined as functions of the spatial
coordinates x as independent variables. A (formal) inversion of the mapping 3.1
allows to switch between these two descriptions.
Conservation of linear momentum, particularly, is naturally stated in the current
configuration of the cell using an Eulerian description. Consider a small material
volume of the cell body with density ρ(x, t) and moving with velocity v(x, t) rela-
tive to the substrate. This slice of the cell occupies at time t′ the space bounded
by a surface Γ′t that encloses a volume Ω′t. The forces acting on this cube can be
divided in external and internal forces, as depicted schematically in figure 3.2:

Figure 3.2: Balance of forces acting on an arbitrary cell volume

The internal forces, contained in the traction vector t, are the result of the pas-
sive response of the cytoskeleton to be deformed and the active stresses generated
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by the actin-myosin contractile machinery. The external forces fdrag and fFA result
from two types of adhesion between the cell and the extracellular matrix. First,
a non-specific adhesion between the basal part of membrane and the surface on
which the cell is moving. This force is modeled as a continuous viscous drag,
proportional to the relative velocity between the two surfaces and an effective
friction constant β.

fdrag = −δ(z)β · v (3.7)

The effective constant β is a phenomenological parameter that accounts for the
cell substrate-friction, with units of drag per unit of area, that can be estimated
from experimental observation.
The second type of external forces acts only if the slice of the cell under considera-
tion contains a Focal adhesion. In this case, an elastic restoring force concentrated
at the discrete point where the Adhesion site has been formed arises from the
stretch of the bonds between the Focal adhesion receptors and ligands fixed on
the substrate. For now, the resultant force is postulated to behave like a Hookean
spring, but a detailed description of the mechanics of FA-substrate bonds is de-
veloped in the next section that justifies this assumption. The spring constant
kFA(N) of the Focal Adhesion is a function of N, the number of receptors bounded
to a ligand. Hence, fFA is proportional to the relative displacement between the
current position of the adhesion and the position in which it was originally formed.

fFA = −δ(xFA)kFA(N) · (u − uFA
0 ) (3.8)

The Dirac delta functions account for the fact that the friction term only acts
on the basal surface of the cell, whereas the elastic force associated to Focal ad-
hesions is only present at the discrete points where a an adhesion site provides a
mechanical link with the substrate1.
The balance between the postulated external forces and the internal stresses in-
tegrated over the volume Ω′t determines the resultant of the forces acting on the

1Dimensionally, the external forces must have units of force per unit volume. The units of
the Dirac Delta function are the inverse of those of the argument, so that δ(z) and δ(xFA) are
respectively L−1 and L−3, making the definitions of the external forces consistent.
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material cell volume under consideration. Therefore, according to Newton’s sec-
ond law for a continuum, the rate of change of linear momentum of this arbitrary
cell volume is given by:

d
dt

∫
Ω′t

ρ · vdΩ =

∫
Γ′t

t dΓ−

∫
Ω′t

δ(z)β · vdΩ−

∫
Ω′t

δ(xFA)kFA(N) · (u − uFA
0 ) dΩ (3.9)

where the operator d/dt is the material time derivative introduced in the previ-
ous chapter. The last two terms on the right of eq.3.9 are the external forces acting
on the material volume. The surface integral associated to the internal stresses
can be transformed to a volume integral using Cauchy’s law and the divergence
theorem:

∫
Γ′t

t dΓ =

∫
Γ′t

n̂ · σ dΓ =

∫
Ω′t

∇ · σdΩ (3.10)

The inertial term is transformed inserting the time derivative in the volume
integral, using Reynold’s theorem and invoking mass conservation [81]:

d
dt

∫
Ω′t

ρ · vdΩ =

∫
Ω′t

(
d
dt

(ρ · v) + ∇ · v(ρ · v))dΩ =

∫
Ω′t

ρ
dv
dt

dΩ (3.11)

The inertial term is usually neglected on the basis that inertial forces are very
small compared to the others acting on the cell. This approximation is well justi-
fied by the fact that if cells have a density similar to that of water, the inertial forces
at the micrometer scale characteristic of biological cells are indeed several orders
of magnitude smaller than viscous or adhesion forces. Nonetheless, this term is
kept in order to make the developments of this section as general as possible.
Substitution of eqs. 3.10 and 3.11 into eq. 3.9 leads to

∫
Ω′t

ρ
dv
dt
− [∇ · σ − δ(z)β · v − δ(xFA)kFA(N) · (u − uFA

0 )]dΩ = 0 (3.12)
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The integrand must vanish because this equation holds for any material vol-
ume Ω′t inside the cell, and the local form of the momentum equation follows:

∇ · σ = ρ ü + δ(z)β · u̇ + δ(xFA)kFA(N) · (u − uFA
0 ) (3.13)

where velocities and acceleration can be expressed in terms of (material) dis-
placement derivatives. The momentum equation is the key equation to describe
cell motion. It has been derived under general assumptions to accommodate a
wide range of constitutive laws for the cell cytoskeleton and adhesion contacts.
The next sections of this chapter present a viscoelastic constitutive law for the cell
cytoskeleton and a kinetic equation based on Bell’s theory for specific biological
adhesion for the adhesion sites[82].

3.2 Active Viscoelastic Constitutive law for the cy-
toskeleton

This section develops a constitutive law that relates the active and passive stresses
generated in the cell to the deformation of the cell body during it motion. The
cytoskeleton organizes the molecular contents of the cell spatially, connects the
cell physically and biochemically to the environment and also generates the forces
required for cell migration[83]. The mechanical properties of the cell are primarily
determined by the cytoskeleton, a dynamical and adaptive network of actin, in-
termediate and microtubule filaments embedded in the cytosol fluid and enclosed
by a highly elastic membrane [84]. Amongst the three types of filaments, actin
filaments have the most prominent role in force generation for movement.
A large number of regulatory factors controls the dynamical organization of the
cytoskeleton: nucleation proteins promote filament formation, capping proteins
stop their growth, and severing and depolymerization agents trigger their disas-
sembly. On a higher level of organization, crosslinking and branching proteins
bind filaments together and arrange them into different network architectures,
and molecular motors associate with them to transport cargo along the filaments
and to rearrange the network structures[85]. Particularly, bundled networks of
aligned actin filaments and branched networks of actin filaments form the basis
of filopodia and lamellipodia protrusions at the cell periphery, which are essen-
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tial for the extension of the leading edge of migrating cells[83]. Actin filaments
have different biochemical polarity at their tips, called plus and minus ends. This
property is essential for the two basic processes associated to the development of
the protrusion and contraction forces that drive cell migration. Protrusion force is
produced by asymmetric growth of actin filaments caused by the addition of free
actin monomers to the plus ends of the filaments and disassembly at the minus
end, a mechanism known as treadmilling. The filaments at the cell periphery are
oriented preferentially with their plus end toward the plasma membrane, so that
when thermal fluctuations create a gap between the filament tip and the mem-
brane, addition of an actin subunit pushes the cell edge forward[86]. Contraction
force is also made possible by the polar nature of the filaments. Mysoin-II is a
two-headed molecular motor that binds to actin and advances towards the plus
end of filaments consuming chemical energy stored in ATP molecules. Effective
contraction is generated when a motor binds two filaments in antiparallel con-
figuration, because the advancement of the motor causes the relative sliding of
one filament against the other. These two processes are depicted schematically in
figure 3.3:

(a) Sliding of antiparallel actin filaments due
to Myosin-II non-processive walk toward
plus ends

(b) Filament growth by addition of ATP-
bound actin subunits at the plus end

Figure 3.3: Basic molecular processes behind force generation in cell migration

A detailed description of the cytoskeleton, going down to the biochemical
regulation and filament organization dynamics, is not he focus of this work. Ex-
cellent reviews are available on the different modeling efforts of the cytoskeleton,
from biophysical models focused on descriptions of actin-networks dynamics[87,
Chapter 16], to development of constitutive laws for single cell mechanics [88]
and their application to models of cell motility [89]. Rather, the goal of this work is
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to develop a constitutive law that, while capturing the qualitative features of cell
mechanics and deformation, provides a mathematical framework and test bench
where the models of RhoGTPase regulation and discrete Focal adhesions can be
integrated in a comprehensive description of cell migration.
From a mechanical point of view the cell can be regarded as crosslinked polymer
network. Classical polymer physics provides a description of this type of mate-
rials from the fundamental components at the sub-micron scale[90], whereas at a
larger scale they are characterized by combining elastic and viscous behavior[91].
The predominance of one type of rheological behavior over the other depends on
the lifetime of the polymer crosslinks, the time-scale of interest and the magnitude
of the deformation. Biological cells present the additional complexity that the cy-
toskeleton is an active material that generates forces and responds to external
loads rearranging its internal organization[92].
At the experimental level, cell and tissue rheology has become an extensive field
of its own, and the measurements broadly support the approximation of the cell
as a viscoelastic material. However, the rheological properties of biological cells
an tissues are extremely complex, different experimental techniques yield differ-
ent responses depending on the part and scale of the cell that is being tested[93].
Therefore, it is not possible to fit all the complexity of cellular rheology in a single
model or constitutive law [87, Chapter 16], but rather to develop a model that
adequately describes the cellular process of interest. The process of cell migration
requires a model that captures the elastic and viscous resistance to deform at
the whole-cell scale and at time scales of the order of minutes-hours. A Linear
viscoelastic model arising from the generalization of mechanical combinations of
springs and dashpots fulfills this requirement and keeps unnecessary levels of
complexity from the description. The seminal work of Dimilla and Lauffenburger
[94] used this approach to develop a model of a 1D cell strip as a combination six
mechanical Kelvin-Voigt subunits, with two additional springs at the front and
rear to represent discrete links with the substrate.

Figure 3.4: A Kelvin-model is formed by a spring and a dashpot in parallel. It is
the most simple model that predicts viscous creep

Despite its simplicity, prescribing an asymmetry of the adhesions at the front
and the rear, the model was able to explain the observed bell-shaped relationship
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between adhesiveness and the velocity of the cell. Gracheva and Othmer [95], as
well as Mogilner and coworkers[96] extended this work developing a one dimen-
sional continuum counterpart of the Dimilla model to describe cell crawling. In
both cases, discrete adhesions were not considered, and an asymmetry in either
the force distribution or the movement of the cell edges was prescribed in order to
obtain polarization and directed movement. Following their ideas, a constitutive
law is developed extending the simple rheological Kelvin-Voigt model to two
dimensions and disregarding the ad hoc introduction of asymmetries in the cell
to obtain the desired movement.
A preliminary step in the formulation of the constitutive law involves the choice
of the measures of stress and deformation. The choice is limited by the constrains
imposed by the principle of material objectivity, which essentially states that a
valid constitutive law must not predict the generation of stresses or strains when
rigid-body motion is superimposed on the material. A Lagrangian measure of
strain is commonly reserved for solid materials, in which the deformations can be
naturally defined relative to an undeformed configuration. A description based
on Lagrangian measures of stress and strain has the advantage that objectivity is
automatically satisfied. However, the definition of an undeformed configuration
for the cell cytoskeleton is rather problematic, and the constant rearrangement
and flow of the filament networks makes the reference to the deformation of a
material line or volume artificial. Therefore, an Eulerian description is adopted,
and the appropriate measure of stress is the Cauchy stress σ, introduced in the
previous section along with its physical interpretation. The Almansi strain tensor
is the object adopted to measure the deformation of cell:

ei j =
1
2

[
∂ui

∂x j
+
∂u j

∂xi
−
∂uk

∂xi

∂uk

∂x j

]
(3.14)

The Almansi strain fulfills the principle of material objectivity. The physical
interpretation of the Almansi strain tensor sheds light into the implications of
assuming this measure of deformation. Consider a small segment of the cell of
original length dL and currently stretched to a length dl and oriented along the
direction n̂. The stretch of this segment relative to the current length is given by
the coordinates of the Almansi strain as n̂ · 2e · n̂ = (dl2

− dL2)
/
dl2. Thus, a consti-

tutive relationship between σ and e implies that the stresses in the cytoskeleton
arise from the deformation compared to the actual or current configuration of the
cell, as opposed to the deformation compared to an original unstressed config-
uration. The elastic stiffness matrix E determines the relationship between the
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deformation and the elastic component of the stress. The form of the stiffness
matrix will be given under the hypothesis of plane stress. This approximation is
valid because the thickness of cells in two-dimensional cultures is 1-2 orders of
magnitude smaller than its horizontal dimensions, so that the in-plane stresses
dominate the migration process and the vertical stresses can be safely neglected.
A realistic constitutive law should consider the microstructure of the cytoskele-
ton, determined by the time-dependent density a(θ, x̄) of actin filaments and their
orientation. In this description, the cytoskeleton could be modeled as a fiber-
reinforced composite material and described in the framework of serial/parallel
mixing theory[97]. The stiffness matrix of this type of materials is the resultant
of the contribution of the fibers aligned in different directions. Analogously, con-
sider the cytoskeleton filaments oriented along a direction x′ forming an angle θ
with the global coordinate system. It is assumed that two Young moduli Ex′ and
Ey′ and the corresponding Poisson coefficients, could characterize the mechanical
response of the filaments along its longitudinal and orthogonal directions. The
contribution associated to the filaments with this orientation, expressed in the set
of rotated axis (x′, y′), takes the form of an orthotropic stiffness matrix under the
hypothesis of plane stress [98, Chapter 5]:

E′θ =
1

1 − υx′y′υy′x′

 Ex′ υx′y′Ex′ 0
υy′x′Ey′ Ey′ 0

0 0 (1 − υx′y′υy′x′)Gx′y′

 (3.15)

This matrix can expressed in the global axis according to the transformation
Eθ = T(θ)T

·E′θ ·T(θ), where T(θ) is the matrix that transforms the stress and strain
fields from (x, y)→ (x′, y′)[98, see pag. 160]. The complete stiffness matrix, defin-
ing locally the rheological response of the cytoskeleton, would be the resultant of
the sum of all the contributions weighted by the density of filaments a(x, θ) along
each direction:

E =

∫ π/2

0
dθ a(x, θ)[T(θ)T

· E′θ · T(θ)] (3.16)

This general formulation has been developed to accommodate future theories
describing the dynamic reorganization of the cytoskleton, but it will not be pur-
sued further, since a detailed description of the cytoskeleton microstructure is not
the focus of this model. Instead, as a first approximation, the orientation of actin
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filaments is considered random, which leads to the stiffness matrix of a simple
isotropic material:

E =
E

1 − υ2

 1 υ 0
υ 1 0
0 0 1/2(1 − υ)

 (3.17)

where E and υ are the material coefficients that characterize the averaged
isotropic response of the cytoskeleton. A higher stiffness of the cell nucleus or
of particular areas of the cell can still be included in the model through a spatial
dependence of the Youngs’s moudulus in 3.17.
The viscous part of the resistance to deform of the cytoskeleton is assumed to
be similar to that of a Newtonian isotropic fluid. In this case, the appropriate
measure of strain rate is the rate of deformation tensor, which is also an objective
tensor:

di j =
1
2

[
∂vi

∂x j
+
∂v j

∂xi

]
(3.18)

and the viscous component of the stress is proportional to the isotropic vis-
cosity tensor µ = 2µ I. The simplest viscoelastic law that reproduces the transient
viscous creep and non-elastic recovery characteristic of biopolymer networks is
the Kelvin-Voigt model. The 2D continuous formulation of this law is then given
in terms of the strain and stress measures introduced above as:

σ = E : e + µ : d (3.19)

Before the constitutive law is extended with the additional terms that account
for the active generation of stress, its most important limitation is discussed. This
rheological law has the drawback that once the system is driven to a deformed
state defined by a fixed strain e, the stress does not decrease over time, a behaviour
known as stress relaxation. Stress relaxation in the cytoskeleton is associated to
the rearrangement of the filaments network and crosslinks, and it allows the cell to
adapt to changing circumstances by adopting different shapes permanently. The
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addition of a spring in series to the Kelvin-Voigt element of figure 3.4, transforms
it into the Linear Standard Solid, which features exponential stress relaxation.
However, on the short time-scales that are relevant for cell migration, the passive
component of the stress is dominated by the solid-like resistance of the cell to be
deformed, since the dynamic reassembly of the cytoskeleton associated to stress
relaxation takes places on longer characteristic times. Following with the program
of not adding additional complexity than needed to reproduce the kinematics of
the migration process qualitatively, this modification is left for future work2.
The constitutive based on the Kelvinn-Voigt model is now extended to include the
generation of active stresses. Contractile stresses are caused by the anti-parallel
sliding of actin filaments caused by the directional walk of the mysoin-II molecu-
lar motors. The depiction of this process in figure 3.3 serves to introduce a simple
analogy with a Hookean spring of varying equilibrium length that motivates the
development of the term associated with contractile stress. Consider a spring
of equilibrium length l0 sustaining a tensile force F, which under the Hookean
assumption is proportional to the stretch relative to the equilibrium length. The
relative sliding of the filaments can be represented by the decrease of the equilib-
rium length to l0 − lcont, where lcont is a function of the biochemical activity of the
cell to be specified later:

F = k[l − (l0 − lcont)] = k[l − l0] + τ (3.20)

Therefore, for a fixed tensile force sustained by the spring, an increase in the
contractile term τ leads to a decrease of it actual length.

Figure 3.5: Hookean spring analogy of the actin-myosin contraction

Again, the 2D counterpart of this process requires an assumption regarding
how the microstructure of the cytoskeleton is translated in different contractions

2A formulation based on the LSS model requires adding an additional stress rate term to the
left hand side in eq.3.19 of the KV model. Unfortunately, a direct extension using σ̇ is not valid
because the material time derivative of the Cauchy stress is not objective, and it must be replaced
by an objective measure of the stress rate, such as the Truesdell or Jaumann stress rate[99].
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along the different spatial directions. The general contractile term that follows
from this analogy is given by:

 τx

τy

τxy

 = E ·


econt

x
econt

y
econt

xy

 (3.21)

The assumption of random orientation of the filaments results in an isotropic
contraction term that produces an locally uniform deformation. In this case, the
shear component of the contractile term vanishes and econt

x = econt
y . Adding the

contractile term to eq.3.19 leads to the final expression of the constitutive law for
the cytoskeleton: 3.22.

σ = E : e + µ : d + τ(r,NFA) (3.22)

The dependence of the contractile term τ(r,NFA) on the local concentration
of the RhoGTPase proteins r(x, t) is made explicit to emphasize the coupling of
the mechanical model with the RhoGTPase model introduced in the previous
chapter. The model also considers direct signaling from Focal adhesions, whose
theoretical description is developed in the next section, to the biochemical ap-
paratus that governs cell contractility. Cell contraction is mediated by complex
network signaling pathways connecting RhoA to Myosin-II activation. The most
thoroughly characterized biochemical channel involves signaling from integrin
receptors in Focal Adhesion that leads to RhoA activation and binding of ROCK
kinases, triggering in turn MLC (mysoin light chain) kinases phosphorylation
and finally the positive regulation of Myosin-II activity[55]. Numerous addi-
tional pathways play a role in the regulation of this process, some involving the
other RhoGTPase proteins indirectly through crosstalk. A detailed description of
the signaling pathways is not possible because many of the actors and interactions
are not known, but in addition, such a description would not aid significantly in
the goal of understanding the mechanisms of spatio-temporal regulation of the
migration process at the whole-cell level. Instead, the complexity of the biochemi-
cal apparatus is reduced by assuming a direct relationship between the activation
level of the initiators of the signaling cascade, that is, RhoGTPases proteins and
Focal Adhesion receptors, with the magnitude of the contractile stress. Thus, the
magnitude and distribution of the contractile stresses are not prescribed ad hoc
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as in [94, 95, 96]; in this model the forces powering cell migration are determined
by the activation level of the factors at top of the signaling cascade that regulate
migration. Different explicit forms of the this relationship, given formally in the
following equation, will be tested in the second part of chapter 8:

τcont = τcont[C(x, t),R(x, t), ρ(x, t),NFA] (3.23)

Thus, different hypothesis on how the local, time-dependent concentration of the
RhoGTPase proteins and Focal adhesion state determines the contractile term de-
fined in eq.3.21 will lead to different motility modes, which can be compared to
experimental observations.
The last process that has to be included in the constitutive description of cell mi-
gration are the protrusive forces. Cell protrusion is driven by the forces generated
as a result of actin filament polymerization at the cell edge , as depicted in figure
3.3. The protrusion forces are applied at the plasma membrane of the cell and
consequently, the process is naturally introduced in the description through the
imposition of boundary conditions. The forces powering protrusion are assumed
to be normal to the cell membrane, so that the associated boundary conditions
take the form of a prescribed stress at the boundary Γt of the cell:

n̂t · σ = tprot(r) ~x ⊂ Γt (3.24)

The biochemical apparatus that regulates this process, as in the case of con-
traction, involves a large number of proteins and signaling pathways. Most
notably, the combined signaling of Cdc42 and Rac mediate the activation of the
WASP/WAVE family and subsequent activation of the Arp2/3 complex, which
stimulates the formation and extension of branched actin filament networks at
the front of the cell. Again, no attempt is made of including the myriad of bio-
chemical players that are involved in the regulation of cell protrusion. Instead,
the magnitude of the protrusion force is assumed to be determined by the level
of activation of the RhoGTPases proteins. Explicit laws relating their activation
level and the protrusion force magnitude will be stated in chapter 7, according to
the available experimental evidence.
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3.3 Kinetic model of Focal Adhesions

Focal Adhesion (FAs) is the generic term applied to several types of micron-sized
clusters of proteins of different structural and molecular composition that link
the cell cytoskeleton with the extracellular matrix. The dynamic formation and
disassembly of these discrete adhesions plays a crucial role during cell migra-
tion because they provide the mechanical support required to exert forces on the
substrate and pull the cell body forward. Focal Adhesions also serve two other
important functions in cell migration. First, being the primary nexus with the
environment, they gather mechanical and biochemical properties of the extracel-
lular matrix, thereby acting as the cell sensors of external signals[50]. Second,
Focal adhesions transform this information into biochemical signals that deter-
mine the rearrangement of the cytoskeleton and initiate the activation of other
regulatory modules, including the RhoGTPases, which enables the cell to give
an adequate response to external cues[100]. Focal adhesion dynamics and fate,
in turn, are determined by the forces applied by the actin filaments anchored on
them, and by signaling from the RhoGTPases. Thus, cell migration relies on the
finely coordinated interplay between adhesion formation and turnover, RhoGT-
Pases signaling and cytoskeleton rearrangements and force generation. Complex
feedback loops encompassing biochemical and mechanical interactions couple the
dynamics of these three systems and constitute the core of the regulatory engine
of cell migration[56, 57]. The mathematical description of the last element of this
triplet, Focal Adhesions, is developed in this section.

Figure 3.6: Cell migration results from the coupled dynamics of FA’s, rhoGTPase
signalling and Cytoskleton generated forces

More than 156 molecular components of Focal adhesions and 690 interactions
between them have been identified[60]. This remarkable study, combining com-
putational data-mining techniques with experimental observations, classified FA’s
components into 20 functional groups according to their activity. The most pop-
ulous groups are formed by the constituents of the physical structure of adhesion
sites: adhesion receptors, adaptor proteins and actin regulators. The rest of the
groups are mostly enzymes that regulate either adhesion assembly and turnover
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or signaling from FAs to the inner cell. The most important structural element in
Focal Adhesions are Integrin receptors, which physically tether the adhesion to
matrix ligands and also send and receive signals that mediate the interaction be-
tween the extrcellular matrix, adhesions and the cytoskeleton [101, 102]. Integrins
are transmembrane proteins that form bonds with actin filaments on their intra-
cellular domain and with ligands coating the extracellular matrix, such as collagen
or fibronectic, on their exterior domains. Upon engagement, Integrin receptors
mediate a bidirectional stream of outside-inside and inside-outside signals that
lay at the core of the sensing and migratory response of the cell to external cues
[103]. The outside-inside channel comprises direct signalling to the RhoGTPases,
triggers the activation of signaling pathways that lead to further Integrin cluster-
ing, reinforcing the adhesion and recruiting actin-adaptor proteins to regulate the
level of force, depending on the biochemical or mechanical composition of the
extracellular matrix. The inside-outside channel encapsulates the mechanisms
that modulate the adhesiveness of individual adhesions, which allows cells to
reinforce the contacts that sustain traction at the front and to release them at the
back in order to move forward.
Consequently, Integrin mechanical loading is a key determinant of the lifetime
of their bonds to extracellular ligands, thereby modulating the stability of Focal
Adhesions and the signaling activity that shapes the cell response to mechani-
cal properties of the environment. In this work, the focus is set on to explore
the principles that govern Cell Durotaxis, and the main hypothesis is that this
phenomenon can be explained by the local mechanosensing properties of Focal
Adhesions. Multiple hypothesis [104, 105, 106] exist on the biophysical basis that
allows Focal adhesions to act as mechanosensors, and despite the fact that its
precise nature is not fully understood, experimental evidence points to a com-
bination of physical and biochemical mechanisms working in parallel to define
the cell’s mechanosensory response [105, 107]. Thus, a model aiming to elucidate
Cell Durataxis requires a theoretical description of Focal Adhesions that consid-
ers the purely mechanical as well as the biochemical regulatory aspects of their
function. On account of the molecular complexity of Focal adhesions described
above, all modeling efforts conducted to date condense the molecular details into
a simplified physico-biochemical portrait that captures the particular adhesion
process of interest. Theoretical models of Focal adhesion mechanosensvity can
be classified in two broad categories. First, models built in a statistical physics
[108, 109] or thermodynamic framework [110, 111], in which the definition of
an energy functional containing an elastic term and chemical potential allows to
study the equilibrium size and stability of an adhesion under mechanical forces.
The models in the second category [82, 112, 113], which will be referred as Ki-
netic models, use a mechanistic description of ligand-receptor bonds as pairs of
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connected springs, whose rates of binding and unbinding are described in the
framework of Kramer’s theory for thermally activated escapes over an energy
barrier [114]. The first approach has been used to study FAs in adherent (non-
motile) cells, in which the description of static adhesions as a system in thermal
equilibrium might be reasonable. In this thesis, however, the goal is to study cell
migration, in which FAs are dynamic structures and requires a detailed descrip-
tion of the mechanical link with the rest of the cell; for these reasons, the last
approach is adopted.
The first theory of this type, studying the effects of mechanical forces on the life-
time of biological bonds is found in the pioneering work of G.I. Bell, who adapted
the previous theories by Zhurkov[115] on material strength. A more modern
treatment is found in the work of Seifert [112] and Schwarz’s group [116], which
will be used as the basis to develop the FA model. A schematic portrait of the
mechanical system representing the Kinetic model of a Focal Adhesion is shown
in figure3.7.

Figure 3.7: Kinetic FA model as a cluster of parallel springs binding and unbinding
substrate ligands

The adhesion is formed by a cluster of NT integrin receptors that can bind
ligands fixed on the substrate. The number of integrins forming a bond with a
ligand is denoted by n, whereas the number of unbound integrins is given NT −n.
Thermal excitation limits the lifetime of a molecular bond, but also drives the
formation of new pair of ligand-receptor bonds. The associated stochastic rates
of rupture and formation are also modulated by forces applied to them and by
the ligand-receptor distance. Let fn and rn denote the rates of bond formation and
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rupture in an adhesion having n closed bonds, and pn the probability of having n
bonds. Then, the change in the probability of having n closed bonds is determined
by the formation and rupture events according to the following one-step master
equation [117]:

dpn

dt
= rn+1 · pn+1 + fn−1 · pn−1 − ( fn · pn + rn · pn) (3.25)

A stochastic description of the adhesion process is necessary when the number
of bonds is small, particularly during the initial process of nucleation of a new
adhesion, in which the fluctuations of the number of bonds can be as large as
the number of bonds itself. An exact treatment of the master equation is beyond
the scope of this work due to the theoretical and computational challenges asso-
ciated to the formulation of a model of cell migration combining stochastic and
deterministic elements. Thus, the nucleation phase of adhesion formation will be
replaced by an experimentally-based phenomenological law and a deterministic
approximation of the master equation 3.25 is developed to describe the ensuing
evolution of a Focal Adhesion. The key variable in the deterministic description
is the mean number of closed bonds N(t), which can expressed in terms of pn(t)
as:

〈n〉 =

NT∑
n=0

n · pn ≡ N (3.26)

The mean field approximation of the master equation is obtained by taking
the time derivative of the number of closed bonds:

dN
dt

=

NT∑
n=0

n ·
dpn

dt
= − 〈rn〉 +

〈
fn
〉

(3.27)

The next step is to obtain the mean rates of bond binding and unbinding for the
adhesion and their dependency on applied loads. The frequencies of rupture and
formation for an individual bond will be derived in the framework of Kramers
Kinetic theory and are denoted by Wr and W f . Then, the mean rupture rate in
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the whole adhesion is approximated as 〈rn〉 ≈Wr ·N, the frequency of rupture for
a single bond multiplied by the number of existing bonds. Likewise, the mean
binding rate is approximated as

〈
fn
〉
≈W f · (NT−N), the binding frequency multi-

plied by the number of available integrins. Substitution of these expressions into
eq.3.27 leads to the deterministic equation describing the evolution of number of
molecular bonds in a Focal Adhesion:

dN
dt

= −N ·Wr + (NT −N) ·W f (3.28)

The Kinetic theory of Kramers[118] with the extension of Bell [82] for mechan-
ically loaded bonds is now used to derive an expression for the intrinsic rates Wr

and W f . In this theory, the ligand-receptor system is characterized by a potential
or energy landscape Eb(χ) with two minimums corresponding to the bounded
and unbounded state and a energy barrier that separates them [119]. The tran-
sition over the barrier is assisted by thermal fluctuations and corresponds to the
binding and unbinding events. It is assumed that the transition takes place along
a preferred path on the energy landscape, denoted by the reaction coordinate χ.

Figure 3.8: Energy Landscape of the ligand-receptor system along reaction co-
ordinate χ. The energy barrier ∆E is tilted by the application of a mechanical
load

The bond state, transition state and unbound state correpsond to χB, χT and
χU. The expression for the rate of transition χB ↔ χU over the barrier is given
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by[119]:

WχB↔χU =
δ

la lb
e−

∆E( f )
KBT (3.29)

The factor δ
la lb

is associated to the frequency of escape attempts and reflects the
diffusive nature of the process. δ is a molecular damping constant and the lengths
la and lb are determined by the profile of the energy landscape. Particularly, la is
a measure of the departure from the minimum corresponding to the initial state
for a KB · T increase in energy and lb is set by width of the energy barrier form the
initial state to the target state [120]. ∆E( f ) is the energy difference between the
bound state and the transition state. The probability of overcoming the barrier has
an exponential decrease with the height of the barrier, weighted by the Boltzmann
factor KB · T. The transition rate of eq.3.29 is applied to derive the expressions of
the rupture rate of a closed bond subjected to a mechanical load. The applica-
tion of a force f to a pair of bonded ligand-receptors tilts the energy landscape,
lowering the energy barrier. Following Bell, the force introduces a mechanical po-
tential to the energy landscape that decreases the height of the energy barrier to
∆E( f ) = ∆E0− f · (χT−χB), as depicted in fig. 3.8. Grouping the attempt frequency
and the constant part of the energy barrier into w0 = (δ/lc ls) exp(−∆E0/KBT) and
defining an internal force scale f0 = KBT/(χT − χB), the rupture rate as a function
of the external force f is:

Wr( f ) = w0 e
f
f0 (3.30)

Analogously, the generic transition rate of eq.3.29 is used to derive an expres-
sion for the rate of formation of new ligand-receptor bond. Any force applied
to the Focal Adhesion is borne by the currently bound receptors but not by the
free receptors, and consequently, the binding rate is not modulated by this force.
The initial state of system is the minimum χU, which in figure3.7 corresponds
to the pairs of unoccupied ligands and integrin receptors recoiled towards the
adhesion plaque. The formation of a new bond is driven by thermal excitations
that jolt the receptor to a position sufficiently close to the ligand, which allows
the binding event to occur. The ligand-receptor distance is then the key variable
that modulates the rate of bond formation. The thermally driven departure of the
receptor from the recoiled state adds an extra energy term to the ligand-receptor
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potential, associated to the stretch of the receptor molecule required to reach the
point in which it can bind the ligand. In the absence of applied force to the FAs,
a characteristic minimum ligand-receptor distance z0 is determined by intrinsic
repulsive forces between the cell membrane and the extracellular matrix. After
the cell pulls on a Focal adhesion with a force F, the plaque of the adhesion is
displaced a certain distance ū = u − uFA

0 from the position in which it was origi-
nally formed. Assuming that the force is not completely parallel to the substrate,
the adhesion plaque will be displaced vertically a small distance z(u) ≈ ū·sinθ > 0.

Figure 3.9: Distance dependence of bond formation rate

Let ∆E = ∆E′0(z0) be the energy barrier between the unbound state and the
bound state for the unloaded ligand-receptor system. For the Focal Adhesion
subjected to a load, the mechanical energy associated to the receptor stretch re-
quired to cover the increased ligand-receptor distance results in a total energy
barrier ∆E(u) ≈ ∆E′0 + 1/2 · kR(ū · sinθ)2, where kR represents the spring constant
of an integrin receptor. Introducing ∆E(u) in the transition rate given in eq. 3.29
leads the distance dependent rate of bond formation:

W f (u) = w′0 e−( ū
u0

)2
(3.31)

where the constant terms have been lumped into w′0 = (δ/la lb) exp(−∆E′0
/
KBT)

and the displacement scale is u0 = (2 · KBT/kR sin2 θ)1/2.
The last element that has to be considered to complete the description of Focal
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Adhesions is the regulatory interaction with the RhoGTPases and the coupling
with cytoskeleton-generated forces. Experimental evidence indicates that the
cell actively regulates the dynamics and fate of Focal Adhesions by modulat-
ing the avidity of individual contacts. This is the channel of regulation referred
previously as inside-out, and RhoGTPases are one of its central players. Avid-
ity is the effective adhesive strength of a Focal Adhesion, the amount of force
that it can sustain[121]. It is the result of two factors: the affinity of individual
ligand-receptor pairs, which determines the strength of individual bonds, and the
number of bonds in the adhesion, also known as valency. Therefore, there are two
mechanisms by which the overall adhesiveness of an adhesion could be modi-
fied. First, signals from the cell regulatory apparatus could trigger conformational
changes in the molecular structure of integrin receptors, modifying the energy
landscape of the ligand-receptor potential and possibly the mechanical properties
of integrins. Thus, a conformational change would lead to a modification of the
rates of bond formation and rupture and an alteration of the ligand-receptor affin-
ity. Affinity regulation is naturally introduced in the FA model by considering
the dependence on regulatory signals of the parameters that are determined by
the energy landscape profile and the integrin spring constant. The biochemical
details of the signaling pathways involved are not fully known, but since the ex-
perimental evidence suggests that RhoGTPases are the initiators of the process, it
is assumed that they depend on the activation levels of these proteins. According
to this hypothesis, an integrin conformational change implies a modification in
kR that results in functional dependency on the activation level of RhoGTPases of
the parameter u0 that sets the distance scale for the binding events. Likewise, the
shift in the distance χB − χU between the bound and unbound states that accom-
panies an alteration of the energy landscape results in dependency of the force
parameter f0 that sets the scale of the rupture events. Specific forms of the func-
tional dependency of these molecular parameters on RhoGTPase concentration
will be tested in Chapter8 , in which the complete cell migration model is used to
simulate durotaxis essays.

uo = uo(r − r0) (3.32a)

f0 = f0(r − r0) (3.32b)

The second mechanism of inside-out regulation could involve modification of
the valency of a Focal Adhesion, that is, the number of bonds in the FA. Experi-
mental observation shows that shortly after a small adhesion nucleates, its growth
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depends on the level of force applied to it. For example, treatments that inhibit
myosin II-driven contractility prevent the maturation of small initial contacts into
large FAs and leads to rapid disassembly of the existing ones [8, 122]. Related to
this phenomenon are the observations that cells cultured in flexible substrates, in
which adhesions bear a smaller traction, feature FAs of smaller average size [27],
whereas the connections between adhesions and the cytoskeleton are reinforced
in rigid substrates, allowing the cells to develop stronger forces to be exerted
on the substrate[123]. These negative effects on FA growth can be bypassed by
application of an external force on the adhesion site [49], suggesting early FAs
act like a mechanosensor whose growth is directly determined by the level of
force applied on them. Fast regulation of adhesion size depending of the state
of mechanical loading seems to point out to an inside-out mechanism involving
the modulation of the adhesion valency, promoting integrin recruitment or disas-
sembly from the adhesion plaque to control the number of available receptors per
adhesion. This regulation mechanism is introduced by postulating a dependence
of the total number of available integrins per adhesion NT on the force applied
to the adhesion. The experimental evidence summarized above imposes that NT

must be a growing function of the mechanical loading applied to the adhesion
that goes to zero in the absence of force and bounded by the availability of inte-
grin receptors. According to these constrains, NT will be defined in terms of the
mechanical energy eP( f ) stored by each ligand-receptor pair due to pulling forces
as:

NT(eP) = NFA ·

(
eP( f )

eP( f ) + e0

)
(3.33)

where NFA is the maximum number of integrins per Focal adhesion and e0

is a parameter that sets the energy scale of receptor activation by the inside-out
mechanism of valency regulation. In this way, the model implements the feed-
back interaction between the cytoskeleton and the RhoGTPases with adhesion
sites channeled by the inside-out signalling channels. Introducing the force and
distance dependent expressions of reaction rates and the postulated dependency
of adhesion parameters on inside-out regulation, the definitive equation to de-
scribe Focal Adhesions becomes:

dN(t)
dt

= −w0 e
f (t)

f0(r) ·N(t) + w′0 e−( ū(t)
u0(r) )2

[NT(eP(t)) −N(t)] (3.34)
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The forces and ligand-receptor distances in equation 3.34 are determined by
the coupled dynamics of Focal adhesions and the model of the cell introduced in
the first section of this chapter. Displacements and forces on FAs are determined
by the traction forces and movement of the cell, governed by the balance of mo-
mentum stated in eq. 3.13 from which the motion of the cell results. In turn,
the external forces defined in eq.3.8 for every point containing a Focal adhesion,
associated to the reaction force that resists the stretch of FA-substrate links, has
to be considered in the balance of momentum that determines cell movement.
Therefore, the kinematic and mechanical description of the coupled system com-
posed by substrate-FA-cytoskeleton has to be addressed.
The substrate is considered an incompressible linear elastic half-space with Young’
s modulus Es. Each closed ligand-receptor pair is anchored to a point on the sub-
strate that provides a linear elastic restoring force to the loads exerted by the cell.
The reaction force of the anchorage point is proportional to a spring constant
kS(ES) that depends on the Young’s modulus of the substrate. Derivation of kS as
a function of the substrate stiffness is addressed using Boussinesq-Cerruti theory
of elastic potential [124, Chapter 3]. This theory provides a solution to the classic
problem of determining the displacement field produced by the application of
point loads or distributed loads on the surface of an elastic half space. Thus, the
process of an ligand-receptor pair pulling on the substrate can be approximated
as the problem of calculating the displacement us produced on the surface of an
infinite half space by a tangential load f distributed on a circular area of radius
rP equal to the radius of an integrin or collagen molecule. The spring constant of
the anchorage point is then approximated as kS(ES) = f/us

Figure 3.10: Integrin-ligand tangential load on the substrate

The traction on the circular contact is assumed to follow a distribution given
by q = ( f/2πr2

P)(1 − (r/rP)2)−1/2 , which produces constant displacement of the
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surface within the contact area 3. The analytical value of this displacement along
the direction of the force for r < rP is us = (π · rP/2 · Es)(1 − υ)(2 − υ)( f/2πr2

P).
Substitution of the Poisson ratio for an incompressible material then leads to the
effective spring constant of the anchorage points:

kS(ES) =
(4
3

)2

· ES · rP (3.35)

After this brief detour, it is now possible to proceed with the description of the
FA-substrate system. Let F be the total force applied by the cytoskeleton filaments
anchored on a Focal Adhesion with N closed bonds. The force transmitted to each
ligand-receptor pair is f = F/N. The spring constants of receptors and ligands
are kR and kL, respectively. The compound spring constant of a ligand-receptor
pair in series is then given by k−1

P = k−1
R + k−1

L . The stretch of a ligand-receptor pair
relative to its resting length is denoted by uP, whereas the stretch of the anchorage
point in the substrate is uS The total displacement imposed by the pulling forces
of the cell is then equal to the sum the stretch of the ligand-receptor pairs and the
deformation of their points of attachment to the substrate; that is u−uFA

0 = uP +uS,
where uFA

0 is the position in which the contact was formed. Mechanical equilib-
rium of the system then leads to:

u − uFA
0 = uP + uS = F ·

[
1

N · kP
+

1
N · kS(ES)

]
(3.36)

Hence, the total reaction force that arises from the stretch of a FA, which en-
ters in the cell momentum equation as the external force defined in 3.8, can be
expressed as F = −kFA(N) · (u − uFA

0 ), where kFA(N) is the effective spring constant
of the Focal Adhesion defined as:

kFA(N) = N ·
kP · kS(ES)
kP + kS(ES)

(3.37)

3Alternative traction distributions do not result in significant changes in ks(Es). For instance,
considering the displacement on the boundary of the contact circle produced by a concentrated
point load on the center leads to ks(Es) = (2/3) · π · ES · rP, which only differs in a small numerical
prefactor from the adopted value
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Thus, cell motion depends on the state of Focal Adhesions through the re-
action force 3.8 associated to existence of a cell-substrate contacts, and in turn,
the dynamics of Focal adhesion depend on displacements and forces imposed on
them by the motion of the cell. The force per ligand-receptor pair f = F/N in a FA
that determines the bond rupture rate in eq.3.34 is then:

f =
kP · kS(ES)
kP + kS(ES)

· (u − uFA
0 ) (3.38)

The mechanical energy stored by each ligand-receptor pair and associated to
its stretch, referred previously as eP, can be calculated from this expression.

eP = f 2/(2 · kP) (3.39)

Note that if the spring constant of ligand and receptor are considered equal
leads to kP = kR/2, which allows to relate the last expression with eR (the energy
stored by cell receptors instead of ligand-receptor pairs) parameters defining the
energy landscape of the ligand-receptor potential rate of rebinding events.
In Chapter 8, the cell migration model will be applied to explore the mechanisms
that explain cell preferred movement along stiffness gradients. The mechanical
energy stored in adhesion receptors will be the variable assumed to determine the
magnitude of the signal transmitted through the outside-inside channel from FAs
to the RhoGTPase system to guide the cell response. This signal of mechanical
origin will replace the abstract stimulus function Ψ received by the RhoGTPases
in the chapter devoted to the study of Cell Durotaxis.
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And yet it moves.

Galileo

Chapter 4

Finite Element formulation of the cell
migration model

A Finite Element formulation the Cell Migration model is developed in this chap-
ter. The choice of the numerical method is determined by the numerous challenges
presented by the migration process from a computational perspective. In biologi-
cal cells, the notion of a reference or undeformed configuration is rather artificial.
Hence, the cell constitutive equations, momentum balance and protein transport
equations were formulated in the deformed cell configuration. The governing
equations must be solved in a complicated geometry that varies over time as
the cell body deforms and advances during its motion. For these reasons, an
Updated Lagrangian (UL) description of the cell migration process is the natural
framework. The nodes of the Lagrangian Finite Element mesh follow the mate-
rial points of the cell, automatically tracking its boundaries and facilitating the
imposition of boundary conditions. The UL scheme is also convenient because
history-dependent properties characteristic of biological materials are handled
easily.
Another source of complexity stems from the coupling between the mechanical
and regulatory modules of the cell migration model. Migration is viewed as
the result of two physically distinct processes: the mechanical deformation and
displacement of the cell, and the dynamics of the protein network that controls
the protrusion and contraction forces driving this motion. The numerical proce-
dure adopted to solve the equations assumes that the coupling between these two
modules is weak, and an explicit time integration algorithm is used to integrate
the equations. The stability of the numerical scheme and alternative methods
are discussed. The formulation is valid for any number of spatial dimensions,
although special emphasis is put in 1D and 2D models of cell migration. It is also
a general formulation in the sense that it can incorporate geometric and material

73
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nonlinearities associated to the cell movement and complex constitutive behavior.

4.1 Updated Lagrangian description of cell migration

4.1.1 Problem statement

The goal of this section is to develop the weak form of the governing equations
of the cell migration model in an Updated Lagrangian framework. The spatial
coordinates of a point are denoted by x = [x1, .., xd], where d stands for the number
of spatial dimensions considered. Every point in the cell is assigned a fixed
label, called material coordinates and denoted by X = [X1, ...,Xd]. The material
coordinates are defined by the spatial coordinates of the cell point in the initial
configuration at t0. In the remaining of the chapter, bold and regular font letters
are used for vectors and their components respectively .

Figure 4.1: Initial and current configuration of a 2D migrating cell.

The motion of the cell is then given by a continuous map between material
coordinates and their spatial position as a function of time:

x(X, t) = X + u(X, t) (4.1)

where the displacement u(X, t) is the difference between the current and the
initial position of a material point of the cell. In a Lagrangian description of a dy-
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namical process, the properties and variables of interest are considered functions
of the material coordinates. Hence. since the framework for the Finite Element
formulation of the migration model is Lagrangian, the displacement, protein con-
centrations and other fields required to describe the cell motion are considered
functions of X.
The equations governing the mechanical deformation of the cell were derived
in Chapter 3 from the balance of momentum in the spatial domain Ωt occupied
the cell body at a time t. In every spatial dimension considered in the model,
conservation of linear momentum leads to a partial differential equation (PDE)
that must be fulfilled in deformed configuration:

∂σ ji

∂x j
−

[
ρüi + δ(z)β · u̇i + δ(xFA) kFA · ui

]
= 0 x ∈ Ωt (4.2a)

nt
j · σ ji = tProt

i x ∈ Γt (4.2b)

The stress σ ji can be expressed as a function of the displacements using its
relationship with a measure of strain, as stated in the cell constitutive law. The
motion is then determined by the displacements obtained from solving equation
4.2a in Ωt. The solution of this equation requires prescribing the stresses or the
displacements on the cell edge Γt. The stress values in the boundary condition
4.2b are set by the protrusion force of the migration model, which specifies the
traction force along the current normal n̂t to the cell boundary Γt. The magni-
tude of the protrusion and contraction forces propelling migration, in turn, are
determined by the network of regulatory proteins introduced in Chapter 2. The
spatial distribution of each of the proteins inside the cell is given by a component
of the concentration vector r(X, t). The changes in concentration are driven by
the reactions between proteins and transport by diffusion. These processes can
be described by a reaction-diffusion equation, derived from the mathematical ex-
pression of the conservation of protein mass in Ωt, so that the evolution of every
component of rα(X, t) is given by an equation of this form:

ṙα + rα∇ · u̇ − [ fα(r,Ψ) +
dα
Φ2

∂2rα
∂x2

j

] = 0 x ∈ Ωt (4.3a)

nt
j · (

dα
Φ2

∂rα
∂x j

) = 0 x ∈ Γt (4.3b)
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where the subindex α goes over all the proteins in the network. The reaction
term fα(r ,Ψ) is shaped by the reactions between proteins and the external signals
represented by Ψ. The boundary condition 4.3b states that there is no outward
flow of proteins at the cell edge.
The system of PDEs that constitute the cell migration model can not be solved
analytically. Hence, a numerical solution of the systems is sought developing a
discrete form of the equations based on the Finite Element Method (FEM). The
first step in the derivation of the FEM formulation requires the expression of the
corresponding weak form, an integral form of the equations also known as the
principle of virtual power.

4.1.2 Derivation of the weak form of the governing equations

The weak form is obtained taking the product of the differential equations gov-
erning the mechanical and regulatory modules with an arbitrary function, known
as test function, and integrating over the current domain. The space of test func-
tions is formed by two sets of arbitrary functions, the virtual displacements δu
for the mechanical module and the virtual concentrations δr for the regulatory
module. Test functions are required to be consistent with the constraints of their
corresponding subproblem. Since the boundary conditions 4.2b and 4.3b do not
prescribe values of the displacements nor the concentrations, test functions are
only required to be continuous, but they do not need to vanish on Γt. The dif-
ferential equations 4.2a and 4.3a are zero in every point of Ωt, therefore this also
holds true for their integral form.
According to this procedure, the product of the momentum equation with an
arbitrary virtual displacement and integration over the current domain leads to:

∫
Ωt

δui

(
∂σ ji

∂x j
−

[
ρüi + δ(z)β · u̇i + δ(xFA) kFA · ui

])
dΩ = 0 (4.4)

Applying the divergence theorem to the first term in eq. 4.4 and considering
that the traction at the boundary is given by condition 4.2b, the stress term trans-
forms as:
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∫
Ωt

δui
∂σ ji

∂x j
dΩ =

∫
Γt

δui nt
jσ ji dΓ −

∫
Ωt

∂(δui)
∂x j

σ ji dΩ =

=

∫
Γt

δui t Prot
i dΓ −

∫
Ωt

∂(δui)
∂x j

σ ji dΩ

(4.5)

The weak form of the momentum equation is found substituting the trans-
formed expression 4.5 in the integral equation 4.4.

∫
Ωt

δui
[
ρüi + δ(z)β · u̇i + δ(xFA)kFA · ui

]
dΩ−

∫
Γt

δui tProt
i dΓ+

∫
Ωt

∂(δui)
∂x j

σ jidΩ = 0 (4.6)

Proceeding analogously for the regulatory module, the product of an arbitrary
virtual concentration of protein αwith the corresponding reaction-diffusion equa-
tion in system 4.3a and integration over Ωt leads to:

∫
Ωt

δrα

ṙα + rα∇ · u̇ − [ fα(r,Ψ) +
dα
Φ2

∂2rα
∂x2

j

]

 dΩ = 0 (4.7)

Again, the divergence theorem is applied to expand the diffusion term in 4.7
to obtain

∫
Ωt

δrα
dα
Φ2

∂2rα
∂x2

j

dΩ =

∫
Γt

δrα (n j ·
dα
Φ2

∂rα
∂x j

)dΓ −

∫
Ωt

∂(δrα)
∂x j

dα
Φ2

∂rα
∂x j

dΩ =

= −

∫
Ωt

∂(δrα)
∂x j

dα
Φ2

∂rα
∂x j

dΩ

(4.8)

The no flux boundary given in 4.3b states that the contour term along Γt in 4.8
vanishes. Substitution of 4.8 in 4.7 then leads to the weak form of the reaction-
diffusion equation:
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∫
Ωt

δrα [ṙα + rα∇ · u̇] dΩ +

∫
Ωt

∂(δrα)
∂x j

dα
Φ2

∂rα
∂x j

dΩ −

∫
Ωt

δrα fα(r) dΩ = 0 (4.9)

The weak forms 4.6 and 4.9 are equivalent to the systems 4.2 and 4.3 com-
posed of the governing equations and the boundary conditions, they contain the
same information. The next step in the development of the FEM formulation is
the introduction of discrete approximations of the geometry and the unknown
variables of the problem.

4.1.3 Discretization of geometry, test and trial functions

The discrete equations for the Updated Lagrangian formulation are obtained in-
troducing in the weak forms an approximation for the cell geometry, the test
functions and trial solutions. The initial cell domain Ω0 is subdivided into a mesh
of ne elements spanning the total domain.

Figure 4.2: 2D cell meshed with 6-node triangular elements. Red nodes match
the position of adhesions sites.

Every element has m nodes, and the total number of nodes in the mesh is
denoted by n. Each Adhesion site has a node attached to it in order to facilitate
the treatment of punctual forces. The boundary between the nucleus and the cell
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body is also matched by element edges, so that different material properties can
be assigned to them.
A set of interpolation functions is introduced to approximate the problem vari-
ables in the elements in terms of their nodal values. The interpolation functions
are standard shape functions [125] defined by the type of element used in the
discretization.
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Figure 4.3: Quadratic shape function for the 6-node triangle element

The shape functions, as shown in figure 4.3, fulfill the interpolation condition
by which the shape function associated to node I vanishes at the position of any
other node J.

