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SUMMARY

In this paper, we propose a way to weakly prescribe Dirichlet boundary conditions in embedded finite
element meshes. The key feature of the method is that the algorithmic parameter of the formulation which
allows to ensure stability is independent of the numerical approximation, relatively small, and can be
fixed a priori. Moreover, the formulation is symmetric for symmetric problems. An additional element-
discontinuous stress field is used to enforce the boundary conditions in the Poisson problem. Additional
terms are required in order to guarantee stability in the convection–diffusion equation and the Stokes prob-
lem. The proposed method is then easily extended to the transient Navier–Stokes equations. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we propose a new method for weakly imposing Dirichlet boundary conditions in
embedded grids. The numerical approximation of boundary value problems on nonmatching grids
has the obvious advantage of the freedom to generate the grid. Only a grid covering the compu-
tational domain has to be created, leaving the imposition of boundary conditions to the numerical
formulation being used. Moreover, in time evolving domains, embedded grids avoid the need to
remesh when the domain undergoes very large deformations, which is a drawback of the classical
Arbitrarian Lagrangian–Eulerian (ALE) approaches. See [1–7] for some examples of the applica-
tions of fixed-mesh formulations in time evolving domains. In contrast, the boundary of the physical
domain does not coincide with the boundary of the mesh. Thus, boundary conditions need to be
imposed in this immersed boundary. Although Neumann boundary conditions can be easily dealt
with, some care is needed with Dirichlet boundary conditions.

Let us describe the problem to be solved. Consider the situation depicted in Figure 1. A domain
� � Rd , d D 2, 3, with boundary � D @� (red curve in Figure 1), is covered by a mesh that
occupies a domain �h D �in [�� , where �in � � is formed by the elements interior to � and
�� is formed by a set of elements cut by � . In turn, let us split �� D �� ,in [ �� ,out, where
�� ,in D�\�� and �� ,out is the interior of �� n�� ,in. Note that �D�in[�� ,in. For simplicity,
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Figure 1. Setting.

we will assume that the intersection of � with the element domains is a piecewise polynomial curve
(in 2D) or surface (in 3D) of the same order as the finite element interpolation. The problem we are
facing is how to impose Dirichlet boundary conditions on the immersed boundary � .

Several strategies to impose Dirichlet boundary conditions in nonmatching grids have been devel-
oped. The widely used immersed boundary method in its original form [8] consists of adding
point-wise penalty forces in the domain boundary so that the boundary conditions are fulfilled.
The method is first-order accurate even if second-order approximation schemes are used, although
formal second-order accuracy has been reported in [9]. The more recent immersed interface method
achieves higher order accuracy by avoiding the use of the Dirac delta distribution to define the
forcing terms (see [10–12]).

Another approach is the use of Lagrange multipliers to enforce the boundary conditions. However,
the finite-element subspaces for the bulk and Lagrange multiplier fields must satisfy the classical
inf-sup condition proposed by Babuška [13], which usually leads to the need for stabilization (see
[14–16]). Moreover, additional DOF must be added to the problem. The use of Lagrange multipli-
ers is the basis of the fictitious domain method [17, 18] (see also Chapter VIII in [19]). The use of
stabilized Lagrange multiplier techniques in the fictitious domain method has been analyzed in [20].

Methods which use the grid nodes closest to the boundary to enforce boundary conditions have
been developed in [21–23], for example. In [24], a method for strongly imposing Dirichlet bound-
ary conditions in immersed boundary methods is proposed. The method is second-order accurate,
does not require of user-defined parameters, and it guarantees that the difference between the solu-
tion and prescribed value on the boundary is minimized. However, it is nonsymmetric even for
symmetric problems.

A DG-based immersed boundary method is proposed in [25], which consists of switching
elements intersected by the boundary to a DG approximation and imposing the Dirichlet bound-
ary conditions strongly. Although optimal-order accuracy is achieved, the method requires
additional DOF.

Finally, several variations of Nitsche’s method can be found in the literature [26–28]. These meth-
ods are symmetric for symmetric problems and do not need additional DOF to impose boundary
conditions. However, a user-defined stabilization parameter is required. Choosing this stabilization
parameter is not straightforward: if the parameter is not large enough, the problem becomes unsta-
ble; if it is too large, the resulting system of equations becomes ill-conditioned. This drawback
can be addressed by using the inverse estimates in order to define the minimum value for the sta-
bilization parameter (see [29], where the stabilization parameter for the heat transfer problem is
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studied). However, there are still some nondimensional constants to be defined in the inverse esti-
mates, and it remains to be seen how to apply the method to nonsymmetric problems such as the
convection–diffusion equation.

A list of desired properties for our strategy for imposing Dirichlet boundary conditions in
nonmatching grids can be extracted from the previously described methods

� No additional DOF should be needed in the final system of equations in order to enforce
boundary conditions.
� The method should be free of user-defined penalty or stabilization parameters which might

ill-condition the resulting system of equations.
� The resulting variational form should be symmetric for symmetric problems but also capable of

dealing with flow problems such as the convection–diffusion or the Navier–Stokes equations.
� A rate of convergence as close as possible to optimal should be observed when applying the

method to the problems of interest.

As we will see, the method developed in this work fulfills the three first requirements of the pre-
vious list. Regarding the last point, no convergence proof is presented here, but convergence order
is tested in the numerical examples section with quite satisfactory results.