NI(ξe
J) = δIJ

m∑
I

NI(ξe) = 1 (4.10)

The second condition in 4.10 is required to ensure rigid body motion can be
interpolated without causing strain. The shape function variables ξe = [ξ1, ..., ξd]
are a set of local element coordinates, known as parent coordinates, introduced to
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facilitate FEM calculations. Parent coordinates are a parameterization of the ele-
ment domain, so that locally there is a one-to-one correspondence X(ξe) between
the material coordinates of a particle and its parent coordinates. An upper case
subindex will be used to label nodes to avoid confusion with the spatial compo-
nents of a vector, which are indicated with a lower case subindex.

Figure 4.4: Initial, current and parent coordinates of a triangular element and
mapping between them.

Parent coordinates are effectively a substitute of the material coordinates and
can also be used as a label for a material point. The mapping between the material
coordinates of any particle inside the cell domain and its parent coordinates can
then be interpolated in terms of the nodal values using the shape functions:

X(ξe) =

n∑
I

NI(ξe) · XI (4.11)

The superscript e in the local element coordinates will be omitted from now on to
simplify the notation. The nodes of the Lagrangian mesh follow the material point
to which they were originally attached during the motion, so that the mapping
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between the parent coordinates and the material coordinates is time-independent.
Hence, the motion mapping 4.1 between the current and initial configurations of
the cell can also be interpolated using the current positions of the nodes:

x(X, t) =

n∑
I

NI(ξ(X)) · xI(t) (4.12)

The interpolation used to approximate the geometry is also used to define the
trial solutions of the mechanical and regulation modules. The displacement field
is approximated subtracting the interpolation of the current and material coor-
dinates of a particle given in eqs. 4.12 and 4.11. Velocities and accelerations are
be approximated in terms of the nodal values taking the time derivative of eq: 4.12:

u(ξ, t) =

n∑
I

NI(ξ)[xI(t) − XI] =

n∑
I

NI(ξ)uI(t) (4.13a)

u̇(ξ, t) =

n∑
I

NI(ξ)∂xI(t)/∂t =

n∑
I

NI(ξ)u̇I(t) (4.13b)

ü(ξ, t) =

n∑
I

NI(ξ)∂2xI(t)
/
∂t2 =

n∑
I

NI(ξ)üI(t) (4.13c)

where the explicit reference to the material coordinates has been dropped,
using their one-to-one correspondence with parent coordinates.
The unknown variables associated to the regulation module are also be interpo-
lated using their nodal values. Concentrations and concentration change rates
are then given by:

r(ξ, t) =

n∑
I

NI(ξ)rI(t) (4.14a)

ṙ(ξ, t) =

n∑
I

NI(ξ)∂rI(t)/∂t =

n∑
I

NI(ξ)ṙI(t) (4.14b)
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In all of the interpolations above, the shape functions are constant in time and
the time-dependence of the trial solutions is contained in the nodal coefficients.
The test functions, according to the Galerkin method, are also expressed in terms
of the shape functions and the virtual nodal displacements and concentrations.

δu(ξ) =

n∑
I

NI(ξ)δuI (4.15a)

δr(ξ) =

n∑
I

NI(ξ)δrI (4.15b)

The virtual nodal values in 4.15 are arbitrary and time-independent.

4.1.4 Nodal forces, concentrations rates and semi-discrete equa-
tions

The discrete counterparts of the weak forms are obtained substituting the FEM
approximations of the test and trial functions in the integral equations 4.6 and 4.9.
The resulting equations are expressed more clearly introducing the definition of
the different terms according to their physical origin. For the mechanical module,
the internal nodal forces stemming from the active and passive cell response are
defined as:

f Prot
i I =

∫
Γt

NIt Prot
i dΓ (4.16a)

f Ctk
i I =

∫
Ωt

∂NI

∂x j
σ ji dΩ (4.16b)

The term f Prot
i I gives the nodal forces generated at the cell boundary by the

protrusion force that pushes the cell forward. f Ctk
i I contains the internal forces

originated by the rheological response of the cell cytoskeleton. The stress σ ji in
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f Ctk
i I , given by the constitute law introduced in Chapter 3, can be split in two

parts: a passive contribution to the internal forces associated to the viscoelastic
resistance of the cytoskeleton to deformation, and an active term associated to the
contraction forces generated by the cell.
The next definitions are derived from the inertial term in 4.6 and those terms
corresponding to the external forces experienced by the cell during its motion.
f Inert
i I is the inertial term associated to the change in linear momentum given by

the balance between external and internal forces. Considering that the density of
the cell is similar to that of water, the inertial term at the cellular scale is several
orders of magnitude smaller than the others and is usually neglected1.

f FA
i I = −

∫
Ωt

(δ(xFA) kFA ·NINJ dΩ ) · ui J (4.17a)

f Drag
i I = −

∫
Ωt

(δ(z)β ·NINJ dΩ) · u̇i J (4.17b)

f Inert
i I =

∫
Ωt

(ρ ·NINJ dΩ) · üi J (4.17c)

The external forces are originated by the interaction between the cell and the
substrate during its motion. f Drag

i I are the nodal forces caused by the sliding of
the basal surface of the cell on a substrate and is proportional to the migration
velocity. It is similar to a continuous friction force, in this case generated by the
interaction between the receptors on the cell basal surface and the ligands coating
the substrate on which the cell is moving. f FA

i I are punctual forces at the locations
xFA where the cell has established an adhesion site. These are reaction forces
from the substrate, equal and opposite to the forces exerted by the cell to pull
the adhesion sites and transmitted to the substrate through the spring-like bonds

1The Einstein convention for the sum of repeated indices has been adopted also for the nodal
labels. For instance, the integrand in the definition of the inertial force has been transformed in
this way:

ρ ·NI

∑
J

NJ · üi J
EINSTEIN
−−−−−−−→ ρ ·NINJ · üi J

The same convention applies to the rest of the nodal forces.
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between adhesion and substrate.
Next, the expressions obtained in the derivation of the discrete equations of

regulatory module from the weak form are defined in terms of nodal concentra-
tion rate changes:

wDer
α I =

∫
Ωt

(NINJdΩ) · ṙα J (4.18a)

wDil
α I =

∫
Ωt

(NINJ[∇ · u̇] dΩ) · rα J (4.18b)

The variation of the content of protein α in a material volume of the cell is
given by two separate factors. The term wDer

α I is the discrete counterpart to the
change in protein content caused by the variations of concentration in the material
volume associated to node I. Thus, it is given by the material time derivative of
the concentration at that particular node. The dilution term wDil

α I has a geometrical
origin: it accounts for the variation in concentration caused by the compression
or expansion of the material volume with constant protein content. The custom-
ary assumption that the cell behaves as an incompressible material is expressed
mathematically as ∇ · u̇ = 0, which makes the contribution of this term vanish.
The physical processes that bring about the changes in concentration are included
in the following nodal rates of concentration change:

wDi f f
α I =

∫
Ωt

(
∂NI

∂x j

dα
Φ2

∂NJ

∂x j
dΩ) · rα J (4.19a)

wReact
α I =

∫
Ωt

NI fα(r) dΩ (4.19b)

where wDi f
α I and wReact

α I account for the changes in concentration caused by dif-
fusion and reaction, respectively.
The last step required to arrive at the semi-discrete equations is introduce the
approximations of the test functions, trial functions and their time derivatives in
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the integral weak forms. In this way, using the definitions of the nodal forces and
substituting the approximations of the displacements, velocities and accelerations
introduced in the former section, the weak form 4.6 of the equation governing the
mechanical module can be written as:

δui I[ f Inert
i I − f Fric

i I − f FA
i I − f Prot

i I + f Ctk
i I ] = 0 ∀δui I (4.20)

Similarly, substitution of the approximations of the trial concentrations and
their time derivatives and the introduction of the definitions of the nodal rates of
concentration change allows to express the weak form 4.9 as:

δrαI · [wDer
α I + wDil

α I + wDi f f
α I − wRe act

α I ] = 0 ∀δrα I (4.21)

Since the equation above apply to arbitrary values of the virtual displacements
δuI and arbitrary values of the virtual concentrations δrI , it follows that the non-
trivial solution to eqs. 4.20 and 4.21 is:

[ f Inert
i I − f Fric

i I − f FA
i I − f Prot

i I + f Ctk
i I ] = 0 ∀(I, i) (4.22a)

[wDer
α I + wDil

α I + wDi f f
α I − wReact

α I ] = 0 ∀(I, α) (4.22b)

The equations 4.22 are called semi-discrete because the time domain has not
yet been discretized. They constitute a system of nonlinear ordinary differential
equations (ODE’s), with the nodal coefficients of the trial solutions uI, rαI and
their time derivatives as unknowns. The size of the system is equal to the number
of nodal degrees of freedom. Being n the number of mesh nodes, d number of
the spatial dimensions considered and NP the number of proteins, the number of
equations is n · d in the mechanical subsystem 4.22a and n · NP in the regulatory
subsystem 4.22b.
Factoring out the column vectors of nodal unknowns from the nodal forces and
nodal concentration rates, the discrete equations 4.22 can be expressed in matrix
form:
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[
Muu 0

0 0

] [
ü
r̈

]
+

[
Cuu 0

0 Cr r

] [
u̇
ṙ

]
+

[
Kuu 0

0 Kr r

] [
u
r

]
=

[
Fu

Rr

]
(4.23)

where M, Cxy, Kxy and Fx can be assembled from the definitions of the nodal
forces and nodal concentration rates into regular Finite Element matrices of mass,
damping and stiffness. An example of the explicit form of these matrices will be
given for 1D and 2D isoparametric elements in the next section.
The system of equations 4.23 are the general Finite Element formulation of a
cell migration model in arbitrary dimensions, and apply to large deformations
and material non-linearities. Furthermore, in this FEM framework, alternative
assumptions regarding the behavior of the cytoskeleton and adhesion sites dy-
namics can be readily considered introducing different constitutive laws in f Ctk

and f FA. Likewise, replacement of the reaction term in wReact allows the intro-
duction of a more detailed description of the regulation mechanism of migration
or alternative crosstalk schemes between the proteins. A method to solve the
semi-discrete equations is developed in the following section.

4.2 Solution of the equations

The goal of this section is to develop a solution method for the semi-discrete
equations of the migration model. The coupling between the mechanical and
regulatory modules is assumed to be weak, which allows the division of the
nonlinear coupled system 4.22 into two smaller sub-problems. The systems of
ODEs governing the evolution of the nodal variables of the two subproblems are
then transformed, using a time-discretization scheme, into two sets of nonlinear
algebraic equations for the values of the nodal displacements and protein concen-
trations. Sequential resolution of these algebraic systems provides the transient
solution in the form of the values of the nodal unknowns at each time step.

4.2.1 Staggered Scheme for the Mechanical-Regulatory Coupling

The numerical solution of system 4.22 requires a time-marching scheme for the
advancement in time of the nodal variables: displacements and concentrations.
The time domain [t0, t f ] in which a solution of the problem is sought is divided
into nT time steps ∆tk = tk

− tk−1, from k = 1 to k = nT. From an initial value of
the two sets of nodal variables (u0, r0), the transient solution is then constructed



4.2. SOLUTION OF THE EQUATIONS 87

approximating their values (uk, rk) at subsequent time steps.
The solution procedure has to take into account that the systems of equations
that govern the mechanical and regulatory modules are not independent. In
the mechanical module, the forces that propel cell motion are dependent on the
concentrations of the proteins. Particularly, the protrusion force t̄Prot(r) specified in
the boundary condition 4.2b and the active contraction term of the total stress σ ji

are functions of the protein activity. Similarly, the spring constant kFA(r) of each
adhesion site depends on the local protein concentration, because the strength
and lifetime of adhesion sites are controlled by the regulatory network. Hence,
protein concentrations enter the equation 4.22a governing the mechanical module
through the following nodal forces:

f Prot
i I = f Prot

i I (r) (4.24a)

f Ctk
i I = f Ctk

i I (u, r) (4.24b)

f FA
i I = f FA

i I (u, r) (4.24c)

Conversely, the regulatory module is coupled to the mechanical module
through the transduction of mechanical signals from adhesion sites. The me-
chanical information, gathered when the contacts are stretched, is converted into
biochemical signals that change the equilibrium of the protein reactions. The de-
pendence on the displacements of the external stimulus term Ψ(u) in the reaction
term captures this interaction.
The dilution term is also dependent on the mechanical deformation of the cell.
Even if the cell is considered incompressible, changes in the cell geometry also
affect indirectly the dynamics of the regulatory module, as the domain in which
the proteins are distributed changes. Hence, the following nodal concentration
rates are coupled to the current state of cell deformations:

wDil
α I = wDil

α I (r, u̇) (4.25a)

wReact
α I = wReact

α I (r,u) (4.25b)

From the previous discussion of the coupling between the migration processes,
it follows that the matrices of the mechanical and regulatory subsytems in eqs 4.23
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are dependent on the unknown variables of the other and the full system is non-
linear.
An staggered time-stepping scheme will be used to integrate the coupled sys-
tem 4.23. In a staggered scheme, the two interacting subsystems are integrated
sequentially, so that when the variables of one of the problems are advanced in
time, the variables of the other subproblem are frozen[126]. Thus, let (rk−1,uk−1)
be the values of the nodal variables at time tk−1. Then, the displacements at
uk−1 are used to predict a tentative solution of the concentrations rk

(p), which are
subsequently used to advance the displacements to a tentative value uk

(p). The
subsystems are assumed to be weakly coupled, in the sense that small variations
in the mechanical variables result in small variations of regulatory variables and
viceversa. Thus, this assumption allows using the staggered time-stepping algo-
rithm without enforcing equilibrium at each time step.

Figure 4.5: Staggered advance of the nodal variables in a weakly coupled problem.

F and S represent the discrete operators associated to the method used for the
advancement of the nodal variables in each time step. The staggered strategy is
independent of the time-integration method; a different method can be used for
each of the subsystems. This is particularly advantageous when the time scales
or the stability restrictions of the subproblems are very different. In this case,
an implicit method can be used to advance with large time-steps the stiff terms,
such as the diffusion term in the regulatory module, whereas the slow-changing
mechanical subsystem is integrated using an explicit method with an equally
large time-step. In the next section, the details of a fully explicit Runge-Kutta
method of integration for both subsystems are given.
If the weak coupling assumption does not hold, the accuracy of the strategy is
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degraded. In this case, the scheme can be modified to enforce equilibrium between
the modules using an iterative procedure in each time step. The displacements
uk

(p) obtained in the staggered advancement are substituted to recalculate a trial
solution for the concentrations rk

(p), and the procedure is repeated until their values
converge, with the corresponding modification to the scheme is depicted in figure
4.5 with a dashed line. Alternatively, a reduction in the size of the time-steps
can lead to the the same accuracy; the choice of the method must be made in
terms of the computational efficiency of performing more iterations in a smaller
number of steps against dividing the simulation time in more steps of cheaper
computational cost. The preceding remarks showcase the trade-off paid for using
an staggered scheme instead of solving the full system simultaneously as it is done
in monolithic schemes: the accuracy of a staggered method may be compromised
if large time-steps are used. On the other hand, a partitioned scheme, comprised
of different integration methods for each subproblem, leads to symmetric systems
for which standard optimized solvers exists and allows the selection of the most
computationally efficient method for each of them.

4.2.2 Time integration of the coupled problem

In this section the staggered scheme introduced previously is combined with a
Runge-Kutta method for the advancement of the nodal variables in each time-
step. The resultant method of integration of the coupled system will be referred as
SRK4. In SRK4, the integration of both subsystems is carried out using a 4th-order
Runge-Kutta (RK4) method with adaptative time-step [127]. RK4 is an explicit
integration method, in which the derivatives of the nodal unknowns at tk are
approximated using the variables values at previous time points in ∆tk according
to the followng expression:

u̇k
(p) =

uk
(p+1) − uk−1

∆tk
(p)

(4.26a)

ṙk
(p) =

rk
(p+1) − rk−1

∆tk
(p)

(4.26b)

The derivatives are evaluated four times in each RK4 step: at the beginning of
the step, twice at trial midpoints, and once at the end the step. The subindex in
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∆tk
(p) indicates that in the stages p = 1, 2, the variables are advanced only a fraction

of the step.

(a) (b)

(c) (d)

Figure 4.6: 4th-order Runge-Kutta integration scheme.

The derivatives on the left-hand side of expression 4.26 are known: they are
evaluated substituting in the discrete system of equations the values (uk

(p), r
k
(p))

calculated previously. The evaluation of the derivatives is done according to the
staggered scheme. First, (uk

(p), r
k
(p)) are substituted in the subsystem of the discrete

equations 4.23 associated to the regulatory module to obtain the following expres-
sion for the derivative of the nodal concentrations:

ṙk
(p) = C−1

rr · [Rr −Krr · rk
(p)] = F(uk

(p), rk
(p)) (4.27)
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where all the matrices and the reaction term on the right hand side of eq.4.27
have been updated using the values (uk

(p), r
k
(p)). For the stage p = 1, the evaluation

is done taking the values uk
(1) = uk−1 and rk

(1) = rk−1 obtained at the end of the pre-
ceding time step. The nodal concentrations are then advanced to a new tentative
value rk

(p+1) obtained from the right hand side of expression 4.26b:

rk
(p+1) = rk−1 + ∆tk

p ṙk
(p) (4.28)

Analogously, uk
(p) and the new value of the concentration rk

(p+1) are substituted
in the mechanical subsystem of the discrete equations to evaluate the displace-
ments derivatives:

u̇k
(p) = C−1

uu · [Fu −Kuu · uk
(p)] = S(uk

(p), rk
(p+1)) (4.29)

where, according to staggered scheme, the stiffness, damping and force matri-
ces have been updated and assembled using the new trial value of the concentra-
tions.
Note that the original subsystem has been reduced to a set of first order ODEs ne-
glecting the inertial term in the 4.29 under the assumption of small inertial forces
compared to the remaining terms. This assumption bears no loss of generality in
the method: if the inertial term is considered, the original 2th order ODE system
can be transformed into 2 sets of first order ODE equations, to which SRK4 scheme
can be applied in the exact the same way as presented here.
Advancement of the of nodal displacements using u̇k

(p) completes the p-th substep:

uk
(p+1) = uk−1 + ∆tk

(p) u̇k
(p) (4.30)

In turn, the trial values (uk
(p+1), r

k
(p+1)) will be used to take the next substep p + 1.

The staggered advancement is repeated 4 times, as schematically shown in fig.
4.6. Finally, the trial values of the the unknowns are discarded and the solution of
the nodal variables at tk is computed according to the standard RK4 expression:
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uk = uk−1 +
∆tk

6
(u̇k

(1) + 2u̇k
(2) + 2u̇k

(3) + u̇k
(4)) (4.31a)

rk = rk−1 +
∆tk

6
(ṙk

(1) + 2ṙk
(2) + 2ṙk

(3) + ṙk
(4)) (4.31b)

which constitutes a 4th order method in accuracy, for the error in every step
is of order O(∆t4). The flowchart for the advancement of the nodal unknowns is
summarized in the following box:

Box 4.1 : SRK4 step
1. Set initial values for step k

uk
(1) = uk−1, rk

(1) = rk−1

2. For p = 1 : 4
i) Update trial concentration derivatives

ṙk
(p) = F

(
uk

(p), rk
(p), t

k
(p)

)
ii) Advance trial concentrations

rk
(p+1) = rk−1 + ṙk

(p+1) · ∆tk
(p)

iii) Update trial displacement derivatives

u̇k
(p) = S

(
uk

(p), rk
(p+1), t

k
(p)

)
iv) Advance trial displacements

uk
(p+1) = uk−1 + u̇k

(p) · ∆tk
(p)

3.Calculate uk, rk by equation 4.31

After step k is completed, the size of the next step is adapted to enforce that
it falls in the range of numerical stability. Although the stability analysis of an
staggered method is far from trivial, staggered schemes can be designed to inherit
the stability properties of the underlying integrations methods; for a detailed
analysis of stability issues see [128]. Generally, the upper bound of stability for
the scheme is given by the minimum critical step of the partitions integrated with
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a conditionally stable method. For the SRK4 method, the critical step is esti-
mated using the Courant-Friedrichs-Lewy (CFL) [81] condition in the regulatory
partition, which relates the size of the critical step to the size of the mesh elements:

∆tk
CFL =

1
Dmax

min
e

[∆h2
e ] + max[λ(Rr)]

≈

min
e

[∆h2
e ]

Dmax
(4.32)

where Dmax is the maximum diffusion coefficient of the proteins and ∆he is a
characteristic measure of the node to node distance of the elements in the mesh.
The term λ(Rr) stands for the eigenvalues of the Jacobian of the reaction term, but
since protein diffusion is much faster than the characteristic times of reaction in
cell processes, it can be safely neglected in the estimation of the critical step. In
1-dimensional meshes, the characteristic length he is taken simply as the distance
between nodes. For triangular mesh in a 2-dimensional cell model, h is taken as
the minimum height. At every time-step taken , the length he is determined by
minimum amongst all the elements and the CFL condition is used to determine
the step size as:

∆tk =
1
α

∆tk
CFL (4.33)

where α is a safety factor.
The major drawback of the SRK4 method is a result of the dependence of the
critical step on the minimum ∆he amongst all the elements. During motion the
cell contracts the trailing area of the cell body while the front expands. Thus,
it is possible that a severe restriction in the marching step of the entire mesh is
imposed by a few elements becoming flattened during cell contraction, as de-
picted in figure 4.7 . The reduction in the element height produces a second order
reduction in the stable step.
The characteristic values of the variables in ∆tCFL are used to estimate the magni-
tude of the problem: the typical duration of 10 minutes in a migration observation
is taken as the simulation time, a characteristic element size of h2

e ∼ 0.5µm2 to ob-
tain an acceptable resolution in cells of length Lcell ∼ 10−20µm and Dmax = 10µm2/s
from the diffusion coefficient of GDP-bound RhoGTPases and a safety coefficient
α = 6. This results in a critical time step of 0.5 · 10−2 seconds and requires approx-
imately 140 · 103 time steps. In a desktop PC computer with an Intel Core TM(2)
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Duo processor, L2 Cache of 4M and 2.66 GHz clock speed, running a 1D simulation
with quadratic elements with these parameters without considering cell contrac-
tion took around 6 minutes. This is a reasonable simulation time for modeling
purposes, which generally requires running large number of similar simulations
to evaluate the effect that different assumptions or parameter changes have in the
results. However, once a cell contraction of the order of (20%) in certain areas is
enabled the efficiency of the method is degraded substantially, as the equivalent
simulation took approximately 15 minutes.

Figure 4.7: Geometry of CFL condition for triangular element.

The preceding remark underscores the main handicap of SRK4 as method
of solution of the cell migration equations, as a result of treating the diffusion
term explicitly. However, as an explicit method presents an important advantage
for modelling purposes, because modifications in the model equations can be
readily implemented without the need of linearizing the new terms or making
major modifications in the code, as it is the case in a implicit method. Still, the
time-step restriction could be bypassed2 treating implicitly the diffusion term only
and integrating the rest of the terms in the same way, as it is done in implicit-
explicit (IMEX) methods for reaction-diffusion equation [129]. However, even
with an unconditionally stable method, large steps can not be taken: the reaction
diffusion equations of the regulatory model feature wave-like solution that are
essential to explain the spatio-temporal distribution of the proteins. Capturing
the propagation of such waves and the formation of complex patterns requires
tracking the high frequency portion of the response [81][Ch.6], for which small-

2Other alternatives are available to solve the step restriction: remeshing to obtain elements less
distorted in the problematic areas, and using the subcycling technique, in which the domain is
subdivided and each subdomain is integrated independently using their stable step.
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step explicit methods are more robust [130], [131]. These reasons, despite its
relative slowness, justify the choice of SRK4 as a solution method.

4.3 Implementation

This section describes the computational implementation of the FEM formula-
tion of the migration model. Two-dimensional cell domains are meshed using
the mesh-generator of the pre and post-processing software GID developed at
CIMNE[132]. The mainframe of the Finite element code was programmed in
Matlab 7.0, and the more computationally costly subroutines were programmed
in Fortran 90 and linked to the mainframe code as external MEX libraries. The
general expressions of the nodal forces of the mechanical module and nodal
concentrations rates of the regulatory module, introduced in section 4.1.4, is de-
veloped in terms of FEM matrices for 1D and 2D problems. The explicit form of
the matrices for the Kelvin-Voigt model in small displacements is given for the
elements that were regularly used in the simulations: quadratic isoparametric
bars for 1D problems and linear triangles for 2D problems.

4.3.1 1D FEM Formulation

The definitions of the nodal forces and the nodal concentration rates given in
equations 4.16a-4.19b are used to develop the FEM matrices for 1-dimensional
problems. The interpolation of the displacements, concentrations or any other
variable field v in a isoparametric bar element with m nodes is expressed as the
product of a column vectorve containing the variable values at the m nodes and a
shape function matrix N(ξ) defined as :

v = N(ξ) · ve = [ N1 . . . Nm ]

 ve
1
. . .
ve

m

 (4.34)

where ξ is the parent coordinate and the element domain is ξ = [−1, 1]. The
spatial derivative of the field v,x is given in matrix form by v, x = B · ve, where
B = [ N1,x . . . Nm, x ] is known as the element strain matrix:

B =
1

x,eξ
B0 =

1
x,eξ

[ N1,ξ . . . Nm, ξ ] (4.35)

The factor x,eξ is the derivative of the spatial coordinate x with respect to the
parent coordinate ξ; it stems from applying the chain rule to obtain the spatial
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derivatives of fields that are interpolated using the shape functions, which are
functions of ξ. In 1 dimensional problems, this term is also the Jacobian of the
transformation between the parent coordinate and the spatial coordinate x,ξ = |Je

|.
This leads to an important simplification of the final expression of the nodal forces
and concentrations, but it does not carry over to 2D or 3D problems. It can be
computed using the following expression:

x,eξ = |Je(ξ)| = NI,ξ ·xe
I (4.36)

For the 3-node quadratic element, the shape functions matrix, the strain matrix
and the jacobian are given by:

N(ξ) = [ 1
2 (ξ2
− ξ) (1 − ξ2) 1

2 (ξ2 + ξ) ] (4.37a)

B0(ξ) =
1
2

[ (2ξ − 1) −4ξ (2ξ + 1) ] (4.37b)

and the jacobian can be expressed in terms of the element length and the nodes
coordinates as x,eξ = le

2 + ξ(x1 + x3 − 2x2).
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Figure 4.8: Shape functions for the 3- node 1d element.

The notation required to derive the matrix form of the 1D formulation has been
introduced. The nodal forces and nodal concentrations introduced in section
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4.1.4, were defined in terms of integrals over the total current domain of the
mesh. The integration is split into a sum of integrals over individual element
domains. The contribution of each element defines the element nodal forces
Fx

e and concentrations Wx
e , from which their global counterparts are assembled

scattering their components according to the mesh connectivity [81]. The matrix
form of the 1D nodal concentrations is obtained according to this procedure and
given in box 4.2:

Box 4.2 : 1D Regulatory Module

wDer
α I = WDer

IJ · ṙαJ WDer
(e) =

∫
Ωe

0

NTN x,ξ dΩo

wDil
α I = WDil

IJ · rαJ WDil
(e) =

∫
Ωe

0

NTN (B0u̇) dΩo

wDiff
α I = WDiff

IJ · rαJ WDiff
α ( e) =

∫
Ωe

0

dα
Φ2 BT

0 B0
1

x,ξ
dΩo

wReact
α I = WReact

α I WReact
α (e) =

∫
Ωe

0

NTN · fα x,ξ dΩ0

The computation of the integrals over the element domains is performed in
the parent domain of the element using a coordinate transformation and Gaussian
numerical integration.

∫
Ωe

t

f (x, t) dΩ =

∫
Ωe

0

f (ξ, t) |Je(ξ)| dΩ0 =
∑

G

w(ξG) f (ζG, t) |Je(ξG)| (4.38)

where ξG and w(ξG) are the Gauss points and weights determined by the order
of the numerical quadrature selected [133]. For the 3-node bar element, a 4-point
quadrature was used.
The element matrices contributing to the global 1D nodal forces in the mechanical
module are derived analogously and given in Box 4.3:
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Box 4.3 : 1D Mechanical Module

f Ctk
I =

∫
Ω0

∂NI

∂x
σ dΩ FCtk

(e) =

∫
Ωe

0

BT
0σ dΩ0

f FA
I = FFA

IJ · uJ FFA
IJ = kFA · δ

FA
IJ

f Fric
I = FFric

IJ u̇ J FFric
(e) =

∫
Ωt

(δ(z)β ·NTN x,ξ dΩ0

f Inert
I = FInert

IJ ü J FInert
(e) =

∫
Ωe

0

ρ ·NTN · x,ξdΩ0

f Prot
I =

∫
Γe

0

NItPr ot dΓ FProt
(e) = sign(n̂) · tPr ot

where δFA
IJ is equal to 1 if there is an adhesion site at the node and 0 otherwise. The

protrusion force in 1D is a scalar defined only at the leading and trailing nodes
and whose sign is given by sign(n̂), the outward normal at these nodes.
If deformations are small, the strain tensor and the rate of deformation become
ε = B · ue and d = B · u̇e. Under this assumption, the term FCtk of the Kelvin-Voigt
model for the Cytoskeleton comprises a sum of an elastic, viscous and contractive
terms:

FCtk
(e) I = FEl

(e) IJ · uJ + FVisc
(e) IJ · u̇J + FCont

(e) I (4.39)

where the different constituents of the cytoskeleton forces are given by:

FEl
(e) IJ =

∫
Ωe

0

1
x,ξ

BT
0 IE B0 J dΩ0 (4.40a)

FVisc
(e) IJ =

∫
Ωe

0

1
x,ξ

BT
0 I 2µB0 J dΩ0 (4.40b)

FCont
(e) I =

∫
Ωe

0

BT
0 Iτ dΩ0 (4.40c)
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In a more general description of the Cytoskeleton or if large deformations are
considered, the Cauchy stress in FCtk will be a function σ(e,d) of the finite measure
of strain e and rate of deformation d determined by the constitutive law. In 1D,
the rate of deformation can be calculated with the same expression given for
the infinitesimal case, whereas the Almansi strain e = 1/2(1 − (∂x/∂X)−2) requires
computing the deformation gradient F = ∂x/∂X, whose interpolation in a 1D the
element is given by:

F =
1

(∂X/∂ξ)
∂x
∂ξ

=
1

(B0 KXe
K)

B0 Ixe
I (4.41)

4.3.2 2D FEM formulation

The development of 2D FEM formulation closely parallels the presentation given
to its 1-dimensional counterpart. The matrix forms of the equations will be given
for a generic 2d isoparametric element with m nodes and then made specific for
3-node linear triangles (LT3), for which a closed analytical form exists.
As before, scalar fields such as the concentration of a protein is interpolated inside
an element domain defining the matrix of shape functions, which takes the form
given in equation 4.34 for the 1-dimensional case.
Inverting the Jacobian of the mapping between the space coordinates (x, y) and
the element parent coordinates (ξ1, ξ2), the expression of the spatial gradient of a
function f in terms of the derivatives with respect to the element coordinates is
given by:

Je =

 ∂x
∂ξ1

∂y
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

  ∂ f
∂x
∂ f
∂y

 = 1
|Je|

 ∂y
∂ξ2

−
∂y
∂ξ1

−
∂x
∂ξ2

∂x
∂ξ1

  ∂ f
∂ξ1
∂ f
∂ξ2

 (4.42)

where the derivatives ∂xi

/
= ∂ξ j can be computed using the mesh-based inter-

polation as ∂xi

/
∂ξ j = xINI, ξ j . According to this expression, the spatial derivatives

of the shape functions NI, x and NI, y can be computed as:
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NI, x(ξ) =
be

I

|Je|
(4.43a)

NI, y(ξ) =
ce

I

|Je|
(4.43b)

with the coefficients be
I and ce

I defined as:

be
I =

∂y
∂ξ2

∂NI

∂ξ1
−
∂y
∂ξ1

∂NI

∂ξ2
(4.44a)

ce
I =

∂x
∂ξ1

∂NI

∂ξ2
−
∂x
∂ξ2

∂NI

∂ξ1
(4.44b)

Using these expressions, the 2D dilatation rate∇· u̇ that appears in the dilution
term of the regulatory module can be computed as:

∇ · u̇ = (
∂vx

∂x
+
∂vy

∂y
) = u̇x INI, x + u̇y INI, y =

1
|Je|

(be
K · u̇x K + ce

K · u̇y K) (4.45)

As stated earlier, in the particular case of 3-node linear triangles, the mapping
between the parent coordinates and spatial coordinates can be inverted explicitly.
This allows to express the shape functions in terms of the current spatial coor-
dinates and to provide a closed analytical expression for the quantities defined
previously. The shape functions for this element are given by the triangular coor-
dinates, also known as area coordinates:

NI(x, y) =
1

2Ae
[ae

I + be
I · x + ce

I · y] (4.46a)

(4.46b)
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where ae
I = xJ yK − xKyJ, be

I = yJ − yK and ce
I = xK − xJ. The Jacobian of the

transformation, in turn, is given by the current area of the element as |Je
| = 2Ae.

Hence, the spatial derivatives of the shape functions of the LT element are simply
given by:

NI, x =
be

I

2Ae
NI, y =

ce
I

2Ae
(4.47)

The integrals of the LT3 shape functions products over the deformed triangular
domain can also be calculated analytically. In order to give a compact expression
of the FEM matrices of the regulatory module, it is convenient to introduce the
following defintion:∫

Ωo

NTN · |J| dΩo =
heAe

12

 2 1 1
1 2 1
1 1 2

 ≡ heAem (4.48)

where m is known as the element mass matrix and he is the element thickness.
Introduction of these expressions in the definitions of the nodal concentrations
leads to the matrix form of the 2d regulatory module, which are gathered in
following box:

Box 4.4 : 2D Regulatory Module

wDer
α I = WDet

IJ · ṙαJ WDer
(e) IJ =

∫
Ωe

0

NINJ |Je
| dΩo = heAemIJ

wDil
α I = WDil

IJ · rα J WDil
(e) IJ =

∫
Ωe

0

NINJ(∇ · u̇) |Je
| dΩo =

he

2
(be

k · u̇x K + ce
K · u̇y K)mIJ

wDi f f
α I = WDi f f

α IJ · rαJ WDi f f
(e)α IJ =

∫
Ωe

0

1
|Je|

dα
Φ2 (be

I · b
e
J + ce

I · c
e
J)dΩ0 =

he

4Ae

dα
Φ2 (be

I · b
e
J + ce

I · c
e
J)

wRe act
α I = WReact

α IJ fα(r) WReact
(e)α I =

∫
Ωe

0

NI NJ fα J(r) |Je
| dΩ0 = heAe mIJ · fα J
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where the expression for a general 2D element is given after the first equal
sign and the second expression corresponds to the LT3 element.
Next, the definitions required to derive the matrix form of the Mechanical module
are introduced. The fundamental difference lays in that the independent variables
are a 2-dimensional vector field of displacements and the necessity of dealing with
second order tensors such as the strain or stress. To this end, the 2d-matrix of
shape functions is defined as ∆N = [N1 ... Nm] , with its 2x2 components being:

∆NI =

[
NI 0
0 NI

]
(4.49)

Ordering the values of the two components of any 2D field at the element’s
m nodes in a column vector v = [vx 1 vy 1 ... vx m vy m ]T, allows to express the in-

terpolation of v in the element as
[

vx vy

]T
= ∆N · v. This ordering of vectors

components is also adopted for the nodal forces; as an example, the Internal nodal
forces are written as:

fCtk
I =

[
f Ctk
x I f Ctk

y I

]T
(4.50)

Second order tensors, under the assumption of plane stress, are transformed
to column vectors using Voigt’s notation. Thus, the Cauchy stress, Almansi strain,
and rate of deformation tensors are given by:

σ = [ σxx σyy σxy ]T (4.51a)

e = [ exx eyy exy ]T (4.51b)

d = [ dxx dyy dxy ]T (4.51c)
(4.51d)

In a general formulation of a viscoelastic cytoskeleton with large deformations,
the stress tensor that determines the Internal forces is given by the relationship
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with the strain and rate of strain measures stated in the constitutive law. The Al-
mansi strain and the rate of deformations are defined in terms of the deformation
gradient F and the velocity gradient L as [73, ch. 4]:

e =
1
2

(I − F−T
· F−1) (4.52a)

d =
1
2

(L + LT) (4.52b)

and can be computed using the following expression for the interpolations of
F and L at the element level [99, ch.9]:

Fi j =
∂xi

∂X j
= xi INI ,X j (4.53a)

L i j =
∂vi

∂x j
= vi INI ,x j (4.53b)

The calculation of F requires evaluating the derivatives of the shape func-
tions with respect to the material coordinates, which can be obtained from the
expression of NI,xi given in eqs. 4.43a in the orginal configuration x(o) = X. In
the approximation of small deformations, the Almansi strain is reduced to the
infinitesimal tensor e ≈ ε and the rate of deformations becomes d ≈ ε̇. The in-
finitesimal tensors can be expressed compactly in the FEM framework as

[
εxx εyy εxy

]T
= ∆B · u (4.54a)[

ε̇xx ε̇yy ε̇xy

]T
= ∆B · u̇ (4.54b)

where ∆B = [B1 ... Bm] is the 2D element strain matrix, whose 3x2 matrix com-
ponents are given by:
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∆BI =

 NI,x 0
0 NI,y

NI,y NI,x

 =
1
|Je|

 be
I 0

0 ce
I

ce
I be

I

 =
1
|Je|

∆B0
I (4.55)

Substitution of the previous expressions in the definition of the nodal forces
of the mechanical module then leads to the 2D matrix form in terms of element
matrices, which are detailed in box 4.6:

Box 4.5 : Mechanical Module 2D FEM form

fCtk
I =

∫
Ωt

∆B
T
I σ dΩ FCtk

(e) I =

∫
Ωe

0

∆BT
0Iσ dΩ0 =

he

2
[be

Iσxx I + ce
Iσxy I , ce

Iσxy I + be
Iσxy I]T

fProt
I =

∫
Γt

∆NItProt dΓ FProt
(e) I =

∫
Γe

0

∆N
T
I

∆NJ tProt
J `edΓ0 =

`e
IJh

e

6
[2tPr ot

xI + tPr ot
xJ , 2tPr ot

yI + tPr ot
yJ ]T

fFA
I = FFA

IJ u J FFA
(e) IJ = kFAδ

FA
IJ

fFric
I = FFric

IJ u̇ J FFric
(e )IJ =

∫
Ωe

0

δ(z)β · ∆NT
I

∆NJ |Je
| dΩ0 = βAeM

fInert
I = FInert

IJ ü J FInert
(e)IJ =

∫
Ωe

0

ρ · ∆NT
I

∆NJ |Je
|dΩ0 = ρ0he

0Ae
0M

The protrusion force is only prescribed in outer edges of the elements at the
boundary of the cell, so that expression of FProt

I corresponds to the force at node
I resulting form the prescription of protrusion forces along the edge `e joining I
and another node J.
The first expression of the element matrices in Box 4.6 applies to any general
element and the integrals must be performed numerically, whereas the second
is valid only for 3-node triangles, for which the 2D integrals can be performed
analytically. Particularly, the 2d mass matrix M has been defined as:
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∫
Ωe

0

NT
I NJ |Je

|dΩ0 =
he

0Ae
0

12



2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2


=

he
0Ae

0

12
M (4.56)

As in the 1d case, the specific form of the internal force for the Kelvin-Voigt
model of the Cytoskeleton is constituted of an elastic, viscous and contractive
terms. Under the assumption of small deformations, the 2d element contribu-
tions to FCtk

(e)I = FEl
IJ · uJ + FVisc

IJ · u̇J + FCont
I are given by:

FEl
(e)IJ =

∫
Ωe

0

1
|Je|

BT
0 IE B0 J dΩ0 =

he

4Ae BT
0 IE B0 J (4.57a)

FVisc
(e)IJ =

∫
Ωe

0

1
|Je|

BT
0 I 2µB0 J dΩ0 =

he

2Ae BT
0 I µB0 J (4.57b)

FCon
(e)I =

∫
Ωe

0

BT
0 Iτ dΩ0 =

he

6

∑
K

[be
Iτ

Con
x K + ce

Iτ
Con
xy K , ce

Iτ
Con
y K + be

Iτ
Con
xy K]T (4.57c)

where again the second equality is only valid for LT3.
Finally, the FEM form of the governing equations for 1D and 2D problems is
obtained substituting in the discrete equations 4.23 the expressions developed in
the last two sections for the nodal forces and concentrations. Thus, using the
definitions contained in Box 4.2-4.3 for 1D problems and those in Box 4.4-4.5 for
2D, the FEM formulation governing equations cell migration is expressed as:

Box 4.6 : Cell Migration FEM Governing Equations

FInert
IJ · üJ + FFric

IJ · u̇J + FFA
IJ · uJ = FProt

I − FCtk
I

WDer
IJ · ṙJ + [WDiff

IJ + WDil
IJ ]rJ = WReact

I
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If you haven’t found something strange during
the day, it hasn’t been much of a day.

John Archibald Wheeler, astrophysicist

Chapter 5

Exploring cell response to external
stimuli

The response of a particular regulation model introduced in chapter 2 to differ-
ent types of external cues is analyzed to test its power to reproduce the spatio-
temporal organization of the RhoGTPases observed in experiments. This model
of RhoGTPase regulation, authored by Jilkine, Edelstein-Keshet and coworkers
[72], is based on the hypothesis that spatial segregation of the proteins is sustained
by the existence of a direct mutual inhibition loop between Cdc42 and Rho, and
that the interaction is mediated only by GTP-bound RhoGTPase signaling. An-
other important ingredient of the model is the quasi-steady state approximation,
assuming that the flow of proteins between the membrane and the cytosol is
fast and that it is not actively regulated. The results of the analysis show that
the model features solutions that might be inconsistent with observations, more
precisely, appearance of Turing instabilities and reduced sensitivity to secondary
stimuli. The mathematical basis of this behavior is established and related to the
founding assumptions of the model. The conclusions drawn from the analysis
are general, applying to every model of this class, and will aid in the formulation
of alternative models of regulation.

5.1 Spatially heterogeneous external signals

The dynamical response of the RhoGTPase system will be studied after the cell
is exposed to different classes of spatially heterogeneous external stimulus. Cell
movement and mechanical deformation are not considered in the simulations of
this chapter, the goal is to focus in the dynamics of the regulatory response. In
this case, the external signal is only an abstraction of the real stimuli that lead cells

107
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to migrate.

Figure 5.1: Different distributions of external signals considered

The abstract signal could represent a mechanical gradient in the extracellular
matrix, an heterogeneous distribution of chemo-attractors or a variation in the
concentration of ligands coating the surface on which the cell are placed. Regard-
less, the signal is detected by the sensing machinery of the cell, which in turn
up-regulates locally the activation of Cdc42. The stimulus are represented by a
continuous function ψ(x, t) that models their spatial and temporal distribution.
The analysis focuses in the variation of the response of the RhoGTPase model to
different types of external stimuli. The generic classes of stimulus depicted in
figure 5.1 were suggested in [134]. In addition, the computational experiments
analyze how variations in cell geometry and size, inclusion of the nucleus, and
the difference in assuming that the receptors of the external signals are present
only in the cell boundary instead of the whole cell affect the response. All the
computational experiments are simulated with the same initial conditions: the
cell is originally at rest, the distribution of the RhoGTPases is homogeneous and
the rates of activation and inactivation are balanced.

Figure 5.2: Initial distribution of the RhoGTPases in the cell

Unless stated otherwise, the adopted cell geometry for the simulations is a
circle of 10µm of radius. In the figures showing the results of the simulation, the
concentrations of the RhoGTPases are normalized to the initial concentrations, so
that the values above (bellow) 1 mean that the fraction of active proteins is bigger
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(smaller) than in the original equilibrium state. Cdc42, Rac and Rho are plotted
with black, blue and red curves, respectively. The stimulus field is depicted with a
meshed green surface and normalized to its maximum value. In order to facilitate
the visual interpretation of the simulations, in some cases the concentration of
each RhoGTPase will be displayed in different subwindows, but it should be
understood that the actual distribution in the cell is the overlapping of the three
plots.

5.1.1 Response to Linear Stimulus

The first signal is a tilted plane representing the linear gradient of an external
stimulus that rises continuously between [t0, t1], is held constant for an interval
of time [t1, t2] and then decays to zero in [t2, t3]. This case belongs to the class
labeled as Linear Stimulus that are depicted in the left of figure 5.1. The stimulus
function ψ(x, t) goes form 0 to 1/100 of the value of the kinetic rate of Cdc42 in a
spatial range equal to half of the cell’s length.

Figure 5.3: Linear gradient of external stimulus

The simulation of the effect of this stimulus on the spatial organization of the
RhoGTPases is depicted in figure 5.4. These results show that the Jilkine-Keshet
model endows the cell with the capacity to sense this type of signals and that it
reproduces the asymmetric distribution of the proteins found in a polarized cell.
After the onset of the external perturbation at t1 = 10sec., the concentration of ac-
tive Cdc42 starts rising where the stimulus is higher. According to the Interaction
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scheme of this model, Cdc42GTP signaling locally activates RacGTP and triggers a
rise in its concentration, whereas the inhibitory crosstalk leads to a local decrease
of active Rho concentration in this region of the cell. The increase of Cdc42GTP

t=12.09s. t=27.05s. t=30.12s.

t=32.17s. t=35.04s. t=40.17s.

t=45.08s. t=60.05s. t=149.82s.

Figure 5.4: ⊗ Gradient stimulus and active concentration

and RacGTP at the cell front causes a local decrease of their inactive counterparts
(not shown). Since transport of the inactive fraction in the Cytosol is very fast,
this local drop is rapidly balanced by diffusion, resulting in a lower and quasi-
homogeneous concentration of Cdc42GDP and RacGDP over the whole cell domain.
The global decrease of the inactive fraction of Cdc42 and Rac also leads to a small
decrease in their active fractions at the cell trailing edge, whereas the opposite
holds true for Rho. Consequently, the inhibition of Rho by Cdc42 is weakened
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at the cell rear of the cell and as a result the active concentration of Rho starts
rising gradually at the cell back while decreases at the front. This trend is further
reinforced by the mutual inhibition between RhoGTP and Cdc42GTP, which fuels
the segregation of the areas of enhanced activation, with Cdc42 and Rac high at
the cell front and Rho at the back. The appearance of these non overlapping areas
of high activity is clear 20 seconds after the stimulus is fully activated. The polar-
ization process is complete after approximately 1 minute, when the propagating
fronts of active proteins that sweep the cell domain halt. In the final pattern, the
concentration of active Cdc42 and Rac increases to 300% and 240% at the cell front,
respectively, and decreases to 50% of the initial value at the cell rear. Conversely,
the activation of Rho reaches 130% of its equilibrium value at the cell rear and
18% of at the front. In turn, the inactive fractions of the proteins reach an almost
homogeneous distribution with Cdc42 and Rac down to 80% and Rho up to 120%
of their initial values. This pattern is stable and the cell remains polarized after
the stimulus is removed. Moreover, the final distribution of proteins is robust,
in the sense that the final pattern is independent on the parameters that define
the stimulus, such as the magnitude, the speed in which it is established or its
characteristic length compared to the cell. The computational predictions derived
from the Jilkine-Keshet model are in good qualitative agreement with the clas-
sical view on the spatio-temporal dynamics of RhoGTPase polarization process
[135]. The time required to establish polarization on the scale of minutes is consis-
tent with the experimental observations, and the distribution of the RhoGTPases
qualitatively matches the compartmentalized distribution of the proteins found
in migrating cells.
A descriptive explanation of the polarization process has been laid out in terms
of the sign of protein crosstalk and the balance between the reactions taking place
in the cell and diffusion. The mathematical basis of the mechanism of polariza-
tion is the existence of traveling wave solutions in the model equations, a well
known property of nonlinear reaction-diffusion equations with bistable reaction
terms[136, Chapter 3]. The external stimulus triggers a wave of excitation that
advances trough the cell domain due to diffusion. Since the total amount of
protein is conserved, the increase in the active fraction depletes the reservoir
of inactive protein that fuels the advance of the activation front and the wave
eventually stops. This mathematical behavior, well established in the field of
excitable reaction-diffusion systems, has been named as ”wave-pinning” in the
context of biological pattern formation [137]. However, as it shall be shown, the
Jilkine-Keshet model also features another type of qualitatively different solutions
associated with the existence of Turing instabilities. This solutions are not com-
patible with the observed features of cell polarization and suggest that the model
should be modified.
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5.1.2 Response to Reversals of Linear Stimuli

The second computational experiment consists in the study of a signal identical
to the previous one followed after its decay at t3 by the rise of a similar plane
inclined in the opposite direction. This scenario allows to analyze the capacity of
the model to remain sensitive an adapt to new stimulus.

t=15.16s. t=25.00s. t=35.04s. t=70.09s.

t=115.18s. t=125.02s. t=135.06s. t=145.10s.

Figure 5.5: ⊗ No polarization switch after stimulus is reversed

The response to the first signal is identical to that encountered for the single
Linear Stimulus: sensing of the external gradient, symmetry breaking and po-
larization (see first row in the simulation depicted in fig.5.5). However, after the
gradient is reversed at t3 = 100 seconds, the distribution of RhoGTPases is only
slightly displaced during the time that the secondary stimulus is applied, but the
direction of the polarization pattern does not change. Once the secondary stim-
ulus is removed, protein concentrations simply return to the equilibrium values
reached after the first polarization event. In other words, the cell is incapable
of sensing the secondary stimulus once it is polarized, despite the fact that this
stimulus is of the same magnitude that the original.
The lower limit of sensibility to the secondary stimulus can be found increasing
the magnitude of the secondary signal until the inversion of the polarization axis
occurs. For the Edelstein-Keshet model, the secondary signal must be approxi-
mately two orders of magnitude larger than the first signal in order induce the
realignment of the polarization axis. The following simulation shows the inver-
sion process produced by a signal 100 times bigger in maximum value than the



5.1. SPATIALLY HETEROGENEOUS EXTERNAL SIGNALS 113

signal that induced the initial polarization :

t=110.03s. t=125.17s. t=140.10s.

t=145.01s. t=150.13s. t=155.04s.

t=160.15s. t=165.06s. t=220.08s.

Figure 5.6: ⊗ Polarization switch after exposure to large secondary stimulus

Conceptually, this behavior is not satisfactory, as the cell should, as a ’good sensor’
of external signals, be capable of inverting the polarization axis when the source of
the external stimulus is changed. Indeed, this faculty is observed in experimental
essays with chemotactic [3] as well as mechanotactic [28, 3] external cues. The
cause of the lack of response of the model to secondary stimuli will be analyzed
in the remaining of this chapter.
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5.1.3 Response to a Localized Stimulus

The responses predicted by the regulatory model to signals of small spatial scale
compared with the cell length are examined in this section. These type of stimuli,
of the class depicted on right of figure5.1, are interesting because they resemble
the signal profile that a cell would experience in a real experimental setting when
exposed to a propagating front of diffusing biomolecules or small fluctuations of
an external signal.
In experimental essays of chemotaxis, a common technique to generate spatially
heterogeneous stimulus is to release a certain amount of a chemoattractant with
the aid of a pipette or a small hole in the Petri dish where the cells are cultured.
The spatio-temporal distribution of the biomolecule that results from this process
can be modeled as the instantaneous release of a diffusible specie carrying the
signal from a point-source. This is akin to the dispersion of a contaminant in a
fluid or a drop of ink in a fluid tank, and the equation describing these processes
has an analytical solution [138, chapter 6]. Thus, if a total concentration ms of a
biomolecule with diffusion rate ds and decay rate ks is released at time t0 from a
point r0 (and uniformly along the z-axis), the concentration of the biomolecule in
the in time t at a distance r from the source is given by :

ρs(r, t) =
ms√

4πds · (t − t0)
e−

(r−r0)2

4πds ·(t−t0)−ks·(t−t0) (5.1)

The cell receptors transduce a signal to the RhoGTPases when the molecules
carrying the signal reach the membrane, and the stimulus function Ψ(x, t) is
assumed to be proportional to its concentration:

Figure 5.7: Dispersion of diffusible migration promoting agent

Different tests have been performed varying the parameters defining the gaus-
sian stimulus function to evaluate the effects on the response of the regulatory
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model. In addition, a series of stimulus functions characterized by being restricted
to a small region of the cell, such as a sinusoidal pulse and a simple linear gra-
dient defined so that it only excites a small area near the boundary, were also
applied. The response of the RhoGTPase system is essentially the same given to
the gradient stimulus of the previous section for all the cases, and the final polar-
ization pattern is indistinguishable from that shown in figure 5.4. In this regard,
the capacity of the Jilkine-Keshet model to reproduce RhoGTPase polarization is
remarkably robust. Next, the focus is turned to evaluate this capacity when the
cell geometry and size are changed.

5.1.4 Variations of cell size and shape

The simulations of the previous sections were repeated varying the size and
geometry of the cell in order to check the effects in the response of the regulatory
model. The goal is to test if polarization mechanism proposed by the Jilkine-
Keshet model can operate in a realistic biological setting, given the fact that the
size of different types of eukaryotic cells goes from 10 − 15µm for fibroblasts
and neutrophiles to 100µm for neurons. In the context of migration, particularly,
the polarization mechanism must also remain functional despite the dynamic
changes in size and morphology undergone by the cell during their motion and
deformation. RhoGTpases proteins, as stated previously, are contained in all
eukaryotic cells and act as master regulators of cell migration in all of them.
Therefore, the principles governing their organization in all these cell types must
be common and any plausible theoretical model of RhoGTPase regulation should
reflect this fact.
First, a circular cell of 20µm of radius is exposed to different types of stimulus.
A simple linear gradient leads to the polarization pattern predicted before, with
Cdc42 and Rac highly activated at the front and Rho at the back. However, as the
spatial range of the stimulus function is restricted to a smaller region near the cell
boundary, the polarization pattern that emerges changes.

t=20.32s. t=50.05s. t=100.33s.
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t=110.11s. t=120.28s. t=135.33s.

t=155.28s. t=160.17s. t=170.33s.

Figure 5.8: ⊗ Bipolar pattern after exposure to localized Stimulus

As the simulation shows, the localized stimulus leads to the appearance of a
bipolar state. Initially, the response appears to be similar to that encountered for
the Linear Stimulus, but after approximately 100 seconds, a second area of high
Cdc42 and Rac activation appears at the end of the cell opposite to where the
stimulus was applied. Further in time, a plateau of high ρ PM

GTP is formed inside
the cell body, while cPM

GTP and rPM
GTP develop a symmetric pattern of high activation

at the cell edges and low activation in the cell interior. This pattern is in clear
contradiction with what is observed in biological cells and the underlying causes
of these behavior must be investigated.
Next, a cell of the same size is exposed to a gaussian stimulus of the type described
in the previous section. Again, the emergent pattern does not correspond to any
distribution of the RhoGTPases proteins observed experimentally in cells. In this
case, the emergent pattern is characterized by a quasi-periodic distribution of
islands of high Cdc42 and Rac activation and low Rho activation. These islands
appear successively in time, first at the edge reached initially by the propagating
signal and then advancing to the distal end of the cell in a wave-like manner. The
distribution of the islands of activation is symmetric across the x-axis, which is
coincident with the direction of propagation of the front.
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t=5.08s. t=120.12s. t=150.29s.

t=160.27s. t=150.13s. t=163.01s.

t=184.91s. t=198.95s. t=240.86s.

Figure 5.9: ⊗ Multipolar pattern after exposure to gaussian Stimulus

The quasi-periodic structure indicates the existence of a non-trivial mecha-
nism of pattern formation entirely different from the traveling wave underlying
apparition of the simple polar distribution.
The lack of robustness of the polarization mechanism in Jilkine-Keshet model is
confirmed studying the distribution of RhoGTPase that emerges when the size of
the cell is further increased. The last snapshot of the simulated responses given by
cells of various sizes are shown in the following figure. The final steady pattern of
protein distribution reached after the cells are exposed to simple linear gradients
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features a clear scale dependency:

(a) Circular Cell R=50µm (b) Circular Cell R=80µm

Figure 5.10: ⊗ Final RhoGTPases distribution in circular cells of increasing radius

As radius of a circular cell is increased to 50µm and 80µm, the pattern of
RhoGTPAse displays an increasing number of non-randomly distributed struc-
tures of alternating high and low activation. The patterns evidences the existence
of a characteristic length that determines the spacing between the zones of high
and low activation. Variation of the cell shape and inclusion of the cell nucleus
renders similar results:

(a) Irregular cell (b) Cell with nucleus

Figure 5.11: ⊗ Final RhoGTPases distribution in star-shaped cell and nucleus cell

An irregular cell exposed to external stimuli presents a robust pattern of po-
larization until bellow a certain cell size, suggesting that the morphology of the
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cell is not a determinant variable of the final distribution of protein activation.
However, if the cell size is increased, bipolar and multipolar patterns of activa-
tion emerge. Likewise, the inclusion of the cell nucleus, modeled as a circular
void inside the cell where RhoGTPases can not propagate, does not hinder the
establishment of the polar pattern, with Cdc42 and Rac highly activated at the cell
front and Rho at the cell back. Again, the variable that triggers the appearance of
distribution patterns with multiple areas of high activation is the cell size. These
results lead to the conclusion that the Jilkine-Keshet model adequately captures
the resilience of the mechanisms underlying cell polarization in cells of varying
shape or where a nucleus is included, but that it is incapable of maintaining this
robustness when realistic variations of cell scale are introduced.

5.2 Analysis of the response to external stimuli

The results of the previous section showed that the Jilkine-Keshet model of RhoGT-
Pase regulation can in some instances reproduce qualitatively the process of cell
polarization, but it also revealed important drawbacks that must be analyzed.
More precisely, the failure to sense a signal of similar magnitude than a preceding
signal that previously polarized the cell, and the unfitness of the model to describe
the polarization process when the size is changed within a range of realistic biolog-
ical values. The causes underlying this behavior are investigated in this section.
First, phase plane analysis is used to understand the lack of response to secondary
signals. Potential amendments to the RhoGTPase model are discussed. Second,
linear stability analysis is performed to uncover the nature of the quasi-periodic
patterns of RhoGTPase distribution. The analysis proves that the emergence of
these solutions is associated to diffusion-driven instabilities and that the biolog-
ically meaningless distributions are Turing patterns. Arguments against Turing
instability as a suitable mechanism to detect external signals or, more generally,
to generate spatio-temporal order in the context of the cell regulatory system are
presented next.

5.2.1 Lack of response to secondary signals

Phase plane analysis is an elementary technique of Dynamical systems theory
that will be used to analyze the lack of response to secondary stimulus of the
Jilkine-Keshet model. For the RhoGTPase system, the State space is the set of all
the possible states, defined by the concentration of the proteins and the value of
the stimulus function in every point of the cell. The Phase plane is the graphical
portrait of the State space, so that every point in the plane corresponds to a par-
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ticular state of the system. The initial state is then a point in the Phase plane, and
the evolution in time of the system corresponds to a trajectory on the Phase plane
determined by the governing equations. The trajectories on the Phase plane are
tangent to a velocity field given by the derivatives of the system’s variables. A
closed trajectory on the Phase plane, for instance, represents a periodic solution,
whereas a point where all the derivatives of the governing equations are zero is
associated to an steady state.
The curves on the phase plane defined by the condition that the time derivative of
one the variables vanishes are called nullclines. Hence, the trajectories of system
on the phase plane do not cross the nullclines and are bounded by them. Intersec-
tions of all the nullclines correspond to isolated steady states of the system [139,
chapter 6].
The complete RhoGTPase model requires considering the infinite State space of 6
protein concentrations and the stimulus signal Ψ in every point of the cell. How-
ever, since the focus of the analysis is to understand why the system does not react
to a second signal once it has been polarized, it is only necessary to consider the
trajectories of two representative points at the front and back of the cell, where the
first and second stimulus are applied, respectively. If these points are sufficiently
far from the transition zone of high and low activation in the polarized cell, it is
a good approximation to neglect the diffusion term of the system of PDEs that
governs the model and consider instead the associated Kinetic system 2.25. Due
to the conservation of the total amount of Cdc42, Rac and Rho, only 3 equations
in this ODE system and the 3 associated nullclines are independent. Thus, set-
ting the left hand side of the system of ODEs 2.25 to zero, three nullclines curves
are obtained in which the time derivatives of one pair of active-inactive proteins
vanish simultaneously. From these expressions, the value of the active fraction
of Cdc42, Rac and Rho along the curves can then be obtained as a parametric
function of the concentrations of the other proteins and the value of the stimulus
function:

xGTP = fnlc(rGTP; xGDP; Ψ) x = c, r, ρ (5.2)

The intersection of the three nullclines is the curve on the Phase Plane that
contains the steady states of the system, obtained by introducing sequentially
the expression from 5.2 for one protein along its nullcline into the next. In this
way, substitution of the Rac nullcline into the Rho nullcline, and of the resulting
expression into the Cdc42 nullcline leads to an implicit relationship between the
value of the stimulus Ψ and the equilibrium concentration of Cdc42, given the
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values of the inactive fraction at ti:

Ψ =
cGTP

cGDP(ti)
· fB
− fA(cGTP; rGDP(ti)) (5.3)

The ideas introduced previously are now applied to analyze the results of the
simulation of the cell exposed to two consecutive and opposite linear gradients,
which were shown in figure 5.5. The right edge of the cell was exposed to the first
stimulus at time t0 and removed in [t2, t3]. Another stimulus was applied to the
left side of the cell in the interval [t4, t6], while the cell had already polarized.
The following figure shows the bifurcation diagram of Cdc42-Ψ in the time in-
terval corresponding to the application of first stimulus for a representative point
on the left side of the cell and another at the right side. The steady-state curve
Cdc42-Ψ is plotted with a continuous black line for time t0, before the stimulus
is applied, and with a discontinuous black line for time t3, after the stimulus is
removed. The trajectory followed by both points on the Phase plane are depicted
with a discontinuous red line, with blue dots specifying the state at instants ti:

(a) Cell Left edge (b) Cell Right edge

Figure 5.12: Phase Plane trajectories during exposure to 1st linear gradient

Inspection of the bifurcation diagram shows that for a certain range of stimulus
values 0 ≤ Ψ < Ψm, there are three possible values of CGTP on the steady state
curve. The upper and lower branches are stable and correspond to equilibrium
sates. The branch in the middle of the S-shaped curves is unstable. Initially, the
cell is in the homogeneous state of low Cdc42 activation, and accordingly, at time
t0 the two representative points lay in the lower branch of the steady-state curve.
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Application of the first stimulus drives the point at the right edge of the cell out
of equilibrium and triggers the transition to the upper branch of the steady state
curve, with higher equilibrium values of active Cdc42. Conversely, the point at
the left edge of the cell is unaffected by direct application of the stimulus signal.
The flow towards lower values of Cdc42 is caused by the rightward shift of the
steady state curve. The rightward shift of the steady-state curve between t0 to t3

is driven by the decrease in concentration of the inactive fraction of Cdc42, which
balances the increase in CdcGTP taking place at the other end of the cell. This
effect is understood examining the structure of the steady-state curve in eq.5.3,
that shows that a drop in concentration of CdcGDP results in a lower equilibrium
concentration of CdcGTP for a fixed value of stimulus function. Even if the drop in
concentration of the inactive fraction is localized at the right edge, where Cdc42
activation is taking place, the distribution of the inactive fraction is approximately
equal at both points. This is due to the large diffusion constant of the inactive
fraction, that ensures that its distribution becomes nearly homogeneous almost
instantaneously. Hence, the profile of steady-state curves, determined by the
concentration values of inactive proteins, is approximately the same for the point
at the left and right edges of the cell. The differential application of the stimulus
function is what determines the diverging trajectories followed by the two points
on the Phase plane.
After the first stimulus is removed at t3, the point at the right edge settles in upper
branch of the steady-state curve and the point at the left edge in the lower branch,
corresponding to the polarized state of the cell. Afterwards, the second stimulus
is applied to the left side of the cell in the time interval [t4, t6]. The trajectories on
the Phase Plane during the this time lapse are depicted in the next figure:

(a) Cell Left edge (b) Cell Right edge

Figure 5.13: Phase Plane trajectories during exposure to 2nd linear gradient
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In this case, the increase of Ψ is not enough to overcome the barrier splitting
the upper and lower nullcline branches and drive the point in the left edge of the
cell to a state high activation. Thus, the underlying cause for the lack of response
is clarified examining the trajectories of the two representative points on the
Phase Plane. The S-shaped profile of the steady-state curve is determined by the
structure of the governing equations, and in particular by the mutual inhibition
interaction between Cdc42 and Rho. The position of the curve on the Phase Plane,
on the other hand, depends on the concentration of inactive proteins CGDP(t).
After the cell is polarized for the first time, CGTP is locally increased, so that
the overall concentration of inactive CGDP decreases and the steady state curve
is shifted. In addition, the concentration of Rho at the left edge of the cell,
where the new stimulus will be applied, has risen and prevents Cdc42 activation.
The combination of these two factors makes necessary a stimulus Ψm of bigger
magnitude to trigger the transition between states. The results of the simulation
in which the magnitude of the second signal was much bigger than the first,
depicted in 5.6, where the cell was able to inverse the polarization axis, confirm
this statement. The trajectories in the Phase plane of the two representative points
show how the second stimulus, this time 100-fold larger than the first, is capable of
driving the point on the left edge of the cell over the stability barrier and towards
the branch of high active Cdc. Meanwhile, the point on the right is dragged
towards the lower branch as the steady state curve is shifted due to the change in
the inactive fraction of the proteins:

(a) Cell Left edge (b) Cell Right edge

Figure 5.14: Phase Plane trajectories during exposure to Large 2nd linear gradient

From a biological perspective, this behavior is caused by the fact that this
model does not differentiate the sensing machinery of the cell and the crosstalk
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mediators that generate the spatial and temporal organization. Hence, when
the cell is polarized the RhoGTPase concentrations are substantially different
from the homogeneous concentrations in the cell at rest, thereby distorting the
cell’s sensitivity. It remains a matter of experimental observation to determine
if a cell requires a bigger stimulus to reverse its course of motion [3]. If the
answer to that question were negative, it would point to the existence of a signal
amplification mechanism in the RhoGTPase network or a different structure in
which the regulation of the RhoGTPase organization and the sensing module
are uncoupled. The notion that GAPs and GDIs might be targets of the sensing
machinery or active players in the polarization process might be a part of the
answer to this question.

5.2.2 Emergence of Turing patterns

Turing patterns are quasi-periodic solutions that emerge in reaction-diffusion
systems that are stable under homogeneous perturbations, but become unstable
under spatially heterogeneous perturbations. The proof that a reaction-diffusion
system may feature Turing patterns uses linear stability analysis to study the
evolution of the initial state after a heterogeneous perturbation is applied. The
following analysis is based on the treatment of the topic found in [140, Chapter
2].
The system is initial in the homogeneous state r0, solution of 2.25. After the onset
of the external signal, the system is perturbed into a state r(x, t) = r0 + δr(x, t) that
no longer is in equilibrium nor homogeneous, since the perturbation is spatially
dependent. The evolution of the system is found by substituting this state in the
system of equations 2.22 and linearizing about the homogeneous state,

∂δr(x, t)
∂t

= JR(ro)δr(x, t) +
1

Φ2 D∇2δr(x, t) (5.4)

where JR(ro) denotes the Jacobian of the reaction term evaluated at the initial
steady state.

JR(ro) =
∂K(r) · r
∂r

∣∣∣∣∣
r=r0

(5.5)

The deviation from the initial state δr(x, t) is a solution of eq. 5.4 satisfying
the problem’s boundary conditions. The linearity and time-independence of the
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operators JR and D leads to solutions that can be expressed as linear combination
of functions were the space and time variables are separable.

δr(x, t)=
∑

q

δrq =
∑

q

vqφq(x) eλ t (5.6)

Since JR is by construction space independent, the solution can be constructed
with functions φq belonging to the eigenspace of the Laplacian. The constants vq

are determined by the Fourier expansion of the initial state in terms of φq. The
eigenfunctions must fulfill Neumann conditions to enforce that the solution of 5.4
complies with the no-flux condition at the boundary of the system.

∇
2φq(x) = −q2φq(x) x ∈ Ω

∇φq · n̂ = 0 x ∈ ∂Ω
(5.7)

where Ω and ∂Ω represent the domain of the system and its boundary, respec-
tively. In finite domains, the no-flux at the boundary condition in equation 5.7
implies that only a discrete set of eigenvalues are permitted.
Substitution of the tentative solution δrq into eq. 5.4 transforms the dynamic
problem into the following eigenvalue problem:

[λI − (JR(r0) − (q
/
Φ)2D)]δrq(x, t) = 0 (5.8)

Non-trivial solutions exist provided that the determinant associated to the sys-
tem of equations 5.8 vanishes. The matrix that defines the linear approximation
of the reaction-diffusion problem is then:

FRD(ro, q
/
Φ) = [JR(ro) − (q

/
Φ)2D] (5.9)

The determinant Pq/Φ(λ) = det [λ I − FRD] is a polynomial of degree N equal
to the number of reacting species in the system. The coefficients of Pq/Φ(λ) are
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functions of the initial state ro trough their dependency on jacobian of the reaction
term JR(ro), and of the wave-number q through the diffusion term.

Pq/Φ(λ) = λN + a1(r0, q)λN−1 + ... + aN−1(r0, q)λ + aN(r0, q) (5.10)

The roots of the characteristic polynomial Pq/Φ(λ) for a particular wave-number
give the eigenvalues associated to a mode φq.

Pq/Φ(λ) = 0 (5.11)

The relationship λ(q) for which eq. 5.11 holds true is known as the Dispersion
relation, and provides the eigenvalues as a function of the wave-number. The set
of wave-numbers for which Reλ(q) > 0 is the range of instability; if the real part
of an eigenvalue is positive, the corresponding mode grows exponentially and
the homogeneous steady state is unstable under heterogeneous perturbations.
The system eventually reaches a new steady state, usually dominated by the non-
linear evolution of the fastest growing mode, which is that with the maximum
eigenvalue in the instability range of the dispersion relation . This state is known
as Turing pattern and is stable to subsequent homogeneous or inhomogeneous
perturbations.
A sufficient condition for the appearance Turing patterns is found in the change of
sign in the determinant of the linearized equations. Diffusion-driven instabilities
in reaction-diffusion system are determined by the existence of eigenvalues with
positive real part for some q > 0 in the linear approximation of the governing
equations. The following identity, based on the invariance of the determinant
under similarity transformations, relates the product of the eigenvalues and the
determinant of the linearized equations:

Pq/Φ(0) = (−1)N det[JR(ro) − (q
/
Φ)2D] = (−1)N

N∏
i=1

λi(q) (5.12)

By construction, the initial state is stable in the absence of diffusion. Therefore,
the system is stable under homogeneous perturbations, characterized by q = 0,
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and the eigenvalues fulfill the condition Re[λi(q = 0)] < 0. Consequently, a sta-
ble system is characterized by Pq/Φ(0) > 0 for q = 0. The system undergoes a
diffusion-driven instability when one of the eigenvalues turns positive for certain
q > 0, leading to a sign change in Pq/Φ(0)

Pq/Φ(0) = (−1)N det
[
FRD(r0, q

/
Φ)

]
< 0 ⇒ ∃ λ(q) | Reλ(q) > 0 (5.13)

Special consideration is required for systems with p conserved quantities,
such as that of the RhoGTPases, because the rank of the reaction term jacobian
is rank [JR(r0)] = N − p. It follows that there are p null eigenvalues at q = 0 as-
sociated to the conservation laws. If the N − p non-vanishing eigenvalues fulfill
Re[λi(q = 0)] < 0, stability at q = 0 is assumed to be guaranteed because growth of
the neutral eigenmodes in the Center Manifold is precluded by the conservation
laws. A practical illustration of this mechanism is found in [137, pag.1407]), but
a more rigorous proof will be given in the next chapter. Still, emergence of a
positive eigenvalue for q > 0 leads to the rise of diffusion-driven instabilities.
Thus, in a system with conserved quantities, Pq/Φ(0) vanishes for q = 0, but the
instability condition Pq/Φ(0) < 0 for q > 0 still holds. This instability mechanism
is not strictly the one described in Turing original paper, but rather the instability
of Type II described in [141, pag.869].
In the language of dynamical systems, Turing instabilities correspond to a saddle
node bifurcation, the crossing of a single real eigenvalue to the positive half of
the real axis. Therefore, the existence of a range of wavenumbers q in which the
sign of Pq/Φ(0) is negative is a sufficient condition to establish that the system can
feature Turing patterns. Loss of stability associated to a pair complex-conjugate
eigenvalues crossing the imaginary axis to the right half of the complex plane has
not been considered. This type of instability corresponds to a Hopf bifurcation
and gives way to time periodic oscillations. This behavior is not detected by a
sign change in the determinant of the linearized equations .
The possibility of growth of an eigenmode q is subjected to an additional con-
straint, since the new solution has to fulfill the no-flux boundary conditions. In
systems of finite size, only a discrete set of modes fulfills the boundary conditions,
and these are the only modes that can emerge. This property plays an important
part in the discussion on the suitability of a Turing-like mechanism for cell polar-
ization, because the permitted patterns depend on the size of the system.
The Thiele modulus Φ ,the non-dimensional parameter that divides the wavenum-
ber q in the linearized equations, is proportional to length of the domain. Thus,
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if the length of the domain is scaled by a factor k, the Thiele modulus becomes
Φ′ = k ·Φ. The range of instability is given by the set of wavenumber qε(q1, q2) for
which Pq/Φ(λ) ≤ 0 . It follows that the range of instability of a system k times the
size of the original is shifted proportionally to:

Pq/k·Φ(λ) = 0 q ∈ (k · q1, k · q2) (5.14)

Therefore, the dominating pattern depends also on the size of the system, be-
cause the wave-number qM associated to the fastest growing mode is also shifted
by a factor k.

qM(k · Lcell) = k · qM(Lcell) (5.15)

More importantly, even the existence of diffusion-driven instabilities is depen-
dent on the size of the system, because if the size of the domain is reduced enough,
the instability range will be shifted bellow the smallest mode compatible with the
boundary conditions. This property is reminiscent of the results of the compu-
tational experiments, where the quasi-periodic pattern only appeared for cells
bigger than a certain size. As stressed previously, this makes Turing instabilities
an inadequate mechanism to orchestrate protein spatio-temporal organization in
biological cells, because the mechanism should be able to operate in cells of very
different sizes and changing morphologies [142].
The theoretical framework introduced previously is general and gives sufficient
conditions for the appearance diffusion-driven instabilities in reaction-diffusion
systems. Now the focus returns to the analysis of the Jilkine-Keshet model of
RhoGTPase regulation, to prove that the results of the simulations featuring
quasi-periodic patterns of protein distribution are indeed Turing patterns. Linear
stability theory predicts accurately the emerging patterns in one dimensional sys-
tems, particularly if the dominant unstable eigenmodes have large wavelengths,
which usually dominate the nonlinear evolution of the system[140]. In two di-
mensional systems, the evolution of the system far from equilibrium is harder to
predict. For this reason, the simulations of the previous section are reenacted in a
1-dimensional cell and the emerging patterns are compared with the predictions
of the Linear stability analysis.
The simulations show that when the 10µm long 1-dimensional cell is exposed to
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different types of stimulus of spatial range smaller than the cell length, in most
cases the emergent pattern is the simple polar distribution of Cdc42 and Rac
highly activated at the front, Rho is inhibited and the other way around at the
back of the cell. However, depending on the specifics of the external stimulus,
the simple polarization pattern is in some cases replaced by the emergence of a
bipolar pattern.

t=5.4s t=10.2s

t=12.5s t=20.4s

Figure 5.15: ⊗ Emergence of Bipolar pattern in a 1d cell of L=10µm.

The simple polar distribution is the dominant final pattern,that is, the pattern
most likely to emerge, as long as the cell length is smaller than 50µm. As the cell
length is increased further, the simple polarization pattern is replaced as the dom-
inant pattern by the emergence of the bipolar or multipolar protein distribution.
These patterns are the one-dimensional counterpart of the final distribution found
in the circular cell of 20µm radius exposed to linear stimulus. The characteristic
wave-length of the bipolar pattern is approximately 10 µm, similar to the distance
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between activation islands found in the 2D simulations.
The final state is highly dependent on the specific definition of the external stim-
ulus. In order to remove this dependency, the response to a random stimulus was
studied. The value of the signal function Ψ at every cell point is given by pseudo-
randomly generated numbers drawn from a standard uniform distribution in the
interval [0,Ψm]. This type of stimulus is also interesting because it mimics the
noisy inputs that a cell experiences in real biological environment. It turns out
that the final pattern of RhoGTPase distribution that is most likely to emerge is
essentially determined by the cell length. As stated previously, in 10µm long
cell, the pattern most likely to emerge when the cell is exposed to a random nosy
stimulus is the simple polar pattern, although in some cases the bipolar pattern
can also emerge, as shown in fig. 5.15. Doubling the cell length shifts the dom-
inant pattern to a bipolar distribution with two maximums and two minimums
of protein activation. This distribution has a similar wave-like profile than the
bipolar pattern, with the same dimensional spatial period. The trend continues
as the cell size is further increased, a pattern with the same characteristic wave-
length is established and more maximums and minimums fit inside the larger cell.

(a) L=20µm (b) L=40µm (c) L=60µm

Figure 5.16: ⊗ Multipolar patterns in cells of increasing length.

This feature is characteristic of the patterns associated to diffusion-driven in-
stabilities, and a clear indication that heterogeneous perturbations can lead Turing
patterns solutions in the model. Application the theoretical framework presented
above confirms that this is the case. For the 1-dimensional cell, the eigenfunc-
tions of the reaction-diffusion system and the wave-numbers compatible with the
boundary conditions can be found analytically:

φn(x) = cos(qnx) qn = nπ (5.16)
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The final patterns of RhoGTPase distribution emerging in cell of increasing
length show the sinusoidal profile of the eigenfunctions.
Indeed, numerical evaluation of the determinant of system’s linearization shows
that Pq/Φ(0) < 0 for q ∼ (0, 4π). According to the condition given in eq. 5.13, the
system becomes unstable for a discrete set of the modes in this range. The fol-
lowing figure presents the numerical evaluation of the Pq/Φ(0) = det[−FRD], which
gives the range of instability, and the largest eigenvalue within the instability
range:

Figure 5.17: Up: Pq/Φ(0) = det[−FRD(q/φ)] for Φ(L = 10µm). Down: Maximum
eigenvalue λM(q/π).

Computation of the dispersion relation, depicted in fig.5.18, shows the exis-
tence of a single positive eigenvalue.

The existence of just one positive eigenvalue also rules out oscillations caused
by a pair of complex eigenvalues crossing the imaginary axis. The three null eigen-
values at q = 0 stem from the conservation of the total amount of Cdc42, Rac, and
Rho. Therefore, only the mode for which the positive eigenvalue is maximum
can dominate the evolution of the system after an heterogeneous perturbation
is applied. Specifically, the Dispersion relation reveals that in a cell of 10µm in
length, q = π and q = 2π are the allowed modes in the instability range with the
largest positive eigenvalue, with λM(q = π) slightly larger. Hence, linear stability
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Figure 5.18: Dispersion relation for Jilkine’s model. Eigenmodes q = 1π, 2 π, 3π
have positive eigenvalues.

theory predicts that patterns of concentrations ≈ cos(πx/LCell) or ≈ cos(2πx/LCell)
are expected to dominate after an stimulus is applied. Indeed, the prediction is
confirmed by the results of the simulation in a 1D cell of this particular length,
for the simple polarized state and the bipolar state are the nonlinear evolutions of
the corresponding eigenmode. The fact that the eigenvalues of these two modes
are almost equal, explains that the prevailing pattern is determined by the spatial
profile of the external signal.
Increasing the cell length k-fold times displaces the fastest growing eigenmode
by a factor k. Therefore, when the cell length is doubled, the largest eigenvalue
is associated to the wave-number qM = 2 · (π), when the cell length is tripled
qM = 3 · (π) and so forth. According to the theory, these eigenmodes shape the
final distribution of proteins after the cell is perturbed, as confirmed by the sim-
ulation shown in fig.5.16 of cells of increasing length exposed to random noise.
In this way, the stability analysis proves that the patterns obtained in the simu-
lations arise from diffusion-driven instabilities excited by heterogeneous external
stimulus. I argue that Turing patterns are not a suitable mechanism to generate
polarity in a migrating cell and, consequently, that a model of RhoGTPase regula-
tion should not feature Diffusion-driven instabilities. First of all, Turing patterns
are stable; if the cell reached such a state it would remain locked in it, rendering
the sensibility to posterior stimulus completely impaired. More importantly, the
existence of these solutions in the system depends not only on the parameters
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at the molecular scale, but also at the cellular scale, such as size or morphology.
RhoGTPases are ubiquitous in great variety of living organisms, from the most
primitive unicellular yeasts to eukaryotic cells. The mechanism underlying their
biological function should be independent of such variables, and remain opera-
tive despite the biological diversity amongst individual members, cell types, or
changing environmental circumstances.

5.3 Crosstalk model and the dynamics of the RhoGT-
Pase system

The preceding section proved that the RhoGTPase regulation model under anal-
ysis features diffusion-driven instabilities. Biological arguments against Turing
instability as a plausible mechanism underlying cell polarization were presented.
This section aims to identify the source of this behaviour. The analysis will reveal
the crucial role played by feedback loops in the Interaction Scheme as the main
determinants of the system’s stability.

5.3.1 Interaction schemes: notation and definitions

A sufficient condition for a Reaction-Diffusion system to undergo Turing instabil-
ities was presented in eq. 5.13 of the previous section. This condition is simply
given by the sign of the determinant of the linearization of the governing equa-
tions FRD(ro, q

/
Φ):

Pq/Φ(0) = (−1)N det[JR(ro) −
q2

Φ2 D] (5.17)

The numerical evaluation of the corresponding determinant for the RhoGT-
pase model allowed to predict the existence of Turing instabilities and the dom-
inating patterns. However, the numerical approach only allows to analyze a
particular model, and the conclusions are dependent on the choice of parameters.
In order to study the relationship between the basic hypothesis, the structure of
the interaction scheme and the source of the undesired dynamics, the instability
condition is studied analytically. The Jacobian of the reaction term of a system
described by a set of Reaction-Diffusion with the structure of eqs. 2.22 can be split
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in two parts, the Kinetic matrix itself K(r0), and the Interaction matrix.

JR(ro) =
∂K(r) · r
∂r

∣∣∣∣∣
r=r0

= K(r0) + I(r0) (5.18)

The Kinetic matrix is the linear part of the reaction term. It has a bloc-diagonal
structure, the coefficients of each block are the kinetic rates of transition between
the states of activation of a particular protein. The Interaction matrix has been
defined to include the off-diagonal terms in the Jacobian that result form the
dependence of the kinetic rates on cross-interaction between the different proteins
of the system.

I(r0) =
∂K(r)
∂r
· r

∣∣∣∣∣
r=r0

(5.19)

The RhoGTPase model specified by the interaction scheme represented in fig-
ure 2.3, under the quasi-steady state approximation, is described by the reduced
set of equations 2.29 and kinetic matrices of the type defined in 2.32. The corre-
sponding Interaction Matrix takes the following form:

I(ro) =



0 0 fr 0 fρ 0
0 0 − fr 0 − fρ 0
gc 0 0 0 gρ 0
−gc 0 0 0 −gρ 0
hc 0 hr 0 0 0
−hc 0 −hr 0 0 0


(5.20)

The structure of I(r0) is consistent with the ordering of the concentration vector
as defined in the QSS aproximation 1, and the notation used in its definition is
derived from the notation adopted to define the kinetic rates. As previously, f A

and f B, gA and gB, hA and hB denote the kinetic rates of activation and inactivation

1The concentration vector in the QSSA is defined as:

rT =
[

cGTP cGDP rGTP rGDP ρGTP ρGDP

]
(5.21)
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associated to Cdc42, Rac and Rho, respectively. The entries kx in the Interaction
Matrix stand for the derivative of the kinetic rates with respect the concentration
of protein x. Thus, the cases kx = f , g, h correspond to the modulation of the kinetic
rates of Cdc42, Rac and Rho, and x = c, r, ρ indicates which protein is the source
of the interaction signaling. For instance, fρ is associated to the dependence of
Cdc42 reaction rates on the concentration of active ρGTP, whereas gC is associated
to the modulation of Rac reaction rates on signalling from Cdc42GTP.
The precise definition of the coefficient in the Interaction matrix associated to the
crosstalk from an active RhoGTPase xGTP to some other RhoGTPase r is then given
by:

kx =
∂ṙGTP

∂xGTP
=

∂kA

∂xGTP
rGDP −

∂kB

∂xGTP
rGTP x = x, r, ρ (5.22)

Note that the assumption that crosstalk is mediated only by signalling from
active RhoGTPases has been implicitly included, because the kinetic rates are
considered function of xGTP only.
According to this convention, kx > 0 represents activation signals from xGTP to
protein x , so that crosstalk from xGTP displaces the equilibrium towards active
rGTP . Conversely, if kx < 0 the interaction is inhibitory, and crosstalk signals from
xGTP to protein r result in a increase of inactive RGDP.

kx > 0 rGDP
kA(+)
−−−−→
←−−−

kB(−)

rGTP

kx < 0 rGDP

kA(−)
−−−→
←−−−−

kB(+)
rGTP

(5.23)

In the specific RhoGTPase crosstalk scheme under study, Cdc42 is inhibited
by Rho, Rac is activated by Cdc42, and Rho is activated by Rac and inhibited by
Cdc42. Therefore, the sign pattern of the coefficients in the associated Interaction
matrix are then given by:
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fr = 0 fρ < 0

gc > 0 gρ = 0

hc < 0 hr > 0

(5.24)

The interaction scheme also assumes that the kinetic rates of a protein are not
modified by its own concentration. In biological terms, the model rules out au-
tocatalytic interaction, and the mathematical implementation is then completed
stating the zero value of the corresponding interaction terms:

fc = gr = hρ = 0 (5.25)

Before delving into the stability properties of the system, it is worth remark-
ing certain properties of the equations that will be relevant in the analysis of the
model. An interesting feature, which is made apparent by the structure of eqs.
5.22-5.23, is that there are two equivalent ways in which activation or inhibition
interaction can be carried out. Theoretically, inhibition could be mediated by neg-
ative regulation of the GEF activity resulting in a reduction of kA, or alternatively
by a positive regulation of the GAP activity, with the ensuing increase of kB. Both
alternatives would effectively reduce the rate of activation of a protein, and the
converse mechanisms hold for activation interactions. However, the model under
study assumes that crosstalk signals modulates only GEF activity. In this case,
the interaction terms are limited to:

kx =
∂kA

∂xGTP
rGDP (5.26)

Provided that the model included modulation of GDI or GDF activity, there
would be a multiple number of alternatives channels to mediate inhibition or acti-
vation. Another important aspect is the direct relationship between the biological
hypothesis on which the model is based and the structure of the Interaction Ma-
trix. The assumption that crosstalk is mediated only by active RhoGTPases leads
to kinetic rates that are independent of rGDP concentrations, which is reflected in
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alternating zero columns found in the Interaction matrix, associated to the lack of
direct interactions between inactive RhoGTPases and other proteins.
Autocatalysis is the self-modulation of the production or activation rates of a
protein by itself. In the model under study, the kinetic rates of activation of a
particular RhoGTPase are not changed by its own signals . Thus, fc, gr and hρ
being equal to zero is a consequence of the absence of auto-catalytic interactions
in the model. This assumption is reflected in the mathematical formulation in the
zero diagonal of the Interaction matrix.These structural traits will be important in
the discussion of alternatives to the RhoGTPase regulation.

5.3.2 Feedback Loops, Turing Instability and adaptation

The definition, notation and interpretation of the entities that play a role in the
analysis of the system’s stability have been introduced. The instability condition
in equation 5.17 can now be expressed in terms of the Reaction and Interaction
matrix coefficients. For the specific RhoGTPase model under study, the ana-
lytical expansion of Pq/Φ(0) = (−1)N det[FRD] spans up to 720 terms, which after
extensive algebraic manipulations of its factors 2 can be rearranged into a compact
expression from which important insights on the system’ dynamics can be gained.

Pq/Φ(0) =
∏

k = f,g,h

[q2d · kA + q2D(q2d + kB)] −
[
q2D

]3 [
fρ · gc · hr

]
−

[
q2D

]2
[ q2d · gA + q2D(q2d + gB)]

[
fρ · hc

] (5.27)

Three qualitatively distinct terms determine the sign of Pq/Φ(0) . The first term
contains only contributions from the Kinetic and Diffusion matrices, whose co-
efficients are positive by definition. This term is non-negative (strictly positive
for q > 0) and, according to the stability condition, has a stabilizing effect on the
system’s dynamics. hence, the second and third terms in eq. 5.27 are the only pos-
sible sources of instability. These terms are formed by combinations of products

2Pq/Φ was computed using symbolic algebra software. In a general regulation model describing
the dynamics of N proteins, the number of terms is N!. As the size of the systems grows, this type
of analysis becomes rapidly unmanageable, and even if it can be done, it is increasingly hard to
gain insight from it. For instance, the study of full RhoGTPase model, without the simplifying
QSS approximation, requires dealing with an expression with 362.880 terms. This is one of the
reasons to develop graph-theoretical tools to study reaction networks.
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of the Interaction matrix coefficients with the Diffusion and the Kinetic matrices.
Examination of their structure reveals that from all the possible products of coef-
ficients in the I-matrix, only a very particular type contributes to Pq/Φ(0). These
factors are combinations of coefficients associated to cyclic interactions between
the variables of the systems. Indeed, fρ · gc ·hr represents the inhibitory interaction
from Rho to Cdc42, which in turn activates Rac, which in turn activates Rho.
Likewise, fρ · gc is associated to the mutual inhibition between Cdc42 and Rho.

Figure 5.19: Interactions Cycles in Jiniker Crosstalk scheme.

The profound connection between the cyclical structures of the crosstalk
scheme and the dynamics of the system is revealed in figure 5.19. The two
possible sources of instability in the system correspond precisely to the only 2
cyclic chains of interactions that can be found in the crosstalk scheme. From here
on cycles will be referred to as Cx , where x stands for the number of proteins
involved in the cycle. In order to find out which of the network structures is
causing the appearance of Turing patterns, the sign of the contribution of each
cycle to the characteristic polynomial must be examined.

fρ × gc × hr = (−) × (+) × (+) fρ × hc = (−) × (−) (5.28)

Inspecting the preceding expression, it is readily seen that the two cycles have
opposite effects on the stability of the system. C3 is composed of 2 activation and
1 inhibitory interactions, so that the feedback carried through this channels drives
the system towards stability. Conversely, C2 is associated to the coupling of two
inhibitory interactions, which results in double-negative feedback that effectively
leads to Pq/Φ(0) > 0. Therefore, c2 is the only possible source of instability in the
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system. In the limit of small wave-numbers, where instability occurs, Pq/Φ(0) is
given by:

Pq/Φ(0) ∼
( q
Φ

)6

D3

 ∏
k = f,g,h

kB
−

[
fρ · gc · hr

]
− gB

[
fρ · hc

]  (5.29)

A change of parameter values could be a simple method to correct the model,
so that C2 does not dominate the system’s dynamics in this range. However, weak-
ening the mutual inhibition loop between Cdc42 and Rho possibly the eliminates
the possibility of reproducing polarization. In addition, this strategy could only
be applied to particular models and the conclusions would be of limited interest.
Nevertheless, the goal of this section has been reached, since I aimed to establish a
connection between the biological hypothesis and the dynamical response of the
model equation. This result leads naturally to the following questions. Can this
relationship be extended to other systems and other types of dynamical behavior?
How can the RhoGTPase regulation model be modified in order to better describe
the observations?
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It is nice to know that the computer understands
the problem. But I would like to understand it
too.

Eugene Wigner, mathematical physicist

Chapter 6

Interaction Graph and Reaction
Network Dynamics

This chapter presents the theoretical framework required to analyze the response
of a regulatory model to external perturbations. Analytical tools required to
systematically formulate alternative models capable of describing RhoGTPase
polarization without featuring instabilities are developed. The results of the
previous chapter suggest that feedback loops play a fundamental role in the
dynamics of the RhoGTPase regulation model. This notion is extended to arbitrary
Reaction Networks, laying out the framework in which the stability and dynamics
of a general reaction-diffusion system can be studied. In remaining of the chapter,
the relationship between the cyclic structure of the interactions in the network
and the dynamics of the associated reaction-diffusion system will be explained
using a Graph-Theoretical method.

6.1 General conditions for the Stability of RD systems

The starting assumption is that the biological regulatory network of interest can
be modeled as a set of reaction-diffusion equations of N proteins. This is the
general framework in which the RhoGTpases model was formulated:

∂ri

∂t
= Fi(r) +

di

Φ2∇
2ri i = 1, ...,N (6.1)

The variations of concentration of a protein ri(x, t) are driven by the processes
of Diffusion and Reaction. The dynamics of a protein are coupled to the other

141
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members in the network if the reaction term is a function of the concentrations
of the rest of proteins. This property is known as crosstalk. The steady states of
the ODE system associated to the reaction-diffusion system, known as the kinetic
system, provide the spatially homogeneous stationary states of the full system.

dri

dt
= Fi(r) i = 1, ...,N (6.2)

The subset of steady states that are stable solutions of the kinetic system are
equilibrium states denoted as rs. The assumption is that different biological or
cellular functions are executed by the network in the different equilibrium states.
The response of the cell to and external gradient signal is then determined by the
stability and evolution of the state rs under heterogeneous perturbations in the
full PDE system 6.1.
The Hartman-Grobman Theorem states that a nonlinear dynamical system is topo-
logically equivalent to its linear approximation near a hyperbolic steady state [143,
pg. 13-14]. Hyperbolic steady states are those in which the eigenvalues of the
linear approximation have non-zero real parts. Applied to the reaction-diffusion
system of eqs. 6.1, this result implies that the response rs +δr(x, t) to perturbations
in the nonlinear system is given by its linear approximation1:

∂δr
∂t

= [JR(rs) + (1
/
Φ)2D∇2]δr (6.3)

It follows that the stability of a homogeneous steady states rs with Neumann
boundary conditions can then can be determined by the sign of the eigenvalues
of the following matrix

FRD
i j (rs) = JR

ij(rs) −
(
q
/
Φ
)2 Dikδkj (6.4)

1The stability in a reaction-diffusion systems with conserved quantities requires particular
considerations because each conserved quantity has associated an identically null eigenvalue and
the Hartman-Grobman theorem can not be applied.
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where D is a diagonal matrix with strictly positive coefficients. The matrix
JR(rs) is the jacobian of the reaction term evaluated at a homogeneous steady state
rs. The off-diagonal structure of the reaction term jacobian reflects the crosstalk
between proteins of the network.

JR
i j(rs) =

∂Fi

∂r j

∣∣∣∣∣∣
rs

(6.5)

In particular, the interest lays in models in which external (heterogeneous)
perturbations can trigger the transition from an initial homogeneous steady state
to a polarized state featuring a non-homogeneous distribution of proteins. This
requirement can be satisfied by the existence of traveling-wave solutions connect-
ing different steady states in the phase plane of the reaction-diffusion system [136,
chapter 3]. Recent work in reaction networks has connected the existence of mul-
tiple steady states with the cyclic structure of the interactions, more precisely, the
existence of positive feedback loops [144]. However, the model is also required
not to undergo diffusion-driven instabilities, independently of the choice of pa-
rameters or the size of the system. The previous analysis indicates that positive
loops also have a crucial role in the appearance of Turing patterns. Therefore,
the questions that must be addressed are: What structural properties must have
a reaction network that guarantee that Turing instabilities do not occur? Are
the conditions that rule out diffusion-driven instabilities compatible with multi-
stationarity?

Turing instabilities stem from a saddle-node bifurcation. Generally, a bifurca-
tion occurs when a change in a parameter value results in a qualitative change in
the behavior of a system. In this case, the system is stable in the absence of dif-
fusion (q = 0) and becomes unstable for heterogeneous perturbations (q > 0) as a
real eigenvalue turns positive. Therefore, the requirement that Turing instabilities
do not occur can be restated as a condition on the eigenvalues of FRD.

Pq/Φ(λ) = det [λ I − FRD(rs)] =

N∑
k=0

akλ
N−k = λN + a1λ

N−1 + ... + aN−1λ + aN (6.6)

The system will not feature Turing patterns if and only if the roots of the
characteristic polynomial Pq/Φ(λ) have negative real parts for all q > 0 .
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6.1.1 Routh-Hurwitz conditions

The necessary and sufficient conditions for all the roots of a polynomial to lie in
the left half of the complex plane are given by the Routh-Hurwitz criterion [145,
pag 231]. The NxN Hurwitz matrix is defined in terms of the coefficients of the
characteristic polynomial associated to FRD as:

H =



a1 a0 0 0 . . . 0
a3 a2 a1 a0 . . . 0
a5 a4 a3 a2 . . . 0
...

...
...

... . . .
...

...
...

...
...

. . .
...

0 0 0 0 0 aN


(6.7)

The Routh-Hurwitz criterion states that all roots of the characteristic polyno-
mial Pq/Φ(λ) have negative real parts if and only if

∆( j) = det[H( j)] > 0 j = 1, ...,N (6.8)

where H( j) is the submatrix obtained from taking the first j rows and columns
of the Hurwitz matrix. A corollary of Routh-Hurwitz criterion is that the positiv-
ity of the ak coefficients is a necessary conditions for stability.

ak > 0 k = 1, ...,N (6.9)

The condition aN = Pq/Φ(0) = (−1)N det[FRD] > 0 for q > 0, found in the previ-
ous section to be necessary for the stability of the system, is now revealed to be
just a particular instance of the general Routh-Hurwitz criterion .

Application of this criterion in a reaction-diffusion system with conservation
laws requires special considerations. Stability is studied near the homogeneous
initial state rs, chosen amongst the equilibrium states of the system. By defini-
tion, equilibrium states are stable in the absence of diffusion, or equivalently, they
are stable under homogeneous perturbations. Homogeneous perturbations are
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characterized by a wave-number q = 0, which reduces FRD(rs) to JR(rs). The eigen-
values of JR(rs), however, are not all negative. Each local conservation law, as it is
explained bellow, has associated the existence of an identically null eigenvalue.
This prevents the direct application of the Hartman-Grobman theorem to study
Turing instabilities, since rs is not an hyperbolic equilibrium .

Local conservation laws are common in networks of reacting proteins. The
RhoGTPase model, for instance, has 3 conservation laws associated to the con-
servation of the total amount of Cdc42, Rac and RhoA. Generally, conserved
quantities are associated to a group of proteins rk, ..., rm whose total amount does
not change. In the reactions in which these proteins participate, an increase in
concentration of the products of the reaction is balanced by the decrease in the
concentration of the reactants, so that the net sum of their reaction rates vanishes.

Fk(r) + ... + Fm(r) = 0 (6.10)

As a consequence of the existence of conserved quantities, the rows in the Ja-
cobian corresponding to the reaction terms of these proteins are not independent.

m∑
i=k

JR
i j(rs) = (

∂Fk

∂r j
+ ... +

∂Fm

∂r j
)

∣∣∣∣∣∣
rs

= 0 j = 1, ...,N (6.11)

Consequently, if there are p locally conserved quantities in the reaction net-
work, the rank of JR(rs) is equal to N − p. By the Rank-Nullity theorem, the
dimension of the null space of JR(rs) and its rank must add up to N.

rank[JR(rs)] + ker[JR(rs)] = N (6.12)

It follows that there are p eigenvectors of JR(rs) whose eigenvalue is equal to
zero, because the dimension of the null space is p. Therefore, a steady state rs is
not an hyperbolic equilibrium of JR and the Hartmann-Grobmann theorem does
not provide a information on the relationship between the full nonlinear system
and its linear approximation. This point is generally overlooked in the literature,
but can be partially bypassed invoking two results contained in the classic work
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by Casten and Holland [146, pag. 356-358] on the stability of reaction-diffusion
systems. The first theorem provides the stability properties of homogeneous
steady states in the linear approximation 6.3 of the full problem.

Theorem 1. [ Casten and Holland ] Let r be a solution of the kinetic system 6.2.
Then, the state r is:

(i) A globally asymptotically stable solution of the linear system 6.3 if for each
non-negative q the eigenvalues of JR(r) − (q/Φ)2D have negative real parts.

(ii) A stable solution of the linear system 6.3 if for each non-negative q the
eigenvalues of JR(r) − (q/Φ)2D have non-positive real part and those with
zero real part have simple elementary divisors.

(iii) Unstable if for some q ≥ 0 the eigenvalues of JR(r) − (q/Φ)2D have either
positive real part or zero real part with non-simple elementary divisors .

Next, it is shown how this result can be used to establish the stability of rs in
a system with conserved quantities. The elementary divisors of a matrix are the
characteristic polynomials of its Jordan blocks [147, Chapter VII]. An eigenvalue λ
has simple elementary divisors if the order of its Jordan blocks is one. The number
of Jordan blocks associated to λ is equal to the geometric multiplicity of λ, that is,
the number of independent eigenvectors of the matrix with this eigenvalue. On
the other hand, the sum of the orders of all the Jordan blocks of λ is equal to its
algebraic multiplicity, that is, the multiplicity of the eigenvalue as a root of Pq/Φ
[148]. It follows that if the geometric and algebraic multiplicity of λ are equal, the
order of all of its associated Jordan Blocks is one, and therefore, the eigenvalue
has simple elementary divisors.
In a reaction-diffusion system with p conservation laws, zero is indeed an eigen-
value at q = 0, and its algebraic multiplicity is exactly p. Since the dimension
of the kernel of JR(rs) is equal to p , there are p independent eigenvectors associ-
ated to the 0 eigenvalue, and its algebraic and geometric multiplicity are equal.
Therefore, a solution rs fulfills the conditions of the second case of Theorem 1,
as long as the remaining non-vanishing eigenvalues are negative. However, this
result guarantees the stability of rs in the linearized system, but it does not give
information on the behavior of the solution on the full nonlinear system. This
information is provided by a second theorem in [146]:

Theorem 2. [ Casten and Holland ] If rs is an asymptotically stable solution of
the linearized problem 6.3, then it is also an asymptotically stable solution of the
nonlinear system 6.1.
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According to this, the solution rs falls short of the conditions that guarantee
its stability in the nonlinear system 6.1, because Theorem 1 classifies is it as stable
but not asymptotically stable. The difference between a stable and asymptotically
stable solution lays in the upper bound that can be established to the departure
of rs + δr(x, t) from rs after it is perturbed. For general systems with zero eigenval-
ues, a less strict upper bound can be established because the decay of the neutral
eigenmodes is less strong than it would be if all eigenvalues were negative. How-
ever, in the specific case that the zero eigenvalues stem from local conservation
laws, such as those described previously, growth of the neutral eigenmodes is
incompatible with the conservation laws themselves, so that they do not form
part of the transient solution rs + δr(x, t) that emerges after rs is perturbed. An
example of this mechanism is found in [137]. It follows that the construction that
establishes an upper bound for an asymptotically stable solution is also valid and
Theorem 2 applies.

Consequently, rs is a stable solution of the full nonlinear system if all the
eigenvalues of FRD(rs) for q > 0 are negative, whereas for q = 0 the requirement
is relaxed to the negativity of the N − p non identically null eigenvalues. The
Routh-Hurwitz criterion can be adapted to the modified stability conditions. In
the next section, it is shown that for q = 0 the coefficients ak(rs, 0) of the characteris-
tic polynomial are identically zero for k > N−p. Hence, Pq/Φ at q = 0 takes the form

P0/Φ(λ) =

N−p∑
k=0

ak(rs, 0) · λN−k = λp
N−p∑
k=0

ak(rs, 0) · λN−p−k = λp
·QN−p(λ) (6.13)

where QN−p(λ) is the polynomial of order N− p in λ formed by the coefficients
a1, ..., aN−p. The conditions that guarantee that the roots of QN−p(λ) are negative are
again given by the Routh-Hurwitz criterion, but with the general Hurwitz matrix
defined in eq. 6.7 restricted to order N − p. Likewise, the necessary condition of
the positivity of ak(rs, 0) > 0 is also limited to coefficients k = 1, ...,N − p. For posi-
tive wave-numbers the symmetry of JR is broken and the general Routh -Hurwitz
conditions apply.
This result settles the necessary and sufficient conditions for the stability of a
Reaction-Diffusion system with conserved quantities. Unfortunately, the condi-
tions are of little practical value to suggest modifications in the Reaction scheme
that lead to the desired dynamical properties of the Reaction-Diffusion system.
The Routh-Hurwitz inequalities involve complex algebraic relationships between
the ak coefficients, so that the translation of these relationships into conditions to
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impose on the Crosstalk scheme is not straightforward. As an illustration, the
expansion Hurwitz determinants for N = 6 in terms of the coefficients of the
characteristic polynomial is written explicitly .

∆1 = a1

∆2 = a1a2 − a3

∆3 = a3∆2 + ( a5 − a1a4)a1

∆4 = a4∆3 + ( a1a6 − a2a5)∆2 − a5( a5 − a1a4)

∆5 = a5∆4 − a6a3∆3 + a6a1a5∆2 − a3
1a2

6

∆6 = a6∆5

(6.14)

Even for a simple model involving only 6 proteins, the complexity of the al-
gebraic conditions makes them intractable. A slight improvement is found in the
fact that the positivity of the ak coefficients and of the Routh-Hurwitz determi-
nants is not independent. This leads to a set of simplified conditions for stability,
known as the Lienard-Chipart criterion:

aN > 0, aN−2 > 0 , ..., ∆(1) > 0, ∆(3) > 0 , ..., (6.15)

Lienard-Chipart involves half the number of determinants appearing in Routh-
Hurwitz criterion. Still, this reduction does not result in a substantial improve-
ment in the applicability of the constraints. A stronger limitation is that the
conclusions reached on what properties make the system stable are dependent
on the number of proteins and parameter values. This is an important drawback,
because the goal is to find conditions that apply to a general biological networks,
whose number of proteins may be huge or unknown. Nonetheless, the develop-
ments of this section are the theoretical basis upon which the alternative strategies
developed in the remaining of this chapter will lead to establish the conditions
that the Crosstalk scheme must fulfill, and form which useful biological insight is
obtained

6.1.2 Expansion of the Characteristic Polynomial

In the previous chapter, the stability of the RhoGTPase system was investigated
analyzing the structure of aN, the independent term of the characteristic polyno-
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mial. In that specific case, it was found that aN is formed by a compact combination
of the Cyclic interactions between the proteins in the networks. The definitions
needed to develop the Graph-Theoretical tools to extend this notion systemat-
ically are introduced bellow. In addition, the algebraic manipulations of the
characteristic polynomial allow to gain insight in to the source of the instabilities
and possible modifications.

Let γk = {i1, ..., ik} be a sequence of k distinct integers such as 1 6 i1 < i2.... <
ik 6 N and let SN

k be the set of all the different γk sequences of k elements in
{1, ...,N}. FRD(γk) denotes the k-by-k principal submatrix of FRD given by the coeffi-
cients with row and column indices equal to γk = {i1, ..., ik}. There are N! /(N − k)! k!
different k-by-k principal submatrices FRD(γk) , which are in a one-to-one corre-
spondence with all the different sequences γk in SN

k . The explicit reference to the
state rs at which the matrix FRD(γk)(rs) is evaluated is omitted to ease the notation.
It is assumed that the matrix is evaluated at a steady states unless stated other-
wise. The sum of the determinants of all the different k-by-k principal submatrices
is denoted by Ek:

Ek(FRD) =
∑
γk⊆ SN

k

det[FRD(γk)] (6.16)

The following identity, which can be verified using the Laplace expansion of
the determinant [148], expresses the coefficients of the characteristic polynomial
Pq/Φ(λ) = det[λI − FRD] in terms of Ek :

ak = (−1)kEk(FRD) k = 1, . ..,N (6.17)

In the case k = 1 the sum goes over the principal submatrices of order 1, which
corresponds to the coefficients in FRD diagonal. For k = N the sum spans only the
determinant of the complete matrix, for it is the only principal minor of order N .
Hence, the equations 6.17 relate a1 and aN to the trace and determinant of FRD 2:

2The expression of Pq/Φ as a product of its roots Pq/Φ(λ) =
∏

(λ − λi) relates its k-th coefficient
to the sum of all the distinct k-fold products of eigenvalues. For k = 1 and k = N, a1 = (−1)1 ∑

λi
and aN = (−1)N ∏

λi. Combining this with eqs. 6.18, the well known identities between the trace
and the sum of the eigenvalues and between the determinant and the product of the eigenvalues
are recovered.
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a1 = (−1)1Tr[FRD] aN = (−1)N det[FRD] (6.18)

The first Routh-Huwitz condition requires a1 > 0. Hence, the expression for
a1 in 6.18 shows that stability also imposes restrictions on the trace of FRD. This
restriction will be important in the formulation of stable regulation models fea-
turing bistability, because it sets a limit to the magnitude of Auto-catalysis.
In light of the explicit expression of the coefficients of Pq/Φ, it is now trivial to
show that conserved quantities imply that the coefficients of bigger order vanish
at q = 0. As shown before, if there are p conservation constraints, the rank of
JR is N − p and therefore all its minors of order larger than N − p vanish. Since
FRD(rs, 0) = JR(rs) at q = 0, all the terms in the expression 6.17 vanish for the
coefficients aN−p+1, ..., aN, and consequently these coefficients are identically null.

Next, the attention is turned to transform the coefficients ak into an expression
where the contribution of the diffusion and reaction terms is partially uncoupled.
This is convenient to identify possible sources of instability in the system. The
coefficients ak have been expressed as sum of principal minors of FRD:

ak = (−1)k
∑
γk⊆ SN

k

det[JR(γk) − (q
/
Φ)2D (γk)] (6.19)

Uncoupling of the Diffusion and Reaction contributions is achieved by ex-
panding the minors of order k in eq.6.19 and grouping the resulting terms ac-
cording to the number of entries from the Diffusion matrix. In this way, each
minor det[FRD(γk)] is expressed as a summatory of products of all possible minors
det[JR(γm)] of order m 6 k, given by the sequences γ = {i1, ..., im}, multiplied by the
k −m coefficients (d j1 · d j2 ... · d jk−m) given by the complementary set γ̄ = { j1, ..., jk−m}

in D. The subsets γ̄m and γm are complementary sets in γk in the sense that
γm ∩ γ̄m = ∅ and γm ∪ γ̄m = γk

3. Then, after some tedious algebra, the following
expression is reached:

3Let γm and γ̄m be complementary sets in γk with 0 ≤ m ≤ k. Let γk be the set of k integers
γk = {i1, ..., ik} and γm a subset of m elements of γk. The complementary set γ̄m is defined as
γ̄m = {i1, ..., ik} \γm , the set of elements in γk minus the elements in γm. Then, A(γ̄m) is the
principal submatrix of order k−m in A(γk) given by the coefficients with row and column index in
{i1, ..., ik} \γm or , equivalently, the matrix obtained by deleting from A(γk) the rows and columns
given by γm.



6.1. GENERAL CONDITIONS FOR THE STABILITY OF RD SYSTEMS 151

ak =
∑
γk

{
(−1)k det[JR(γk)] +

k−1∑
m=1

(q
/
Φ)2(k−m)

∑
γm⊂γk

(−1)m det[JR(γm)] det[D(γ̄m)]

+ (q
/
Φ)2k det[D(γk)]

}
(6.20)

The first and third summands in 6.20 stem exclusively from Reaction terms
and Diffusion terms. The second is formed by minors of the Reaction Jacobian
weighted by the complementary coefficients of the diffusion matrix. Examination
of the expression of ak(q) in 6.20 provides insight into which interactions between
the network proteins have more potential to lead to Turing instabilities. The
system is stable by construction under homogeneous perturbations, characterized
by wave-number q = 0. In this instance, the only terms contributing to ak(0)
are the leading factors JR(γk), so that these terms can be assumed to satisfy the
stability conditions. As heterogeneous perturbations are considered, instabilities
may arise as the value of the coefficients ak(q) departs from the values that fulfill
the stability conditions. For the range of small wavenumbers 0 < q/Φ < 1,
the change in ak(q) is dominated by the coupled term that grows as :(q/Φ)2,
whereas the purely diffusive term only goes as :(q/Φ)2k. In the range of large
wavenumbers q/Φ � qM, the purely diffusive term dominates over the rest,
forcing the system into stability4. Thus, there is an intermediate band of wave-
numbers in which the coupled term in 6.20 dominates over the rest an might lead
to diffusion-driven instabilities. The coupled term is formed by pairs of reaction-
like and diffusion-like factors: a factor JR(γk) stemming from crosstalk interactions
between a subgroup of proteins, multiplied by a factor D(γ̄m) associated to the
diffusion of the complementary subgroup of proteins. For given wave-number q,
the dominant terms are those formed by strong interacting subgroups of proteins
and fast diffusive subgroups of proteins. Systems containing strong interacting
subgroups of proteins and fast diffusive subgroups of proteins are candidates to
feature Turing instabilities. Indeed, the model of RhoGTPase regulation presented
is of this type, as the crosstalk is carried locally by the slow-diffusive proteins
inserted in the membrane and the inactive RhoGTPases diffuse fast. Interestingly,
this suggest an alternative mechanism of crosstalk in which the mediators of fast
diffusing proteins in the cytosol and the proteins embedded in the membrane

4For very large q/Φ, the matrix FRD is diagonally dominant with negative diagonal entries and
therefore stable by Gershgorin theorem [149]
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interacted weakly. This fits precisely with the idea suggested early in Chapter 2
that active regulation and competition between RhoGTPases for GDIs binding,
which sets the fraction of these proteins in the cytosol, might have an important
role in crosstalk .

6.2 Reaction Graph

In previous chapters it was shown the need to modify current models of RhoGT-
Pase regulation of cell polarization during migration, based on the discrepancy
between its predictions and experimental facts. The source of this behavior was
traced to the existence of a positive feedback loop in the interaction scheme which
originated Turing instabilities. A Graph-Theoretical methodology is now intro-
duced to study the connection between stability and the topology of the crosstalk
scheme. The central result of this method is that it shows that the dynamical prop-
erties and stability of a general reaction-diffusion system are determined only by
the cyclical structure of the network. Thus, the feedback structure of the Crosstalk
scheme is the feature that determines the existence of oscillations and Turing In-
stabilities. In addition, this method allows to break down complex networks into
smaller modules and provides a mechanism to relate the algebraic conditions of
the previous section with intuitive biological implications.

The definition of the Reaction and Interaction graphs follows closely the defi-
nition of the Coates Graph of a general square matrix [150]. The Reaction Graph
GR[JR(rs)] is a labelled, weighted, directed graph associated to the linearization of
the reaction-diffusion system. In a system with N interacting species, GR[JR(rs)] is
a graph with N nodes that has a directed edge from node j to node i if JR

ij(rs) , 0 .
The weight assigned to the edge is the coefficient JR

ij(rs). Note that according to
this definition, the entries JR

ii (rs) in the diagonal of the Jacobian have associated
an edge with i as the initial and terminal node. This type of edges are called
loops and account for decay terms and autocatalysis in the reaction. A common
convention to facilitate the visual interpretation of the Reaction graph is to draw
an arrow or a bar at the end of an edge when the weight is positive or negative,
respectively. In this way, an arrow edge associated to the coefficient JR

ij(rs) > 0 in
the Jacobian represents positive crosstalk from protein j to protein i. Likewise,
edges ended with a bar represent negative crosstalk. A node featuring a loop
will be represented simply by a circle around the node, regardless of its sign. An
important observation is that the sign of the entries in JR(rs) can depend on the
state of the network, and consequently, the Reaction Graph also depends on the
state rs in which GR[JR(rs)] is calculated. This is the case when there exist inter-
actions between proteins that switch from inhibitory to activating (or the other
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way around) depending on the concentrations of the proteins involved. Thus,
even if the topology of the Reaction Graph is constant and independent of the
state of the network, the sign of the edges might change if the nature of crosstalk
depends on their concentrations. From now on, the explicit reference to the state
rs in which GR[JR(rs)] is calculated will be dropped to ease the notation, but it
must be remembered that the Reaction Graph is defined at a particular state of
the network.
The interaction Graph GI[FRD] is the equivalent of the Reaction Graph including
the diffusion term in FRD. If the Diffusion Matrix is diagonal, both graphs are
topologically identical and the only difference lays in the weight of the loops.
The following 4x4 matrix A is used as an example to illustrate these definitions.

A =


l1 −b +c +d
0 l2 0 0
−e 0 l3 0
0 0 + f l4

 (6.21)

Let A represent the Reaction term obtained from the linearization of a reaction-
diffusion system. The coefficient Ai j is then associated to the variation of the re-
action rate of protein i caused by the change in the concentration of protein j. The
sign of Ai j determines the inhibitory or activating nature of the crosstalk signals
from j to i. The sign of the interaction is reflected in the Reaction Graph by the
type of edges between the nodes. According to the definitions given previously,
GR[A] is the 4-node graph shown in the following figure:

Figure 6.1: Interaction Graph associated to matrix A.
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GR[A] is graphical counterpart to the reaction scheme of matrix A. The off-
diagonal coefficients in row i of the matrix appear in the Reaction Graph as the
edges carrying crosstalk signals to node i. The coefficients in column i correspond
to the edges issuing from node i . For instance, node 1 receives negative signals
from node 2 and positive signals from nodes 3 and 4; these edges correspond to
the coefficients −b, +c and +d in the first row of matrix A , respectively. On the
other hand, node 1 only sends inhibitory signals to node 3, corresponding to the
single nonzero coefficient in column 1.
The definitions from Graph theory introduced next will be necessary to develop
the framework for the analysis of the stability of a reaction-diffusion system. The
indegree and the outdegree of a node are the number of edges that have this
node as the initial or terminal node, respectively. A loop, defined as an edge that
originates and ends at the same node, contributes 1 to both the indegree and the
outdegree of that node. As an example, in the graph of 6.1, node 3 has indegree
equal to 2, for it has an incoming edge from node 1 and the loop. The outdegree
of this node is 3, because there are two edges going to nodes 1 and 4 plus the loop
contribution.

(a) Cycle C2 (b) Cycle C3

Figure 6.2: Cycles of length m > 1 in GR[A]

A cycle of length m is a subset of m distinct nodes and m distinct edges that join ik

to ik+1 for k = 1, ...,m and an edge from im back to i1 . By this definition, loops are
also cycles of length one. The weight of a cycle w(c) is the product of weights of the
edges that form the cycle. Cycles are classified as positive or negative according
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to the sign of its weight. The graph GR[A] used as an example has, aside from
the four loops associated to the diagonal terms in A, a negative cycle of length 2
and a negative cycle of length 3. C2 is negative and its weight is w(C2) = −e · c ,
whereas C3 has weight w(C3) = −e · f · d and is also a negative cycle.
A subgraph of the Reaction Graph is a directed graph formed by a subset of edges
and whose set of nodes are a subset γk = {i1...ik} of those in GR, with γk ⊂ {1 ... N}.
The Induced subgraph of γk , referred as the I-subgraph Iγk , is the subgraph of
GR[A] formed by the subset of nodes γk and all the edges that join nodes within
this set. The induced subgraph Iγk is identical to the graph GR[A(γk)] obtained by
applying the definition of the Reaction Graph to the principal submatrix A(γk),
so that all the definitions and properties of the Reaction Graph carry over its I-
subgraphs. As an example, consider the 3-by-3 principal submatrix matrix A(γ3)
induced by the sequence γ3 = {1, 2, 4} :

A(γ3) =

 l1 −b d
0 l2 0
0 0 l4

 (6.22)

The I-subgraph associated to γk , shown in figure 6.3, is obtained by applying
the definition of the Reaction graph to the matrix A(γ3) or equivalently, by erasing
from the complete graph GR[A] the nodes that do not belong to γ3 and the edges
that do not start and finish in the nodes of γ3 .

Figure 6.3: I-subgraph induced by A(γ3).
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Note that the Induced subgraphs of the Interaction Graph GI[FRD(γk)] obtained
by considering all possible sequences γk are in a one-to-one correspondence with
FRD(γk), the k x k principal submatrices appearing in the expansion of the k-th
coefficient of the characteristic polynomial in eqs. 6.16 and 6.17. Likewise, all
the terms JR(γk) in the expression 6.20 of the coefficient ak correspond to one and
only one I-subgraph of the Reaction Graph GI[JR]. Hence, the graph definitions
introduced previously provide a method to associate a graph to each of the terms
in the algebraic stability conditions.

A spanning subgraph is a subgraph that includes all the nodes in GR, but
not necessarily all edges. A linear spanning subgraph ` , also referred to as an
L-subgraph, is a spanning subgraph of GR in which each node has indegree 1 and
outdegree 1. This definition implies that an L-subgraph is composed by a set of
disjoint cycles and isolated loops, where the cycles are disjoint in the sense that
each node belongs to one and only one cycle. The three different L-subgraphs
contained GR[A] are depicted in the following figure:

(a) L-subgraph `1 (b) L-subgraph `2

(c) L-subgraph `3

Figure 6.4: Linear spanning subgraphs of GR[A]
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The number of cycles in a L-subgraph is denoted by s(`). The weight of a L-
subgraph is simply defined as the product of weights of the cycles contained in it.

w(`) =
∏
c⊂`

w(c) (6.23)

For the linear spanning subgraphs depicted in fig. 6.4 , the number of cycles and
weights are:

s(`1) = 4 ; w(`1) = (l1) · (l2) · (l3) · (l4)

s(`2) = 2 ; w(`2) = (l2) · (l4) · (−e · c)

s(`3) = 2 ; w(`3) = (l2) · (−e · f · d)

(6.24)

The notion of linear spanning subgdigraph can be naturally extended to the
I-subgraphs of GR[A]. The L-subgraphs contained in Iγk are all the different sub-
graphs of order k formed by a set disjoint cycles spanning the k nodes of the
induced subgraph.

The L- subgraphs contained in the Reaction Graph of a matrix are the fac-
tors that determine the stability of the system. It has been shown that the Graph
methodology provides a way to assign a I-subgraph to each of the terms appearing
in the algebraic equations that determine the stability of the system. Particularly,
these equations are expressed in terms of principal minors det[JR(γk)] of the reac-
tion term Jacobian. Next, it will be shown that the value of each of these minors
is determined only by the weights of the L-subgraphs contained in the associated
I-subgraph Iγk . The intimate relationship between the dynamics of a reaction-
diffusion system and the cyclical structure of the reaction network is explained
by this fact.

The expression of the determinant of a N x N matrix A as a linear combination
of the weights of the L-subgraphs in GR[A] is known as the Coates formula :

det[ A] = (−1)N
∑
`⊆GR

(−1)s(`)w(`) (6.25)

where the sum goes through all the L- subgraphs in GR[A]. A sketch of the proof
of the Coates formula is given following [151, pg. 143] and a more formal proof



158 CHAPTER 6. INTERACTION GRAPH AND REACTION NETWORK DYNAMICS

can be found in [150, pg. 94]. The first part of the proof shows that there is a
one-to-one correspondence between the non-vanishing terms in the determinant
of a matrix and the linear spanning subgraphs in its associated Graph. The second
part of the proof shows that sign of the contribution of the non-vanishing terms
is also dictated by the structure the linear spanning subgraphs. The classical def-
inition of the determinant of a N xN matrix is:

det(A) =
∑

p

εi1...iN a1i1 · ... · aN iN
(6.26)

where the sum is over all the N! permutations p = {1, ...,N} → {i1, ..., iN}. The
signature of the permutation is given by εi1,...,iN and it is equal to +1 if p is an even
permutation and −1 if it is odd. All non-vanishing terms in eq. 6.26 are a product
a1i1 · ... · aN iN

of N coefficients. Each index appears twice, one as a row index and
one as a column index, so that each row and column contribute to the product
with exactly one coefficient. Hence, the subgraph in GI[A] defined by the entries
a1i1 · ... · aN iN

has N edges, with exactly one edge coming into every node and one
edge coming out of every node. Therefore, the subgraph associated to every term
in eq. 6.26 is by definition a linear spanning subgraph in GI[A] .
Conversely, every linear spanning subgraph ` in GI[A] has N nodes with indegree
and outdegree equal to one. The N edges in ` are associated to N coefficients in
A , the edge directed to node j being the only one in the j-th row, and the edge
coming out of node j being the only one in the j-th column. Arranging the indexes
by increasing row order, the weight of ` becomes w(`) = a1i1 , ..., aN iN

, showing the
correspondence between each linear spanning subgraph in GI[A] with one and
only one of the permutations p in the definition of the determinant. In this way,
a one-to-one correspondence has been established between the L-subgraphs in
GI[A] and the non-vanishing permutations terms in the det[A].
Explicit calculation of the determinant of the example matrix illustrates the first
part of the proof, as det[A] is proved to be a linear combination of the weights of
the L-subgraphs `1 , `2 , `3 represented in figure 6.4.

det(A) = w(`1) − w(`2) + w(`3) (6.27)

The one-to-one correspondence provides a convenient way to label a particular
L-subgraph by the associated permutation. The permutation p = {i1, ..., iN} defines
univocally the L-subgraph `(p) as the subgraph of GI[A] obtained by selecting the
edge from node i1 to node 1, from node i2 to node 2 and generally from node ik to
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node k for k = 1, ...,N . In this way, the sign of the contribution of an L-subgraph
to the determinant can be derived considering the signature of its associated
permutation. The L-subgraphs `1 and `3 of the example correspond to the even
permutations p1 = {1, 2, 3, 4} and p3 = {4, 2, 1, 3}. Thus, the corresponding terms
in the determinant must have positive sign, as it is confirmed examining the ex-
plicit expression in eq. 6.27. Conversely, `2 is associated to the odd permutation
p2 = {3, 2, 1, 4} and consequently the sign of the corresponding term is negative. In
the same way that permutations define univocally a L-subgraph, a cyclic permu-
tation of k integers defines univocally a cycle passing through k nodes in GI[A].
The second part of the proof shows how the signature of a permutation εp is related
to the structure of the associated L-subgraph; more precisely, the number of cycles
s(`) contained in it. The parity of a permutation is the number of transpositions in
which it can be decomposed. The decomposition is generally not unique, but the
parity is invariant, so that permutations are classified as even or odd according to
this number. The signature of a transposition is defined as −1, and by extension
the signature of a permutation is given by the product of the signatures of its
factors. Hence, the signature of even permutations is +1 , whereas the sign of odd
permutations is -1. The theory of symmetric groups of finite degree establishes
that for any permutation p there is a unique decomposition of p as a product of
s(p) cyclic permutations [152].

p = cp1 × cp2 × ... × cps (6.28)

In turn, any cyclic permutation of i objects can be written as the product of i − 1
transpositions . Hence, any permutation of N objects can be factorized as s(p)
cyclic permutations of i, j, k, ..., objects, with i + j + k + ... = N. The signature of the
permutation, given by the product of the signatures of the cyclic factors is then
εp = (−1)i−1(−1) j−1(−1)k−1... = (−1)N−S(p) . Rearranging , the following identity is
obtained:

εp = (−1)N(−1)s(p) (6.29)

It has been shown that a permutation p corresponds to an L-subgraph `, and
that the cyclic permutations in p correspond to the cycles in `. Thus, replacing the
permutation p for ` and the number of cyclic permutations in p for the number of
cycles in s(`) completes the proof of the Coates formula.
The expression of det[A] in equation 6.27 can now be derived strictly from the
graphical structure of the associated Graph. Indeed, the sign of the contributions
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of `1 and `3 are positive because they contain an even number of cycles (four
loops in the former case, one loop and one cycle of length 3 in the latter case),
whereas `2 contains an odd number of cycles (two loops and a cycle of length 2)
and accordingly, its contribution is negative.
The Coates formula leads naturally to the definition of the weight of an Induced
subgraph as the signed sum of the weights of the L-subgraphs contained in it.
According to this definition, the weight of the I-subgraph Iγk is equal to the deter-
minant of the principal submatrix A(γk):

w(Iγk) ≡ det[A(γk)] = (−1)k
∑
`⊆Iγk

(−1)s(`)w(`) (6.30)

This definition is the last element required to reformulate the stability condi-
tions for a Reaction-Diffusion system from a Graph theoretical point of view. The
coefficient of order k in the characteristic polynomial was expressed in equations
6.16-6.17 as a sum over all the principal minors of order k in FRD. A method to
associate a graph GI[FRD] to FRD has been established. Particularly, each k x k
principal submatrix FRD(γk) corresponds to an Induced subgraph Iγk of order k in
the Interaction graph. Furthermore, the associated principal minor [det FRD(γk)]
is given by the weight w(Iγk) of the associated I-subgraph in GI. Substitution of
this identity restates the algebraic expression of ak given in 6.19 as sum of weights
of the Induced subgraphs as:

ak = (−1)k
∑

Iγk⊆ GI

w(Iγk) (6.31)

where the summation goes over all the I-subgraphs of order k in the Interac-
tion Graph. Expanding the weight of the I-subgraphs in terms of the L-subgraphs
according to eq.6.30 leads to:

ak =
∑

Iγk⊂GI

∑
`⊆Iγk

(−1)s(`)w(`) (6.32)

Likewise, substitution of the weights of the I-subgraphs in the Reaction Graph
in eq. 6.20 leads to the graphical counterpart of the uncoupled expressions of ak:
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ak =
∑

Iγk⊂GR

{ ∑
`⊆Iγk

(−1)s(`)w(`) +

k−1∑
m=1

(q
/
ϕ)2(k−m)

∑
Iγm⊂ Iγk

det[D(γ̄m)]
∑
`′⊆γm

(−1)s(`′)w(`′)

+ (q
/
ϕ)2k det[D(γk)]

}
(6.33)

Examination of these results provides an important insight on the relationship
between the feedback structure of the Reaction scheme an the stability of the
associated Reaction-Diffusion system. More precisely, the Graph-based expres-
sions reveal that every cycle in the network has a defined role in the dynamics
of the system. This allows to break down the complete network into smaller
functional motives, thus providing a powerful tool to analyze general networks
independently of their complexity or specific parameter values. The previous
developments have established that cycles, through their weight contribution to
L-subgraphs, are the structures that govern the stability of the network. A given
cycle of the Reaction Graph might appear many times in the stability equations,
because there might be several L-subgraphs that contain that particular cycle.
However, its contribution to the weight of any L-subgraphs in which it appears
remains constant: the weight of an L-subgraph ` formed by s(`) cycles is given
by the product of the cycles’ weights and a factor (−1) for each of the s(`) cycles
contained in `. Then, a particular cycle c always contributes a factor (−1) · w(c) to
any of the L-subgraphs in which is found, and for this reason, its dynamical role
can be assessed independently of the rest of the reaction scheme:

(−1)s(`)w(`) = (−1) · w(c)
∏

c′ ⊆ `\c

(−1) · w(c′) ∀ ` ⊃ c (6.34)

The expression above, defines the contribution of any L-subgraph containing
the cycle c to the stability equations. Cycles were classified as positive or negative
according to the sign of its weight, which defines its activating or inhibitory nature
within a reaction network. It follows that negative cycles always contribute as a
positive factor in every L-subgraph in which they are present, whereas positive
cycles are the only possible source of a negative factor.

The Routh-Hurwitz criterion states that the positivity of ak is a necessary
condition for stability. Conversely, a negative coefficient is a sufficient condition
for instability. This shows that positive cycles, for a certain range of parameter
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values, are a sufficient element in a reaction network for Turing instabilities to
occur.

This section has proved the central role of cycles in the stability of a reaction
system. The value of the graphical methodology lays also in its power to break
down a complex reaction network into smaller modules, enabling the analysis
of their role in the dynamics of the whole system and identifying their function
within the network. Moreover, the role of cycles in determining the dynamics of
a dynamical system is actually broader than what it has been shown here. In the
same way that Turing instabilities are associated to the existence of saddle-node
bifurcations, other types of dynamical behavior, such as oscillating solutions, are
associated to Hopf bifurcations and the conditions for its occurrence can be related
to the cyclic structure of the reaction scheme. This topic is left for future work.

In the next section, results drawn from Matrix Theory will define a general
class of Reaction Schemes that do not feature the shortcomings of existing models
of RhoGTPase regulation discussed previously. Alternative models of RhoGTPase
regulation will be formulated imposing the constraints required to belong to this
class. The biological interpretation of these conditions, however, relies on the
insights obtained from the graph-theoretical view.

6.3 Kinetic Matrix and stability

The former section analyzed the existence of diffusion-driven instabilities as a
problem of locating the roots of a polynomial. The Routh-Hurwitz criterion pro-
vides sufficient conditions for the roots to lay on the left half of the complex plane,
but their value to formulate alternative interaction schemes is limited. Explicit
expression of the coefficients of the characteristic polynomial of FRD(rs) and sepa-
ration of the Reaction and Diffusion contributions results in some progress in that
direction, because it allows to identify the critical factors of the reaction scheme
that may lead to the appearance of Turing patterns. An alternative approach,
based on the notion of strong stability of matrix theory [153], might be more
useful in suggesting modifications to the RhOGTPase regulation mode.

6.3.1 P+
0 -matrices and Turing patterns

Let A be a real NxN stable matrix and D = diag[d1, .., dN] a diagonal matrix with
nonengative entries.

Definition 1. The matrix A is said to be strongly stable if A − D is stable for all
D > 0.
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The property of strong stability , also referred as additive D-stability [154] ,
is directly related to the existence of Turing patterns. Provided that the reaction
jacobian JR(rs) is strongly stable, the linearization of the reaction-diffusion equa-
tions FRD(rs) = JR(rs)− (q

/
Φ)2D remains stable for all wave-numbers q > 0. Hence,

if J(rs) is strongly stable, the system will not feature diffusion-driven instabilities.
This notion leads to the following questions: Which structural properties guar-
antee that a matrix is strongly stable? How this structural properties translate
into requirements for the Reaction scheme underlying JR(rs)? A partial answer
is provided by a classic result in matrix stability theory regarding the following
subset of matrices:

Definition 2. The matrix A is said to be a P0 -matrix if all the signed principal
minors are nonnegative:

(−1)k det[A(γk)] ≥ 0 ∀γk k = 1, ...,N (6.35)

The subset P+
0 spans the P0 -matrices that have at least one positive signed minor

of each order for k = 1, ...,N. The central result of this section, proved in [153, pag.
255-256], states:

Theorem 3. [Cross] If A is strongly stable, then A ∈ P+
0

Conversely, the existence of a principal submatrix whose signed minor is
negative guarantees that A−D is unstable for some D5. It follows that JR(rs) ∈ P+

0
is a necessary condition for a reaction-diffusion system to not feature Turing
instabilities.
In a system with p conservation laws, the Jacobian of the reaction matrix might
be a P0-matrix, but it can not be a P+

0 -matrix because the minors of order bigger
than N − p vanish. However, examination of the proof of theorem 3 reveals that
the A ∈ P+

0 requirement can be relaxed to accommodate this type of systems.
The first part of the proof shows that a strongly stable NxN matrix necessarily
requires that the eigenvalues of every prinicpal submatrix are non-negative. Their

5In fact, the strong stability condition is too restrictive. It requires A − D to be stable for all
D ≥ 0, but for a particular network of proteins the diffusion constants are known experimental
quantities and D is determined. Stability of JR

− q ·D should be imposed for all q > 0 and D given
and fixed. Indeed, the proof that the existence of a single negative signed minor in A is sufficient
for Turing instabilities to occur is based on increasing the diffusion coefficients complementary to
the negative minor until a positive eigenvalue is produced (see theorem 1 in [153, pag.255-256] or
theorem 3.1 in [155, pag. 143]). Thus, it is theoretically possible that a system in which JR < P+

0
does not feature diffusion-driven instabilities for a particular choice of D. However, the aim is
to keep the results as general as possible, in which case strong stability is close to the optimal
stability requirement.
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corresponding signed minors are given by the product of these eigenvalues and
therefore are also non-negative. Thus far, strong stability only imposes A ∈ P0.
The stricter condition A ∈ P+

0 stems from the starting assumption that A is stable,
which according to the Routh-Hurwitz theorem entails that all the coefficients
of the characteristic polynomial are strictly positive. This is fulfilled with the
additional requirement that at least one minor of every order is positive, so that
expansion of each of the coefficients ak in equations 6.20 has at least one positive
term . In a system with p conservation laws, it has been shown that stability is
guaranteed if the matrix A is semistable: it has N − p negative eigenvalues and
p null eigenvalues. Thus, the positivity of the ak coefficients is required only for
the first N − p coefficient. Consequently, the need for the existence of at least one
positive minor of every order is restricted to the order k = 1, ...,N − p.

Figure 6.5: Exclusion wedge for the eigenvalues of a P0-matrix A and A − q ·D.
For N = 6, θ = 30◦

This argument can be recast in a more elegant way using the eigenvalue
exclusion results found in [156]. In this work, it is proved that the eigenvalues of
a P0-matrix 6 are excluded from a wedge around the positive half of the real axis,
as depicted in figure 6.5 . Let λ = r exp(iθ) be an eigenvalue of a NxN P0-matrix,

6The definitions used in Kelloggs’s paper [156] differ from those adopted here, which follow the
definitions given in Cross paper [153]. The difference lays in a minus sign in the definition of a P,
P0 and P+

0 -matrices. The adaptation of the results to the alternative convention is straightforward,
using the following property of the spectrum of a matrix σ(−A) = −σ(A)
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where θ is the polar angle measured form the positive real axis. Then:

Theorem 4. [Kellogg] λ = r exp(iθ) is an eigenvalue of a NxN P0-matrix if and
only if

|θ| > π/N

The strict inequality applies to P-matrices, those whose signed minors are all
positive. The next step consists in showing that the eigenvalue exclusion region
of a P0-matrix A also applies to A −D. The key element for this is the following
property of P0-matrices, enunciated in Proposition 1 of [153, pag. 257].

Theorem 5. [Cross] If a matrix A ∈ P0 or A ∈ P+
0 , the same is true of A −D for all

D ≥ 0.

This result is proved expanding a generic minor of order k of the matrix A−D
in terms of the minors of A, as it was done for the coefficient ak in eq.6.20. This
shows that the minors of A −D are minimal for D = 0:

(−1)k det[A −D](γk) =(−1)k det[A(γk)] +

k−1∑
m=1

∑
γm⊂γk

(−1)m det[A(γm)] det[D(γ̄m)]

+ det[D(γk)]

Every signed minor of A −D is then a non-negative linear combination of the
signed minors of A. Hence, if A ∈ P0 every signed minor of A−D is non-negative
and increases with D . In addition, if A ∈ P+

0 there is at least one positive signed
minor of every order that guarantees that the same is true in A − D. These are
precisely the definitions of a P0 and a P+

0 matrices, respectively, and therefore A−D
belongs to the same matrix class that A. Consequently , the eigenvalue exclusion
zone of A, which only depends on the order of the matrix, is also valid for the
eigenvalues of A − D for any D ≥ 0. The relevance of these results regarding
the existence of diffusion-driven instabilities in reaction-diffusion systems insta-
bilities is now evident. Provided that the jacobian of the reaction term J(rs) is a
P0-matrix, the eigenvalues of J(rs) − q ·D can not cross to the positive half of the
complex plane along the real axis, and Turing instabilities do not occur.
This result also shows why being a P+

0 -matrix is only a necessary condition for
strong stability, as stated in Theorem 5: it does not prevent a pair of complex conju-
gate eigenvalues with |Im(λ)| > 0 from crossing the imaginary axis for some q > 0.
This type of behavior is associated to a Hopf bifurcation and leads to time-periodic
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oscillations. For stable matrices of order N 6 3, A ∈ P+
0 is also a sufficient con-

dition for strong stability [153]. The connection between time-periodic solutions
and the Reaction scheme structure is an extremely interesting topic, particularly
in the context of cell migration, where the existence of an oscillating pattern of
regulating signals could be at the root of the sequence of protrusion-adhesion-
contraction phases that constitute the migration process. This topic, however, will
not be pursued further, although possible lines of progress for establishing such
a connection are mentioned to motivate future work. First, as originally noted by
Clarke, Orlando’s theorem [157] shows that Hopf bifurcations are related to the
vanishing of the N−1 Hurwitz determinant; restating this conditions in Graphical
terms using the methods developed here might uncover relationships between
network structures and oscillations. Second, an original conjecture by Thomas,
recently proved by Snoussi and Gouze [158], states that the presence of a negative
cycle in the Reaction Graph is a necessary condition for stable periodic solutions.
Thus, these results are a promising starting point to continue the study of the
implications of the dynamical behaviour observed in experiments and the wiring
of the regulatory networks of proteins underlying cell migration.
In the final section, the biological implications of imposing the P+

0 form on the
Reaction scheme are explained and related to the structure of the Reaction Graph.

6.3.2 P+
0 -matrices and Reaction Graph structure

The biological implications of imposing that the Reaction scheme JR has P+
0 form

are obtained examining the consequences on the structure of the associated Reac-
tion graph GR[JR]. The definition of a P0-matrix, stated in def.6.35, requires that
all the signed principal minors of JR(γk) for k = (1, ...,N) are non-negative. In
addition, a P+

0 matrix must have at least one positive signed minor of every order,
although for our purposes this condition is limited to orders k = (1, ...,N − p),
where p is the number of conservation laws. The value of a principal minor de-
termined by the sequence γk = {i1, ..., ik} is given by the weight of the associated
I-Subgraph Iγk , as defined in eq.6.30. Substitution of the Graph-based expression
for det[JR(γk)] in the defining condition 6.35 of P0-matrices leads to:

(−1)k det[JR(γk)] = (−1)k w(Iγk) = (−1)2k
∑
`⊆Iγk

(−1)s(`)w(`) =
∑
`⊆Iγk

∏
c⊆`

(−w(c)) > 0

The inequality above applies to all possible sequences γk with k = (1, ...,N).
The interpretation in terms of the Graphical structure of the Reaction Graph is
now straightforward. For every order k, a sequence γk = {i1, ..., ik} determines
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the I-subgraph that results from considering the (i1, ..., ik) nodes of the Reaction
Graph and all the interactions between nodes of this subset. Thus, in essence,
for every γk considered, the network is being broken down to a subset of the
proteins within it, and the analysis can be limited to the crosstalk interactions
between these proteins. More precisely, the P0 condition imposes the following
restriction on the magnitude of the feedback structures of interaction between the
proteins (i1, ..., ik): the signed sum of the L-subgraphs contained in Iγk must be
non-negative. The contribution of an L-subgraph containing s(`) cycles is given
by [−w(c1)] × ... × [−w(cs(`))], the product of the weights of the s(`) disjoint cycles
in `, plus a factor (−1) for each of the cycles. Thus, the P0 condition can be simply
restated in terms of the cycles in the Reaction Scheme as:

∑
`⊆Iγk

[−w(c1)] × ... × [−w(cs(`))] > 0 ∀γk k = 1, ...,N (6.36)

I-subgraphs of order k = 1 are formed by just one node of the Reaction Graph,
and they include only one L-subgraph formed by the loop (cycle of order 1) around
the node. Let the weight of the loop around node i be w(li). The P0 condition
applied to Iγ1 with γ1 = {i} simply states [−w(li)] > 0; it follows that the weight of
every loop in the Reaction Graph must be non-positive. The loops of the Reaction
Graph are associated to the diagonal entries of the Kinetic Matrix, and correspond
to the interactions of one proteins with itself, which include the decay terms and
the autocatalytic terms of the kinetic rates.

For k = 2, the most general subgraph is composed by two nodes γ2 = {i, j} and
the edges associated to crosstalk between them. Thus, this I-subgraph contains
an L-subgraph formed by the two loops an another formed by the cycle of length
2 that comprises the interaction feedback between these two proteins:

Figure 6.6: General I-subgraph of order 2
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where the dots at the end of edges denote the unspecified sign of the interac-
tion. The P0 condition applied to this I-subgraph leads to the following inequality:

[
− i

]
×

[
− j

]
+

[
−

•

| |
•

]
> 0 (6.37)

Since the loops must be negative to fulfill the P0-property in the corresponding
I-subgraphs of order one, the minus signs can be inserted in the loops to clarify
the meaning of this constraint:

+ × + >
•

| |
•

(6.38)

The implication for the 2-protein motif of fig.6.6 is that the magnitude of any
positive feedback cycle in the network must be bounded by the decay terms.
There are no constraints for negative cycles, although it must be noted that the P0

property does allow to draw conclusions about oscillatory dynamics, for which
negative cycles are known to be responsible.

In this way the analysis can be extended for larger subsets of the network. For
instance, for k = 3 there is an important three-way interaction pattern, also known
as the feed-forward motif[159], whose high statistical occurrence in real regula-
tory networks compared with a randomized networks indicates that it might
constitute an important biological processing module [60]:

Figure 6.7: I-subgraph of order 3
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This network motif has associated an I-subgraph that contains three L-subgraphs:
the set of three loops, a cycle of order two with the disjoint loop, and the cycle
of order three. The P0 property leads to the following constraint on the feedback
structures:

[
− i

]
×

[
− j

]
×

[
− k

]
+

[
− j

]
×

[
−

•

| |
•

]
+

[
−4

]
> 0 (6.39)

This inequality has an structure identical to the stability condition stated in
eq. 5.29 that was derived for the Jilkine-Keshet model in the previous chapter.
This is no coincidence: if nodes i, j, k are made to represent Cdc42, Rac, and Rho,
it can be seen that the I-subgraph of fig.6.7 has an identical structure to that of
the Jiniger Regulation Scheme assumed for the RhoGTPase model. Hence, there
is a one-to-one correspondence between the crosstalk terms in the stability con-
dition stated in eq. 5.29 and the graph-based constraint. The i, j, k loops play
the role of the kinetic rates of GAP hydrolysis f B, gB and hB for Cdc42, Rac, and
Rho, respectively. The 2-cycle corresponds to the term fρ · hc that mediates the
mutal inhibition crosstalk between Cdc42 and Rho, and the 3-cycle plays the role
of the three-way negative feedback Cdc42 → Rac → Rho ⊥ Cdc42. Furthermore,
rearranging the inequality 6.39, it also becomes trivial to identify the 2-cycle as
the critical factor for the instability of the Jilkine-Keshet model:

+ ×
[

i × k −
•

| |
•

]
−

[
4

]
> 0 (6.40)

Since the 3-cycle is negative, it follows that the mutual inhibition cycle be-
tween Cdc42 and Rho is the source of Turing instabilities. Indeed, substitution of
the parameter values given in [72] leads to [ f B

·hB]− [ fρ ·hc] = −1.4833, confirming
that the P0-property is violated by the I-subgraph of order 2 associated to this
term.

This shows the power of the Graph-based analysis, since the stability condi-
tion that was derived by brute force in the previous chapter can be readily obtained
using this methodology. Moreover, the result stated in 6.39 applies to any network
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containing this network motif, whereas the the stability condition derived labori-
ously in the previous chapter is only valid for that particular model. Finally, these
results should also illustrate the power of this methodology to aid in the system-
atic formulation of regulation models that have the desired dynamical properties
as pattern generators. This task is undertaken in the following Chapter.
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Chapter 7

A new class of RhoGTPase
polarization models

A new class of RhoGTPase polarization models is postulated in this chapter. The
new class is defined by a set of constraints derived from the previous results
and experimental observations. The computational experiments of Chapter 5
are repeated adopting a particular Regulation scheme of this class, showing the
improved polarization response of the new models. This model is then integrated
with the Mechanical module developed in Chapter 3, without considering Focal
Adhesions, and applied to simulate the migratory response of rapidly-moving
cells of the type of keratocytes. Variations on the parameters and laws defining
the relationship between force and RhoGTPase activation are tested to investigate
the transition from amoeboid to mesenchymal modes of migration.

7.1 Theoretical framework: Reaction-Diffusion equa-
tions and waves

The idea that Turing’s theory of pattern formation in biological systems [76]
could be adapted to explain the emergence of cell polarity was first proposed by
Meinhardt and Gierer [160]. In this seminal paper, they also suggested that the
depletion of a substance could play the role of inhibitor in Turing’s theory. More
recently, Otsuji and coworkers [74] developed a model of RhoGTPase polarization
based on these ideas. In this work, they identified Diffusion-driven instability and
mass conservation as the essential elements common to their model and previous
efforts to describe cell polarization. Thus, Turing instability was still a central
ingredient of the model proposed to account for polarization. Later, Mori and
coworkers [134] distilled a minimal model of an active-inactive RhoGTPase pair
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and proved that Diffusion-driven instabilities were not necessary to account for
polarization. In their conceptual model, the polarization mechanism is based on
the existence of waves and the depletion of the protein that fuels the propagation
of the wave. This mechanism, which they named wave-pinning, constitutes the
basis upon which the new class of polarization mechanisms is built. A compre-
hensive review of alternative polarization models can be found here [1].

The starting building block are the pairs of Reaction-Diffusion equations de-
veloped in Chapter 2 to describe the concentration changes of a GTP-bound
RhoGTPase and its inactive counterpart under the QSS approximation. The QSS
approximation assumes that the flow of inactive RhoGTPases between the cell
membrane and the cytosol is fast compared to the other kinetic transitions. Thus,
for Cdc42, Rac and Rho there is a pair of equations of the type of sys.2.29 that de-
scribes their spatio-temporal dynamics in the cell. The goal is to formulate a model
in this framework in which spatially heterogeneous external signals displace the
system from an initial state of homogeneous concentration to a Polarized state
with a high concentration of active Cdc42 and Rac at the cell front and of RhoA at
the cell rear. The Reaction-Diffusion system that describes the RhoGTPases must
have the following properties:

1. Conservation: the total amount of Cdc42, Rac and Rho is conserved.

2. Multistationarity: existence at least two or more equilibrium states in the
Reaction system. These fixed points must be stable and correspond to the
states of high and low RhoGTPase activation for a given concentration of
inactive RhoGTPases.

3. P0 -form of JR(r0): external perturbation of the initial RhoGTPase state r0 do
not trigger the emergence of Turing patterns.

4. Reversible Polarization: a change in the source of the external signal is
detected and leads to a realignment of the polarization axis.

Each of these properties has associated a constraint that must be fulfilled by the
underlying Crosstalk Scheme. Property 1 is trivially fulfilled if the Reaction term
of the active and inactive fraction of a RhoGTPase protein are equal and with
opposite signs. Thus, the Reaction term has the following structure:
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F = K(r) · r =



f A
· ci − f B

· ca

−(. . .)
gA
· ri − gB

· ra

−(. . .)
hA
· ρi − hB

· ρa

−(. . .)


(7.1)

, where r = [ca, ci, ra, ri, ρa, ρi] denote the concentrations of active an inactive
RhoGTPases 1 and the Kinetic rates kA and kB of activation and inactivation in the
QSS approximation where defined in 2.32.

Property 2 requires that the ODE system 2.25 associated to the Reaction term,
referred to as Kinetic system in Chapter 2, has two or more isolated steady states.
This means that the Reaction term must have two or more different zeroes. As a
consequence of Property 1, only half of the components of the Reaction term are
independent, and the zeroes of F(r) must be expressed as parametric functions
of 3 of the concentration variables. Furthermore, the second property requires
that these steady states correspond to different equilibrium values of the active
fractions of RhoGTPases for a value of the inactive fractions. Therefore, ri are
taken as the fixed parameters and there must be at least two states r− = {r−a ; ri} and
r+ = {r+

a ; ri} that fulfill the following set of 3 algebraic equations:

Fa(r±a ; ri) = 0 r+
a , r−a (7.2)

where Fa denotes the 3 components of the Reaction term associated to the
active proteins. Let JR

a (ra) = ∂Fa(ra; ri)/∂ra denote the 3x3 Jacobian of the reduced
Reaction term. JR

a (ra) is identical to the principal submatrix composed by the rows
and columns associated to the active proteins in the complete Jacobian JR(r), as
defined in eq.6.5 of the previous Chapter. In the general case, the reduced Jaco-
bian, unlike the complete Jacobian, is non-singular, because in principle there are
no additional symmetries in the Reaction network other than those associated to
conservation laws. From condition 7.2, it follows that the Reaction term Fa can
not be an injective function in the space of positive concentrations, since it has at
least two isolated zeroes. This has important implications for the structure of the

1In Chapter 2, these variables were denoted as cGTP, cGDP, ... , ρGTP , ρGTP. The new definition is
introduced just to ease the notation.
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Crosstalk Scheme. A classic Theorem proved by Gale and Nikaido [161, see The-
orem 4w, pag.89] shows that if the Jacobian of Fa is a non-singular P0-matrix for all
ra in the space of positive concentrations2, then Fa is injective in this space. Since
Fa can not be injective by Property 2, it follows that JR

a is not a P0- matrix for some
ra. Furthermore, under these conditions, a conjecture proposed by Thomas [162]
and proved by Soule [144, Theorem 1, pag. 128] shows that this result implies
that the Reaction Graph of JR

a must contain a Positive Cycle for some state ra in the
space of positive concentrations.

Property 3 states that in the initial state r0, the Jacobian of the Reaction term
must have P0 form so that the system is not amenable to feature Turing Patterns. It
must be stressed that this requirement is compatible with the previous condition.
This property imposes P0-form of JR

a at the initial state r0, whereas Property 2 only
demands that JR

a is not P0 at some other state ra in the space of positive concen-
trations. Therefore, the combination of the constraints imposed by Properties 2-3
has important implications for the Reaction Graph: it must contain at least one
Positive Cycle to account for multistationarity, and in turn this Cycle is subjected
to the restrictions derived in Ch.6 to block the emergence of Turing patterns.

An important property of nonlinear parabolic systems is that they have travel-
ing wave solutions, such as those describing combustion waves and propagation
of electrical impulses in nerves [163, Chapter 9]. Imposition of Properties 1-2 on
a Reaction-Diffusion equations of the type of 2.29 endows the system with travel-
ing wave solutions that provide a mechanism that might account for polarization.
The emergence of this type of solutions is explained following the treatment
given in Grindrod’s book [136, Chapter 1, sec. 1.5]. The wave-based polarization
mechanism is compatible with Property 3 and suggests the additional features
to be imposed on the Crosstalk Scheme to satisfy Property 4. The RD equations
governing RhoGTPase dynamics were derived in the moving frame of the cell
in terms of a generalized material derivative that included the volumetric defor-
mation of the cell. The existence of traveling waves is illustrated in the simpler
case of an immobile cell, but it carries over in general case. Consider the pair of
reaction-diffusion equations describing the evolution of Cdc42:

∂ca

∂t
=

d
Φ2∇

2ca + F1(ca, ci) (7.3a)

2Gale’s theorem prescribes that these conditions must be fulfilled in a open rectangular set
of Rn. The Reaction term is defined for positive values of the proteins smaller than a certain
bound imposed by mass conservation. Thus, the space in which F is defined is indeed an open
rectangular set.
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∂ci

∂t
=

D
Φ2∇

2ci − F1(ca, ci) (7.3b)

The inactive fraction of the RhoGTPases diffuses very fast in the cytosol, so
that their concentration becomes almost homogeneous rapidly compared to the
timescales relevant to changes in the active fraction. Thus, the existence of waves
solutions is shown taking ci as a parameter in equation 7.3a. A traveling wave
solution has the form ca(x, t) = w(z) where z = x + vc · t and vc is the wave speed
to be determined later. Substitution of ∂/∂t = vc · d/dz, ∂/∂x = d/dz and the test
solution in 7.3a leads to the following ODE:

d
Φ2

d2w
dz2 − vc ·

dw
dz

+ F1(w, ci) = 0 (7.4)

By Property 2, the reaction term F1 has at least two zeroes w = c−a and w = c+
a

for a given value of ci. The wave solution sought propagates throughout the cell
replacing one state by the other. This solution represents an heteroclinic trajec-
tory connecting the two equilibrium states on the phase space; if the solution is
subjected to the conditions w→ c−a as z→ −∞ and w→ c+

a as z→ +∞, the wave
replaces the state c−a by c+

a as it advances over the cell. Note that it is possible
to prescribe a solution that follows the opposite trajectory on the phase space by
imposing w→ c+

a as z→ −∞ and w→ c−a as z→ +∞; in this case the wave replaces
c+

a by c−a as the wave sweeps the cell domain. This is an important property of
the proposed mechanism, because the formulation of the complete RhoGTPase
model relies on the existence of waves of Activation and Inactivation to generate
reversible polar patterns. The wave velocity can be obtained multiplying eq.7.4
by dw/dz and integrating from z = −∞ to z = ∞:

0 =

∫ +∞

−∞

dz
(

d
Φ2

dw
dz

d2w
dz2

)
− vc ·

∫ +∞

−∞

dz
(

dw
dz

)2

+

∫ +∞

−∞

dz
dw
dz

F1(w, ci)

=
d

2Φ2

(
dw
dz

)2∣∣∣∣∣∣
+∞

−∞

− vc ·

∫ +∞

−∞

dz
(

dw
dz

)2

±

∫ c+
a

c−a

dw F1(w, ci)

(7.5)
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where the ± sign in the second row results from the opposite limits of integra-
tion for Activating and Inactivating waves. The first term in 7.5 vanishes because
the no-flux condition imposes that dw/dz is zero on the boundary. Hence, the
wave velocity can the be expressed as:

vc(ci) = ±

∫ c+
a

c−a
dw F1(w, ci)

ϕ
(7.6)

where plus and minus signs correspond to Activating and Inactivating waves,
respectively, and the denominator is the positive constantϕ =

∫ +∞

−∞
dz(dw/dz)2. The

expression of vc(ci) shows that the direction of propagation of a wave depends on
the sign of the integral of the Reaction term, and that the wave speed is a function
of the concentration of inactive proteins. The progress of a wave is stopped if the
concentration of inactive protein, limited by the bounds imposed by conservation
of the total amount of protein, reaches a critical value in which vc(ci) vanishes. As
the wave freezes, a fraction of the cell is left in the state c+

a of high activation and
the other at state c−a of low activation. This process constitutes the nucleus of the
polarization mechanism that Mori and coworkers [134] named wave-pinning and
incorporated in their conceptual model adopting a cubic Reaction term, similar to
those found in the Cable equation and the FitzHugh-Nagumo model of electrical
pulse propagation in nerve cells [164, Chapter 7]. A cubic form of F1(ca, ci) is

Figure 7.1: Phase plane with cubic Reaction term. High an low activation states
correspond to stable zeroes of F1(ca, ci).

obtained assuming a constant rate of inactivation and a sigmoidal rate of activation
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in dca/dt = F1(ca, ci) = f A(ca) · ci − f B
· ca, which endows the system with two stable

and one unstable steady states. Initially, the concentration of active and inactive
protein is homogeneous over the cell, and the total concentration is given by
cT · Lcell = ca · Lcell + ci · Lcell. An Activation wave emerges when an external signal
displaces one of the edges of the cell from the state of low activation c−a to c+

a
(marked with a red and a green dot in fig.7.1). As the Activation wave advances,
switching an increasing area of the cell to the state of concentration c+

a , the reservoir
of inactive protein decreases because the total amount of protein is conserved.
Due to the decrease in ci, the rate F1(ca, ci) of conversion of inactive protein to the
active state is reduced, and as a consequence the velocity of propagation of the
activating wave diminishes. Eventually, the progress of this process depletes the

t = t1 ci(t1) > cS

t = t2 ci(t1) > ci(t2) > cS

t = t3 ci(t3) ≈ cS

Figure 7.2: Right: Wave-pinning of an Activation wave. Left: Heteroclinic trajec-
tory on the Phase Plane of Activated points
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concentration of inactive protein to a value ci = cS
i in which vc(cS

i ) vanishes and the
activation wave stops. The condition for wave-pinning is that the integral of the
Reaction term in eq.7.6 vanishes, which occurs when the positive and negative
area between dca/dt and the abscissa are equal.
The existence of Inactivation waves is supported by the opposite process: the
wave advances switching an growing fraction of the cell from c+

a to c−a , so that the
concentration of inactive protein increases until reaches cS

i and the wave stalls:

t = t1 ci(t1) < cS
i

t = t2 ci(t1) < ci(t2) < cS
i

t = t3 ci(t3) ≈ cS
i

Figure 7.3: Right: Wave-pinning of an Inactivation wave. Left: Heteroclinic
trajectory on the Phase Plane for inactivated points

Note that the Inactivation wave also affects the fraction of the cell that has not
been driven to c−a by the wave; in this part of the cell the final concentration c+

a is
higher than it was initially, because the concentration of ci has increased.

Another important feature of the wave-based mechanism of polarization, not
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shared by Turing-based mechanisms, is that the activated fraction of the cell is
independent of the size of the cell. Let θ and (1 − θ) be the fractions of the length
of the cell Lcell having a high concentration and low concentration activated pro-
tein. The concentration of inactive protein at which the wave stalls is ci = cS

i , and
the total concentration of protein is denoted by cT. Assuming that the transition
between the two cell areas is sharp, the conservation of protein imposes the fol-
lowing constraint:

cT · Lcell ≈ cS
i · Lcell + c+

a · θ · Lcell + c−a · (1 − θ) · Lcell (7.7)

It follows that the fraction of the cell activated by the wave only depends on
the total concentration of protein cT, the concentration cS

i at which the wave stalls,
and the roots c+

a (cS
i ), c−a (cS

i ) of the Reaction term.

θ ≈
cT − cS

i − c−a
c+

a − c−a
(7.8)

This feature is important because it shows that the wave-based mechanism
of polarization can remain functional in cells of different types and shapes. The
values of cS

i and c±a are determined by kinetic parameters of molecular origin in
the Reaction term. Consequently, these parameters should be independent of the
cell type, since the proteins and reactions involved are the same. The concentra-
tion cS

i , in turn, depends on the total quantity of protein expressed and on the
size of the cell. Under the plausible assumption that the total quantity expressed
is proportional to the size of the cell or nucleus, the activated fraction θ would
remain approximately equal in cells of different types. In addition, this result sug-
gest a simple mechanism that cells could use to control their polarization state.
Expression 7.7 shows that there is a minimum value of the total concentration
cT = cmin | θ < 0 bellow which polarization can not occur. Thus, modulating the
expression of the protein, cells could allow or block the establishment of polar-
ization in response to external stimuli.
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7.2 A new class of RhoGTPase polarization models

The new class of RhoGTPase polarization models is formulated using pairs of
Reaction-Diffusion equations of the type described in the previous section as the
basic building blocks. The spatio-temporal evolution of the RhoGTPases will be
determined by traveling wave fronts and wave-pinning, but the Reaction terms
include an additional dependency on the concentration r(x, t) of the other RhoGT-
Pases to incorporate Crosstalk:

∂ca

∂t
=

d
Φ2∇

2ca + [ f A(ca, r) · ci − f B
· ca] (7.9a)

∂ci

∂t
=

D
Φ2∇

2ci − [ f A(ca, r) · ci − f B
· ca] (7.9b)

∂ra

∂t
=

d
Φ2∇

2ra + [gA(ra, r) · ri − gB
· ra] (7.9c)

∂ri

∂t
=

D
Φ2∇

2ri − [gA(ra, r) · ri − gB
· ra] (7.9d)

∂ρa

∂t
=

d
Φ2∇

2ρa + [hA(ρa, r) · ρi − hB
· ρa] (7.9e)

∂ρi

∂t
=

D
Φ2∇

2ρi − [hA(ρa, r) · ρi − hB
· ρa] (7.9f)

The Reaction terms have the same structure Fr(ra, ri, r) = kA(ra, r) · ri − kB
· ra for

all the proteins. The kinetic rates of GAP hydrolysis, which determine the inac-
tivation rate, are assumed to be constants kB = δr. The kinetic rates of activation
kA are assumed to follow Michaelis-Menten dynamics with Hill coefficient nH = 2:

kA(ra, r) = [1 + γr(r)
r2

a

κ2
r (r) + r2

a

] (7.10)

for {kA, ra} = { f A, ca}; {gA, ra}; {hA, ρa}
3. The key parameters in the activation are

3kA and kB are given in adimensional form. The dimensional form with units s−1 is recovered
multipliying them by the reference rate ko used in the definition 2.15 of the Thiele Modulus
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the Michaelis-Menten constant κr, the Maximal velocity γr, and the Hill coefficient
nH. These type of sigmoidal kinetic laws fit the experimentally observed dynam-
ics of many reactions catalyzed by regulatory enzymes. Hence, the meaning of
these parameters depends on the detailed reaction mechanisms underlying the
biochemical reactions [165, Chap.6]. For the particular case of RhoGTPase activa-
tion, it is important to remember that the kinetic rates of activation are a compound
kA = kGEF

· kI of the rates kGEF of GDP-GTP exchange by GEFs and the rates of in-
sertion of RhoGTPases in the plasma membrane kI = kGDF/(kGDF + kGDI), which are
catalyzed by GDIs and possibly some still to be identified GDFs. Thus, assuming
Hill-type kinetics for the activation rates of the RhoGTPases must be interpreted
in terms of the mechanisms controlling the activity of these enzymes. Generally, a
Hill coefficient nH > 1 results from cooperative interactions between proteins and
enzymes: the binding of a protein to an enzyme alters the enzyme conformation
and enhances the binding to subsequent proteins [165], suggesting that either
GEFs, GDIs or GDFs could act as homotropic allosteric enzymes. However, the
ultra-sensitivity associated to sigmoidal kinetics can arise from alternative mech-
anisms, such as the existence of zero order or intermediate biochemicals steps, the
presence of additional enzymes participating in the biochemical reactions [166] or
biological noise[167]. In the RhoGTPase case, particularly, the auto-catalytic loops
could reflect the dependence of GDIs or GEFs activity on the local availability of
active and inactive proteins. Independently of its biochemical root, sigmoidal
kinetics endow the system with a positive loop for each protein in the Reaction
Graph, in fulfillment of Property 2 necessary for the multistationarity of the net-
work. The Reaction terms have the cubic form shown in fig.7.1, so that there
is a range of concentrations of inactive proteins rm

i (γr, δr, κr) < ri < rM
i (γr, δr, κr)

for which there are two concentration values of active proteins r−a (ci) and r+
a (ri)

that are stable equilibrium states. Following the beautiful treatment of the cubic
found in [168], it can be shown that the existence of 3 roots requires γr > γ3R = 8
and that the concentration of inactive protein is found within the bounds given by:

rM/m
i (κr, γr, δr) = κr

√
r2

3R(γr, δr) ± ∆r2
3R(γr, δr)

r2
3R(γr, δr) =

δ2
r
γr

(γ−1
+ −γ

−1
r )(γ−1

r −γ
−1
−

)
(1+γ−1

r )3 ∆r2
3R(γr, δr) =

δ2
r
γr

√
23(γ−1

3R−γ
−1
r )3

(1+γ−1
r )3

(7.11)

where the constants γ−1
±

= (5 ± 3
√

3)/4 have been introduced to simplify the
expression. The dependency of the limits of ri ∈ (rm

i , r
M
i ) that permit the existence
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of two activation states on kinetic parameters γr and δr is plotted in the following
figure. The dependency of rM/m

i on κr is simply linear and is not represented.

Figure 7.4: Inactive concentration bounds for multistationarity

This figure shows that for a given concentration of inactive protein ri, a small
modulation of the kinetic parameters can drive this protein outside the multi-
stationarity regime. Thus, an increase in γr, or a decrease in κr or δr, forces a
transition to the state of high activation of r+

a . Conversely, a reduction of γr, or an
increment in κr or δr, renders the state of high activation unstable and triggers a
transition to the state r−a of low activation.

The new class of models is based on the hypothesis that Crosstalk between
RhoGTPases is executed by the controlled modulation of the Michaelis-Menten
constant or the Maximal activation Velocity of the reactions that govern the ac-
tivation of the proteins. Crosstalk signals emanate from activated RhoGTPases
inserted in the Plasma membrane and regulate the kinetic parameters of other
RhoGTPases localized in the same area. Thus, for a given concentration of the in-
active form of a RhoGTPase ri, approximately homogeneous in the cell, localized
signaling activity from another RhoGTPase xa can induce a local change of γr(xa)
or κr(xa) that switches the activation level of ra in this area of the cell. Since the
diffusiveness of the activated proteins embedded in the Plasma Membrane is very
small, the switch in the activation level is local, but the emergence of waves of
activation or inactivation propagates the transition according to the mechanism
described in the previous section.

The strength of the Crosstalk signals sent by a RhoGTPase xa are assumed to
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be a sigmoidal function of the increment from the activation level relative to the
initial equilibrium state x0

a :

s(xa) =

 0 xa < x0
a

(xa−x0
a )2

s2
0+(xa−x0

a )2 xa > x0
a

(7.12)

where s0 is a constant that controls the concentration threshold at which
Crosstalk signals are emitted. The kinetic parameters of the target RhoGTPase
are assumed to have a simple linear dependency on the strength of the Crosstalk
signals:

γr(xa) = γ0 · [1 + φ · s(xa)] (7.13a)

κr(xa) = κ0 · [1 − η · s(xa)] (7.13b)

where
∣∣∣φ∣∣∣ < 1 and

∣∣∣η∣∣∣ < 1 are small constants that control the maximum mag-
nitude of the modulation exerted by xa. The sign of these constants determines if
Crosstalk carries inhibitory or activating signals from the effector RhoGTPase to
the target RhoGTPase. If φ > 0, the signals increase the Maximal activation Veloc-
ity and enhance activation, whereas φ < 0 is associated to inhibition. Likewise,
η > 0 leads to a Crosstalk-mediated decrease in the Michaelis-Menten constant
and activation, whereas η < 0 promotes inhibition.

(a) Modulation of κr by xa for η > 0 (upper
curve) and for η < 0 (lower curve)

(b) Modulation of γr by xa for φ > 0 (upper
curve) and for φ < 0 (lower curve)

Figure 7.5: Variation of the Activation rate due to Crosstalk

There are several biochemical processes that could support the proposed mech-
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anism of Crosstalk between RhoGTPases. Generally, the Michaelis-Menten con-
stant κ reflects the affinity of an enzyme for its substrate, and the Maximal acti-
vation Velocity γ is a function of the total enzyme concentration and the limiting
reaction rate in the biochemical steps underlying the reaction. Usually, modula-
tion of the Michaelis-Menten constant of a biochemical reaction arises from com-
petitive inhibition between the molecules involved, associated to two proteins
competing to bind the same enzymes as catalyst of their reactions. Modification
of the Maximal activation Velocity γ is associated to non-competitive regulation,
stemming from the modification by other molecules of the activity of the enzymes
that catalyze the biochemical process [169, Chapter 5].

For the reactions involving RhoGTPases, an increase in the Michaelis constant
κr(xa) could indicate the existence of competitive inhibition between the two pro-
teins, meaning that RhoGTPases x and r compete for binding the same GEFs, GDIs
or GDFs enzymes. Recent experimental data reviewed in section 7.2.2 and in [6]
supports the existence of such a crosstalk mechanism via competition to bind
GDIs. Conversely, positive Crosstalk associated to a decrease of κr(xa) could be
mediated by signals from RhoGTPase x that enhanced the affinity of the enzymes
for r, particularly GEFs and GAPs, boosting its activation levels. Modulation
of the Maximal velocity γr(xa) is usually related to uncompetitive regulation of
a protein-enzyme reaction. This occurs when a third regulatory molecule binds
the enzyme-protein complex at a site different from where the enzyme-protein
form a bond, altering the rate of reaction. This mechanism of Crosstalk has been
observed experimentally in the stimulation of the activity of GEFs or GAPS spe-
cific for a RhoGTPase by other RhoGTPases [6]. The experimental data indicates
that this is one of the main mechanisms that mediate activation and inhibition
between RhoGTPases. From a mathematical standpoint, introduction of crosstalk
via modulation of γ or κ is nearly equivalent, and the choice must be guided by
experimental evidence.

An important consequence of the postulated mechanism of Crosstalk is that
any Reaction scheme defined within this Class fulfills Property 3 stated in the
previous section, which ensures that no Turing patterns emerge from external
perturbations. The functional form of the Crosstalk signal strength s(xa) has the
implicit assumption that interaction between RhoGTPases is only switched on far
from the initial equilibrium state.

∂s(xa)
∂xa

∣∣∣∣∣
x0

a

= 0 (7.14)
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Consequently, since Crosstalk signals at the initial equilibrium state are turned
off, the change in the kinetic rates associated to Crosstalk is null:

kx =
∂Fr(ra, ri, xa)

∂xa

∣∣∣∣∣
r0

=
∂s(xa)
∂xa

∂
∂s

(
kA[ra, s(xa)] · ri − kB

· ra

)∣∣∣∣∣
r0

= 0 (7.15)

For this reason, in the initial equilibrium state r0, the Cycles of length greater
than one in the Reaction Graph have a vanishing weight. Indeed, the Reaction
Scheme can contain any number of feedback Cycles, such as the terms fρ · gc · hr

or fρ · hc of the Reaction scheme discussed in the previous Chapter. As long as the
strength of Crosstalk signals has a quadratic (or superior) decay near the equilib-
rium state, interaction through feedback Cycles is weak and does not endanger
the P0-property of the Reaction scheme in the initial state. The only potentially
problematic Cycles are the autocatalytic loops kr = ∂Fr(ra, ri, xa)/∂ra , which cor-
respond to the diagonal entries in JR(r0). However, in both possible initial states
r0 = (r−a , ri) and r0 = (r+

a , ri), since they are stable steady states, these loops are
necessarily negative for all the proteins. It follows that JR(r0) is a P0-matrix and
that no Turing instability can occur, independently of the number or sign of the
crosstalk interactions postulated in a particular model within this Class.

This concludes the definition and interpretation of the new Class of RhoGT-
Pase polarization models. Alternative schemes within this Class result from
different assumptions on which protein crosstalks with which other protein, and
the detailed mechanism that mediates the interaction. The keys to interpret these
assumptions in terms of the underlying biochemical mechanisms have been in-
troduced and can be used to analyze the predictions in the context of the available
experimental data. The next section shows the improved polarization response
of one particular scheme of this class to external signals.

7.2.1 Polarization response to external stimuli

A RhoGTPase Crosstalk scheme of the Class defined previously is presented to
illustrate its improved polarization response. The computational experiments
performed in Chapter 5 are repeated and reveal that the polarization mechanism
is robust and remains functional independently of the morphological features of
the cell or the profile of the external signal.

The external signal is defined as in Chapter 5 by a function Ψ(x, t) that rep-
resents the spatial concentration of a chemo-attractant or some other generic cue
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registered by the sensing machinery of the cell. The signal is registered by a
first layer of receptors embedded in the membrane that recruit and turn on GEF
enzymes that directly activate a specific RhoGTPase. This protein will be re-
ferred as the sensor RhoGTPase, it acts as the link between the primary layer of
receptors in the membrane and the rest of the RhoGTPase network and its en-
zymes. The intermediate biochemical steps in Chemotaxis are believed to involve
lipid receptors known as phosphoinositides (PIs), their kinases (PI3k and PI5k)
and phosphatases (PTEN) [170, 171], although the identity of the sensor(s) pro-
tein(s) and the complex feedback loops between RhoGTPases, PI3k and PTEN,
and PIs are far from being understood and their role in the polarization process
remains highly controversial[172, 173]. In the case of Mechanotaxis, the process
of mechanosensing necessarily involves Integrin receptors, but the nature of the
transduction process from mechanical cues to the RhoGTPases is even less clear.
For this reasons, the detailed transduction process is not modeled explicitly; in-
stead, the underlying biochemical steps are lumped into a final signal received
by the sensor RhoGTPase following a rationale analogous to that used to derive
the functional form of Crosstalk in the previous section. Thus, the strength of
the modulation from the primary layer of receptors to the sensor RhoGTPase is
assumed to be a sigmoidal function of the actual concentration of the external cue

sΨ(x, t) =
Ψ(x, t)2

Ψ2
0 + Ψ(x, t)2

(7.16)

where Ψ2
0 sets the concentration of stimulus at which the signal strength from

the receptors to the RhoGTPases is half of its possible maximum value. The
Michaelis-Menten constant of the sensor RhoGTPase is modified by this signal
according to:

κr(Ψ) = κ0 · [1 − η · sΨ(x, t)] (7.17)

where η > 0 represents activation. Generally, Cdc42 has been accepted to be
the master regulator of polarity and that Cdc42-specific GEFs interact with PIP3 to
initiate polarization[55]. However, recent experimental evidence [174, 175], also
suggest that it is in fact Rac-specific GEFs that are upregulated by PIs. For this
reason, there are as many theoretical models that assume that Cdc42 is the protein
sensor, such as the Jilkine-Keshet model[72] or examples found here[176, 177] as
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models proposing Rac [178, 179]. The reality is more likely a complex combination
of the two hypothesis, but for the purpose of illustrating the polarization response
of the new Class models, it will be assumed that the sensor is Cdc42. The consensus
on the nature of the Crosstalk interactions between RhoGTPases and the specific
wiring of the network is hardly any stronger. Therefore, the Reaction scheme
is formulated adopting the minimal complexity to support polarization as the
guiding principle. In addition, this choice will show that it is possible to formulate
a model that can reproduce polarization without mutual inhibition feedback,
proving that one of the guiding principles of the Jilkine-Keshet model discussed
earlier is not accurate. A minimal Reaction scheme assuming Cdc42 as the sensor
RhoGTPase has associated the following reduced Reaction graph GR[JR

a ]4:

Figure 7.6: Reaction Graph of the minimal Reaction scheme that supports polar-
ization

The non-dimensional values of the kinetic parameters defining a Reaction
scheme based on the Reaction Graph of fig.7.6 are set according to theoretical
requirements: the sign of the coupling constants φ and η that determine the
modulation of the kinetic parameters by crosstalk interactions are determined by
the Reaction Graph, and the Maximal velocities of autocatalysis γr must induce at
least an 8-fold increase of the activation rate so that the multistationarity condition
γr > γ3R is fulfilled. The following table summarizes the values for a particular
model of the new class, which will be referred as Model A:

Table 7.1: Model A: Non-dimensional kinetic parameters

Model A γ0 φ κ0 η δ
Cdc42 12 − 1 0.5 10

Rac 10 − 1 0.5 10
RhoA 10 −0.5 1 − 10

4The complete Reaction Graph is GR[JR], but GR[JR
a ] fully determines the Reaction scheme and

is the relevant subgraph for the P0 structure of the scheme
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Aside from the theoretical constraints, the model is remarkably robust to
changes in the rest of the parameters, and the choice of their values is guided
by experimental facts and mathematical simplicity. Thus, the kinetic rates of
GAP hydrolysis δr are assumed to be of the same magnitude than the rates of
GTP exchange by GEFs, and the coupling constants are set to 0.5 to limit the
maximum modulation of γr and κr induced by crosstalk to a 50% change of their
intrinsic value. Interestingly, the theoretical constraint of γ > 8 is consistent with
reported values of a 10-fold increase in the reaction rates induced by these en-
zymes [180, 181]. The dimensional forms of δ and γ0 in units of [s]−1 are recovered
multiplying them by the reference reaction rate k0 of the RhoGTPases, , which
sets the time scale of the RhoGTPase reactions and is assumed to be equal for the
three proteins. The initial concentrations of Cdc42 and Rac are set to homogeneous
values of the equilibrium state r0 = (r−a (ri), ri) with rS

i < ri < rM
i . In this way, the

initial concentration of inactive protein is smaller than the value that permits the
existence of two stable states but bigger than the value at which waves stall, al-
lowing the emergence of Activation waves. Conversely, the initial concentration
of RhoA is set to the equilibrium value r0 = (r+

a (ri), ri) with rS
i > ri > rm

i , so that the
protein is in the multistationarity regime and Inactivation waves can emerge.

Protein concentrations are left in adimensional form using the Michealis-
Menten of each RhoGTPase as the scaling unit of concentration, but measure-
ments of RhoGTPase concentration in living cells could be used to recover units
of [µM] amenable to be compared with experimental values. The reference re-
action rate is set to k0 = 0.1 s−1 for Model A. The experimental and theoretical
reasons to adopt this and other values of the kinetic parameters will be discussed
after the polarization response of Model A is demonstrated. To that end, two
consecutive linear stimulus of the type described in Chapter 5 are prescribed to
study the polarization response of this model. Both stimulus gradients have the
same spatial profile and magnitude, set to reach a value Ψmax = 10 ·Ψ0 and are
hold for a period of 30 seconds:

t=12.46s. t=20.17s. t=40.36s.
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t=70.02s. t=120.46s. t=170.30s.

t=212.43s. t=220.15s. t=240.32s.

t=270.57s. t=320.43s. t=360.19s.

Figure 7.7: ⊗ Polarization switch after exposure to reversal of stimulus

The simulation illustrates the key features of the polarization response of the
new model. After the first stimulus is applied, Cdc42 is upregulated at the area
of the cell with bigger exposure to the gradient, eventually reaching a 4-fold in-
crease in the activation level. Concomitant Cdc42 crosstalk signalling induces a
similar increase in Rac activation in this area and a decrease in RhoA to a 10% of
its initial activation level. Wave propagation drives the distribution of Cdc42 and
Rac activation toward the cell interior until they are self-arrested by the depletion
of inactive protein. Rho undergoes the opposite process, as the Inactivation wave
advances inwards, the amount of inactive proteins is increased and supports a
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2-fold increase in the activation level at the opposite side of the cell. It also should
be noted that polarization is persistent, meaning that the asymetric protein distri-
bution remains after the stimulus is removed, as the snapshots correspondint to
t ∈ [70, 170] sec. and t ∈ [270 − 360] sec. attest.

A salient property of the model is that the polarization response amplifies
shallow gradients and is reversible: after the secondary stimulus is applied, the
opposite process takes place and the polarization axis is inverted. The improve-
ment in the sensitivity is substantial and emerges naturally from the assumptions
on how the external signal is transduced to the RhoGTPAses (amplification) and
the reversibility of the trajectories corresponding to wave-solutions in the phase
plane (reversibility). In fact, polarization reversibility does not depend on the
magnitude or spatial profile of the stimulus Ψ(x, t): the key variable that deter-
mines the switch is the span of time during which the cell is exposed to an stimulus.
The secondary stimulus initiates a new polarization event independently of the
magnitude of the stimulus, but the completion of the realignment process requires
that the stimulus is hold during a minimum period of time that allows the switch
in the polarization axis to conclude. The parameter that sets the characteristic
time scale of the kinetic reactions is the reference reaction rate k0. For Model A,
the adopted value is k0 = 0.1s−1, which sets the minimum time of exposure to a
secondary stimulus required to complete the inversion of the polarization axis in
approximately 20 seconds. If k0 is increased, the dynamics of the kinetic reactions
are speeded and the time threshold is lowered, and if k0 is decreased the polariza-
tion process is slowed down and reversibility requires longer exposure times. The
value of k0 adopted in Model A is twice the value used in Mori’s model [134] for the
intrinsic rate of activation. As mentioned earlier, this choice only affects the char-
acteristic times of polarization and is not an essential feature of the model. Due
to the great discrepancies in reported values of the GEF and GAP baseline kinetic
rates[180, 182, 181, 183], the choice is made to speed up the sensibility of the cell to
short-lived stimulus5. A more interesting aspect of this issue is that experimental
values of kinetic rates are obtained from biochemical essays in test tubes, which
differ greatly from the effective kinetic rates governing the same reactions inside
living cells. Reactions in the interior of a living cell take place in an environment
densely filled with macromolecules and architectural barriers, which result in
alterations of the nominal kinetic rates due to the under-appreciated phenomena
of molecular crowding, molecular confinement and adsorption[184]. Theoretical
predictions and experimental measurements estimate the an alteration of the ki-
netic rates in more than one order of magnitude[185].

The next set of computational experiments were designed to demonstrate the

5Alas, this also reduces the simulation time required to reproduce the polarization event!
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robustness of the polarization response and to confirm that the defining properties
of the New Class of Reaction schemes blocks the emergence of Turing patterns. To
this end, the size of the cell was increased up to 80µm in radius and no occurrence
of Diffusion-Driven instabilities was found. In addition, these results show that
the size of the high activity zones scales with the size of the cell, as explained in
the exposition of the theoretical foundations of the model.

(a) Rcell = 50µm (b) Rcell = 80µm

Figure 7.8: ⊗ Robust Polarization in cells of increasing size

This is a desirable property in a model of cell polarization if it has to remain
functional in cells of various type. Related to this issue is the question of the ro-
bustness of the polarization response in front of changes of cellular morphology.
To illustrate that this is indeed the case, the following simulation of the polariza-
tion process uses a fibroblast-like geometry, showing that the functionality of the
polarization mechanism remains intact, even in the extreme case of a non-convex
geometry featuring thin protrusions resembling filopodia:

t=10.46s. t=23.17s. t=30.36s.



192 CHAPTER 7. A NEW CLASS OF RHOGTPASE POLARIZATION MODELS

t=40.02s. t=50.46s. t=60.30s.

t=80.02s. t=100.46s. t=120.30s.

t=150.02s. t=180.46s. t=210.30s.

Figure 7.9: ⊗ Polarization reponse in a Fribroblast-like cell geometry

Another important feature is the remarkable robustness of the model against
parameter changes. The final polarization pattern is independent of the specific
form of the stimulus Ψ(x, t), whereas variations of the kinetic parameters affect
primarily the extent of the activation zones and the magnitude of the increase in
activation. For instance, increasing the value of γ0 for RhoA enhances the level
of activation of this protein. Furthermore, Crosstalk interaction between RhoGT-
Pases can be included either through modulation of the Maximal reaction velocity
or the Michaelis-Menten constant without substantial changes in the polarization
response. The qualitative features of the polarization response are also preserved
against changes in the Reaction Graph. The following Graph is an alternative
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Crosstalk scheme to Model A that presents a similar behavior:

Figure 7.10: Alternative Reaction Graph

Interestingly, this is a Reaction Scheme derived from experimental observa-
tions that was discarded in the paper by Jilkine and coworkers [72] on the basis
that it could not support polarization. It follows that reformulating other schemes
proposed in the experimental literature and discarded on these grounds within
the theoretical framework derived here could made them suitable candidates to
describe RhoGTPase crosstalk. Another important property of the New class of
Schemes is the scope of cellular behaviors that can be reproduced. The simulation
depicted in fig. 7.7 shows that the polarized state emerging from the applica-
tion of an heterogeneous stimulus is maintained after the stimulus is removed;
this is a property of a polarization model named maintenance, according to the
classification found in a recent comprehensive review on mathematical models of
polarization [1]6. A variation of the Maximal Velocity of the sensor protein Cdc42
results in a qualitative change in the polarization response that has interesting
implications related to this property: reducing its value from γ0 = 12 to γ0 = 10,
the polarization state is transient and the cell returns to the initial state after the
stimulus disappears:

t=9.00s. t=15.03s. t=39.01s.

6The property of reproducing a transient polarization to a uniform stimulus is named adaptation
by the authors of this review. This behavior is also reproduced by all schemes in the New class of
polarization models
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t=600.14s. t=900.21s. t=1200.30s.

t=1353.31s. t=1380.20s. t=1470.17s.

t=1575.41s. t=1970.56s. t=1950.50s.

Figure 7.11: ⊗ Transient Polarization switch

The change in the polarization response from Permanent to Transient is pro-
duced by the reduction of the Maximal Velocity γ of the sensor protein to a value
close to the γ3R, the minimum value that allows the existence of multiple equi-
librium states. Thus, a continuum variation of one of the parameters allows to
reproduce two distinct modes of polarization and migration, used by different
types of cells or suited for different physiological conditions. Furthermore, the
model reproduces another feature of polarization defined in [1] as adaptation,
which consists in the generation of persistent polarization response to gradients
of stimulus, but a transient response to uniform stimulus. Indeed, the simulations
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show that after a uniform stimulus is applied and removed, the cell returns to
its initial homogeneous state (not shown). This illustrates the flexibility of the
new Class of models: as it is remarked in the previously cited review [1], there
is an abundance of theoretical models to describe cell polarization and they are
generally appropriate to describe the migration behavior of only one particular
cell type. The important point is that in actuality, the existence of different mi-
gration phenotypes and strategies in biological cell is most likely the result of an
adaptable modular apparatus that is shared by cells from different types. By tun-
ing the activity of the molecular regulators that control and couple the different
modules, cells are able to adopt a particular motility mode [58]. A particu-
larly striking example is the transition from mesenchymal to amoeboid migration
modes, which can be induced by externally modifying the relative strength of
RhoA and Rac signaling[20, 186]. These two types of motility modes differ pri-
marily in the size and strength of the adhesions and forces developed by cells to
move on a substrate; crucially, the switch between mesenchymal an amoeboid
modes of migrations is an important strategy used by malignant cells for dissem-
ination during the metastasis stage of cancer [187]. This example illustrates the
importance of an aspect of cell migration that has not been addressed by other
theoretical models and that might have important clinical implications. The New
class of polarization models proposed in this Thesis represents a promising step
in the direction of understanding the plasticity of the migration process. Indeed,
the mechanisms governing the mesenchymal to amoeboid transition (MAT) and
the ensuing unrestricted migratory behavior of malignant cells have been related
to the unregulation of signaling pathways associated to RhoGTPase, but identi-
fication of the underlying molecular processes is still at its infancy[66]. It is thus
tempting to draw a connection between the observed plasticity of the cell mi-
gration process and the prediction that a variation in a molecular parameter that
determines kinetic rate of activation results in a qualitative change in the polariza-
tion response from transient to persistent characteristic of amoeboid migration.
Furthermore, the theoretical model suggests that specific mechanism underlying
this process is related to an alteration of the activity of GEFs or GDIs enzymes, a
prediction that could be explored experimentally.

7.2.2 Experimental evidence on RhoGTPase regulation and the
New Class of models

A survey of some of the most recent and conclusive experimental observations
suggesting that our understanding of the RhoGTPase cycle is incomplete is given
in this section. These experimental evidence, in fact, provides compelling support
for the hypothesis underlying the formulation of the new Class of RhoGTPase reg-



196 CHAPTER 7. A NEW CLASS OF RHOGTPASE POLARIZATION MODELS

ulation models, which was been developed on theoretical grounds. RhoGTPase
regulation of the Actin cytoskeleton was discovered in the early nineties by Ri-
dley and coworkers [188]; since then, biochemical studies have revealed the role
played by GEFs, GAPs and GDIs in their activation cycle, and a great number of
their downstream targets and their functions have been identified. These studies
have shown the central part played by RhoGTPases in fundamental processes
common to all eukaryotic cells, such as division, adhesion and migration. This
data has been integrated in a standard model of RhoGTPases regulation, in which
modulation of GEF activity by GTP-bound RhoGTPases is the central channel of
crosstalk[189], as described in the first section of Chapter2.

However, a growing body of experimental evidence points to a more com-
plex scenario, in which GAP and GDI activity are also actively regulated during
the RhoGTPase cycle. GAPs and GDIs have been found to be downstream tar-
gets of GTP-bound RhoGTPase signalling, in what could constitute additional
mechanisms of crosstalk between proteins, in addition to those controlling GEF
activity. An intriguing possibility is suggested by a few observations of GDI
bound RhoGTPases not being biologically inert, so that they could trigger signals
to actively regulate the RhoGTPase cycle[190, 6]. RhoGTPases can also modulate
GAP and GDI activity of its own regulators, which would provide the means for
positive or negative autocatalytic signals, necessary in sustained locomotion and
to terminate a particular process during migration, respectively [191, 68]. There
is also evidence that the specificity of GEFs, GAPs, and GDIs for a particular
RhoGTPase can be altered by their own signals, and furthermore, that they can
act as activators for a certain protein and as inhibitors for another [192]. Thus, the
relevance of these observations to provide an experimental basis for the New class
of models is double: self-regulation of the enzymes associated to a RhoGTPAse
by itself provide a plausible biochemical mechanism from which the functional
form of the Kinetic rates in the New Class of regulation could be derived. Dur-
ing the development of the model, it was mentioned that the adopted Hill-type
form of kA could be a product of GEFs or GDIs acting as homotropic enzymes
for the RhoGTPases, meaning that upon binding between them, a conformational
change of one of the proteins takes place and modulates the affinity to bind third
molecule. Such a mechanism has indeed been reported for the two Cdc42 and
Rac-specific GEFs Pix and Tiam1 [186] and two RhoGTPase effectors PAK and
Wave2, respectively. PAK and Wave2 act as scaffold proteins that promote the
recruitment of the aforementioned GEFsm, but they also are molecules targeted
by the RhoGTPases and activated to perform important functions in cell migra-
tion. Thus, this form of 3-way interaction constitutes a form of self-activation that
facilitates the activation of the RhoGTPases, but also provides a mechanism to
select which of the myriad of RhoGTPase targets is activated.
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Second, the strong evidence summarized above of an active involvement of GDIs
and GAPs in RhoGTPase regulation, auto-catalysis, and competition to bind com-
mon regulatory enzymes, supports the existence of alternative Crosstalk mecha-
nisms, such as those considered in the development of the New model Class due
to strictly theoretical grounds.

Certainly, these observations suggest a more complex RhoGTPase cycle, but
the void in our understanding of their regulation may be even more profound.
The results of experiments with recently available RhoGTPase Knockout Mice are
often contradictory to those obtained from studies based in over-expression of
exogeneous RhoGTPases mutants [65]. Over-expression experiments consists in
the transfection of cellular lines with Double-Negative or Constitutively Active
RhoGTPases, which inhibit or overstimulate RhoGTPase signalling, respectively.
The observation of how a particular RhoGTPase mutant affects cell behaviour
and the activation levels of other proteins is then used to infer its function and
interaction partners. Conversely, in Knockout Mice experiments, iRNA is em-
ployed to silence the genes associated to the expression of an individual protein.
A recent study using this technique to block RhoGDI1 expression showed that
in the absence of this protein, the fraction of RhoGTPases in the cytosol is tar-
geted for rapid degradation [78]. This result suggests that the conclusions drawn
from over-expression studies may be flawed, because indirect crosstalk between
RhoGTPases is overlooked. The amount of RhoGDI1 in the cell is approximately
the same as the sum of the total amount of Cdc42, Rac, and RhoA, so that RhoGT-
Pases have to compete to bind GDI. Therefore, over-expression of an exogeneous
mutant of one of them prevents the others from binding the limited amount of
RhoGDI and promotes degradation of their cytosolic fraction and a reduction of
the concentration of the active fraction inserted in the membrane. Consequently,
the effects of over-expressing a single RhoGTPase would not only be associated to
this particular protein, but also to coupled variation of activity levels and concen-
tration of the rest. This form of indirect crosstalk through competitive interaction
compromises the interpretation of over-expression studies, from which much of
our knowledge of RhoGTPase function has been gained in the past. Particu-
larly, some of the inhibiting or activating interactions forming proposed Reaction
Schemes might be an artifact, while the real underlying channels of Crosstalk are
overlooked. More importantly for the purposes of this Thesis, this experiment
provides strong evidence of a specific biochemical mechanism of Crosstalk based
on competitive interactions between RhoGTPases, which is one of the proposed
mechanisms of RhoGTPase interaction in the New Class of Regulation models.

Further exploration of the ideas discussed in this Thesis to interpret the data
obtained from new experimental techniques [186], which allow the observation
of RhoGTPase signaling with spatio-temporal resolution, might aid to extend our
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understanding of the mechanisms underlying RhoGTPase regulation and address
the current difficulty in integrating the observations from over-expression studies
and knockout mice.

7.3 Migratory Response to external stimuli

In this section, a member of the new Class of RhoGTPase polarization models is
integrated with the mechanical module developed in Chapter 3 to describe cell
migration. Discrete adhesive contacts are not considered: the external stimuli
represent a chemotaxis-inducing gradient and the predicted migratory response
will be compared with qualitative features of cells using amoeboid motility. This
mode of migration is typically used by keratocytes, leukocytes and neutrophiles;
is characterized by the absence of mature adhesions from which cells pull on
the substrate and a characteristic cell-type dependent shape. The movement is
powered by propulsive o pushing forces and the cells adopt a rounded, fan-like
morphology during their gliding motion[58].

The coupling between the Regulatory and Mechanical model occurs through
the determination of the protrusive and contractile forces by the RhoGTPAses
as explained in Chapters 2-3. The strength of RhoGTPase signaling setting the
magnitude of the forces is described using a functional form similar to that used
in eq.7.12 to model the strength of Crosstalk. According to the experimental
evidence, the protein assumed to control the level of contraction force is RhoA,
whereas the protein that determines the protrusion force is Rac. Therefore, at any
point inside the cell body in which the activation level of RhoA is higher than
the equilibrium concentration, the force contraction force is switched on. The
mathematical description of the contraction law τcont(r) was given in 3.23. As-
suming that the contraction force is isotropic, the general law is then reduced to
τcont = τcont(ρ) · [ 1 1 0 ].

τcont(ρ) = τprot
0 ·

(ρa − ρ0
a)2

α2
P + (ρa − ρ0

a)2
(7.18)

The protrusion force tprot(r) described by the law given in eq.3.24 results in a
force normal to the plasma membrane triggered at those points on the cell bound-
ary where the concentration of Rac is higher than the equilibrium concentration.
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tprot(r) = Pprot
0 ·

(ra − r0
a)2

α2
C + (ra − r0

a)2
· n̂ (7.19)

The parameters τcont
0 and Pprot

0 set the maximum magnitude of the stresses ex-
erted by the cell. According to experimental evidence, they are of the order of
∼ 1 − 10nN/µm2, depending on the cell types and migration mode [193].

The parameters defining the constitutive equation of the cell cytoskeleton
3.22 and the cell substrate interaction are taken from the values adopted in the
1-dimensional models by Gracheva-Othmer[95],and Larripa-Mogilner[96], and
experimental references therein.

Table 7.2: Cell constitutive parameters

Parameter Physical Meaning Value

E0 Cytoskeleton elastic modulus ∼ 10 nN
/
µm2

µ0 Cell viscosity ∼ 1 − 10 nN · s
/
µm2

β Cell-substrate friction ∼ 0.5 − 1 nN · s
/
µm3

h0 Cell height 0.1µm

Pprot
0 Protrusion stress ∼ 10nN/µm2

τcont
0 Contraction stress ∼ 10nN/µm2

For the first set of simulations, the cell cytoskeleton is described as an isotropic
viscoelastic solid, and consequently the stiffness matrix is defined by the elastic
modulus given in the previous table and the isotropic stiffness matrix 3.17.

Interestingly, the simulations show that a variation of the ratio of τprot
0 to Pprot

0 ,
crosstalk, and the rheological properties of the cell, allows to predict qualitatively
different morphologies adopted by the cell that have a remarkable resemblance
to the characteristic shapes featured by cells of different types during migration.

In addition, the cell is assumed to be totally incompressible, so that in expand-
ing (contracting) areas the cell height is reduced (increased) to conserve the vol-
ume. As a consequence of this choice, the dilution term in the Reaction-Diffusion
equations describing RhoGTPase distribution vanishes. The fundamental differ-
ence is that in the incompressible case the concentration of proteins is not altered
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by volumetric changes in expanding or contracting areas, while in the compress-
ible case the expansion (contraction) has associated a small decrease (increase) in
the concentration, but otherwise the results are qualitatively similar. Finally, the
migration model is fully defined assuming Model A as the Reaction scheme for
the RhoGTPases. The predicted migration response of this model to a transient
linear stimulus is shown in the following figure. For each time-frame, the stimu-
lus profile, cell shape, and polarization forces are depicted in the upper windows,
and the RhoGTPase distribution is depicted in the lower windows:

t = 0.3min. xcell = 0µm t = 0.4min. xcell = 0.1µm t = 0.6min. xcell = 1.6µm

t = 0.9min. xcell = 4.3µm t = 1.2min. xcell = 5.7µm t = 1.5min. xcell = 8.2µm

t = 5.0min. xcell = 21.0µm t = 10.0min. xcell = 35.2µm t = 15.0min. xcell = 49.4µm
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t = 25.0min. xcell = 77.8µm t = 35.0min. xcell = 104.8µm t = 45.0min. xcell = 131.7µm

t = 55.0min. xcell = 158.6µm t = 65.0min. xcell = 185.6µm t = 72.8min. xcell = 206.4µm

Figure 7.12: ⊗ Persistent amoeboid motion

The polarization process occurs analogously to the examples in which move-
ment was not considered. In this case, however, as the RhoGTPases become
asymmetrically distributed and their activation levels overcome the equilibrium
values, protrusion and contraction forces are developed at the areas where Rac and
Rho are higher, respectively. The polarization process is completed after approx-
imately 2 minutes, corresponding to the first 6 snapshots of figure 7.12. During
this process, the area that will become the cell front, where Cdc42 and Rac are
activated, is extended due to the development of protrusion forces, whereas the
opposite end, which will become the trailing edge, starts retracting due to rise of
contraction forces associated to RhoA activation. After approximately 5 minutes,
the cell reaches a steady state morphology characterized by a broad, fan-like front
and a smaller rounded trailing edge. The shape adopted by the cell during its
movement has a remarkable resemblance with the teardrop morphology adopted
by Dyctioselium cells [3], neutrophiles and other cell types that use an amoeboid-
based mode of migration[7]. The migration speed has been approximated as the
velocity of the cell centroid. The high initial velocities are a product of the cell
being deformed, which leads to an advance of the centroid but little net forward
movement. However, as the cell reaches the final equilibrium shape, the velocity
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is stabilized at ∼ 3µm/min., in agreement with reported values of fast migrating
amoeboid cells[46]. The cell-substrate friction and protrusion force magnitude
are the key variables that determine migration speed. Since Model A is the un-
derlying Reaction scheme, the polarization state is persistent, and consequently,
the cell maintains its direction of motion after the stimulus is removed. Reduction
of the value of Cdc’s Velocity of autocatalysis given in 7.1 to γC = 10 results in a
Reaction scheme that produces transient states of polarization. In this case, under
the same stimulus and using the same values for the rest of the parameters, the
migration response is accordingly transient:

t = 0.26min. xcell = 0µm t = 0.4min. xcell = 0.1µm t = 0.56min. xcell = 1.6µm

t = 0.96min. xcell = 4.3µm t = 5.0min. xcell = 20.9µm t = 12.0min. xcell = 40.1µm

t = 19.0min. xcell = 57.7µm t = 25.0min. xcell = 72.2µm t = 33.0min. xcell = 82.3µm
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t = 38.0min. xcell = 85.7µm t = 42.0min. xcell = 87.9µm t = 47.0min. xcell = 90.1µm

t = 52.0min. xcell = 91.2µm t = 58.0min. xcell = 91.1µm t = 85.8min. xcell = 91.1µm

Figure 7.13: ⊗ Transient amoeboid motion

Again, it must be emphasized that the variation in the migratory response re-
sults form the continuous variation of a single parameter. Moreover, the last two
simulations represent only two extremes amongst the possible forms of polariza-
tion and movement that can be captured by the model. For instance, if the Velocity
of autocatalysis of Cdc42 is kept at γc = 10 but the values for Rac and RhoA are
increased to γr, γρ > γ3R , hybrid persistent-transient state of polarization response
are obtained. For instance, setting γr = 12 and keeping the rest of the autoctalysis
constants at values close to γ3R results in a reaction scheme in which only the
polarization of Rac is persistent. If the Maximal Velocirty of autocatalysis of RhoA
is also increased to γr = 20, Cdc42 protein returns to the homogeneous initial
state after the stimulus vanishes, but the proteins controlling the level of forces,
Rac and Rho, remain in the polarized state. The possible interest of this hybrid
states of protein distribution lays in that a cell featuring such a polarization state
would be able to sustain its direction of motion indefinitely if no other stimulus
were applied, but since the sensor protein would return to its initial state, the cell
sensing machinery would maintain its power to detect new stimuli completely
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unaltered7.
The instantaneous velocity of the persistent and transient forms of cell movement
are compared in figure 7.14. The velocity profile of the two modes of migration
is almost identical in the initial migration stage. The two peaks in the velocity
profiles are artifacts caused by the advancement of the cell centroid as a result
of the cell being deformed by protrusion and contraction forces, as mentioned
earlier. The first peak is associated to the extension of the leading edge after Rac is
activated and protrusion forces are developed at the cell front. The establishment
of the polar pattern of RhoA lags behind, and once it is established it triggers
the contraction of the trailing edge of the cell, which explains the second peak.
Shortly after the cell adopts its equilibrium shape, a constant migration speed is
attained, although in the transient mode of migration the velocity starts decaying
when the polarized state fades (after approximately 15 minutes.).

Figure 7.14: Migration speed approximated as the velocity of the cell centroid.
Black: Persistent migration. Red: Transient migration

In both cases, the migration speed is an increasing function of the magnitude
protrusion force Pprot

0 and a decreasing function of the cell-substrate friction β.

7The simulation displaying this form of migration is not shown in the main text, but can be
found in the movies of the accompanying CD
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This result is not in agreement with the observed biphasic relationship between
speed and adhesion strength featured by many cell types. It is a well established
experimental fact that cell speed is fastest at intermediate levels of cell-substrate
adhesion strength, and it decays for very large or very low adhesive strengths
[194, 195]. This limitation of the model was entirely expected, since in this chap-
ter only a continuous drag between the cell membrane and the substrate has been
considered, without including the adhesion apparatus of the cell. The biphasic
relationship between migration speed and cell-substrate adhesion strength stems
from the balance between the need to establish sufficiently strong attachment
points to exert traction and protrusion forces in order to pull the cell body for-
ward, and the increasing difficulty of releasing these contacts as the cell-substrate
adhesion strength is high. In a seminal paper that represented one of the first
attempts to formulate a detailed model of cell migration, DiMilla an coworkers
[94] predicted the existence of the biphasic relationship using a simplified version
of this ”physical” principle, which was later confirmed in experimental essays.
More recent experiments, however, have shown that the underlying mechanisms
are more complex and involve also the RhoGTPases and differential activation of
myosin contraction [196, 197]. In addition, the simple yet insightful 1D model
of DiMilla, in which no regulatory network was considered, movement was in
fact a result of prescribing an asymmetry in the adhesion strength along the cell
(either assuming an increasing concentration or increasing strength of receptors
toward the cell front), which combined with uniform contraction leads of course
to forward advancement of the cell center of mass. These important aspects of
cell migration will discussed in more detail later in section 7.4 and in Chapter 8,
where Focal adhesions are incorporated into the model.

7.3.1 Simulation of Chemotaxis essays

The focus is next turned to recapitulate the migratory response of cells in realistic
chemotaxis essay conditions. A classic chemotaxis experiment, as discussed in
section 5.1.3, consists in the release of a certain a diffusible chemoattractor with
a pipette or from punctual hole in the chamber where the cells are cultured.
As the molecule spreads over the chamber, the cells detect the gradient and
start migrating towards the source. The spatio-temporal concentration of such a
molecule is given analytically in eq.5.1 and corresponds to a gaussian that decays
over time with its maximum centered at the release point. The amount of ms

chemoattractor released is set so that if it were homogeneously distributed over
a 200µm x 200µm square containing the cell, the concentration would be 10-fold
times the parameter Ψ0 that sets the sensitiveness in eq. 7.16. The diffusion and
decay constants of the chemoattractor are set in the range of ds = 1 − 100µm2

· s−1
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and ks = 0.1 − 0.01s−1. The value of ds determines how fast the concentration
of the chemoattractor becomes homogeneous, and hence the steepness of the
gradient that reaches the cell. The values studied range from the small diffusion
constant of the RhoGTPases in the membrane to the large values characteristic of
a small protein in water, without significantly affecting the capacity of the cell to
detect the gradients and polarize along the direction of steepest growth. The next
simulation shows the response to 3 consecutive releases from sources separated
approximately 100µm from the cell. The Reaction Scheme is again a persistent
form of Model A and the chemottractant parameters correspond to the values in
the lower bounds given above.

Figure 7.15: ⊗Persistent migration following chemoattractant releases at t1 =
1.7min. , t2 = 33.3min. and t3 = 66.6min. from different point-sources.

Several features of the simulated response stand out for their qualitative faith-
fulness with the observed behavior of chemotactic cells. First, the remarkable
capacity of the computational cells to pick up shallow gradients and align the polar-
ization axis in the direction of the source. This feature has been tested performing
multiple simulations with variations in the distance to the point-sources



7.3. MIGRATORY RESPONSE TO EXTERNAL STIMULI 207

t = 66m 4s t = 66m 47s

t = 67m 3s t = 67m 13s

t = 68m 50s t = 76m 40s

Figure 7.16: ⊗ Realignment of polarization axis after new stimulus S3



208 CHAPTER 7. A NEW CLASS OF RHOGTPASE POLARIZATION MODELS

and chemoattractant parameters; the animation of this and similar computa-
tional experiments not shown in the main text can be found in the accompanying
CD. Second, the process of realignment of the axis of polarization when a new
stimulus release occurs and reaches the cell moving away from the new source.
This process occurs twice during the simulation shown in figure 7.15, first at
t2 = 33 min when S2 is released while the cell is moving rightwards and later at
t3 = 66.6 min. as the cell is moving diagonally to the upper-right corner of the do-
main and S3 is released. The realignment event corresponding to this last switch
is shown in detail in figure 7.16. As the front of the new stimulus S3 hits the side
of the cell, relative to the current axis of polarization, a new area of high Cdc42
activation is developed and coexists with the preexisting one. Gradually, the new
zone of high activation grows, depleting the reserve of inactive protein that sus-
tains the zone of high activation of the area that marked the old cell front, so that
as the new zone is reinforced the preexisting one is weakened. Simultaneously,
crosstalk signaling triggers an increase in Rac activation and a decrease in RhoA
in the newly excited area, which by the same depletion mechanism that applies to
Cdc42 also leads to the reinforcement of the new activation zones of Rac and RhoA.
This process is completed after approximately 3 minutes, when the old areas of
high activity are suppressed and the new areas of high and low activation are
established. Concomitant to this process, the protrusion and contraction forces
evolve according to changing distribution of the RhoGTPases and the old areas of
protrusion and contraction fade away and are replaced by a new lamellipodium
and contractile tail. Once the realignment of the polarization axis is completed
and the level of force reaches a steady state, the cell recovers the teardrop shape
and resumes its motion toward the source of the new stimulus.

Indeed, this is the way in which this process takes place in most types of real
cells [5, 3, 4], as opposed to performing U-turns or maintaining the coexistence
of several activated zones. This result is particularly relevant to interpret the
experimental findings of a recent and fascinating study of the mechanisms of
Cdc42 polarity in buddying yeast [4], which in turn provide convincing support
for the ideas presented in this Thesis. Before entering in the discussion of these
experimental observations, the results of another computational experiment are
shown in figures 7.17-7.18 to better illustrate the dynamics of the process of po-
larization realignment. In this case, the spatial source of the consecutive stimulus
is prescribed so that the second stimulus hits the cell from behind and the third
laterally. The cell first detects and follows a trajectory towards stimulus S1, re-
tracing its path after S2 reaches the cell from behind and then making a diagonal
turn to the right in pursue of S3.
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(a) Cell Trajectory between release of S1 and release of S2

(b) Cell Trajectory between release of S2 and release of S3

Figure 7.17: ⊗Persistent migration following chemoattractant releases at t1 =
2min. , t2 = 72min. and t3 = 140min. from different point-sources.

The dynamics of the RhoGTPases during the timespan between the discharge
of S2 and the realignment event is completed are shown in detail in figure 7.20.
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t = 72m 6s t = 72m 22s

t = 72m 25s t = 72m 30s

t = 73m 0s t = 74m 0s
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t = 55m 0s t = 76m 1s

Figure 7.18: ⊗ Realignment of polarization axis after release of stimulus S2

In the previous simulation it can be appreciated how the new zones of acti-
vation grow at expense of the old ones. A central question in cell polarization
is related to the mechanisms that control the establishment of a single zone of
growth. In a recent and exceedingly interesting study of Cdc42 polarization in
Saccharomyces cerevisiae, conclusive evidence was found that cell might initiate
several clusters of high Cdc42 activation, but competition between the distinct
zones for a limiting factor eventually produces a single winner and suppresses
the rest [4]. Moreover, they found that the growth of the different Cdc42 clusters is
fueled by an autocatalytic loop and describe the underlying biochemical process,
which provides an interesting interpretation of the RhoGTPase model proposed
in this Thesis in terms of experimentally observed molecular mechanisms. The
autocatalytic loop comprises the scaffold protein Bem1p binding a GEF specific for
Cdc42 to the kinase PAK. This Bem1p−GEF−PAK complexes diffuse fast in the cy-
tosol, but since PAK is a molecule with a strong affinity to bind active GTP-bound
Cdc42 inserted in the membrane, the complexes are recruited in the preexisting
clusters of high concentration of Cdc42 − GTP and the GEF in the complex pro-
motes further activation of neighboring GDP-bound Cdc42. Thus, this process
constitutes the basis for both the autocatalytic loop that allows the emergence of
clusters of high Cdc42 activation and a mechanism to enforce the ”singularity of cell
polarization”[4], because competition for the limited amount of Bem1−GEF−PAK
complexes ensures that a single winning cluster emerges. Certainly, there might
be other biochemical processes involved, but this mechanism provides an excit-
ing interpretation of the Reaction term of the RhoGTPase model derived at the
beginning of this Chapter on purely theoretical grounds. Particularly, it provides
a biochemical basis to support the proposed form of the kinetic rates of activation
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given in eq.7.10. The sigmoidal form of kA = kGEF
· kGDF/(kGDF + kGDI) would stem

from the GEF mediated autocatalytic loop. In addition, the mechanism of compe-
tition for limited resources of regulatory enzymes between different zones of high
activation of Cdc42 suggests that this mechanism might also operate to mediate
Crosstalk between RhoGTPases. Two mechanisms of Crosstalk have been consid-
ered in the model, one channeled through variations of the Michaelis constants
κr that would result from this type of competitive interactions; and another in-
cluded through variations in the autocatalysis velocities γr that could result from
non-competitive interactions and for which there is also substantial evidence.

Even though the changes in concentration and limited amount of GEFs and the
rest of the regulatory enzymes has not been considered, the model reproduces the
coexistence, competition and eventual survival of a single activation zone through
the related mechanism of depletion of inactive RhoGTPases. The timescales pre-
dicted by the model to resolve the conflicts between coexisting zones of activation
are of the order of a few minutes, consistent with the reported experimental val-
ues in this [4] an similar studies of polarity reversal [5, 3]. However, depending
on the specifics of the stimulus, such as the distance from the source of release
to the cell, or the amount of chemoattractant discharged, interesting variations
in the dynamics of polarization predicted by the model can be observed. For in-
stance, when the amount of chemoattractant deployed is very large or the source
of release is very close to the cell, the stimulus still reaches first the edge closer
to the point of release, but as it propagates it floods the whole cell, which is tem-
porarily exposed to a large an almost uniform concentration of stimulus. In this
case, it can be observed that the cell first polarizes towards the stimulus source,
but then it is transiently left in a state of nearly homogeneous high activation for
Cdc42 and Rac and low activation of RhoA when the whole cell is saturated by the
large stimulus. Shortly after, the cell returns to a polarized state pointing towards
the source of the stimulus in timescales of the order of minutes and resumes its
motion in its direction. This behavior is enabled by the property of adaptation
featured by this model, which is defined as the generation of a transient state of
global activation under the exposure to a uniform stimulus that disappears after
the stimulus is removed[1]. In this case, however, the stimulus is not perfectly
uniform, and as the chemoattractant propagates the cell is able to differentiate the
small concentration gradient and instead of returning to the initial homogeneous
state, it returns to the correct polarized state.

This process can be seen in figures 7.19-7.20, showing the result of a sim-
ulation in which migration was triggered by discharges of a large amounts of
chemoattractant released from a distance close to the cell.
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(i) Cell Trajectory between release of S1 and release of S2

(j) Cell Trajectory between release of S2 and release of S3

Figure 7.19: ⊗Migration triggered by large chemoattractant discharges at t1 =
2min. , t2 = 52min. and t3 = 100min.

The detailed dynamics of RhoGTPases polarization, saturation and recovery of
the polarization state directed towards the source of S2 are shown in the following
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figure:

t = 52m 2s t = 53m 3s t = 53m 20s

t = 54m 2s t = 55m 2s t = 58m 4s

t = 68m 2s t = 72m 2s t = 75m 2s

Figure 7.20: ⊗ Sequence of polarization, saturation and repolarization after release
of stimulus S2

Interestingly, a similar behavior was observed in another study of cell chemo-
taxis with Dictyoselium Discoideum cells subjected to changing concentrations of
cAMP chemoattractant released from a micropippette[5]. In this experiment, the
authors studied the dynamics of polarization of PIP3, PI3K and PTEN, which is
a lipid receptor and an associated kinase and phosphatase that are believed to
act upstream of the RhoGTPases in chemotaxis. Exposing the cells to a stimulus
gradient with a temporal component, they observed that ”an entire response ensued
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along the entire perimeter and then PIP3 gradually polarized at the side of the cell facing
the micropipette.” When they brought the micropippete very close to the cell and
quickly discharged the chemoattractant, ”to produce a transient bolus of cAMP, which
saturated cAMP receptors and then allowed the generation of a steady state gradient at a
lower midpoint concentration, PIP3 accumulated throughout the membrane in response
to the uniform stimulus, then disappeared and gradually reappeared as a crescent on the
side of the cell facing the micropipette.” This is indeed the response predicted by the
model, as shown in the figure above. Other observations described in that study
are recapitulated as well: the response to a stimulus depends on the steepness of
the gradient rather than the absolute value of the chemoattractant concentration;
when a cell is exposed to two simultaneous stimulus, it is able to respond on
both ends; and cells described by this model have also been shown to respond
to rapidly changing stimulus. In fact, the authors of the study had previously
proposed a popular theoretical model known as LEGI (Local Excitation-Global
Inhibition) [198] to describe PIP3, PI3K and PTEN polarization in chemotaxis, and
argue against alternative mechanisms on the basis that they can not account for
all the aforementioned observations. The LEGI model is based on the idea that
the occupancy of chemotactic receptors controls two opposing processes: a fast
an localized (slow-diffusing) activation signal proportional to the local fraction of
occupied receptors and a global (or fast diffusing) inhibitor which is proportional
to the global fraction of occupied receptors. The response is then proportional
to the ratio of activator to inhibitor. Thus, gradients of varying slope and mid-
point concentration are detected because activation exceeds inhibition at the cell
front, whereas at the rear the opposite applies. In this way, this elegant mathe-
matical model also leads to perfect adaptation to uniform stimulus, can reproduce
the response to multiple stimulus and is very robust against parameter changes.
However, as pointed out by Jilkine and Edelstein-Keshet [1], LEGI models can
not easily reproduce persistence of polarization and lack the capacity to amplify
gradients. Finally, experimental evidence has cast some doubt on the necessity
of the molecular players proposed to mediate polarization which, perhaps from
a more aesthetic point of view, makes the notion of finding a molecular target
whose activation is proportional to the concentration of an activator and an in-
hibitor somewhat doubtful.

In their comparison of alternative models of cell polarization[1], Jilkine and
Edelstein-Keshet also indicate a number of limitations in models using a wave-
based mechanism to reproduce polarization. First, they note that in wave-based
models the activation at the front is independent of the strength of the stimu-
lus. This is true for Mori’s conceptual model of a single RhoGTPase [134] and in
Jilkine’s model of the three proteins[72], but not for the model presented in this
Thesis. The external signal Ψ(x, t), representing in this Chapter the actual con-
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centration of a chemoattractant ρc(x, t), is transduced to the RhoGTPase signaling
network through the sigmoidal input function s[ρc(x, t)] defined in eq. 7.16. It
models the strength of the modulation of RhoGTPase activation by a primary
layer of cell receptors and is assumed to follow Hill-like kinetics. In Mori’s and
Jilkine’s models, the activation rate of the RhoGTPAse is increased proportion-
ally to the magnitude of the external signal without further amplification, and
the response is essentially independent of its strength. Conversely, in the model
presented here the signal is amplified by the input function, but in addition it is
assumed to enter into the RhoGTPase pathway through a modification of either
the Maximal Velocity of autocatalysis γr or the Michaelis-Menten constant of the
sensor protein. Hence, this hypothesis leads to both amplification of the external
signal and a nonlinear response that increases with its strength. The increase is
bounded due to the functional form of s[ρc(x, t)], which could be easily amended
by changing the ratio of the exponents in its definition; however, it seems reason-
able to assume that the capacity of the cell receptors to transduce external signals
of increasing strength saturates above a certain threshold. The second drawback
is related to the long time taken by the wave-based models to resolve multiple
peaks of activation. They notice that this process can be accelerated by including
additional components in the network. Since Mori’s model describes a single
protein, Crosstalk is not considered. In Jilkine’s model, the existence of Turing
solutions and the form of the Reaction scheme interfere to slow down transition
between states. In the model proposed in this Thesis, the amplification mecha-
nism and Crosstalk consistent with the Po structure of the Reaction Graph lead to
the faster resolution of multiple zones of activation. Related to this point, it can
be shown that alternative Reaction Graphs with additional interactions between
the proteins can boost this process.

Model B Model C

Figure 7.21: Alternative Reaction Schemes for the RhoGTPases with additional
inhibitory interactions from RhoA

The Graphs depicted above, which include inhibitory interactions from RhoA
to the other proteins, maintain the qualitative behavior of the scheme labeled
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as Model A and shown in fig.7.6. Both schemes polarize and resolve multiple
zones of activation faster than Model A. An important difference is that Model C
displays a slightly reduced sensitivity to secondary stimulus reaching the cell from
the rear because the sensor protein Cdc42 is inhibited by RhoA. Also, the existence
of a direct mutual inhibition cycle in Model C abolishes the capacity to produce
transient polarization states. The Jacobian associated to this Reaction scheme
is P0 despite containing a positive feedback cycle, and hence Turing Patterns
do not emerge. Under some combinations of stimulus releases from different
spatial sources, however, complex spatio-temporal patterns of activation and
oscillations of the proteins emerge, although the polarized state is eventually
reached as well. As stated in Chapter 6, it would be interesting to pursue in
the study of the relationship between the Reaction Graph structural properties
and complex dynamics of the reaction-diffusion network such as oscillations and
activations pulses. This might be particularly fruitful to interpret the wealth of
data obtained from new imaging technologies that allow to observe the spatio-
temporal dynamics of RhoGTPase signaling in real time with micrometer scale
resolution, from which a more dynamically rich scenario than the classic view of
Cdc42 and Rac activated at the front and RhoA at the rear is emerging[186]. This
section concludes with a computational experiment performed to demonstrate
the capacity of the model to discriminate conflicting gradients. This time, two
slightly different amounts of chemoattractant are discharged simultaneously from
two points situated at angles of 45◦ and the same distance from the cell. The
quantity of chemoattractant released only differ in 10%, the diffusion and decay
constants of the molecule are set to ds = 100µm2

· s−1 and ks = 0.05s−1, so that the
resulting gradients are very shallow. The dynamics of RhoGTPase polarization
are shown bellow.

t = 3m 32s t = 4m 15s
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t = 10m 1s t = 15m 1s

t = 18m 0s t = 19m 0s

t = 20m 0s t = 22m 1s

Figure 7.22: ⊗ Y-shaped extension and subsequent dominance of pseudopod
closer to larger stimulus
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The release of the two stimulus triggers the emergence of two symmetric zones
of activation of Cdc42 and Rac at the cell front. Protrusion forces developed at
these sites result in the cell forming two symmetric extensions of the leading edge
pointing at the two stimulus sources, reminiscent of the shape of pseudopodia.
The bipolar pattern reflects the two conflicting signals detected by the cell, and
during the first 10 minutes the cell advances along the straight line equidistant
from the sources of the stimulus. Eventually, the process of competition between
activation zones leads to the gradual reinforcement the activation area closer to
the stronger stimulus and suppression of the other. Thus, the pseudopodia-like
extension associated to the weaker stimulus retracts and the cell follows an arching
trajectory towards the source of the stronger signal.

Figure 7.23: ⊗ Cell Trajectory after discharging simultaneously two stimulus with
only a 10% difference in chemoattratant amount

The former computational experiment illustrates the outstanding capacity of
the model to discriminate shallow gradients. It must be noted that as the chemoat-
tractants spreads, the relative difference in steepness of the concentration gradi-
ents decreases over time. This result is particularly interesting in the context of
another experimental study that aimed to asses the role pseudopodia in non-
stimulated cell migration[199]. Pseudopodia are actin-rich protrusions formed
randomly at the periphery of migrating cells in the absence of stimulation, but
whose size and dynamics of formation becomes biased in the presence of chemoat-
tractants or other external cues. In this study, the authors developed a novel tool
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to track the position, size and frequency of formation of pseudopodia and studied
the correlations with the direction of movement of starved Dictyoselium Discoideum
cells. They observed the formation of two type of extensions in the absence of
external signals: de novo pseudopods, which form randomly throughout the pe-
riphery of the cell, and pseudopods formed by a 60◦ split from the base of an
existing pseudopods.

One of the main conclusions of this experiment is that there is a correlation
between the ratio of the two types of pseudopods and the persistence of migration
in a fixed direction. De novo pseudopods are associated with sudden switches of
direction, whereas a high proportion of pseudopods formed from existing ones
are associated to straight runs in one direction. Even though the study did not
deal with gradients of chemotaxis inducing factors, this result lead them to raise
an interesting question related to the mechanisms underlying this form of migra-
tion: is the biased migration along a chemoattractant gradient related to a shift in
the frequency an location of pseudopod formation or is it related to some other
alternative mechanism?

The results of this Chapter allow to suggest an alternative scenario: Chemo-
taxis could be attained without biasing the basal random rate or location of pseu-
dopod formation, but simply by inducing the repression, by the mechanism of
depletion described previously, of those extensions that are not favored by the
external gradient. The coincidence of the direction of migration and the location
of splitting pseudopodia would stem from the fact that the sustained extension of
the surviving pseudopods gives enough time to the actin-filaments that constitute
them to undergo the process of filament branching that is intrinsic to their poly-
merization dynamics. Consistent with this idea, well established experimental
facts[47, 200] and biophysical models [201] show that actin-filament branching oc-
curs at orientations of ±35◦, which is indeed similar to the observed orientation of
pseudopod splitting reported in [199]. Furthermore, the idea proposed is backed
by the observations reported in [2] that the location and direction of pseudopods
is not oriented nor biased by chemtacttracctants in cells migrating along a gradi-
ent, and that ”directional sensing is mediated by maintaining the most accurate existing
pseudopod, rather than through the generation of new ones”8. A plausible mechanism
to achieve exactly that, by repression of the unfavorable extensions at the expense
of those closer to the chemoattractant source, is suggested by the predictions of
the model presented.

8In addition, they found that PI3K affects the frequency of pseudopod formation but not the
accuracy of pseudopod selection and thus is not necessary for chemoattractant gradient sensing.
This reinforces the notion that LEGI models[198, 5], while being an elegant gradient sensing
model, relay on an hypothetical diffusible inhibitor whose existence is doubtful. After decades of
research, it remains elusive[202]
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7.4 A short digression on Cell Polarization and the
Physics of Cell Migration

7.4.1 On cell polarization and gradient sensing models

The predictions and properties featured by the model derived in the present Chap-
ter are discussed in the context of other proposed theories of cell polarization and
gradient sensing. It has been shown that the model can reproduce all but one of
the properties characteristic of most forms of cell migration, as defined in a com-
prehensive comparison of theoretical models of polarization found in [1]. The
scope properties that can be recapitulated is not equaled by any other class of the
models analyzed. Particularly, the model presented in this Thesis can reproduce
persistent and also transient migration by a simple shift of the parameter that sets
the magnitude of the autocatalytic loop of the protein controlling the emergence
of polarity. This is an attractive feature, in line with the notion of plasticity of cell
migration that states that different types of movement form part of a continuum
powered by the same underlying mechanisms[58]. The model is also endowed
with the property of high amplification of external signals, which combined with
the fact that wave-based models do not require feedback loops to maintain po-
larity result in the model also featuring reversible polarization when new stimulus
are applied and high sensitivity to rapidly changing signals. The model has also
been shown to feature multi-stimuli response and adaptation to uniform stimulus.
Intriguingly, the last property is not assigned to wave-based models in the com-
prehensive classification of theoretical models of cell polarization by Jilkine and
Edelstein-Keshet [1]. This is most likely due to the fact that they analyze the
behaviour of the model’s by Jilkine[72] and similar models [176] as representative
of the rest of models of this class. In the case of Jilkine’s model, lack of adap-
tation is associated to the fact that polarization is sustained by the existence of
strong feedback interactions between the proteins, which tend to lock the system
when it reaches a polarized or excited state. Direct, mutually inhibiting strong
interactions also account, as discussed in Chapter5, for the defective reversible po-
larization showed when new stimuli are applied. The model derived in this Thesis
bypasses this requirement by assuming autocatalytic loops in the kinetics of each
RhoGTPase, for which there is compelling experimental evidence. In addition,
Jilkine’s model is not strictly a wave-based model, because the form of Crosstalk
proposed allows the emergence of Turing patterns that might interfere with the
dynamics of the system. The last property defined in [1] is that of spontaneous
polarization. Many cell types are known to polarize in the absence of external cues,
whereas the model presented in this Thesis remains in the initial unpolarized state
in these conditions. Spontaneous polarization is likely to stem from an stochastic
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element in the cell polarization process, such as small fluctuations in the kinetic
rates of the molecules involved in the underlying biochemical reactions[167]. The
model presented here does not contain any stochastic ingredient, admittedly an
important element of biophysical systems at the cellular scale. However, if such
an ingredient were introduced in the model, spontaneous polarization can be readily
accounted for in the framework of the New Class of polarization models. Intro-
ducing a random noise in the kinetic rates at every cell point, to represent the
aforementioned fluctuations in the biochemical reactions, it can be shown that
the cell switches from the initial state to an state featuring multiple and randomly
distributed peaks of activations.

t = 12s t = 40s t = 1m 11s

t = 1m 31s t = 2m 1s t = 2m 30s

t = 3m 0s t = 3m 30s t = 4m 58s

Figure 7.24: ⊗ Spontaneous polarization induced by noise
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The maximum amplitude of the fluctuations was set at a tenth of the param-
eter Ψ0 that sets the sensitivity scale to external signals. Amplification of the
noise forces the transition to a state with multiple peaks of activation, but shortly
after the competition process between activation spikes takes over and they coa-
lesce until a well defined polar pattern emerges. Thus, in the framework of the
New Class of polarization models presented, spontaneous polarization emerges if
biological noise above a certain threshold is amplified.

7.4.2 On the physics of migration and cell shapes

The theoretical foundations to develop a regulatory network that features desired
properties as spatio-temporal organizer of cellular activity during migration have
been throughly discussed. Important insights for the interpretation of recent
experiments of cell Chemotaxis have been discussed [2, 3, 4, 5]. Three topics,
however, haven been given little attention: the shape adopted by the cell during
its movement, the inclusion of protrusion as a force- boundary condition, and
the differences between assuming that cells behave as an incompressible or com-
pressible material during its movement. They shall be discussed briefly next.
Regarding cell morphology, it has been shown that the shape adopted by the cell
during its movement has a remarkable resemblance with the tear-like adopted
by neutrophile cells. The key hypothesis that lead to such result are the assump-
tion of isotropic cell material properties and contraction, and the hypothesis that
protrusion forces are normal to the membrane. A conceptual model of shape
formation known as Graded Radial Extension model (GRE) proposes that the
fan-shaped morphology adopted by migrating fish keratocytes can be recapitu-
lated prescribing a normal maximum extension at the central point of the leading
edge that continuously decreases toward the sides. Likewise, the shape at the
rear is explained prescribing a maximum contraction at the central point that
decays laterally[7]. Interestingly, the model provides a plausible explanation to
such a spatial dependence: since forces are assumed to be proportional to the
concentrations of proteins and they continually decay from the zone of high to
low activation in the polarized state, such a force profile is obtained naturally.
The only additional assumption is that forces are normal to the cell membrane,
which is justified by the orientation of actin-fibers at the leading edge. Moreover,
a variation between the relative of parameters that control the magnitude of pro-
trusion and contraction forces ( Pprot

0 and τcont
0 ), the degree of anisotropy of the

cell cytoskelton (given by the ratio of Exy/Eyx, see eq. 3.15) allows to recapitulate
different shapes characteristic of other types of cells. Furthermore, the assumed
RhoGTPase crosstalk scheme has also interesting effects on the shape adopted by
the cell as it migrates. It has been mentioned earlier that size of the activation
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and inactivation zones and the level of activation of the proteins at this zones
depends on the assumed crosstalk scheme between the proteins. For instance,
the reaction schemes labeled as Model B and Model C (see fig.7.21), which both
include indirect mutual inhibition between Rac and Rho, lead to sharper tran-
sitions between activation and inactivation zones and higher increase of protein
activation relative to the equilibrium levels, which results in more defined zones
of protrusion and contraction. Surprisingly, as the strength of the inhibition be-
tween proteins is increased this effect is reinforced and allows to recapitulate a
continuous transition from the tear-like shape of neutrophiles to the fan-like shape
of keratocytes (see third row):

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7.25: Cell morphologies recapitulated varying force parameters (first row),
cytoskeleton anisotropy (second row), and Cdc42-Rho mutual inhibition strength
(third row)

This result is exceedingly interesting for two reasons. First, showing that
the shapes characteristic of different migrating cell types can be recapitulated by
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modulating (only) the magnitude of crosstalk between RhoGTPases suggests, to
my knowledge for the first time, an alternative explanation to the one generally
accepted; that is, that the differences result from different levels of protrusion and
contraction forces. The latter is in fact, more an observation than an explanation9:
fan-like cells such as keratocytes and tear-like cells such as neutrophiles are known
to develop different distribution and magnitude of forces during their movement;
the differences in shape are then a consequence of them. But, what about the
underlying cause of the difference in forces developed by different cell types?

Figure 7.26: Crosstalk strength determines RhoGTPase distribution and cell mor-
phology. Shapes characteristic of neutrophiles (upper row) and keratoctyes (lower
row) are obtained for strong and weak crosstalk between proteins.

The result under discussion suggests a plausible mechanism: tuning the
strength of crosstalk between RhoGTPases alters the spatial extent and relative
increase of the activation zones, which in turn results in different distribution
and magnitude of forces developed. This can be appreciated comparing the up-
per and lower rows of fig.7.26, where the two markedly different distribution of
RhoGTPases lead to the keratocyte and neutrophile shapes depicted in fig.7.25 (i)

9A result of this type between forces and shapes was obtained by Vanderlei and coworkers
in [203]. They relay on an altogether different description: the membrane is modeled as tension
bearing structure that interacts with a fluid cytosol and a fluid environment, without including
the cytoskeleton. Experimental evidence does not support such a mechanical role of the plasma
membrane. The second important difference is that the regulatory module consists of a single
protein (i.e no crosstalk) which prevents them to capture the perhaps more interesting relationship
between the RhoGTPase crosstalk and cell shape.
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and (l), respectively. Note that the only parameter changing is the maximum
modulation of the Maximal activation velocities and Michaelis-Menten constants
by Crosstalk10. Differences in the strength of the crosstalk between RhoGTPases
could be mediated by differences between the enzyme activity or concentration
of GEFs, GAPs and GDIs between different cell types; it would be interesting to
explore this idea experimentally. Certainly, there might be additional mechanisms
by which some cell types can develop strong forces that result in high speeds and
fan-like shapes during migration, while others adopt the slow-moving tear-like
shapes characteristic of neutrophiles, but the mechanism discussed entails a plau-
sible and intriguing possibility.
The second reason why this result is interesting is because it connects with the
notion of plasticity [58] that has been emphasized previously: that the observed
variations in motility mode, morphology, adhesivity and other properties that
define the migration of different cell types11 might simply result from the varia-
tion in the relative magnitude of parameters controlling the different modules of
a common underlying machinery.

The next aspect that is discussed is the introduction in the model of protrusion
forces as a prescribed (RhoGTPase dependent) stress boundary condition. A fair
criticism is that adding them in this way is an artifact because in essence amounts
to add an external force, and that it does not consider the reaction forces that
must be sustained by adhesion contacts at the back while actin-filaments push
at the front. This is true, although it can be argued they can be neglected using
the following argument. These reaction forces are channeled by a dense network
of cytoskeleton filaments at the lamellipodia that physically connects the leading
front with adhesion contacts. Hence, as the cytoskeleton becomes more dense an
interconnected towards the rear of the cell, where its linked to adhesion sites, the
reaction forces are effectively distributed amongst many contacts and therefore,
as a first approximation, can be neglected. In any case, a more realistic description
would require a description of the cytoskeleton to a level of detail beyond the fo-
cus of this Thesis. This issue is related to the fact that the model does not capture
the biphasic relationship between cell velocity and adhesiveness of the substrate
discussed previously. It must be said, however, that such a relationship should be
expected of any system relaying on adhesion or friction with surface to move. For
low adhesiveness, rearward traction forces produce small forward reaction forces
required to advance; for high adhesiveness, forward reaction forces are high but
the strong adhesion to the substrate hinders the release of adhesion points. It fol-

10Precisely, shifting the values of |η| = |φ| from 0.125 to 0.75 in eq.7.13 leads from neutrophile to
keratocyte characteristic shapes

11The addition of Focal adhesions, providing points of strong anchorage to the substrate at the
rear of the cell, leads elongated triangular shapes characteristic of fibroblasts.
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lows that there is a optimum range of adhesiveness in between where maximum
velocities are achieved. However, the existence of this biphasic relationship can
be recapitulated once Focl adhesions are added to the description of cell migration
in the next chapter. Further, it will be shown that this relationship does not arise
from simple mechanical principle, but from the complex interplay between the
adhesion an regulatory machinery; a notion that is supported by experimental
evidence [204, 196].

Finally, a brief discussion of the effects of considering the cell an compress-
ible or incompressible material. It has been said that the results obtained with
one or the other alternatives are qualitatively similar. This, however, does not
hold for high levels of protrusion and contraction forces. In this case, the com-
pressible assumption leads to interesting behaviors associated to the effective
dilution of RhoGTPase concentration when the cell extends and the increase in
concentration when the cell contracts. This coupling between the geometrical and
regulatory modules can lead to complex dynamics, such as waves and oscillations
of RhoGTPase concentration and forces. This complex dynamics have not been
investigated further, although they could indeed have an important role in cell
migration. Generally, all the models of cell migration assume the more simple
incompressible assumption, arguing that since the cell is basically a water con-
tainer, it should be nearly incompressible. This is however not necessarily true,
because variations of osmotic pressure and flow of cell content through the per-
meable plasma membrane can certainly lead to volumetric changes. In fact, such
changes have been proved to be relevant for at least two cell processes in recent
studies. The movement of Euglenoids cells, a type of primitive bacteria, relays on
periodic changes of volume and shape to swim at low Reynold numbers[205].
The coupling between cell shape changes and pulsating forces is also central in
the process of dorsal closure during the development of Drosophila embryo[206].
Hence, it would be interesting to further investigate the possible role that this
might have in migration, a topic that, to my knowledge, has been so far largely
neglected.
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I think I must have another go at the
Matterhorn. I have got a most original idea
which I should like to try.

Edward Whymper, illustrator and
explorer

Chapter 8

A new view on cell durotaxis

Any cell type, other than neurons, when cultured on a substrate with a gradient
of rigidity, will migrate in the direction of higher stiffness. This principle, known
as Durotaxis, operates in physiological conditions and has also important impli-
cations in disease[29, 30]. For instance, the elasticity of the extracellular matrix
has recently been found to be a crucial factor specifying the lineage fate of stem
cells [207] and is a central element in the orchestration of embryo morphogene-
sis [208, 209]. Regarding pathologies, numerous observations demonstrate that
the influence of the matrix mechanical properties on growth, apoptosis[41] and
motility [42] of cancer cell is different than in normal cells, which has important
implications for their metastasic potential [32, 43, 44, 45]. New experimental
setups are providing increasingly precise data on the different aspects of the
process, from the relationship between gradient strength, migration speed and
phenotype[13, 37]; the role of adhesions and cytoskeleton dynamics[56, 57]; to the
genes and molecular players involved[210, 38]. Yet, the underlying mechanism
of mechanosensing and durotaxis remains largely unknown.

The evidence gathered proves that Focal Adhesions are the main actors in
the first stage of cell response to stiffness, and a number of different theoretical
models have been proposed to explain how they act as local mechanosensors.
However, independently of the physical or biochemical principle at play, a funda-
mental question has not been addressed either from a theoretical or experimental
perspective: detecting a gradient, mechanical or otherwise, requires by definition
measuring differences in the property being sampled. For the particular case of
cell durotaxis, let this point be made more clear with an idealized depiction of
the process. A cell is plated on a substrate featuring a stiffness gradient, and the
gradient results strictly from mechanical properties; there is no other anisotropy
in the topography or the density of ligands on the surface. Two Focal Adhesions
have been formed at each extreme of the cell body, so that FA1 lays on a position
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of higher stiffness than FA2. The cell tests the substrate by an unspecified process
and each adhesion, by an unspecified mechanosensing process, transduces the
local mechanical information into two signals1 s1 and s2 that elicit a cell response:
migration in the direction of higher stiffness.

Figure 8.1: Detection of a stiffness gradient requires integrating the mechanical
information gathered locally at FAs

Eventually, as the cell moves forward, it reaches a position in which a new
FA′2 lays on the spot where FA1 was before. Again, each Focal adhesion reports
the local mechanical information, but the signal emitted by FA′2 must be exactly
the same sent by FA1 in the previous migratory step. However, since FA′1 has
been formed in a region of higher stiffness than FA′2 , the cell detects the difference
in signals emitted and resumes its motion along the gradient. It follows that
Durotaxis requires comparing the response of Focal adhesions to the mechanical
properties of the substrate, which is precisely the point that was meant to be
emphasized: sensing a rigidity gradient and follow the direction of increasing
stiffness necessarily requires integrating the mechanical information gathered by
the mechanosensors.

Note that this account rests on the following assumptions: Focal adhesions are
the mechanosensors; the signal emitted is determined, at least initially, only by the
substrate mechanical properties and the pulling force exerted by the cell to test the
substrate; and Focal adhesions have no memory. Ample experimental evidence
supports the first hypothesis, as reviewed in [59, 211, 104, 212, 50] and references
therein. The second hypothesis is based on the fact that Focal adhesions are the
link between the cell and the substrate, while the experimental setups used in
Durotaxis essays guarantee that the substrate is homogeneous in any property
aside from stiffness. In addition, the fast characteristic times of FA adaptation to
changes in stiffness of the order of seconds[213, 11] supports that the response,

1The word signal is used as an abstraction of an undetermined reaction undergone by a Focal
adhesion to the mechanical test that allows the cell to determine the local stiffness. It is not meant
to imply any specific form of FA-cell communication, such as a biochemical signal or adhesion
remodeling, since the actual mechanism is not known.
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at least initially, is of purely mechanical nature. During this short time-scale, the
experimental evidence also shows that the process of mechanically proving the
substrate involves a tight spatio-temporal control of the force applied by the cell
at individual focal adhesions [9, 10, 14]. Regarding memory, the assumption rests
simply on the fact that FAs are broken and reassembled as cells move.

Hence, understanding cell durotaxis involves two fundamental questions:
How do Focal Adhesions act as mechanosensors? How do cells integrate the
mechanical information to measure a gradient and migrate along it? A new
hypothesis, based on a simple physical principle, is proposed that might address
them.

8.1 Durotaxis: A simple physical mechanism?

The starting point to introduce the hypothesis is the description of a single Focal
Adhesion developed in section 3.3 of Chapter3. The mechanical state of a contact
is defined by the number of receptors N(t) bound to substrate ligands, the total
force F(t) applied by the cell onto the adhesion, and the stiffness ks(Es) of the
anchorage point. The total force, as derived in eqs.3.37-3.39, determines the force
f (t) = F(t)/N(t) withstood by each receptor, the displacement of the Focal adhe-
sion u − uFA

0 from the anchorage point, and energy eR( f ) stored by each receptor
due to the mechanical stretch. In turn f , u, and eR determine the rates of bond
formation and rupture and thereby the dynamical evolution of the number of
bound receptors N(t) in the Focal Adhesion, according to the governing equation
3.34. The hypothesis on how cell test the mechanical properties of the substrate

Figure 8.2: Schematic description of FA mechanics

is postulated as follows: Cells probe the substrate at each FA independently and in-
vesting a constant power per bound receptor to pull on the substrate. The underlying
molecular process that could bring about such a mechanism can be envisaged in
the following way: in the neighborhood of a Focal Adhesion there is an excess
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of energy-storing molecules, namely ATP, which are consumed at a constant rate
by a contractile structure, namely actin-myosin-II filaments, which are anchored
at the intracellular domain of every receptor engaged to a ligand. Thus, the
mechanosensing hypothesis contains an implicit assumption; that upon the for-
mation of every new pair of ligand-receptor bonds, a traction-bearing structure is
either activated or anchored at the intracellular domain of the receptor in a short
timescale of the order the binding events. Then, this structure initiates an uptake
of energy-storing molecules at a constant rate, determined by the kinetics of the
molecular motor-filament system, and as the filament contracts, a pulling force is
developed. This hypothesis was formulated as plausible theoretical mechanism
that could explain Durotaxis with no regard to experimental evidence. However, a
set of recent experimental studies provide convincing support to its assumptions.
First, a remarkable study using time-lapse traction force microscopy, published
during the completion of this Thesis, has demonstrated that centripetal cell gen-
erated forces pull on each adhesion repeatedly and autonomously, and that this
sampling process is required for Durotaxis[14]. Regarding filament attachment
and force control at the short time-scales required by the hypothesis, the support
can be found in different studies focused on the characterization at single FA level
of force development and myosin-II recruitment in real time. Cell force is found
to adapt to stiffness changes in times samller than 1 second [8, 213, 11], whereas
the rates of recruitment of myosin-II and actin [9, 10] to Focal adhesion sites is
modulated in short-timescales that are also consistent. Time-scales and magni-
tudes of the force ramps in these studies are central to the theory of Durotaxis
developed here and will be discussed later. First, it will be shown that the simple
hypothesis proposed promotes faster and stronger maturation of adhesion sites
on stiffer anchorage points.

Figure 8.3: Focal adhesion nucleation is favored at the stiffer edge of the cell
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Intuitively, this principle can be explained by the fact that the hypothesis pro-
posed leads to faster force build-up, higher energy storage, and smaller separation
from the substrate at the receptors of the Focal adhesion at the stiffer end of the
cell. The proposed hypothesis is expressed mathematically as follows:

p0 =
de
dt

=
d
dt

[
f (t)
2k̄

]
=

f (t)
k̄

˙f (t) (8.1a)

FFA(t) = N(t) · f (t) (8.1b)

The first equation states that the energy spent to pull on each ligand-receptor
pair per unit of time during the mechanical sampling process is constant, with p0

being the intrinsic power defined by the kinetics of the molecular motor-filament
system, k̄ = kP · kS(ES)/(kP + kS(ES)) the compound spring constant of the ligand-
receptor-substrate2, and f (t) the force produced on the ligand-receptor pair. The
second is a consequence of the hypothesis, stating that the total resultant force ap-
plied on each FA is maintained proportional to the number of engaged receptors,
which in turn sustain the loading force determined by the postulated principle.
The time-evolution of force build-up on each ligand-receptor pair is found inte-
grating equation 8.17a.

f (t) =

√
2 · k̄ · p0 · t (8.2)

Given f (t), the displacement from the point where the FA is initially forming

can be derived from eq.3.38 as u(t) − uFA
0 =

√
2p0 · t/k̄, and the mechanical energy

stored on each ligand-receptor pair can be calculated as eP(t) = k̄ · p0 · t/kP from
3.39. This result already shows that force is built faster and that energy storage
increases with stiffness, whereas the displacement from the substrate induced by
the loading force, which hinders the formation of bonds, is lower with higher k̄.

2Introduction of typical values of ES for the Young’s modulus of the substrate and the radius of
an integrin receptor [214, 215] in eq.3.35 to estimate kS(ES) and comparison with measured values
for kP [216] leads to kP >> kS. Since the compound spring constant of two springs in series is
determined by the weaker link, k̄ ≈ ks(Es) largely reflects the stiffness of the substrate.
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The variables defining the mechanical sampling process are scaled using the fol-
lowing argument. In the study of Durotaxis cited previously[14], characterizing
experimentally for the first time the actual process of fibroblasts sampling the stiff-
ness of the extracellular matrix by repeatedly tugging on individual adhesions,
it was observed that the force on each adhesion follows a sequence of periodic
increases in tension and subsequent relaxation. The period of force oscillation is
approximately of 30 − 50 seconds, which suggests that the tugging process has
characteristic duration tcont that may depend on the type of cell. On the other
hand, different cell types are known to thrive in a particular range of substrate
stiffness[217, 218, 219, 220], but when they are cultured in too compliant substrates,
Focal adhesions can not form and the rate of apoptosis is increased[8, 122]. This
suggests that for each cell type there must be a characteristic range of stiffness
where cells can develop an adequate level of tension for the maturation of their
contractile machinery. Let k̄re f be the stiffness at the lower end for viable Focal
adhesions to form in an specific cell type. According to the tugging process de-
scribed above and the constant power hypothesis, during the sampling period
tcont, the cell would develop a force fg = (2 · p0 · k̄re f · tcont)1/2 per ligand-receptor
pair, sufficient for Focal Adhesions to grow and stabilize. The displacement and
energy stored per ligand receptor pair reached at the end of the sampling process
are then given by ug = fg/k̄re f and eg = f 2

g /2kP. The temporal evolution of f (t),
u(t) − uFA

0 , and eR(t) can then be expressed in terms of these parameters as:

f (t)
fg

=
√

k̄
k̄re f

t
tcont

u(t)−uFA
0

ug
=

√
k̄re f

k̄
t

tcont

eP(t)
eg

= k̄
k̄re f

t
tcont

(8.3)

The expression summarizes the core of the Durotaxis principle. The ratio of
these variables at Focal adhesions formed at anchorage points with a difference of
stiffness results in a shift in the rates of bond formation and rupture and thereby
their maturation and stability. It is now possible to return to the conceptual
scenario introduced at the beginning of this chapter and depicted in fig. 8.3 to
illustrate Cell Durotaxis. Indeed, the displacement induced by the pulling force
on FA1 is smaller than in FA2, which results in a higher the rate of bond formation
(see eq.3.31 for W f (u − uFA

0 ) and its derivation). The mechanical energy stored
in the receptor is also higher, so that the level required to trigger the inside-out
mechanism of valency regulation that controls the number of available receptors
at FA1 is reached faster (see eq.3.33 for NT(eP) and its derivation) . Finally, the
loading force per receptor in FA1 is higher than in FA2, which increases the rate of
bond rupture (see eq.3.30 for Wr( f ) and its derivation); however, since the force
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scale f0 required to break the molecular bonds is presumably an order of mag-
nitude bigger than the force fg required to trigger their activation, these effect is
largely offset by the boost in growth associated to the others. Thus, ratio of f (t),
u(t) − uFA

0 , and eR(t) at FA1 and FA2 is given by eq.8.3 as:

f FA1 (t)
f FA2 (t) =

√
k̄1
k̄2
> 1

uFA1 (t)−uFA1
0

uFA2 (t)−uFA2
0

=
√

k̄2
k̄1
< 1

eFA1
P (t)

eFA2
P (t)

= k̄1
k̄2
> 1 (8.4)

In addition, the hypothesis leads to the prediction that a cell laying on a
very soft substrate, so that k̄ << k̄re f would develop a small force f (tcont) << fg

insufficient to promote FA growth, as the experimental evidence proves[8, 122].
Note that this result has been derived assuming the mechanical description of a
Focal adhesion introduced in Chapter3, but it is nonetheless general. The constant
power hypothesis postulated, even in a more complex description, including a
viscoelastic resistance to the pulling force from the membrane or other structures
interacting with the adhesion, leads to the same principle: force and energy
storage are favored at stiffer anchorage points, displacement is smaller. In fact,
the prediction of the constant power hypothesis is also independent of the Kinetic
description of a FA, as long as displacement from the anchorage point reduces the
rate of bond formation, and the scale of the force per receptor that leads to bond
rupture is larger than the force that promotes growth.

8.2 Is cell mechanosesning controlled by strain or
stress? Neither

The notion that Focal Adhesion maturation is promoted by stiffness has been
explained qualitatively. Next, it will be demonstrated analytically studying the
solution of the equation 3.34 governing the dynamics of the number of closed
bonds N(t) in a FA. The results of this section provide a plausible answer to the
first of the fundamental questions stated earlier: How do Focal Adhesions act as
mechanosensors?

The theoretical predictions that result from this analysis are important because
they can be compared with experimental measurements contained in recent stud-
ies [8, 9, 10, 11] of real-time area growth and force development in Focal Adhesions,
including their dependence on substrate rigidity. More precisely, the predictions
will be compared to measurements of Focal adhesion area growth in real time
AFA(t) in [10, 11], total force per focal adhesion in real time F(t) in [9, 11] and
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its dependence on the substrate stiffness[9, 11], traction stress in real time σFA(t)
[10, 11], and its dependence on stiffness [8, 11] and finally, the dependence of the
saturation force Fsat(tcont, k̄) per Focal adhesion on the stiffness[8, 11]. A point that
must be emphasized beforehand: the predictions match remarkably the exper-
imental data gathered from different techniques, substrate elasticity ranges and
cell types. Thus, the mechanosensing hypothesis provides a unifying principle
that allows to explain a wide range of allegedly conflicting data. The disparity
of data has been attributed to differences in experimental set-ups and cell types,
but it also has fueled an ongoing controversy on how cell test the mechanical
properties of the substrate, with essentially two opposing camps defending that
cells either exert a constant displacement-strain[221, 11, 222] or stress [8, 49, 223]
to assess the mechanical properties of the environment. The scope of observations
that can be explained by the hypothesis proposed here, to wit, that cells in fact
spent a constant amount of energy per time pulling on the substrate, has impor-
tant implications for this issue.

The equation derived in section 3.3 for dN(t)/dt is now restated introducing the
force fg, displacement ug and energy eg characteristic of the mechanical sampling
process as the scales for the corresponding parameters determining the rates of
bond rupture and formation. As a reminder, fo is the force scale that determines
the rate of rupture events, uo is the displacement scale that determines the rate of
binding events and e0 sets the energy scale of receptor activation by the postulated
inside-out mechanism of valency regulation3.

fo = λ1 · fg u0 = λ2 · ug eo = λ3 · eg (8.5)

The parameters f0, u0, and eo were derived in terms of the energy landscape
of the ligand-receptor potential and molecular properties of the receptors and
can be estimated from experimental observations[120, 119, 121]. The important
point is their proportionality λ with the characteristic values reached during the
mechanical testing process.

3Adhesion avidity (i.e. strength) is likely controlled by an additional channel of inside-out
signaling to modulate receptor affinity[215, 121], which is assumed to occur downstream of
RhoGTPase signaling. See section3.3 for the discussion of the molecular mechanisms postulated
that result in a dependence of fo(r) and uo(r) on RhoGTPase signaling. This process, however, takes
place on a longer time-scale than that of the mechanical sampling process and is not necessary to
demonstrate the principle. Modulation of integrin affinity by inside-out signaling will have an
important role as a mechanism to amplify rigidity gradients, as shown in the next section where the
mechanosensing hypothesis is implemented in the migration model to investigate Cell Durotaxis.
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Introduction of these definitions in the equation governing the evolution of N(t)
leads to4:

dN(t)
dt

= −w0 e
f (t)
λ1 fg ·N(t) + w′0 e−( u(t)

λ2ug )2

[NT
eP(t)

eP(t) + λ3eg
−N(t)] (8.6)

As explained earlier, a condition for the Durotaxis principle to work is that
λ1 >> 1, so that the force required to break a ligand-receptor bond is larger than
the forces reached during the mechanical test. λ2 and λ3 are assumed to be close
to ∼ 1, so that the cell is sensitive to the dispalcements and forces developed
during the mechanical sampling process. The intrinsic rate of bond formation is
expressed in terms of the intrinsic rate of bond rupture as w′0 = w0 ·α; where α ∼ 1
but is kept to maintain the analysis as general as possible. The analysis of eq.8.6
is divided in three timescales defined by 1 ∼ w0 · t << w0 · tcont, 1 < w0 · t < w0 · tcont

and w0 · t ∼ w0 · tcont. The first two time-intervals correspond to an intermediate
period, longer than the time required for rupture and binding events to occur but
smaller than the characteristic time of the mechanical sampling process, so that
f (t) < fg << λ1 · fg, u(t) < ug and eP(t) < ug. Conversely, for t ∼ tcont the mechan-
ical sampling process is near its end and the variables fulfill f (t) ∼ fg << λ1 · fg,
u(t) ∼ ug and eP(t) ∼ eg.

The analysis starts in the intermediate time-scale of the sampling process, in
which the variables that determine FA dynamics are small, so that according to
equations 8.3 the terms in eq. 8.6 that modulate the kinetic rates can be approxi-
mated as:

e
f (t)
λ1 fg ≈ 1 e−( u(t)

λ2ug )2

≈ 1 eP(t)
eP(t)+λ3eg

≈
1
λ3

k̄
k̄re f
·

t
tcont

(8.7)

Introduction of this approximation in eq.8.6 leads to:

dN(t)
dt
≈ −w0 ·N(t) + α · w0(NT

1
λ3

k̄
k̄re f

t
tcont
−N(t)) (8.8)

4The point of formation of the FA has been considered to take place at u = 0 to alleviate the
notation, so that u(t) − uFA

0 = u(t).
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This equation has the following analytical solution[127, see chapter 8]:

N(t)
NT
≈

1
λ3

k̄
k̄re f

α
(1 + α) 2

1
w0tcont

(w0(1 + α) t + e−w0(1+α) t
− 1) (8.9)

which already shows that the number of closed bonds is an increasing function
of the stiffness of the substrate. Particularly, for the time-scales 1 ∼ w0 ·t << w0 ·tcont

and 1 < w0 · t < w0 · tcont, the number of closed bonds goes as:

N(t)
NT
∼


1
λ3

α
2

k̄
k̄re f

w0·t2

tcont
1 ∼ w0 · t << w0 · tcont

1
λ3

α
(1+α)

k̄
k̄re f

t
tcont

1 < w0 · t < w0 · tcont

(8.10)

The ratio in the number of closed bonds between two adhesions anchored at
points with different stiffness can be calculated from this result, which in both the
short and intermediate time-scale of FA maturation goes like:

N1(t)
N2(t)

≈
k̄1

k̄2
(8.11)

It follows that if k̄1 > k̄2 then N1(t) > N2(t), that is, the adhesion at the stiffer
spot grows faster. This prediction is consistent with the long established obser-
vation that cells develop bigger FAs in rigid substrates and that for very soft
substrates they can not be formed. The governing equation N(t) can not be solved
analytically for the longer time-scale w0 · t ∼ w0 · tcont, but this notion can be
substantiated analyzing its steady state solutions. Setting dN/dt = 0 in eq. 8.6
allows to express the number of closed bonds at the equilibrium state at t = tcont as:

Neq(tcont, k̄)
NT

=
a(k̄)

[a(k̄) + λ3]
α

[α + e1/[λ2
2·a(k̄)]]

(8.12)

where the relative stiffness is defined as a(k̄) = k̄/k̄re f . Thus, Neq(tcont, k̄) is an
increasing but bounded function of the stiffness that fulfills Neq(tcont, k̄) → 0 for
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k̄ → 0 . The equilibrium solution is only reached in a substrate with stiffness
comparable to k̄re f . For soft substrates, k̄ << k̄re f implies u(t → tcont) >> ug, so
that the displacement induced by the force developed during the pulling process
results in a vanishing rate of bond formation. After a transient increase in the
number of bonds, the displacement from the anchorage point leads to exponential
decay and rupture of adhesion formed in soft substrates.

8.2.1 Area of Focal Adhesions in real time: theory and measure-
ments

The number of closed bonds can be used as an estimation of the area AFA(t) of a
Focal adhesion during the intermediate time-scales of maturation. The relation-
ship is based on the observation [224] that the density ρI of integrin receptors
in a FA remains approximately constant after the nucleation phase; it must be
remembered that this part of the process is outside the range of the analysis.
This leads to the simple relationship AFA(t) = N(t)/ρI. The predicted evolution
of N(t) for the initial phase of Focal Adhesion maturation given in 8.10 can then
be compared with the measurements in real time of area growth of Focal ad-
hesions from two recent experimental studies. In [11], the area of fluorescently

Figure 8.4: Predicted Initial regime of stiffness-dependent Focal adhesion Area
growth. Compare to fig. 2B in [11]

.

tagged Focal adhesions of REF52 Fibroblasts was measured culturing the cells on
substrates featuring micron-sized pillars of various diameters to obtain different
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effective stiffnesses. The area of focal adhesions was found to grow linearly in
time for a timespan of the order 5 − 8 minutes followed by a saturation phase
to a size of approximately 5µm2 after 10minutes. The slope of the curves AFA(t)
was found to increase with stiffness, and although the functional dependency in
AFA(t, k̄) was not calculated, the data is consistent with a linear dependence in k̄
in the initial phase of FA growth. The theoretical prediction given in eq. 8.10
and depicted in fig.8.4 captures the linear growth in time in this initial phase,
and predicts also a linearly increasing rate of area growth with stiffness, which
could be confirmed experimentally. This result has been obtained with α = 1 and
λ3 = 1; note that changing the ratio of the activation and inactivation rates by
varying α or the receptor activation energy λ3 only shifts the slope of area growth
but the dependency in k̄ and t is preserved. A similar behavior was observed in
another experiment [10] tracking the growth of Focal adhesions in 3T3-Fibroblasts
and Osteosarcoma cells: an initial regime of linear growth in time of AFA(t) for 5
minutes followed by the stabilization of the adhesion size at 1.6µm2 and 3.0µm2

for 3T3-Fibroblasts and Osteosarcoma cells, respectively. In this essay no attempt
was made to characterize the dependence of FA growth with k̄ by using different
substrates. Therefore, the interpretation of the measurements of AFA(t) from both

Figure 8.5: Predicted Focal adhesion growth and saturation for t ∈ [0, tcont]. Com-
pare to fig. 2B in [11] and figures 3a(top) and 4b(top) in [10]

.

studies is straightforward within the framework of the mechanosensing theory:
FA maturation is promoted by the postulated pulling force, which initially leads
to a linear increase of AFA(t) in both time and substrate stiffness. The linear regime
only applies to t < tcont; for t→ tcont the approximations eP(t) << eg and u(t) << ug
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and are no longer valid and the decrease in the binding rate leads to the satu-
ration phase. Numerical solution of the fully non-linear equation for dN(t)/dt
allows to predict the complete dynamics of Focal adhesion area growth. This re-
sult, depicted in fig.8.5; shows that the theory captures the observed evolution of
AFA(t) from an initial rate of linear growth in time to a saturation phase (compare
with figures 3a(top) and 4b(top) in [10]). Moreover, it also matches the reported
increase in the rate of area growth with the stiffness of the substrate(compare
with fig. 2B in [11]). Again, the qualitative agreement of the solutions with the
observations has been obtained by just using plausible values from a theoretical
standpoint5 for the non-dimensional parameters λi and α; a close fit with the
reported data could be obtained by adopting values estimated from experimental
measurements at the single receptor level (using Atomic Force Microscopy [119])
or Focal Adhesion level (using FRAP [225]) of the kinetic rates of bond formation
and rupture and structural properties of the receptor molecules. The theory al-
lows to predict the dependence of the area of saturation of Focal adhesions with
the stiffness of the substrate considering eq.8.12 and assuming as previously the
relationship between FA area and number of bonds:

Figure 8.6: Theoretical prediction of the saturation area of Focal adhesion as a
function of the stiffness

.

5The values adopted are: α = 1, from assuming similar intrinsic rates of activation and inac-
tivation; λ1 = 100, so that the forces developed during the sampling process are smaller than the
characteristic forces of bond rupture; λ2 = 0.5, so that k̄re f is the characteristic range of sensitivity
to substrate stiffness; λ3 = 1.0, so that energies developed during the sampling process for k̄ ∼ k̄re f
promote receptor activation.
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This result is consistent with the well known experimental fact that cells lay-
ing on very soft substrates develop small and poorly defined focal adhesions, and
that the contacts become bigger and more stable in stiffer substrates[27, 122]. No
quantitative assessment of this relationship can be found in [11], but the predic-
tion could be tested experimentally. For α = 1 the prediction of the relationship
between FA equilibrium area and stiffness can be expressed in a compact fashion,
more amenable to analytical treatment and comparison with measurements:

AFA(tcont, k̄) ∼
1
2

a(k̄)
[a(k̄) + λ3]

e−1/[2·a(k̄)λ2
2]

cosh[1/(2 · λ2
2 · a(k̄)]

(8.13)

Reported lateral spacing of integrin receptors in Focal adhesions[224] of 30nm
results in a value of integrin density δI ≈ 103µm−2, which combined with an es-
timated value of NT ∼ 103

− 104, leads to predict dimensional values of AFA(t)
of the order of 1 − 10µm2, consistent with the order of magnitude of the values
observed in the experiments discussed[10, 11]. Measurements of the intrinsic
rates of integrin-ligand binding of w0 ∼ 10−1

− 10−2s−1 lead to an estimation of the
characteristic times for initial the nucleation phase of the order t ∼ w−1

0 ∼ 10−100s,
which are bellow the resolution of the data published in both studies. Hence, the
predicted initial quadratic regime of Focal adhesion growth for w0 · t ∼ 1 can not
be compared to the experimental data; in addition, in this timescale, stochastic
dynamics associated to the small number of bonds during the nucleation phase
make the deterministic description no longer valid[226]. This timescale allows
also to estimate a lower bound for the characteristic time tcont of the postulated
process of cell tugging on FAs as tcont > w−1

0 of the order of minutes, consistent with
the characteristic times of Focal Adhesion maturation observed in both studies.
This time scale is longer than the period ∼ [30 − 50]s of force oscillation in FAs
reported in [14]; note however, a critical difference between the cells in this study
and the cells in [10, 11]: in the former case cells were cultured in substrates featur-
ing a gradient of stiffness and cells were migrating, whereas the results discussed
from the latter studies are associated to adherent non-migrating cells cultured in
different substrates but with a spatially homogeneous rigidity. This suggests that
existence of the stiffness gradient interrupts the mechanical testing process, trig-
gers cell polarization and leads to directed migration. This notion will be central
in the model of Durotaxis presented in the next section; interestingly, it is consis-
tent with the observations in the study reporting for the first time the sampling
process at individual FAs [14] but also with a recent the observation that fibroblast
polarization requires and is preceded by Focal adhesion mechanosensing[210].
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8.2.2 Force at Focal adhesions: theory and measurements

Measurements of the time-evolution of the total force per Focal adhesion and
its dependene on substrate stiffness found in [11] and [9] are compared with
the predicted F(t) in the intermediate time-scale. The latter study used optical
tweezers to trap micron-size beads functionalized with fibronectic ligands so that
individual focal adhesions of 3T3 fibroblasts could attach to them and exert forces.
Varying the intensity of the laser traps they were able to mimic anchorage points
with different effective stiffness at individual contacts. The effective stiffnesses
in this study are an order of magnitude smaller than in the studies discussed
previously, and the same applies to the forces developed by the cell. In both
cases, the observations show that the total forces exerted by cells at individual
contacts increased with time, and that the rate of dF(t)/dt increased with the stiff-
ness of the substrate. The theoretical prediction of the evolution of this variable
is given by F(t) = N(t) · f (t), which according to eq. 8.10 for the approximation
of N(t) in the linear regime and eq.8.3 for the postulated force per receptor leads to:

F(t)
NT · fg

∼
1
λ3

α
(1 + α)

(
k̄

k̄re f
·

t
tcont

)3/2

1 < wo · t < wo · tcont (8.14)

Hence, the approximation of F(t, k) obtained from the mechanosensing theory
predicts that Force at individual FAs grows in the initial maturation phase as
F(t, k̄) ∼ k̄β · tγ with β = γ = 1.5. The data found in figure 2 of [9], showing the
curves F(t) for three different laser traps allows to estimate the exponents. Fitting
the time exponent for the two larger rigidities as γ = ln[(Fk̄(ti)/(Fk̄(t j)]/ ln[(ti/t j)]
for the three combinations of 3 time-points, leads to γ = [1.7203, 1.6902] for the
softer and the stiffer trap, in close agreement with the theory. The data reported
in figure 2a of [11] does not allow to make a fit, but is also consistent with the
prediction. Regarding the dependency in k̄, the exponent is fitted to the data in the
study with optical tweezers as β = ln[(F(ti, k̄1)/(F(ti, k̄2)]/ ln[(k̄1/k̄2)] for three time
points, leading to a consistent value of β = [1.0882, 1.0911, 1.1594]. The study with
the micropatterned substrate reports a linear dependency of dF(t)/dt in stiffness
(see figure 2D in [11]), which implies a value of β = 1. Hence, the experimental
data suggests a slightly weaker dependence in stiffness than the predicted by
the theory. This can be explained as follows: there are two contributions to the
dependency of F(t, k̄) = N(t, k̄) · f (t, k̄) in k̄ that lead to the prediction β = 1.5, one
associated to the dependency in stiffness of the force developed for each receptor
that goes k̄0.5 and the other to the increase in the number of closed bonds with k̄ that
goes as k̄1.0. This last dependency; however, stems from the approximation of N(t)
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in the initial range of maturation, which neglects variations in the binding (↓) rate
due to the increase in displacement caused by the low rigidity of the laser traps.
Hence, the small disagreement is caused by the overestimation of N(t) and not by
the rate of force development that stems from the mechanosensing hypothesis.
Numerical solution of the full equation 8.6 for t ∈ (0, tcont) demonstrates how the
theory matches the observations. Note that in the study with optical tweezers, as

Figure 8.7: Force developed per Focal adhesion during mechosensing test . Com-
pare to fig. 2A in [11] and figure 2 in [9]

.

mentioned earlier, the stiffness traps are an order of magnitude smaller than those
found in the study with micro-pillars, which are closer to physiological condi-
tions. The curves F(t) reported with the optical traps (see fig. 2 in [9]) do not reach
the saturation phase predicted by the theory and also reported in [11] (see figure
2A), despite the fact that the measurements are performed for similar periods of
10 minutes and in both experiments the cells used were Fibroblasts. The interpre-
tation within the framework of the theory is straightforward: the stiffness of the
laser traps in [9] is an order of magnitude smaller than the stiffness of the micro-
pillars used in [11], which implies that k̄laser · t/(k̄re f · tcont) << k̄pillar · t/(k̄re f · tcont).
In the former case, according to the theory, both development of force per recep-
tor (see eq.8.3 ) and the increase in the number of closed bonds (see eq. 8.10)
are much slower, which leads to a build-up of the total force per focal adhesion
that takes a much longer time (see eq. 8.14). Remember that the measurements
of F(t) in both studies were performed for similar time-windows of 10 minutes.
Hence, the study with optical tweezers[9] only captured the first stage of the cell
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mechanosensing process observed in the essay with micro-pillars, which corre-
sponds to the initial evolution of F(t) measured experimentally and reported in
figure 2A of [11] and also to the theoretical prediction of F(t) near the origin of
the time axis in figure 8.7. This interpretation of course rests on the fact that both
studies used Fibroblasts, which means that the cells should invest a similar power
p0 to pull on the substrate for the similar time-periods of the measurements.

A crucial measurement providing conclusive support for the mechanosens-
ing theory proposed is found in the data of force saturation at individual Focal
adhesions reported in the study using micro-pillar patterned substrates. This
experiment assessed the quantitative relationship between the saturation force
FFA

sat (k̄) developed at individual FAs with the stiffness k̄ of the pillar in which it
was formed, finding a linear relationship between them ”within our range of rigidi-
ties”[11]. In fact, close examination of the data reported (see fig. 2C in [11])) shows
that the linear relationship does not hold for larger rigidities, and that the poor
correlation coefficient obtained is associated to the Force data points in the larger
rigidity range being bellow the stated linear relationship. It will be shown that the
mechanosensing theory proposed does explain this discrepancy. The prediction
of the saturation force per Focal adhesion for t → tcont is given by equations 8.12
and 8.3 as FFA

sat (tcont, k̄) = Neq(tcont, k̄) · f (tcont, k̄).

Figure 8.8: Theoretical relationship between stiffness and saturation Force devel-
oped by Focal adhesions. Compare to fig. 2C in [11] and note the decay of the
experimental data of FFA

sat (k̄) bellow the linear regime for large rigidities

The predicted dependency between saturation force and substrate stiffness
does indeed feature a small deviation from linearity for higher rigidities. This



246 CHAPTER 8. A NEW VIEW ON CELL DUROTAXIS

behavior is preserved against parameters changes. Variation of the parameter λ3

associated to the energy required to activate receptors, the length scale λ2 that
controls the modulation of bond formation by displacement, or the ratio between
intrinsic rate of bond rupture and formation only shifts the magnitude of the decay
and the range of rigidities in which the deviation takes place. The following figure
illustrates this feature, with the dotted line representing the dependency of FFA

sat
with k̄ for reference values α = 1.0, λ2 = 0.5 and λ2 = 1.0 shown in the previous
figure:

Figure 8.9: Predicted dependency of FFA
sat with k̄ in terms of receptor kinetic and

molecular parameters. Weakening in the dependency of FFA
sat (k̄) with k̄ for large

rigidities is conserved

Further insight can be gained considering the analytical expression of the
saturation force. The prediction of the mechanosensing theory proposed for
FFA

sat (tcont, k̄) is given by:

FFA
sat (tcont, k̄) ∼

[
a(k̄)

[a(k̄) + λ3]
α

[α + e1/[λ2
2·a(k̄)]]

]
·

√
a(k̄) (8.15)

where it must be remembered that the relative stiffness has been defined simply
to alleviate the notation as a(k̄) = k̄/k̄re f . Thus, the saturation force predicted by
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the theory has two contributions, the first associated to the equilibrium number
of closed bonds (see eq. 8.12) and the other associated to the force developed per
receptor due to the pulling process postulated (see eq. 8.3 ). Since the force that
stems from the hypothesis of cells investing a constant power to mechanically test
the substrate goes as f (k̄) ∼ k̄1/2, it follows that the small decay of FFA

sat (tcont, k̄) from
the linear dependency observed in [11] is accounted for by a dependency of the
number of bonds with k̄ weaker than Neq(tcont, k̄) ∼ k̄1/2. Interestingly, the authors
of the study discussed stated that ”[...] in contrast to the force, the dependency of FA
growth (area) was less obvious although the saturation size depended on the stiffness of
the pillars”[11]. Indeed, the theory proposed predicts a saturation size of FA that
does depend on the stiffness of the substrate. The exact relationship6 predicted by
the theory is given in eq.8.12. It would be interesting to obtain the data for which
no obvious dependency could be found and compare it with this prediction.

Two important implications follow from the last result. First, the authors of
the experiment, accepting a linear relationship between FFA

sat (k̄) and k̄, reach the
conclusion that cells exert a constant deformation on the substrate, which ”suggests
the existence of a mechanosensing mechanism that is regulated by substrate deformation”.
The experimental data, however, casts some doubt on the validity of the premise
that leads to this conclusion7. Second, the alternative mechanosensing theory
proposed seems to provide a better fit by predicting the observed weakening
of the dependence of FFA

sat (k̄) for large rigidities. Further experimental data of
this relationship could provide the definitive evidence required to corroborate or
disregard the alternative hypothesis.

8.2.3 Stress at Focal Adhesions: theory and measurements

Another observation that finds a simple explanation in the context of the mechano-
sensing theory proposed is the measurement of the time evolution of traction
stresses at individual Focal contacts. The predictions of the theory are compared
to the time-dependent stress curves found in [10], its dependence with the stiffness
of the substrate [11] and its relationship with Focal adhesion area[8]. These studies

6Note that Focal adhesion area and number of closed bonds are related by a simple proportional
relationship given by the density of receptors in the adhesion. The less scary expression for AFA

sat
given in 8.13 is found by assuming α = 1, i.e, equal intrinsic rates of bond formation and rupture

7The authors also cite two of their earlier studies [221, 227] as evidence of a linear relationship
between Focal adhesion force and stiffness. Strangely enough, the experimental data found in the
first provides a linear relationship between the logs of the variables ln(FFA(k̄)) ∼ β ln(k̄) (see fig. 2
in [221]), which hardly allows to conclude nothing more than a dependency FFA(k̄) ∼ k̄β, given the
experimental error bars. In the second, the weakening in FFA(k̄) for larger rigidities can be noticed
even more clearly (see figs 2C, 2D in [227])
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obtained the stresses using radically different techniques8, and to my knowledge,
there is not a satisfactory explanation reconciling the different types of observa-
tion. Next, it will be shown that the mechosensing hypothesis proposed in this
Thesis provides a unifying and simple interpretation for them. This has important
implications for the related to question of how cells sense mechanical properties:
the observations in [8] are representative of the type of essays that have supported
the hypothesis that cells apply a constant stress at Focal adhesions to infer the
mechanical properties of the substrate; conversely, the observations in [11] have
lead others to conclude that cells attempt to exert a constant displacement on the
substrate.

The stress, by definition, is the total force applied at a Focal adhesion di-
vided by the total area of the contact. Since according to the mechanosensing
hypothesis stated in eq. 8.1, both the total force F(t) and the area AFA(t) of a fo-
cal adhesions are proportional to the number of receptors, the stress predicted by
the theory can be derived from the force f (t) sustained per ligand-receptor pair as:

σFA(t) = ρI · f (t) = ρI · fg

√
k̄

k̄re f

t
tcont

(8.16)

Note that f (t) is completely determined by the hypothesis that cells invest
a constant energy per time p0 = f 2

g /(2 · k̄re f · tcont) for each receptor during a
mechanosensing sample; where k̄re f and tcont are characteristic of each cell type.
Hence, the observations of stress at individual focal adhesions provide a direct
test of the hypothesis. Experimental measurements of stress development at indi-
vidual FAs in real time are found in [10]. The stress in newly formed adhesions for
both 3T3 fibroblast and USOS osteosarcoma cells showed a strong increase in time
for a certain period and then tended to stabilize in a timespan of similar duration
(see figs. 3b-bottom and 4b-bottom in [10] for each type of cells). Interestingly, the
authors found that this evolution only applies to newly formed contacts, but not to

8The earlier study of Balaban, Schwarz, Geiger and coworkers [8] represented a milestone
because it provided the experimental set-up that has become the staple of cell traction force
microscopy. Briefly, they patterned an elastic substrate with micro-dots as fiducial markers, so
that measuring the displacement of the micro-dots caused by the cell forces allowed to reconstruct
the strain field and obtain the associated stress field. In addition, they used a Green-Fluorescent-
Protein fusioned with vinculin to tract Focal adhesion area in real time. A refinement of this
method is also used in[10]. In contrast, the study using substrates featuring arrays of micro-pillars
[11] measured the deflection of the pillar tips produced by the cells traction forces, thus obtaining
directly the total forces exerted by individual FAs. Simultaneously measuring the area of these
Focal Adhesions allowed them to calculate the stresses
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older contacts after the phase of assembly. This observation is consistent with the
mechanosensing hypothesis, since according to the theory, this time-dependence
of stress growth should be observed during FA maturation; no statement has been
made about the dynamics of older contacts.

Figure 8.10: Predicted time-course of normalized stress at FAs. Compare to fig.
3b(bottom) and 4b(bottom) in [10]

The time-course reported is consistent with the evolution σFA(t) ∼ (t/tcont)1/2

predicted by the theory. Note that the authors state that in the initial regime of FA
maturation there is a linear correlation between the stress developed and Focal
adhesion length (i.e area), but in fact the correlation coefficient is only r = 0.76.
Therefore, it would be interesting to check if the relationship that stems from the
theory using the predicted values for σFA(t) and AFA(t) provides a better fit.
Interestingly, the reported data for the different cell types is qualitatively similar,
but the time-course of stress development appears to be shifted, with stress build-
up and stabilization occurring more slowly in osteosarcoma cells. The second
difference observed is that the magnitude of the saturation stresses is higher for
fibroblasts than for osteosarcoma cells; more precisely, the magnitude of observed
stresses at the plateau is ∼ 1nN·µm−2 for fibroblasts, whereas for osteosarcoma
cells is ∼ 0.5nN·µm−2. Can the mechanosensing theory proposed explain these
differences between cell types?

Crucially, all the data for osteosarcoma cells was obtained in substrates of
Young’s modulus ES1 = 2.8 kPa , whereas the stress curves of 3T3 fibroblast were
obtained in stiffer substrates of ES2 = 16 kPa Young’s modulus, which leads to
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effective stiffnesses9 k̄1 < k̄2. The dimensional value of the stress that stems from
the constant power hypothesis for each cell type is then:

σosteo(t) = ρI ·

√
2 · posteo

0 · k̄1 · t (8.17a)

σ f ibro(t) = ρI ·

√
2 · p f ibro

0 · k̄2 · t (8.17b)

Hence, the first difference has in fact already been given a simple explanation
within the theory proposed: since the stiffness of the substrates where fibroblasts
were cultured was higher, stress build-up is faster. Note that no assumption has
been made yet as to the values of p0 for the different cells; they could be different
as long as posteo

0 is not much bigger than p f ibro
0 . This leads to second difference

observed: that the stresses developed by fibroblasts at any given time, and in
particular at the saturation phase, were higher than those developed by osteosar-
coma cells. Again, since the substrates for osteosarcoma cells were softer than
those used for fibroblasts, the observed differences in stresses for t → tcont are
readily accounted for examining eqs. 8.24, as long the characteristic contraction
times of osteosarcoma cells tosteo

cont are not much longer than t f ibro
cont .

What about the variables tcell
cont and pcell

0 that define the mechanical sampling
process executed by each cell type? The authors of [10] state in the Methods
section that the choice of substrates was made ”to accomodate differences in cell con-
tractility”10. Now, the initial question and this observation bear to the following,
seemingly obvious but more interesting thought: Why are some cells more con-
tractile than others? Can the mechanosensing theory proposed tell us something
about it? There are two alternative possibilities to answer these question within
the framework of this theory: more contractile cells could either invest a higher
pcell

0 to develop forces during the contraction process or they could contract for
longer times tcell

cont. The foundational hypothesis was based on the idea that the

9Reminder: the stiffness of a substrate is related to its Young’s Moudulus by eq.3.35 as kS(Es) =
(4/3)2

· Es · rP, where rP is the characteristic radius of a receptor or ligand. Then, the compund
stiffness fullfills k̄1 = kP · kS(ES1)/(kP + kS(ES1)) < kP · kS(ES2)/(kP + kS(ES2)) = k̄2.

10Most likely, the choice was made to avoid the large displacement that fibroblasts would induce
if they were cultured in the substrate used for osteosarcoma cells, which would possibly invalidate
the calculation of the stresses based on linear elasticity or even wrinkle the substrate. Or the other
way around, if osteosarcoma cells were cultured in the substrate used for fibroblasts they would
develop such as small displacements that would probably fall bellow the experimental resolution.
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power constant p0 is a quantity defined by the kinetics of the molecules involved
in generating pulling forces, prominently F-actin and myosin-II, which are shared
by all types of cells. It follows that p0 should then be independent of the cell type,
and that the fact some cells are more contractile should explained by the fact they
contract for longer times tcell

cont
11. Let’s see where this assumption takes us.

In the statement of the mechanosensing hypothesis, k̄re f was introduced as a
reference stiffness where a particular cell type would develop a force per receptor
f (tcell

cont) = fg, comparable to those required for its Focal adhesions to mature. This
force is given by the conditions eg( fg) > e0 and ug( fg) < u0, so that the energy
stored per receptor is of the order required to activate them and the displacement
induced between ligand-receptor pairs is small compared to those associated to
thermal fluctuations. In turn, e0 and u0 are determined by molecular properties
of the receptors12 and for this reason, are characteristic of the receptors expressed
by a cell, not of the cell type. Hence, the force/energy required to form mature
adhesions based on a given type of receptors should be independent of the cell
type. To develop such a force, it follows that the stiffness k̄re f required by different
cell types, contracting during a period tcell

cont characteristic of the cell type but with
an energy per time p0 similar for all of them, is given by:

k̄re f >
f 2
g (e0,uo)

2p0 · tcont
(8.18)

Sticking to the premises of the view presented, a highly contractile cell, namely
a fibroblast, is associated to t f ibro

cont longer than the contractile tosteo
cont characteristic of a

less contractile cell such as an osteosarcoma. It then follows that a osteosarcoma
cell requires a much stiffer substrate than a fibroblast to establish mature contacts
and adhere to a substrate13. This view is consistent with the fact that the tissue

11 A simple experiment can be proposed to validate one of the alternatives and discard the other:
culture two different cell types with different characteristic contractility (for instance fibroblasts
and osteosarcoma cells) on the same substrate and measure the rates of force build-up. If the rate
of force increase is the same for both cell types, this means that there is indeed an po[energy/time]
parameter that is intrinsic to the contractile apparatus of these cell types, and the more contractile
type should be observed to apply traction forces for longer times tcont. Conversely, if the rate of
force increase is higher in one of the cell types, the energy per time invested pulling on FAs by
this cell type should be higher, with no implications for the time of contraction.

12See section 3.3 for the derivation in terms of the LR energy landscape potential and receptor
molecular properties

13For the study under discussion [10], both osteosarcoma cells and fibroblasts were cultured on
a substrate coated with fibronectin; thus it is reasonable to assume that both cell types were using
similar receptors to engage the ligands.
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were osteosarcoma cells are found in vivo are bones, much stiffer than the con-
nective tissues were fibroblasts are found. Thus, the mechanosensing hypothesis
proposed suggests a mechanism that would define the range of appropriate stiff-
ness for a cell to thrive, depending on the characteristic contractility and receptors
expressed by its cell type.

The p0-hypothesis can be further validated using experimental measured val-
ues for the parameters to compare the predictions with dimensional values of the
experiments. Precisely, p0 is approximated using only one data point (ti, σFA(ti))
in the fibroblasts stress-time curve of fig. 3b-bottom of [10]. Note the remarkable
match with the experimental data without the need to use a more accurate fit.
The intrinsic contraction power is then estimated according to eq. 8.24 as:

p0 =

[
σ f ibro(ti)
ρI

]2 1
2 · k̄2(ES2) · ti

(8.19)

The data point from fig. 3b-bottom in[10] used is (ti, σFA(ti)) = (0.88kPa, 10min),
hence, the coincidence of the prediction with this time point should not be con-
sidered when assessing its accuracy. The values of the parameters required to
evaluate k2(ES2) and p0 are:

Table 8.1: Adhesion receptor parameters

Parameter Physical Meaning Value

ρI Integrin density 103µm−2 [224]

rp Integrin radius 1nm [215]

kp Integrin spring constant 5pN·nm−1 [216]

The estimated value of p0
14 is then used to predict the entire time-stress curves

developed at FAs for both fibroblasts and osteosarcoma cells. Note that the match
of the prediction with experimental data is above 90% for the entire time-course

14A change of 1 order magnitude in the adopted value of ρI and rP leads to a change of 2 and 1
orders of magnitude in the estimated p0. Considering the experimental uncertainty in the reported
values of these parameters, p0 should only be considered a rough estimate of the [energy/time]
consumed by receptor. The point is to prove that there is such a p0 independent of the cell type
that defines the mechanosensing process
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Figure 8.11: Stress time-course for two cell types in [10]. Compare fibroblasts
prediction to fig. 3b(bottom) and osteosarcoma’s with 4b(bottom) in[10]

of the measurements for both types of cells. In fact, the fact that both cell types
change the contraction regime after a certain time tcell

cont has not even been con-
sidered; cutting off the accepted time-range of predictions improves the match
dramatically. Further, the value of p0 estimated from this experiment[10] can
be used to predict the observations in [11], an altogether different set-up using
micro-pillars to study the dependence of FA forces with stiffness.

Figure 8.12: Stress dependence with stiffness for large times at FAs. Compare
data in fig. 3B of in[11]. Compare prediction of σFA = 4.2nN·µm−2 for ES = 12kPa
(highlighted with a circle) with fig.5e in [8].
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Precisely, the prediction is compared to the observed dependence of satura-
tion stress σFA(tcont, k̄) at FAs with k̄ (see fig. 2B in [11]). The actual value of the
contraction time required by the cells to develop these stresses was not reported,
the only data provided is that cells were allowed to adhere to the substrate for 5
hours, which is the estimation used for tcont. Again, the accuracy of the prediction
is above 90%. Finally, the reader is invited to check in fig.8.12 (see highlighted cir-
cle) that the prediction for the stress that would be developed at a Focal adhesion
on a substrate of 12kPa in Young’s modulus is 4.2 nN·µm−2. The grounbreaking
study of Balaban and coworkers[8], described at the introduction of this section,
lead many to believe that cells test the substrate by developing a constant level of
stress because they indeed found a constant value for fibroblasts cultured on an
elastic substrate. The value measured was of 5.5 ± 2 nN·µm−2. And the Young’s
modulus of the substrate used, 12kPa.
As the authors of [11] rightly point out, changing the rigidity of the substrate
would have shown that this conclusion does not hold. However, the alternative
explanation, that cells exert a force proportional to the stiffness, so that a con-
stant displacement is induced, is not supported by the full range of experiments
discussed here either.

8.2.3.1 Constant power hypothesis: final considerations

Up to the present, allegedly conflicting observations have sustained an ongoing
controversy on how cells test the mechanical properties of the substrate, with
two opposing views supporting that cells apply a constant stress or a constant
strain and measure the conjugate property There might be an alternative answer:
cells spend a constant amount of energy per time to test de substrate. As shown
throughout the preceding discussion, there is a number of observations that are
consistent with this principle, but to my knowledge no direct measurement of
energy consumption at Focal adhesion has been performed, which is the core of
the principle proposed. However, a study of muscle contraction [228] estimated
ATP consumption in the scale of mili-seconds by measuring Pi release associated
to ATP hydrolysis; this suggests that such a measurement is possible, and that the
hypothesis proposed can be subjected to direct experimental validation. Consid-
ering that the energy released from the hydrolysis of ATP in cellular conditions
is eATP ∼ 57 kJoule/mol [229] and that p0 is the energy consumed per time and
receptor during the mechanosensing process, the number of ATP consumed per
second and receptor can be estimated as rATP = p0/eATP. Perhaps, a more accessi-
ble experimental quantity would be the rate of ATP consumption for a given area
of Focal adhesion, which considering the receptor density ρI and eq.8.19 is then
given by:
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RATP ≈
(
σcell(ti)

)2 1
ρI

1
2 · k̄2(ES2) · ti

(8.20)

where RATP is the rate of ATP consumption per unit of time and Focal adhesion
area. Thus, this relationship could probably be tested measuring simultaneously
the stress developed at a single Focal adhesion for a time of contraction ti, the rate
of Pi release, and the density of receptors ρI in this FA. The prediction could be
further tested measuring RATP against variations in the stiffness of the substrate
and cell type. To conclude, I’d like to stress an important aspect of the theory
presented. The predictions stemming from the po-hypothesis have been obtained
in the framework of the mechanical and kinetic description of a Focal Adhesion
developed in section 3.3. However, the conclusions do not depend on the details
of these descriptions. As to the mechanical description, the crucial point is that
pulling on substrate-adhesion contacts with p0 leads to less ligand-receptor sepa-
ration and larger energy storage on stiffer substrates. As to the kinetic description,
an extension of Bell’s theory of force influence on cell receptor bonds, the funda-
mental element is that the kinetic rate of formation decreases with receptor-ligand
separation and that activation of adhesion receptors is promoted by energy stor-
age. Thus, the predictions of the p0-hypothesis are quite robust to refinements in
the description of FAs1516, which supports the idea that it represents a universal

15George Irving Bell worked throughout his career in Los Alamos Scientific Laboratory in
Santa Fe, New Mexico. Around 1978, he switched his line of of work from neutron transport in
thermonuclear weapons to cell biology. Then, he produced a theory on how cell receptors bonds
should be affected by mechanical forces; later proven to be accurate [82]. This would have been
remarkable enough without adding the fact that at that time, cell adhesions and receptors had
barely been observed. Incidentally, and possibly due to his influence, the idea of the existence of
catch bonds, postulated by Micah Dembo[230], emerged from the same lab. Bonds that increase
their lifetime and activation with force could be an important ingredient in the mechanosensing
process, amplifying the sensitivity of cells to stiffness

16In 1953, the 3rd American expedition lead by Charles S. Houston tried to climb K2 in Karako-
rum. They were forced to retreat near the summit after one of the members of the party, A. Gilkey,
became critically ill. During their heroic descend along nearly vertical ice faces, lowering Gilkey
with an improvised stretcher, one of the climbers slipped and dragged the whole team down.
They would have found their death 2000 meters bellow if Pete Schoening would not have quickly
coiled the rope around his body and belayed the whole team, including Gilkey, with his ice axe.
Later, however, while waiting anchored to the mountain face for the rest of climbers to set up
camp, Gilkey disappeared never to be found. Fact and myth next become blurry, but some of the
members of this legendary expedition believed that Gilkey, realizing that his companions would
not make it out of the mountain with him, sacrificed himself. This is however true, amongst the
men that survived this fall, was George I. Bell. As a matter of fact, he is the one who slipped[231].
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principle underlying cell mechanosensing.

8.3 How cells integrate mechanical information to de-
tect stiffness gradients?

The preceding section has given a plausible answer to the first fundamental
question required to understand cell Durotaxis: how Focal adhesions act as
mechanosensors? Next, it is turn to address the second question, as stated in
the beginning of this chapter: how cells integrate the mechanical information
gathered locally to sense a gradient of mechanical properties? The mechanosens-
ing theory proposed directly suggest a mechanism by which cells could integrate
this information and migrate along gradients of stiffness.

The proposed mechanism is based on the broad evidence supporting that Focal
adhesions, besides acting as mechanosensors, are signaling centers that initiate a
cascade of regulatory events that elicit the cellular response to mechanical cues
[100, 50]. Particularly, signalling events originated at Focal adhesions trigger the
recruitment of proteins and enzymes such as FAK, GEFs and GAPs that mediate
the activation of the RhoGTPases, which in turn are the central regulatory node
from which the main biochemical networks associated to migration are coordi-
nated [56]. The precise mechanism of transduction of mechanical inputs into
biochemical signals is not known, although the most likely candidates involve
conformational changes induced by force on integrin receptors or some other
mechano-responsive element of adhesion sites [101, 102, 103], exposing cryptic
sites that are recognized by other molecules[105]. Independently of the detailed
mechanism, this evidence suggests that the level of loading of adhesion recep-
tors is transduced into biochemical signals to the regulatory machinery of the
cell. Thence, the hypothesis on how mechanical inputs are transduced into bio-
chemical signals is postulated as follows: the state of mechanical loading of adhesion
receptors in a Focal Adhesion is transduced into a biochemical signal that is determined
by the mechanical energy stored per receptor and proportional to the number of receptors
in the adhesion.

The intermediate biochemical steps that most likely separate integrin signal-
ing from RhoGTPases activation are lumped into a transduction signal of strength
sFA that directly modulates the activation of one of the RhoGTPases. The predic-
tions that follow from this hypothesis will show that differential signaling at
Focal adhesions along a stiffness gradient can lead to cell polarization and di-
rected movement. The hypothesis relays on the principle that energy storage and
receptor binding are faster at FAs on stiffer anchorage points, as demonstrated
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previously. There is more than one definition of sFA consistent with this hypoth-
esis in the theoretical framework developed; but this principle is independent of
its particular form17:

sFA(xFA, t) =

∫
t

N(t′)
NT

eP(t′)
eP(t′) + eT

dt′ (8.21)

where the mechanical energy per receptor eP(t) and N(t) are determined by
the stiffness of the anchorage point Es(xFA) and the pulling process with power
p0 introduced previously. The energy level that sets the scale of transduction
events is defined as eT = λ4 · eg to relate it to the characteristic energies per re-
ceptor developed during mechanical samples. In the context of Cell Durotaxis,
sFA plays an analogous role to the signal sΨ(x, t) that triggers the activation of a
sensor RhoGTPase in the description of Chemotaxis, as seen in eq.7.16 of chapter
7. Following the reasoning to derive the activation rate modulation of the protein
targeted by the Chemotactic receptors, the signal transduced from mechanical
cues is assumed to modulate the Michaelis-Menten constant of Cdc42 as:

κc(sFA(t)) = κ0 · [1 − η · sFA(Es, t)] (8.22)

where the decrease of the Michaelis-Menten constant of Cdc42 is assumed to
be bounded. Hence the activation rate of the sensor protein is locally modulated
by Focal adhesion signaling as ∆κc(sFA(t)) ∝ sFA(ES, t), which in turn depends on
the stiffness of the anchorage point. After a certain time twa

FA, modulation of the
kinetic rate of the sensor protein will reach a critical level ∆κcrit

c and trigger the
emergence of an activation wave originated at the location of the adhesion site18.
Since the time-scale of cell polarization is longer than the characteristic time-scale

17 An alternative definition considered is sFA(xFA, t) = (N(t)/NT) · (eP(t)/eP(t)+ eT). In this case the
transduction signal sent by a FA depends on the present mechanical state of the contact, whereas
in definition 8.21 it depends on the loading-history during the period of mechanical sampling
tcont. In the history-dependent case, if a cell maintains the contractile state reached at tcont, any
contact that reaches a stable state (i.e anchored at a spot above minimum stiffness threshold) will
eventually trigger a signaling event and cell polarization. In the alternative choice, a FA might
mature but transduce a signal so weak that does not affect the target regulatory pathways. The
implications of the choice will discussed later in the context of experimental observations.

18The mechanism of wave-activation and its interpretation in terms of underlying biochemical
processes was shown in fig. 7.5
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of Focal adhesion formation [210], suggesting that twa
FA can be estimated assuming

that the activation event occurs after adhesion sites have reached its equilibrium
size at tcont

19. Introduction of N(t) ≈ Neq(k̄) as given in eq.8.12 and the expression
8.3 for eP(tcont) in the equation 8.21 for sFA leads to:

twa
FA(k̄) ∝ (1 +

λ3

a(k̄1)
)(1 +

λ4

a(k̄1)
)(
α + e

1
a(k̄1)

1
λ2

2

α
) (8.23)

where a(k̄) = k̄/k̄re f is the ratio of substrate stiffness relative to the characteristic
rigidities on which the cell can develop mature adhesions. This result shows
that the signaling emitted by FAs anchored on a stiffer point (a(k̄) ↑) will require
shorter times (twa

FA ↓ ) to trigger the emergence of an activation wave. Intuitively,
this is explained by the fact that equilibrium size of adhesion and energy stored
by receptors increases with k̄. Further, twa

FA must be a limiting factor for the time
tpol required to polarize in response to mechanical properties: since (twa

FA ↓) is a
decreasing function of the absolute rigidity of the substrate, cells should polarize
faster on stiff substrates. This prediction will be shown to be confirmed by
observations. The dependence of twa

FA with the stiffness of the substrate can be
quantified as follows: let two Focal adhesions FA1 and FA2 be located at the
opposite ends along the cell axis defined by a stiffness gradient, so that the stiffness
of their anchorage points is given by k̄1 (soft end) and k̄2 ≈ k̄1 + ∆k̄ · Lcell (stiff end).

Figure 8.13: Cell geometry and symmetric Focal Adhesion distribution adopted
to illustrate gradient sensing and durotaxis

19The alternative assumption, that mechano-transduction parallels FA maturation, has interest-
ing implications for experimental observations to be discussed later.
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The relative increase in stiffness between FA1 and FA2 is then given by x1 ≈

(∆k̄/k̄1) · Lcell. From expression 8.23, it can be shown that the time required to
trigger an activation event by FA1 and FA2 follows the ratio:

twa
FA2

twa
FA1

∼
1

(1 + x1)2 e
−

1
λ2

2

x1
a(k̄1)

� 1 k̄1 < k̄re f (8.24a)

twa
FA2

twa
FA1

∼[1 −
x1

ctt1
] < 1 k̄1 ∼ k̄re f (8.24b)

twa
FA2

twa
FA1

∼[1 −
x1

ctt2

1
a(k̄1)

] ∼ 1 k̄1 > k̄re f (8.24c)

where ctt1(λi, α) and ctt2(λi, α) are constants that decrease with λ2, α and in-
crease with λ3, λ4. This result is important: since twa

FA2
< twa

FA1
, it follows that FA2

signaling promotes the activation of Cdc42 faster and that the emergence of a
activation waves will reflect the asymmetry in the mechanical properties of the
substrate. This will lead to the alignment of the axis RhoGTPase polarization
with the rigidity gradient and eventual movement in the FA1 → FA2 direction.
Further, it shows that the delay in the emergence of activation waves is an increas-
ing function of the relative magnitude of the gradient ∆k̄/k̄1 and of the range of
absolute rigidity relative to the characteristic stiffness k̄1/k̄re f . Precisely, for a given
gradient slope, the time-window separating the emergence of activation waves
is maximized at the low range of rigidities relative to k̄re f . In other words, the
theory predicts that the sensitivity to stiffness anisotropies is optimal in the range
of rigidities where the cell has more difficulty to establish mature adhesions.

This leads to the core of the mechanism of stiffness gradient sensing proposed.
The delay in the onset of RhoGTPase activation at the region of the cell on the
softer part of the substrate is the crucial element that allows to integrate the me-
chanical information. Cells establish numerous adhesion sites near the membrane
and therefore a similar process of mechcanotransduction is undergone by all of
them. However, if the cell is cultured on a substrate featuring a gradient of stiff-
ness, the emergence of activation waves occurs faster in those contacts anchored
at points in the stiffer area and blocks the emergence of activation zones at the
area of the cell on the softer part of the substrate by the mechanism of competi-
tion between activation zones described thoroughly in chapter 7. Concomitant
crosstalk between the RhoGTPases leads to the simultaneous establishment of a
polarized pattern of activation for the rest of the proteins. Therefore, the condi-
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tion cell polarization induced by mechanical anisotropies is that the time-window
∆twa = twa

FA1
(k̄1/k̄re f )− twa

FA2
(k̄1/k̄re f ,∆k̄/k̄1 ·Lcell) separating the occurrence of activation

events must be longer than the time required by the wave of RhoGTPase activa-
tion to propagate a cell length from the region on the stiffer end of the gradient,
thereby blocking the emergence of activation-waves at the soft end:

∆twa(k̄1/k̄re f ,∆k̄/k̄1 · Lcell) >
Lcell

v̄Rho
(8.25)

where v̄Rho is the mean speed of wave propagation20. Conversely, if this con-
dition is not fulfilled the activation events occur almost simultaneously and the
gradient will not be resolved. The time-delay between activation events can be
obtained from eqs. 8.23 and 8.25 as a function of the gradient slope and the
absolute rigidity of the substrate. From this relationship, it is possible to derive
analytically the minimum threshold bellow which mechanical anisotropies can
not be detected:

∆k̄
k̄1
>

ϕ1(λi, α)
vRho

a3(k̄1)e
−

1
a(k̄1)

1
λ2

2 a(k̄1) < 1 (8.26a)

∆k̄
k̄1
>

ϕ2(λi, α)
vRho

a(k̄1) ∼ 1 (8.26b)

∆k̄
k̄1
>

ϕ3(λi, α)
vRho

a(k̄1) a(k̄1) > 1 (8.26c)

This theoretical development reveals important properties of the mechano-
sensing mechanism proposed that can be contrasted with experimental observa-
tions. First, the rigidity threshold to detect mechanical anisotropies is independent
of the cell size. This result follows from the simple fact that the offset between
activation events is proportional to the difference in stiffness along the gradient
∆k̄ · Lcell, but since the time required by the activation wave to travel a cell length

20Note that the instantaneous wave-speed vRho is a non-tivial function of the concentrations
of the RhoGTPases (see eq.7.6), but that once an activation event occurs, it is approximately
independent of the mechano-transduced signal and hence a mean velocity of wave-propagation
can be defined.
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is also proportional to Lcell, its dependence cancels out. This is an attractive prop-
erty from a theoretical perspective: as stated repeatedly throughout this Thesis,
the principles underlying cell function must remain operative against biologi-
cal diversity. Mechanosensing and Durotaxis are no exception, the experimental
evidence shows all types of cells feature a similar preference to migrate along
stiffness gradients and that this capacity is certainly robust against variations in
cell size.

Another important prediction that stems from the previous result is that the
sensitiveness to mechanical anisotropies is a function of the absolute rigidity of
the substrate, which in turn has interesting implications for the biological func-
tion of cell Durotaxis. Equation 8.26, shows that from a soft substrate where Focal
adhesion maturation is hindered (a(k̄ < 1)) to a substrate where formation of con-
tacts is optimal (a(k̄ > 1)), the sensitivity to mechanical anisotropies decreases:

∆k̄D

k̄1

∣∣∣∣∣∣
k̄1<k̄re f

<<
∆k̄D

k̄1

∣∣∣∣∣∣
k̄1∼k̄re f

<<
∆k̄D

k̄1

∣∣∣∣∣∣
k̄1 >k̄re f

(8.27)

where the superscipt D has been added to denote the lower bound of the
anisotropies that bias cell polarization and durotaxis. Essentially, for very soft
substrates, this bound vanishes and any anisotropy will trigger polarization and
directed migration along a gradient. This response is limited only at the extreme
range of soft rigidities, where establishment of Focal adhesions fails21. There-
fore, this result shows that for substrates of stiffness bellow the range rigidities
suited for a particular cell type to develop strong Focal adhesions (i.e k̄ < k̄re f ),
its capacity to detect stiffness gradients and migrate toward a region more ap-
propriate to adhere is maximized, whereas for substrates above this range (i.e
k̄ > k̄re f ) its sensitiveness to mechanical gradients is weakened. Interestingly, this
suggests a plausible biological function of Durotaxis: to provide different cell
types with an additional mechanism to locate their appropriate position in an
organism. According to this idea, a cell in a tissue alien to its function would
have high sensitivity to stiffness gradients and start durotaxing until it reached
and environment matching the mechanical properties characteristic of its type.
At that point, the combined effects of reduced sensitivity to stiffness gradients
and the development of firm FAs would lead the cell to adhere and remain in

21Mathematically, this is explained by the onset of a bifurcation in the eq.8.6, the governing
equation for FAs. Bellow k̄re f , the only steady state that can be reached is N(t) = 0, i.e FAs fail.
Intuitively, k̄re f is determined by the ratios of energy stored to receptor activation energy and of
ligand-receptor distance induced to distance scale for bond formation
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the correct location according to its physiological role. Further, this interpretation
also suggests a biological function of mechano-induced apoptosis, the well docu-
mented observation that cells cultured on very soft substrates compared to the
environments in which they are found in vivo can not establish focal adhesions
and are programmed to die[8, 122]. Indeed, the theory presented predicts that Fo-
cal adhesions can not mature bellow a certain rigidity; it follows from the present
discussion that the biological function of mechano-induced apoptosis could be to
prevent cells to proliferate in tissues where they not belong. Consistent with this
idea is the observation that malignant cells have their sensitivity to mechanical
properties altered[41, 42], which allows them to proliferate and colonize foreign
tissues where cell in normal conditions would undergo apoptosis. This functional
interpretation of cell Durotaxis is directly suggested by the mechano-sensing the-
ory presented and, to my knowledge, has not been proposed before.

8.3.1 Stiffness Gradient sensing: the mechanism

The biophysical principles underlying the theory of cell mechanosensing have
been laid out in the previous section. It is turn to demonstrate that this theory,
combined with the model of RhoGTPases polarization presented in chapter 7,
provide an interpretation for available experimental observations and insight into
the process of Durotaxis. To that end, a circular cell shape featuring a symmetric
distribution of Focal adhesions is adopted, as sketched in fig.8.13, in order to
prevent any prescribed asymmetry to aid the computational cell to detect the
stiffness gradient. In the initial state, RhoGTPases are distributed homogeneously
in an equilibrium concentration and Focal adhesions have no receptors engaged
with ligands on the substrate. A mechanical sampling process is initiated by the
cell investing a constant power p0 at each Focal adhesion, which in turn will locally
transduce the mechanical information into an input for the RhoGTPases system as
described previously. The adopted RhoGTPase Crosstalk scheme features mutual
inhibition between Cdc42 and RhoA and activation/inhibition of Rac by Cdc42 and
RhoA, respectively, corresponding to Scheme C of fig.7.21.

Table 8.2: Model C: Non-dimensional RhoGTPase kinetic parameters

Model C γ0 φ κ0 η δ
Cdc42 10 −0.5 1 0.5 10

Rac 10 −0.5 1 0.5 10
RhoA 10 − 1 −0.5 10

Model C is adopted because is the Crosstalk scheme that endows the cell with
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the fastest gradient resolution, since Cdc42 is inhibited at what will become the
rear of the cell. Differences in polarization dynamics obtained with Model A and
B will be discussed later. The value of intrinsic RhoGTPase hydrolysis rate is
assumed k0 = 0.01 s−1, according to values reported in[182]. Note that k0 only sets
the time-scale of RhoGTPase dynamics; as long as the speed of activation waves
is of the order of the time-scales of FA maturation the mechanism of gradient
sensing remains operative. Physical constants for receptor mechanical properties
were given in table 8.1. The parameters required at Focal Adhesion scale are
estimated from experimental measurements when available and from theoretical
considerations otherwise:

Table 8.3: Focal Adhesion parameters

Parameter Physical Meaning Value
NFA Integrins available per FA 5 · 103 [224]
w0 Intrinsic bond rupture rate 0.01s−1 [215]
fg Ligand-Receptor characteristic force 5pN [216]
λ1 Bond rupture scale 102

λ2 Bond formation distance scale 0.5
λ3 Activation energy scale 0.1
λ4 Mechano-transduction energy scale 1
α Bond formation/rupture rate ratio 2

The model’s predictions will be compared with a recent Durotaxis essay [13] in
which migration of Vascular Smooth Muscle cells along stiffness gradients was an-
alyzed. The interest of the study by Joyce Wong’s group is that a novel fabrication
method of PAAm gels produced well defined gradients in a physiologically rele-
vant range. Absolute rigidities spanned from ES0 = 5−80 kPa in Young’s Modulus
and superimposed gradients ranged from ∆ES = 0.01 − 0.04kPa·µm−1, mimick-
ing the properties of atherosclerotic tissues found in vivo. The main conclusion
was that cell orientation and migration along the direction of increasing stiffness
correlated with the magnitude of the gradient but not with the absolute rigidity
of the substrates, which lead the authors to conclude that the mere existence of
even a shallow gradient triggered polarization. The theoretical optimal range for
stiffness gradient sensing is estimated as follows. The contractile power p0 is by
hypothesis independent of cell type, hence it is set to the value derived previously
from the observations in [10] with osteosarcoma and fibroblast cells. The contraction
time for VSMCs is set to tVSMC

cont = 2/3 · t f ibro
cont ≈ 6 min., based on the assumption
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that these cells are less contractile than fibroblasts. The characteristic rigidity in
which the VSMC cells (defined of course by the parameter choices) can establish
Focal adhesions is obtained from eq.8.18 as by EVSMc

re f ∼ 10kPa, which according
to the theory matches their optimal range for gradient sensing. For the sake of
clarity, the polarization mechanism is first shown on a large gradient of slope
∆ES = 0.35kPa·µm−1 on a substrate with ES0 = 40kPa, so that the asymmetries in
force development and FA maturation can be better appreciated:

t = 0.7min t = 0.7min

t = 2.5min t = 2.5min

t = 5min t = 5min
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t = 10.5min t = 10.5min

t = 17.5min t = 17.5min

t = 20min t = 20min

t = 21min t = 21min
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t = 22min t = 22min

t = 30min t = 30min

Figure 8.14: ⊗ Stiffness gradient sensing and polarization for ES0 = 40kPa+0.35
kPa·µm−1. Number at the side of FAs indicates percentage of closed bonds.

The orders of magnitude of FA forces, size and polarization times are consis-
tent with experimental observations. This computational result, using a larger
gradient than in the experiment and those found in physiological conditions, is
meant to illustrate the proposed mechanism of gradient sensing, whose theoretical
foundations have been laid out previously. The rigthward-pointing gradient of
stiffness induces a small delay in growth, smaller equilibrium size and less energy
storage per receptor at the FAs anchored on the softer region of the substrate on
left side of the cell. Note that forces developed at the adhesions on the softer end
are also smaller and that FAs have matured after approximately 10 minutes. Thus,
the small offset in the mechano-transduced signal transmitted to the RhoGTPase
network results in the emergence of an activation wave propagating inwards from
the edge of the cell on the stiffer side that establishes the polarized pattern after
approximately 30 minutes. The evolution of the variables that determine the fate
of Focal adhesion and the strength of the mecho-transduced signal reveals this
principle; they are shown in the following figure together with their difference in
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at FA1 and FA2, the contacts on the soft and stiff ends along the gradient:

Figure 8.15: Left col: Evolution of number of bonds N(t), displacement, and time-
derivative of signal sFA to RhoGTPases from FA1 (solid line, stiff) and FA2(dashed
line,soft). Right col: evolution of the difference in the same variables. ES =
40kPA+0.34kPA·µm−1.

It is now turn to compare the theory’s predictions with actual experiments
analyzing the relationship between mechanics, cell polarization, and movement.

8.3.2 Mechano-induced cell polarization: theory and experiments

The number of experimental observations for which the theory provides an inter-
pretation for which there is currently none is quite substantial. Predicted forces of
the order of∼ 1−5nN developed at Focal Adhesions are consistent with the values
measured at individual contacts during the process of rigidity sampling reported
in [14, 8]. The time of the order of ∼ 10 minutes required to establish mature
contacts matches the values observed in vivo [49, 122, 8]. Polarization time is also
consistent with experimental evidence, as it will be discussed later. Simulations
varying the absolute Young’s Modulus of the substrate from ES0 ∈ (1, 90) kPa and
the slope of the gradient from ∆Es = 0.01− 0.04 kPa·µm−1 show that the proposed
mechanism of gradient sensing remains operative to for all the combinations of
gradients and rigidities matching the properties of the PAAm in the Durotaxis
essay discussed previously[13]. Thus, the theory proposed captures the remark-
able sensitivity to shallow gradients that constitutes the main observation of the
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experiment. Further, the simulations confirm the prediction of the theory that
there is an upper and lower limit of substrate rigidities in which the cell can de-
tect a gradient, which provides insight into observations in the experiment under
discussion that can not be accounted for with the interpretation of the authors (i.e
that polarization is determined only by the gradient slope). In the simulations,
the lower bound for mechanically induced polarization is caused by the failure
of FAs to mature in very compliant substrates. As shown previously, on very
soft substrates the displacement of the contacts leads to a vanishing rate of bond
formation, Focal adhesion shrinkage and disappearance. In this case, the signal
transduced by the short-lived contacts does not trigger polarization, and RhoGT-
Pase concentrations simply remain flat in the initial homogeneous concentration.
This cell state will be labelled apoptotic.

Figure 8.16: ⊗ FA maturation failure for ES = 4kPA+0.04kPA·µm−1.

For the parameter values adopted, Focal adhesions growth starts to weaken
for stiffness bellow Ere f ∼ 10kPa and the rupture limit is found at substrates of
EFA

min ∼ 5 kPa. Interestingly, the recent study by Geiger’s group analyzing the
causal relationship between rigidity and cell polarization observed that fibroblasts
plated on substrates bellow the range of 5kPA failed to polarize[210]. Intriguingly,
the data reported in the Durotaxis essay by J.Wong’s group also shows a qualitative
change in the behavior of cells for rigidities on this range. Measures of the angle of
cell orientation in populations of at least 30 individuals show a sudden decrease n
the number of cells found and measured at 10kPa on both gradient and uniforms
substrates (see figs 5B-C and 4E in [13]). The latter fact can not be accounted
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for by the migration of cells towards in increasing stiffness but finds a simple
explanation within the theory proposed.

Conversely, the upper limit for gradient sensing on rigid substrates found
in the simulations is caused by the relative difference in stiffness ∆ES · Lcell/ES0

falling bellow the sensibility threshold, as predicted by the theory. In this case,
the time-course of Focal adhesion maturation is nearly identical and the difference
in mechano-transduced signal between the two FA’s is small.

Figure 8.17: ⊗ Nearly identical FA maturation and mechano-transduced signal for
ES = 90kPA+0.04kPA·µm−1.

Hence, the signal mechano-transduced to the RhoGTPase network can not be
differentiated, so that RhoGTPases are activated almost simultaneously at both
ends and the final distribution of protein activation is a bell-shaped pattern:

t=3 min.
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t= 20 min.

t=30 min.

t= 40 min.

t= 48 min.
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t=50 min.

t= 65 min.

Figure 8.18: ⊗ Adherent state for ES = 90kPA+0.04kPA·µm−1 above upper bound
for gradient sensing.

This state is qualitatively different from the polarized state and will be labeled
adherent. The values obtained for the rigidity threshold above which a given gra-
dient is not detected are could be likely an underestimation of range in which
cells can detect mechanical anisotropies. First, the upper limit is set by the time-
scale ratio of RhoGTPase polarization dynamics and the mechano-transduction
process. Speeding the modulation of their kinetic constants by Crosstalk sig-
nals results in an increase in the velocity of the RhoGTPase activation waves22.
Then, faster RhoGTPase dynamics and higher wave-speed allow the suppression
of activation zones on the softer end of the substrate in the small time-window
separating the emergence of activation at the two ends of the cell23. In addition,

22The speed of RhoGTPases activation-waves can be boosted in two ways. First, reducing the
parameters s0 (see eq. 7.12) that set the concentration scale for crosstalk modulation, given a
shift from the equilibrium concentrations. Second, by reducing the speed of Cdc42 activation by
FAs (i.e ηcdc ↓, see table 8.2), so that the time-scale of the mechano-transduction process is slower
than the speed of activation-waves. Using the first method, a gradient ∆ES = 0.04kPA induced
polarization for rigidities as large as ∼ 0.5MPa

23Similarly, increasing the strength of the inhibition of Cdc42 by RhoA and of RhoA by Cdc42 or
Rac also facilitates the establishment polarity along the stiffness gradient. Stronger inhibition of
RhoA at the stiff end leads to higher levels of RhoA at the other end, which in turn reinforces the
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recent experimental evidence has shown that the FAK/paxilin/vinculin pathway
is involved in broadening the range of sensitivity to stiffness variations[14], sug-
gesting that the mechanism of gradient sensing proposed might be reinforced by
biochemical feedback. Since these molecules are known targets/effectors of the
RhoGTPases, a plausible mechanism to amplify gradient sensing could involve a
channel of inside-out regulation from the RhoGTPases to adhesion sites24. For in-
stance, there is substantial evidence that Cdc42 and Rac promote the formation and
growth of nascent contacts in the early stages of FA formation [19, 48]; thus, intro-
ducing a positive effect of Cdc42/Rac activation on FA growth during the mechano-
sampling process would constitute a feedback loop (FAs→ Cdc42 → Rac →FAs)
that could reinforce the sensitivity to mechanical anisotropies.

This discussion is meant to emphasize that the value of the upper limit of rigid-
ity for gradient sensing is an estimation, the important point is the prediction that
in principle it should exist and, according to the theory, depend on the relative
magnitude of the gradient and and the value of absolute rigidity compared to the
rigidities Ecell

re f of the tissues in which a particular cell type is found in physiolog-
ical conditions. Also interesting is the observation that the developments of this
section are based on the simplifying assumption that the model cell has a per-
fectly symmetrical distribution of Focal Adhesions, which is certainly not what is
observed in real cells. A more realistic hypothesis would entail the introduction
of an stochastic element in the number or nucleation process of Focal Adhesions.
In this case, any initial asymmetry in the FAs undergoing maturation would be
translated into an asymmetry in the mechano-tranducted signal, which in turn
would lead to a random orientation of the polarization axis and randomly directed
movement, even on uniform substrates. Indeed, taxis does not stand for directed
linear movement, but for movement towards a source following a sequence of
random moves and turns that is biased by the source or gradient. This applies to
both chemotaxis and durotaxis. This hypothesis will prove to be fruitful in the
next section, where actual movement induced by rigidity is discussed.
An important prediction that stems from the theory is that the time tpol required by
the cell to detect the stiffness gradient and polarize is a non-monotonic function

inhibition of Cdc42 and aids to resolve the gradient. This is the reason why the crosstalk scheme
labelled as Model C has been selected as the interaction scheme for the RhoGTPases. Model A
and B can also act as integrators of mechanical information, but since Cdc42 is not inhibited by
any protein, transient peaks of activation of this protein emerge at the soft end. For intermediate
rigidities, this secondary peak is eventually suppressed due to protein conservation, but it leads
to slower resolution and a reduced rigidity-range for gradient detection. For larger rigidities, the
RhoGTPases reach the bell-shaped distribution that corresponds to the adherent state.

24Plausible mechanisms to mediate inside-out regulation of FA affinity/avidity have been dis-
cussed previously and could be readily tested introducing a dependency on RhoGTPase concen-
trations in the λ parameters that control the dynamics of FAs
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of the rigidity ES0 and the slope of gradient ∆ES of the substrate. The relationship
between these variables has been analyzed running simulations for ES0 ∈ (1, 90)
kPa and ∆Es = 0.01−0.04 kPa·µm−1, the ranges of substrate rigidities and gradient
slopes of the Durotaxis essay in [13]25.

Figure 8.19: Predicted relationship between polarization time tpol(ES0,∆ES) and
substrate rigidity for ∆Es = [0.01, 0.02, 0.04]·KPa·µm−1

This result provides an interpretation for the experimental findings from two
studies published in the past months [210, 232] and another recent Durotaxis
essay[12]. In the study by Geiger’s group, it was established that fibroblast polar-
ization is preceded and requires focal adhesion mechanosensing[210]. Analysis
of the time-course of rigidity-induced polarization showed that in compliant
substrates is much slower than in rigid substrates, up to the point that bellow
rigidities ES0 ∼ 5kPa polarization does not occur at all, as discussed previously.

25In order to assess tpol(ES0) quantitatively from the simulations’ results, the following measure
of polarization has been defined: a cell point is considered activated when the active RhoGTPase
concentration is above a certain threshold relative to the equilibrium levels. Analogously, a cell
point is considered inactivated when the active RhoGTPase concentrations are bellow a certain
threshold relative to the equilibrium levels. The polarization factor FPol can then be defined as
the sum of active and inactive areas relative the total area of the cell, and a cell is considered
polarized when the polarization factor is above a certain threshold. The polarization time tpol is
simply the time required to reach this value. Note that this measure of polarization allows to
distinguish between the apoptitic, adherent and polarized states. Trivially, FPol(apoptitic) = 0, but also
FPol(adherent) < FPol(polarized), because the activated/inactivated area in the adherent state is smaller
as a consequence of protein conservation.
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For substrates above 30kPa, polarization was clearly observed in time-scales of
the order of 2 − 4 hours. The results depicted in figure 8.19 match this behavior.
On low rigidities, the theory predicts that the sensitivity to stiffness anisotropies
is maximized but, at the same time, adhesion maturation is slow and FA satura-
tion size and mechanical energy stored by receptors are small. This results in a
weak mechano-transduced signal and long times required to trigger RhoGTPase
polarization. Particularly, rigidities between 10 − 5kPA are close to the minimum
threshold for FA maturation, so that tpol(ES0) increases up to ∼ 5kPa, where estab-
lishment of FAs fail and tpol(ES0)→∞. For larger rigidities, increasing speed of FA
maturation and energy loading leads to strong mechano-tranduced signals and
a reduction in the time required to polarize. By this simple mechanism, the ob-
served decrease in polarization time with rigidity found in [210] and the absence
of polarization in very compliant substrates observed in [210] and [13] finds a
straightforward explanation26. The orders of magnitude obtained for tpol

∼ 1 hour
are consistent but somewhat shorter than the values of 2 − 4 hours reported in
[210]. Note however that this study used cell aspect-ratio and stress fiber forma-
tion as a measure of polarity, which should take longer times than the polarization
of RhoGTPases and other regulators of these remodeling process.

Figure 8.20: Focal adhesion failure affects polarization time

Close inspection of the relationship tpol(ES0,∆ES) reveals a small window close
to 10KPa where polarization time decays. This value matches the range where FAs
begin to fail. On a substrate with this value of midpoint rigidity and a stiffness

26This result can be also understood from the theoretical developments of the previous section:
tpol is limited by the time twa

FA required to trigger activation waves. From eq.8.23, it can be seen
that for ES0 < Ere f ∼ 10kPA (i.e a(k̄) < 1), twa

FA grows as ∼ exp(1/a(k̄)), whereas for a(k̄) ∼ 1, twa
FA

decreases quadratically as ∼ 1/a(k̄) up to a minimum value for large rigidities that depends on the
RhoGTPases wave-speed but is independent of ES) .
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gradient, a cell would be adhering on the boundary that marks the threshold
for FA maturation, i.e a fraction of its adhesions would form slightly above the
minimum rigidity to mature and the rest bellow. The increase in the asymmetry
of the signals emitted by the two sets of contacts explains the decay in tpol27.
This effect provides an explanation for the observations in early durotaxis essays,
where the common procedure to create a gradient was to join two blocks with
markedly different elastic moduli, creating a rigidity jump with a well defined
boundary[28, 35]. These experimental set-ups showed that cells reaching the
boundary from the stiff side were unable to cross the boundary, whereas cells
reaching it from the soft side displayed a prominent bias to migrate away of the
boundary towards the stiff side. In the theory’s framework, the no crossing from
stiff→soft is explained by the failure to establish FAs, and the increased bias to
escape from soft→stiff is explained by the combination of a large gradient, large
sensitivity at low rigidity and the additional asymmetry in FAs formation just
described.

8.3.3 Durotaxis limits: theory and experiments

On the extreme of large rigidities, a different principle explains the sudden rise
in tpol(ES0,∆ES) and eventual failure to polarize in response to a mechanical gra-
dient. In this case the mechano-transduced signal by FAs is strong but its relative
difference along the gradient is small, so that the distribution of RhoGTPases
transiently adopts a bell-shaped distribution until crosstalk between the proteins
eventually allows to resolve the gradient. This explains the sudden rise in the
time required to polarize seen at the far right of the axis in fig.8.19 Above a certain
threshold of rigidity, which increases with the magnitude of the gradient, the
bell-shaped distribution is permanent and the cell adopts the adherent state. This
explains the failure of gradients ∆ES = [0.01, 0.02, 0.04]kPa·µm−1 to induce polar-
ization above a certain value of absolute rigidity seen in figure 8.19, and the shift
of this threshold to larger rigidities as the magnitude of the gradient increases.
The predicted biphasic relationship between tpol and ES0 follows from these two
simple principles. Be reminded that this prediction is not meant to imply that
cells do not polarize above certain rigidity, since real cells are not symmetric; it
concerns the limit in which mechanical anisotropies induce a bias in the direction
of polarization. The threshold of rigidity above which a gradient of slope ∆ES can
not be detected is labeled as Ecell

D (∆Es), to denote that it marks the value where cells

27Note that the discontinuous jump in tpol would become a smooth ondulation if more values
for tpol in ES 0 ∈ [10 ± Lcell · ∆ES] had been calculated.
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should loose the ability to Durotax in response to it. 28. A systematic assessment
of the experimental limits of cellular sensitivity limits to mechanical anisotropies
has not, to my knowledge, been made. In fact, this theoretical prediction seems
to contradict the main conclusion of the authors of the Duroatxis essay under dis-
cussion, that the mere existence of a stiffness gradient induces biased migration.
Further, they also observed that the bias of VSMc cells to move up the gradients
of PAAm gels increased with the magnitude of the gradient but was not affected
by the absolute rigidity (although the authors state that the number of cell data-
points measured is not large enough to have statistical significance), which lead
them to conclude that the duro-tactic index depends on ∆ES but not on ES0 (see
experimental results in figs. 8 A,B,C in [13] ). However, another recent Duro-
taxis essay by Kidoaki and coworkers[12] with 3T3 fibroblasts did indeed find a
limit of cell sensitivity to mechanical anisotropies. The stiffness profiles and main
observations of the different substrates used in these essays are depicted bellow:

Figure 8.21: Stiffness profiles in Durotaxis essays by Kidoaki et. al [12] (left)
and Isenberg et. al [13] (right). Gradient slopes in Gels A,B, C are 1-2 orders
of magnitude larger than in PAAm gels. Vertical lines indicate the range where
durotaxis was studied.

In Kidoaki’s study, three gels labeled as A, B and C, with stiffness gradi-
ents as large as ∆ES = [0.8, 3, 2]kPa·µm−1 were manufactured in order to asses
quantitatively the bias induced by mechanical anisotropies in the direction of

28The fact that Ecell
D should depend on the cell type has already been discussed during the expo-

sition of the theory. Briefly, it is explained by the fact that sensitivity to mechanical anisotropies
depends on the range of stiffness on which the cell is plated compared to Ecell

re f , which in turn is
determined by the contractility of the cell and the type of Focal adhesion receptors expressed.
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migration of 3T3 fibroblasts. The results showed a clear bias to migrate up the
gradient on Gels A and B; however trajectories on gel C where not influenced
by the gradient. This result is quite surprising, considering that the gradient of
Gel C was 300-fold larger than on the PAAm gel of ∆ES = 0.01kPa·µm−1 that was
observed to induce biased migration of VSM cells in [13]. This proves that the
mere existence of the gradient is not enough to induce durotaxis, and that another
variable determines the process. The authors of [12] observe that the decrease
in the duro-tactic index from Gel A to Gel B and the failure to induce durotaxis in
Gel C could be accounted for considering the jump or ratio of rigidity at the high
an low ends of the gradient, which for gels A, B, and C follows the relationship
9 < 7 < 2. This hypothesis29, however, can not explain that the shallowest gra-
dient of the PAAm gels used in the study by J. Wong’s group induced durotaxis,
since the jump in stiffness in this gel as small as 1.66. The different outcomes
of these experiments could be attributed to f ibroblasts having a lower sensitiv-
ity to mechanical anisotropies than VSMc cells, although this interpretation goes
against all the evidence of earlier mechanosensing essays, with f ibroblasts being
the main cell type studied and having showed a high sensitivity to mechanical
cues[29, 30]. Next, it will be shown that the mechanosensing theory introduced
previously provides a unifying explanation for this seemingly contradictory ob-
servations. According to the theory, a stiffness gradient can be resolved as long

Figure 8.22: Stiffness gradient to rigidity ratio for Gels A, B, C in Durotaxis essay
by Kidoaki et. al [12] and PAAm gels in Durotaxis essay by Isenberg et. al [13]

as the time-window separating the emergence of activation waves triggered by
29If the jump in stiffness ES1 + ∆ES ·∆Lsubstrate was determining the migratory behavior observed

in the experiment, it would imply that cells were perceiving the mechanical properties of points
removed 100µm from them, which does not seem biologically reasonable
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mechano-transduction signals is larger than the time required by the regulatory
wave to travel a cell length and establish the polarized pattern. This condition,
expressed mathematically in eq.8.25, leads to the intuitive prediction it is the rel-
ative difference in stiffness at the two extremes of the cell what determines if a
gradient will induce durotaxis. For a given gradient of slope ∆ES, the maximum
rigidity Ecell

D above which it will not be perceived and will not bias cell migration
is given by a relationship between Ecell

D ∝ ∆E1/n
S , as given in eqs. 8.26. Further,

the scaling of the relationship varies for different ranges of stiffness compared to
Ere f (going as Ecell

D ∝ ∆E1
S for ES ∼ Ere f and Ecell

D ∝ ∆E1/2
S for ES > Ere f ) and its

independent of the cell size. An estimation of Ecell
D (∆ES) has been obtained per-

forming repeated simulations with increasing values of absolute rigidity until the
computational cell failed to polarize and instead adopted the adherent state. The

Figure 8.23: Theory and Simulation predict positive and false observations of
Durotaxis in essays by Kidoaki et al. [12] and Isenberg et. al [13]

results of the simulation30 show that the large gradient of Gel C in the Duroatxis

30The first data point [ED,∆ES] = [5kPa, 0kPa·µm−1] has been added because a cell plated at the
limit where FAs fail finds half its body on a surface were FA can not form and half where they do,
resulting in cell polarization even in the absence of a gradient. See discontinuous line in the inset
figure.
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essay by Kidoaki et al. is the only substrate falling in the No Durotaxis regime,
whereas all the PAAm gels in Isenberg’s study [13], despite the shallowness of
their stiffness gradients, are bellow. Thus, this explains the observations that Gel
C, despite having a gradient of stiffness of 2KPa·µm−1 did not induce Durotaxis,
whereas even the shallowest gradient of 0.01KPa·µm−1 of the PAAm gels did. This
also shows why the conclusion of the authors of [13], that the mere existence of
a gradient induces Durotaxis, is not accurate. They observed biased migration
on all the PAAm gels because all their the their tests were performed at baseline
levels of rigidity in which the gradients are predicted to induce Durotaxis; had
they tested PAAm1 above 60kPa or PAAm4 above 80kPa and they would have
observed a weakening and eventual vanishing of the duro-tactic index. In fact,
the data reported seems to confirm this prediction: since the cell data points in
the scatter plots of duro-tactic index vs rigidity for PAAm1 and PAAm4 indicate
a weakening in the bias to migrate along the gradient as the rigidity approaches
the predicted value of ED(∆S), but this trend is not observed in PAAm2 (see scatter
plot figs 8A,B,C in [13] for the three gels), which is the gel that is further from
the durotaxis limit (see inset plot in the previous figure). Note also that Gel C
is only substrate at the limit of the Durotaxis limit but the simulations suggests
that some weak bias to migrate towards the stiffer area of the cell should occur
on the softest part of the gel, which was not observed. Of course this could be
amended by fine-tuning the parameters given in table 8.3, which were assumed
to illustrate the mechanism of gradient sensing without awareness of the experi-
mental observations under discussion. But there is a more interesting observation
that follows from this result: the scaling of ED with ∆E depends on the assump-
tion that the mechano-transduction process occurs on time-scales longer than the
maturation of Focal adhesions. This assumption was based on the evidence that
rigidity-induced polarization is preceded by FA mechano-sensing [210], which
lead to derive the time-window between activation events approximating N(t) as
Neq(ES). Assuming instead that the activation events occurs during the process of
FA growths leads to a different scaling of ED with ∆E. In this case, the theoretical
prediction neatly predicts that Gel C falls entirely out of the durotaxis regime,
whereas the other gels would remain inducing Durotaxis. In turn, the fact that
the mechano-transduction event should occur simultaneously to FA maturation
puts constraints on the actual bio-chemical mechanism of mechano-trasnduction,
about which little is known.



280 CHAPTER 8. A NEW VIEW ON CELL DUROTAXIS

8.3.4 Migration speed vs rigidity or adhesiveness : theory and
observations

Another prediction of the theory is that migration velocity depends on the rigid-
ity of the substrate and this, in turn, has interesting implications for the observed
dependence of migration speed on the adhesiveness of the substrate, mainly deter-
mined by the density of ligands coating its surface. The theory proposed predicts
that at low rigidities the time required to polarize is large because small contacts
take long to trigger the activation of the regulatory apparatus of cell migration.
Since cell polarization is necessary to attain directed migration, the time required
to polarize must be a limiting factor of migration, and consequently 1/tpol is a
key factor determining cell speed. As shown in fig. 8.19, at the extreme of low
rigidites tpol is very large and as a consequence, cell migration should be slow.
This mechanism explains the qualitative observation in the Durotaxis essay by
Kidoaki and coworkers [12] that even though Gel A was more effective in biasing
migration towards increasing rigidity, the speed of 3T3 fibroblasts was clearly
larger on Gel B. Note that the rigidity of Gel A at the low end of the gradient
was 10kPa, close to the predicted limit for FA formation, whereas the baseline
rigidity for Gel B was 50kPA. The fact that the (non-biased) migration on the more
rigid Gel C was also slower than in Gel B must be due to another mechanism,
and the theory proposed also suggests an explanation: in this case, the velocity is
limited by the fact that the size of Focal adhesion increases with stiffness, which
results in longer times required to release the contacts at the cell trailing edge
after contractile forces are applied by the cell. Therefore, the theory proposed pre-
dicts a biphasic relationship between cell migration speed and substrate rigidity
resulting from two different processes: the long times required to trigger polariza-
tion on soft substrates and the increasing difficulty in tearing-off focal adhesions
at large rigidities, with optimal velocities found at some intermediate level of
rigidity. An illustration of the process of cell mechanosensing, polarization, force
development, FA release and movement is given in the following simulation.

t = 24min. vcell = 0.0µm·s−1
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t=27 min. vcell = 0.0µm·s−1

t=31 min. vcell = 0.1µm·s−1

t=34 min. vcell = 0.11µm·s−1

t=38 min. vcell = 0.12µm·s−1
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t=41 min. vcell = 0.16µm·s−1

t=44 min. vcell = 0.21µm·s−1

t=80 min. vcell = 0.63µm·s−1

Figure 8.24: ⊗ Mechano-induced polarization, FA turnover-disassembly, and
movement.

The magnitude of contraction and protrusion forces in the simulation of di-
rected migration 31 are determined by the concentration of Rho and Rac through the

31A stiffness gradient of 0.1kPA·µm−1 has been added to direct the motion. Note that small
gradient has little effect on the speed of the mechano-transduction process and contact rupture,
and thereby, on cell speed. This requirement can be removed introducing an stochastic element
in the nucleation process of FAs
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phenomenological laws introduced to study chemotactic movement and stated
in eqs.7.18-7.19. Force and cell parameters were estimated from observations and
given in table 7.2. In addition, a mechanism of inside-out regulation from RhoGT-
Pases to Focal adhesions has been included: once the computational cell reaches
the polarized state, Rac promotes FA disassembly at the cell front by reducing
the rate of bond formation 32. The previous simulation shows the basic steps of
cell migration, initial formation of Focal adhesions, polarization of the regulatory
apparatus induced in this case by mechanical cues, force development, eventual
release of the contacts and forward movement. Values of forces and velocities
match experimental observations: the velocity given in fig.8.24 corresponds to
the mean velocity of the cell centroid, while the final instantaneous speed reaches
a value of vcell ≈ 1.24µm·s−1, close to the values reported in [232]. Note the
change in the distribution of forces sustained by Focal Adhesions as protrusion
and contraction forces are developed, with large forces at the cell front and back as
observed experimentally [204, 122], and the sequential release of FAs depending
on the position along the migration axis. Mean cell velocity is determined by tpol

and the time required to disassemble the contacts at the cell trailing edge and FA
turnover at the front.

The relationship between rigidity, polarization time, Focal adhesion size and
migration speed has been analyzed varying the rigidity of the substrate. This
result, in turn, provides an explanation to the observations of a recent and fas-
cinating study in which the relationship between descriptors of Focal adhesion
(FA size, number, shape) and descriptors of cell migration (cell speed, persis-
tence distance of migration, number of turns, distance traveled ) was for the first
time assessed quantitatively[232]. The central result of this experiment was quite
surprising: the size of Focal adhesions, not their number, shape or molecular
composition, was an accurate predictor of migration speed for both mouse embry-
onic fibroblasts (MEFs) and human fibrosarcoma cells (HFs). In order to compare the
predictions with the experiment, repeated simulations of the migration process
have been performed varying the substrate rigidity in ∆ES0 = [10, 80]kPa: the
relationship obtained between the (normalized) mean size of the Focal adhesions

32This is not a central property of the model: it has been added to account for the observed
difference in the mechanisms of FA release at the rear and front of migrating cells, labeled as
disassembly and turnover, respectively [48]. FA disassembly is a mechanical process primarily driven
by contractile forces, as evidenced by the observation that migrating cells leave a trail of integrin
receptors on the substrate that had been ripped-off from the contacts at the rear[233]. Conversely,
FA turnover at the cell front is regulated by signaling involving the RhoGTPAses, evidenced by the
sequential removal of different molecular components of adhesions[48]. The detailed mechanism
of FA turnover aided by inside-out signaling influences quantitatively the speed of release of
contacts at the front, but it does not change the qualitative prediction that highly developed FAs
hinder cell movement.
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developed by the computational cell N(ES0) and (normalized) migration velocity
is plotted in fig 8.25: This result provides a clarifying interpretation of the re-

Figure 8.25: Cell speed and Focal Adhesion Biphasic relationship. Compare with
observations given in fig. 2G-3G in migration study by Kim et al. [232]

markable experimental findings of the experiment under discussion [232]. For
populations of 30 − 50 individuals, the authors measured the mean area of Focal
adhesions in every cell and their mean migration speed, finding a gaussian distri-
bution in both the mean FA sizes (see fig. 1H in [232]) and speeds (see fig. 2C in
[232]) for the cells in a population. Similar data was gathered for the rest of the de-
scriptors of cell motility and FA morphology. Statistical analysis of the correlation
between different variables showed, strikingly, that ”the mean size focal adhesion
area robustly and precisely predicted cell speed independently of focal adhesion
surface density or molecular composition”. Precisely, mean migration speed of a
cell was found to be determined by the mean size of Focal adhesions, so that for
small FA size, the observed cell speed was small, followed by a range of large
migration speeds at intermediate FA sizes, and a decay for large size of adhesion
sites (see fig. 2G in [232]). Strikingly, this result was robust against molecular
knock-outs of several FA related proteins (see fig. 3G in [232]), suggesting that a
simple basic principle underlies this correlation. Plausible principles that could
explain this observation have already been presented: on compliant substrates,
small contacts developed result in long times to switch the signaling cascade that
leads to polarization and movement, conversely, on rigid substrates the cell de-
velops large contacts, resulting in long times of FA disassembly at the cell and
rear and front. The relationship obtained from the simulations fits the reported
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quite well, the somewhat weaker decay obtained for large FAs is simply due to
having assumed a too strong mechanism of inside-out regulation of FAs at the cell
front. Thus, the theory provides plausible principles that explain the remarkable
observation of a biphasic relationship between cell speed and FA adhesion size
in[232].

This mechanism is qualitatively different from the mechanism proposed in the
past to account for the observed dependence migration velocity and the density of
ligands coating the substrate. As discussed in section 7.4 of Chapter 7, cell speed is
also faster at intermediate levels of adhesiveness and decays for very large or very
low adhesive strengths [194, 195]. Substrate adhesiveness is mainly determined
by the density of ligands coating the substrate, which results in cells developing
stronger Focal adhesions as the adhesiveness increased. The involvement of Focal
adhesions in this behavior suggests that the biphasic dependence of migration
speed on both adhesiveness and rigidity might have common underlying causes.
The influence of adhesiveness in migration speed was predicted theoretically in
the pioneering work by DiMilla and coworkers [94] and latter observed exper-
imentally. The model accounted for this observation in terms of the physical
trade-off between the need to establish sufficiently strong attachment points to
exert traction in order to pull the cell body forward, and the increasing difficulty to
release these contacts at high levels of cell-substrate adhesion strength. However,
its becoming increasingly clear that the story is more complex: measurements of
force at Focal adhesion level in migrating cells show that small contacts at the
cell front can sustain large tractions[204, 122]. In addition, recent experiments
have shown that the underlying mechanisms also involve decreased RhoGTPase
activation and myosin-powered contraction at low adhesive strengths[196, 197].
These observations seem to support the idea that the biphasic relationship be-
tween velocity and rigidity or adhesiveness at the low range of this variables
are caused by the interplay between weak FA formation and delayed mechano-
transduction, and not by a simple mechanical principle. The theory proposed, in
turn, suggests a common root to both type of observed motility behaviors.

8.3.5 Durotaxis: theory and observations

In the experimental study by Kim and coworkers [232] discussed previously, the
observations of FA descriptors vs descriptors of Cell motility were repeated on
three types of substrates: (very rigid) glass, rigid and soft gels. A change in the
substrate only resulted in a shift in the observed distribution of FA sizes and cell
speeds, but preserved its gaussian nature. Precisely, the means of the distribution
of both FA sizes developed by individual cells and migration speeds increased
with rigidity and, interestingly, the variance of the distributions also widened with
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rigidity. These observations provide valuable information to extend the theory of
cell migration and mechanosensing presented in this Thesis.

First, the fact that for a given rigidity the mean size of the contacts developed
by individual cells follows a gaussian distribution, and that this distribution is
conserved with an increase in rigidity puts constraints on the stochastic element
in the initial process of Focal adhesion nucleation. The equation derived to de-
scribe focal adhesions is fully deterministic; for a given rigidity the predicted
equilibrium size reached by a cell contact is completely determined by ES and
the energy po · tcont invested testing the substrate. In this case, the number of
closed ligand-receptor bonds will be proportional to the initial availability of in-
tegrin receptors NT, as shown in eq.8.12. Hence, given a uniform substrate and
a fixed value of available receptors, all the cell FAs reach the same equilibrium
size Neq(ES, tcont) ∝ NT · f (ES, tcont). In this framework, there are three possible
outcomes or states that the cell can reach after testing the substrate, as depicted
schematically in fig.8.26. The polarized state, particularly, due to the simplifying
assumption that all FAs are initiated simultaneously and symmetrically along the
cell edge, is only reached in the presence of a mechanical anisotropies. Of course,
as stressed previously, this is not what is observed in real cells, which are not
perfectly symmetrical. In actuality, even in homogeneous substrates, cell polar-
ize and migrate in a random direction; in my view, this is a consequence of the
intrinsic cell asymmetries and the stochastic nature of the initial process of FA nu-
cleation33. There are several parts of the initial process of Focal adhesion formation

Apoptotic state Adherent state Polarized state

Figure 8.26: States adopted by an ideally symmetric cell with no-stochastic ele-
ment in the nucleation process of Focal adhesions, depending on the rigidity of
the substrate.

that could be stochastically driven: integrin availability in the initial contact, the
position of nucleation, the number of contacts formed along the periphery, and so
forth. However, the observations in [232] provide constraints on the process that

33Noise in the signalling pathways from FAs to the cell regulatory networks is likely to be
involved too, but it will not be considered here
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might underlie the nucleation of Focal adhesions. The simplest hypothesis that
is consistent with the observations is that NT, the number of available receptors
per focal adhesion, is stochastically determined. This assumption reflects that the
encounter and nucleation of the small clusters of receptors that constitute the seed
of a Focal adhesion is driven by diffusion and thermal fluctuations. It follows that
the number of receptors forming that initial cluster should be random, which will
in turn determine NT. Thus, the third hypothesis that completes the proposed
theory of cell mechano-sensing is stated as follows: Nucleation of cell adhesions is
a diffusion-driven stochastic process that results in a random size of the initial clusters of
receptors and can be described by a random distribution in an individual cell.

The information provided in [232] does not allow to infer the actual distri-
bution of Focal Adhesion sizes at cell level, since only the mean area of the FAs
in every cell was reported (see figs. 1H,1N in [232])34. Hence, the simplest as-
sumption that can explain the reported data is made: the number of available
receptors NT(σ) per Focal adhesion within a cell is also given by a gaussian dis-
tribution, where the variance σ of the distribution is associated to the degree
stochasticity in the nucleation process. With this assumption, different cell FAs
will reach an equilibrium size dependent on ES, the power po invested to test the
substrate and the available number of receptors. Consequently, if NT(σ) is nor-
mally distributed, the equilibrium size of the contacts will also follow a gaussian
distribution given by Neq(ES, tcont, σ) ∝ NT(σ) · f (ES, tcont). In this way, the mean
size of cell contacts will be identical to the equilibrium size predicted in the deter-
ministic framework. However, as a consequence of the new stochastic ingredient,
the outcome of the mechanical test will not be deterministic, and the direction of
polarization will be to some extent random, both on homogeneous and gradient
substrates. This is so because the mechano-transduced signal is, by hypothesis,
proportional to the number of receptors. The energy stored per receptors and the
induced ligand-receptor distance will still favor FAs on stiffer anchorage points,
and as a consequence, a stiffness gradient will bias the maturation and mechano-
transduction process. This summarizes the core of the description of Durotaxis
that stems from the theory proposed. In order prove that this description does
indeed allow to match the observed behaviour of Durotactic cells, three simula-
tions have been performed with the additional stochastic ingredient introduced.
The baseline rigidity is kept at ES0 = 40kPa and the stiffness gradients have mag-
nitudes of the PAAm gels used in the study by J. Wong’s group [13] and span the
area in −200µm < x < 200µm.

34The fact that the mean area of the FAs in a cell follows a gaussian distribution in the population
does not allow to infer much either: by the Central Limit Theorem, it is only possible to conclude
that the areas of the FAs developed by an individual cell are independent of the other cells, and
that the FA areas found in different cells should be similarly distributed
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Figure 8.27: Simulation of Durotaxis. A square/circle mark the initial/final points
of the cell trajectories. Simulated time 20h. Compare with Windrose plots reported
in figs. 6b in Isenberg et. al [13] and figs. (4c-d-e) in Kidoaki et al. [12]
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Persistent times of migration between mechanical samples of the order ∼
30min have been adopted from [232]. The simulated trajectories match all the
qualitative features of duro-tactic migration. The duro-tactic index, defined (for
long times) as the ratio of the displacement along the gradient direction to the
total length of the cell path [234], increases with the magnitude of the gradient, ex-
plaining the decrease in the number of turns with an angle relative to the gradient
as ∆ES increases. The cell trajectories on the region x > 200µm become essentially
random because this is the area where the susbtrate has a uniform rigidity. Cell
velocities, of the order of 1.24µm · s−1 are similar in the three simulations, because
they are mainly determined by the absolute rigidity of the substrate. Interest-
ingly, setting a rigidity jump from stiff to a low value close to 10kPa allows to
reproduce the no-crossing from stiff-to soft observed in early durotaxis essays,
and conversely, a high rigidity close to ED(∆ES) shows how the trajectories of the
computational cells become essentially random once they trespass the sensitivity
threshold.
A larger number of similar simulations should be performed to have statistical
significance and be amenable to be compared with experimental data. However,
the qualitative match between these preliminary results and observations shows
that the theory proposed captures the main features of duro-tactic movement.
This suggests that the main ingredients underlying Durotaxis may very well be
explained by the mechanisms that naturally stem from the theoretical framework
developed. Further, it suggests a new take on the relevance of Durotaxis essays: if
the theory proposed is true, these type of essays could comprise an indirect way to
gain information on the process of Focal adhesion nucleation, which has proved
to be difficult to assess experimentally. To conclude, the observation in [232]
that the variance of the FA descriptors (area, aspect ratio etc.) becomes wider
as more rigids substrate are used, for which no interpretation is given, finds a
simple explanation in the description proposed: during the nucleation phase the
number of receptors in a Focal adhesion is very small, so that fluctuations in their
number can be as large as the number of receptors itself, leading to the failure of
the initial contact. However, as the rigidity of the substrate increases, according
to the theory proposed, the growth of the FAs is faster and stronger, which would
lead to an increase in the rate and initial minimal size required for contact survival,
explaining the widening in the distribution of FAs featured by the cells cultured
on glass vs soft gels(see figs. 1H-I-J-K-L in [232]).
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8.3.6 Why Cells Durotax? Why neurons anti-durotax? What
about mechanics and Cancer?

According to the theory developed, there is a rigidity Ecell
re f where a cell can de-

velop the forces required to establish mature Focal adhesions. Ecell
re f , as defined in

eq.8.18, is determined by the characteristic contractility tcell
cont and molecular prop-

erties of the receptors expressed by a particular cell type. Further, this rigidity
also sets the range of optimal detection of mechanical anisotropies (see eq.8.24
and follow-up discussion). In other words, given the small magnitude of the
mechanical gradients usually found in vivo, Ecell

re f marks the upper bound above
which a particular cell type gradually looses the capacity to durotax in response
to mechanical anisotropies, and also matches the lower bound of rigidities to es-
tablish mature Focal adhesions. A rigorous derivation of the value of Ecell

re f would
require a bifurcation analysis of the governing equation for FAs 8.6; but it can
be estimated from the conditions eg( fg) > e0 and ug( fg) < u0, so that the energy
stored per receptor is of the order required to activate them and the displacement
induced between ligand-receptor pairs is small compared to those associated to
the thermal fluctuations that drive the formation of bonds. From this inequalities,
and introducing the expression for u2

0 ∼ 2 · KBT/(kp sin 2θ) developed in section
3.3, a rough estimate of the reference stiffness can be obtained:

Ecell
re f � (

e0

p0 · tcell
cont

e0 · sin 2θ
KBT

)1/3 kp

rp
(8.28)

This equation adds an interesting twist to the mechano-sensing theory pro-
posed, related to contact guidance and the biological function of Durotaxis. Intu-
itively, the reference stiffness is determined, firsts, by the energy developed by the
cell po · tcell

cont, which has to be of the larger than e0 to activate the receptors. And sec-
ondly, by the angle θ formed by actin filaments with the substrate when pulling
on adhesions (see fig.3.9), which has to be small so that the vertical displacement
induced between receptors and ligands is also small and thermal fluctuations (of
the order of the Boltzmann factor KBT) can ”jolt” the receptors close to ligands, al-
lowing the formation of bonds. The vertical displacement uo ·sinθ has to be of the
order of nano-meters, the characteristic distance at molecular scale; introducing
characteristic values for receptor springs constant ∼ 1pN/nm, KBT = 4.1pN·nm
and FA displacements of the order of u0 ∼ 0.5−1µm leads to predict that the angle
formed by actin filaments when pulling has to be of the order of θ < 0.1 − 0.01
degrees (almost parallel), which is indeed what is observed experimentally.
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Contact guidance Durotaxis

Figure 8.28: Contact guidance and Durotaxis could be explained by common
principles concerning the formation of cell adhesions with the substrate

Contact guidance, in turn, is an effect of the topography of the substrate on
cell orientation, which tend to align themselves so that the curvature underneath
them is minimized[235]. This means that the two guidance principles could be
explained by common principles, since the curvature of the substrate results in
an increase in θ and consequently hinders or even blocks adhesion formation.
The second discussion concerns a possible biological function of Durotaxis. Pro-
vided that a constant power p0 independent of cell type is invested during me-
chanical samples of the ECM, the characteristic contraction time tcell

cont should reflect
the energy p0 · tcont spent or available to test the substrate, that is, the contractility
of this particular cell type. Further, the more contractile a cell type is, the smaller
the Ecell

re f in which it can establish adhesions (depending also on the receptors ex-
pressed). It follows that highly contractile cells, such as fibroblasts, can thrive and
adhere on compliant substrates but should loose their ability to detect mechan-
ical anisotropies at low rigidities. Conversely, a less contractile cell type, such
as osteosarcomas, requires more rigid substrates to adhere but on the other hand
maintains the ability to detect stiffness gradients up to high rigidities. This view
suggests that durotaxis provides osteosarcomas and fibroblasts with a mechanism
to find their way to rigid and soft tissues such as bone and connective tissue,
respectively. And it also follows that these tissues match the rigidities where they
can establish mature contacts and adhere. Fittingly, there is where they are found
in physiological conditions, which suggests why evolution has implemented the
ability to durotax in biological cells. This interpretation of Durotaxis is not depen-
dent on the hypothesis that some cell type are more contractile than others (for
which I have no evidence); the type of receptors expresses by a cell can play the
role of tcont, determining the adequate range of rigidities to develop adhesions and
the range of sensitivity to mechanical anisotropies.
Another experimental observation finds an explanation and comprises an unex-
pected source of support for the mechano-sensing theory proposed. Neurons, the
only cell type that is known to anti-durotax35. I am not aware of any experimen-
tal assessment on how contractile neurons are. But if the theory is correct, since

35The rate of neurite branching and neurite extension is higher on softer substrates. Neurite
extension is analogous to migration in other cell types. See [29] and references therein
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these cells are found in the brain (and nerves), the softest tissues in animals, they
should be very contractile. Alternatively, neurons could be not so contractile com-
pared to other cells, but use a type of receptors (i.e not integrins) for which the
characteristic forces of bond-rupture f0 were small. In both scenarios, most likely
the second of them, the principle that explains that establishment of adhesions is
favored on stiff substrates does not apply (see eq.8.3 and follow-up discussion).
In the first scenario, highly contractile neurons on soft tissue would induce large
receptor-ligand displacements resulting in a vanishing rate of bond formation. In
the second, even small forces would lead to an exponential growth of the rate
of bond-rupture. It follows that neuron adhesions/extensions on soft substrates,
where smaller forces are developed, should be more stable, and by the same prin-
ciple, why these cells anti-durotax.

Then there is cancer. A characteristic property of tumors is that they become
more rigid than healthy tissue during the progression of cancer. In addition,
experimental evidence shows that, amongst many other abnormalities, the re-
ceptors expressed by malignant cells have their type and structural/mechanical
properties altered[32, 43, 44, 45]. In the framework of the theory proposed, this
could partially explain why cancer cells show abnormally high proliferation rates
during the first stages of cancer and high motility rates in the later stage of metas-
tasis. The ability of a cell to infer the mechanical properties of the ECM depends
on a basic requirement: the molecular ”spring constant” of its receptors has to be
well above that of the point on the substrate where ligands are anchored. This
is can be understood considering the simple system of two springs in series: its
rigidity is determined by the weakest link. For a ligand-receptor pair in the cell
membrane, these are the two extreme possibilities:

k̄P−S =
kP · kS(ES, rP)
kP + kS(ES, rP)

≈

{
kS(ES, rP)

kP

kP >> kS(ES, rP)
kP << kS(ES, rP) (8.29)

where kP is the compound molecular spring constant of a ligand receptor
pair and kS(ES, rP) is the effective stiffness of the anchorage point, determined
by the Young’s modulus of the substrate and the contact area. In turn, k̄P−S

is the compound stiffness of the ligand-receptor pair and the anchorage point
on the substrate, which determines the dynamics of the molecular bond. As
discussed earlier, typical physiological values for tissues Young’s modulus and
the molecular radius of ligand or receptor molecules (see eq.3.35 and footnote2 in
this chapter for experimental values) leads to the first case, kP >> kS(ES). Hence,
in normal conditions, the stiffness of the substrate determines the stability of
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adhesions on the extracellular matrix. Conversely, if the progressive rigidization
of a tumor environment resulted in kP << kS(ES), the properties of the environment
would cease to influence the cell fate, as the cell would ”sense” a uniform and
high stiffness kP of its own receptors as that of the environment, explaining the
abnormally high proliferation rates exhibited by cells in tumors. Further, if in a
later stage an alteration in the structural properties of the cell receptors (somehow
becoming ”loose springs” or if the cell expressed an altered receptor type ) resulted
in kP << kS(ES), the properties of the extracellular environment would again
cease to affect the fate of the cell. In this case, however, the malignant cell
would ”sense” the low stiffness of its own receptors independently of the external
conditions. According to the views presented, cells on a soft environment show
high sensitivity to external anisotropies, which triggers a phase of search for a
more rigid tissue. In the case of a malignant cells, it would not to be found, on
account of them having lost their mechanical compass. This could explain the
high motility rates exhibited by cancer cells during metastasis.

Indeed, the two mechanisms could occur simultaneously and reinforce each
other: if cell receptors were to become gradually loose, it is plausible that cells
would increase their level of contractility in order to restore the perceived integrity
of the tissue, leading to a progressive rigidization of the tissue. The progression of
these abnormal trends would then constitute a feedback loop, leading to further
rigidization and cells eventually perceiving the environment as soft, explaining
the explosion of proliferation and motility observed in tumors. Certainly, these
speculations, if true, must be only part of the story of the much more complex
process that is cancer, but is also true that they are plausible mechanisms that
could be involved in a fatal disease, and that it would be interesting to explore
them experimentally.
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Well, you know, that’s just like... your
opinion, man.

Jeffrey Lebowski

Goodbye, blue Monday!

Kurt Vonnegut, writter

Chapter 9

Conclusions

9.1 Conclusions

I tried to keep the quotes from accounts of ancient travelers and old mountaineer-
ing expeditions, of which I am very fond, as low as possible. Drawing parallels
between research and exploration is as tempting as prone to end on the campy
side. However, the one by Edward Whymper1 at the beginning of chapter 8,
where the theory of mechano-sensing and Durotaxis is developed, is fitting. The
problem of how cells sense the mechanical properties of the environment was the
first topic that attracted my attention when I started this Thesis. However, many
times I hit dead ends and I was ready to give up this aspect of cell migration.
How could it be that cells seem to advance in the direction of increasing stiffness
when Focal adhesions are more developed and therefore should be more difficult
to release on rigid substrates? Finally, a simple (an almost desperate) hypothe-
sis, that a constant power defined by the kinetics of actin-myosin filaments and
integrin receptors is invested testing the substrate, provided a plausible answer.
The predictions that follow from this hypothesis provide an interpretation to a

1Edward Whymper (1840-1911) was en English engraver that started climbing after being
commissioned by the London Alpine Club to make a series of engravings of the Alps. The
account of his wanderings with the hunchback Luc Meynet in at those times god-forsaken valleys,
his fabulous etchings, the fine irony with which his birthland seems to have blessed most of its
dwellers, a gripping description of an avalanche and the curious observation that wine seems to
evaporate faster at high altitude in the company of mountain guides can all be found in his book
Scrambles amongst the alps in the years 1860-69[236]. Whymper tried repeatedly an unsuccessfully
to climb the Mattherhorn by the Lyon ridge on the Italian side until, in part by chance and by
his realization that the Hornly ridge was only deceptively unclimbable, decided to attack the
mountain from Zermatt in Switzerland. This lead, one 14th of July of 1865, to a thrilling race
against a rope lead by an Italian Duke on the other ridge, his conquest of the mountain, and
tragedy.
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substantial amount of recent observations on Focal adhesion growth, force de-
velopment in real time and their dependence of stiffness, and constitute perhaps
the most satisfying result of this Thesis. The good match with these observa-
tions, stemming from studies with different cell types and experimental set-ups,
shows that this hypothesis has the attractive capacity to unify phenomena for
which there was no conclusive explanation. Once this hypothesis is made, the
mechanisms that could explain how cells integrate mechanical gradients follow
virtually on its own, and also the interpretation of various observations regard-
ing the relationships between cell polarization times, migration speed, Durotaxis,
mechano-sensing limits, and rigidity. Further, it suggests a biological function to
cell Duroatxis, which to my knowledge has not been proposed before.

A similarly radical hypothesis was made to formulate the description of the
RhoGTPases. Essentially, the Graph/Matrix structure of their Crosstalk was im-
posed to block the emergence of Turing patterns during the polarization process.
They are not observed and would hinder the dynamical spatio-temporal distribu-
tion of the proteins regulating cell migration. This, in turn, forced me to assume
that some form of auto-catalyisis is at play in the process of RhoGTPase activation,
so that the system describing them was Turing-stable but had wave-like solutions
to support polarization. Indeed, experimental evidence seems to suggests the
existence of various biochemical processes that could lead to this type of Hill-like
kinetics in the RhoGTpase cycle of activation. On the other hand, this theoretical
assumption naturally leads, first, to suggest plausible biochemical mechanisms
of RhoGTPase crosstalk, which are not well understood. They are based on com-
petition to bind limited amounts of GEFs and GDIs, for which there is incipient
evidence. And secondly, to properties that are desirable for a regulatory network
whose function is to integrate external cues: amplification of external signals,
sensitivity to ensuing stimuli, and cell-length independence.

This leads to another notion that is pervasive in this Thesis, and that is the idea
of finding unifying principles for observations made in different contexts or cell
types. For cell migration (although I believe that the same idea should be useful
in other biological problems) particularly, a motivation for this rationale is the
observed plasticity of cell migration, which suggests that different arrangements
of a common machinery can explain the different migration phenotypes observed
in vitro. A nice result that stems from this approach is that different cell mor-
phologies characteristic of keratocytes and neutrophiles can be recapitulated with
a simple shift in the parameters that control cell force, cytoskeleton anisotropy
and, more interestingly, RhoGTPases crosstalk. The connection drawn between
contact guidance and durotaxis also falls in this category.
More broadly, it must be emphasized that the mechanisms proposed to explain
the detection of chemical and stiffness gradients have also a common root. They
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are based on these stimuli triggering the emergence of waves of the regulatory
proteins. A (linear) gradient ∆s of the stimulus, regardless of its nature, leads to a
difference ∆s ·Lcell experienced at the different ends of the cell. These difference re-
sults in a delay in the time in which activation waves are triggered by the receptor
machinery, an this offset allows the wave on the high side of the gradient to reach
the opposite cell edge; then crosstalk does the rest and the polarized pattern is
established. Further, the time delay is essentially determined by the signal differ-
ence, so that ∆tact

∝ ∆s · Lcell. However, since a traveling wave also requires a time
given by Lcell/vwave, the mechanism of gradient sensing is independent of the cell
length and remains functional against biological variability. Hence, in the same
way that Turing-type mechanisms have proved to be a general patterning-forming
mechanism in the context of morphogenesis, regulatory waves could comprise a
plausible and general mechanism to organize the spatio-temporal distribution of
regulatory proteins in more dynamical contexts such as cell migration.

On the computational level, the value of this work lays in the development of
a numerical framework specifically tailored to address the numerous challenges
associated to cell migration modeling. This method provides a general platform
in which different hypothesis and competing models can be readily implemented
to compare their predictions with reasonably short computational times, which is
an essential requirement for modeling purposes.

Regarding future work, cell migration is ripe with promising lines of inquiry.
The progress of microscopy provides access to data in real time that was not ac-
cessible barely five years ago. This means that soon it will be possible to have
detailed information on the spatio-temporal aspects the regulatory processes (in-
cluding RhoGTPase distribution) and Focal adhesion dynamics, which should
allow to formulate more refined models. The same goes with the cytoskeleton,
that has been largely neglected in this thesis. Finally, an exciting topic that has
only been tangentially touched is the stochastic nature of cell migration, which
must be included since is a fundamental part of the process. Exciting as it is, I
will leave it here.
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