The starting point of the strategy we propose is the method presented in [30]. This method imposes
Dirichlet boundary conditions weakly but does not require any user-defined stabilization or penalty
parameter (as we shall see, the parameter on which the formulation depends can be set a priori and
independently of the finite element mesh). In order to do so, a hybrid formulation which introduces
an additional element-wise discontinuous flux field is used. However, this additional flux field is
only required in the elements which are cut by the immersed boundary, and because it is discontin-
uous across interelement boundaries, it can be condensed prior to solving the resulting system of
equations. The method shows optimal order of convergence and satisfies the design condition of not
needing additional DOF in order to impose boundary conditions. However, it is nonsymmetric even
for symmetric problems.

In Section 2, a symmetric version of the method proposed in [30] for Poisson’s problem is
presented. The main idea is again to use a hybrid formulation with an additional element-wise dis-
continuous flux field. However, some additional terms are added so that the method is symmetric.
A stability analysis is performed in order to ensure that the method is stable under a certain condition
on the parameter on which it depends, and therefore, there is no need to tune it by the user. This con-
dition happens to be independent of the finite element mesh. In Section 3, we extend the method to
the convection–diffusion equation. Additional terms are required to further enforce boundary condi-
tions in order to guarantee the stability of the method in the case of convection-dominated flows. The
stability analysis shows that boundary conditions can be given a different treatment in the inflow and
outflow boundary, which justifies the chosen weighting term for the boundary conditions enforce-
ment. In Section 4, we deal with the treatment of boundary conditions in the case of the Stokes
problem, and the stability of the proposed method for this particular problem is shown. Additional
terms which enforce the velocity in the direction normal to the immersed boundary are required to
keep the symmetry of the problem. Finally, in Section 5, we put together the terms which define our
method for the convection–diffusion equation and the Stokes problem, and we describe the strategy
to impose boundary conditions in the transient incompressible Navier–Stokes equations. Numerical
examples illustrate the behavior of the proposed method in a number of situations in Section 6, and
some conclusions close the paper in Section 7.

2. A SYMMETRIC METHOD FOR POISSON’S PROBLEM

In this section, a symmetric method for imposing boundary conditions for Poisson’s problem
is presented. In the following sections, the method will be extended to other symmetric and
nonsymmetric problems.
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2.1. Problem statement

Let us consider the problem of finding u W� �!R such that

�k�uD f in �,

uD Nu on � D @�,

where k > 0, f is a given forcing function, and Nu is the given Dirichlet boundary condition. We
assume that the subdomain � is covered by the domain �h, as explained in Section 1.

We can now consider a two-field formulation in which we introduce an additional flux unknown
� to the previous problem. The problem can now be written as

�k�uD f in �, (1)

1

k
� Dru in �� ,in, (2)

uD Nu on � D @�. (3)

2.2. Discrete weak form

Let Ph D ¹Kº be a finite element partition of �h from which we construct the finite element space
Vh � H

1.�h/ (we will consider Vh made of continuous functions) and Sh � L2.�h/d . Functions
in Sh will be considered piecewise discontinuous in the elements cut by � and zero elsewhere.

Our symmetric variational form of the problem consists of finding uh 2 Vh and � h 2 Sh such that

k.ruh,rvh/� h� h � n, vhi� C
1

n
.rvh, � h/�� ,in �

1

n
k.rvh,ruh/�� ,in D hf vhi�, 8vh 2 Vh,

(4)

�
1

nk
.�h, � h/�� ,inC

1

n
.�h,ruh/�� ,in� h�h � n,uhi� D�h�h � n, Nui� , 8�h2Sh,

(5)

where n is a free parameter for which we will propose an expression in the following sections. Here
and below, .�, �/ denotes the L2 product in �. In general, the integral of two functions g1 and g2
over a domain ! will be denoted by hg1,g2i! , the L2.!/ inner product by .�, �/! , and the norm in a
function space X by k � kX , with the simplifications k � kL2.�/ � k � k and .�, �/� � .�, �/.

It is readily seen that problems (4)–(5) correspond to the discrete version of the optimality
conditions of the functional

F.u, � / WD
1

2
kkruk2 � hf ,ui� � h� � n,u� Nui� �

1

2nk
k� � k�uk2L2.��,in/�

The first two terms correspond to the functional associated to the Poisson problem, whereas the
third yields the Lagrangian obtained by imposing the boundary condition, � D � � n being the
Lagrange multiplier. The last term imposes in a least squares sense that � D kru. Therefore, a
possible interpretation of the method we propose is that it is a Lagrange multiplier technique with
the condition that the multiplier is the normal trace of the flux of the unknown in a least squares
sense. This additional condition has important consequences at the discrete level, because we will
be able to eliminate �h and end up with a problem posed for uh alone, as we shall see. Contrary to
the classical Lagrange multiplier technique, no additional DOF will be needed in the final system of
equations to be solved.

Note that for the exact solution u, � of problems (1)–(3), there holds

k.ru,rvh/� h� � n, vhi� D hf , vhi�, (6)

1

n
.rvh, � /�� ,in �

1

n
k.rvh,ru/�� ,in D 0, (7)

�
1

nk
.�h, � /�� ,in C

1

n
.�h,ru/�� ,in D 0, (8)

�h�h � n,ui� D�h�h � n, Nui� . (9)
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1

2 3

Figure 2. Splitting of elements.

Equation (6) is weakly enforcing (1) tested against vh; (7) and (8) are weakly enforcing (2) tested
against 1

n
rvh and � 1

n
�h, respectively, and (9) is weakly enforcing (3) tested against ��h � n.

Problems (4)–(5) is obtained by adding up (6)–(9) and replacing the continuous solution by the
approximate one. Note that the main difference between the presented method and the method
described in [30] when applied to Poisson’s problem are the terms coming from (8), which do
not appear in [30] and are the terms which make the presented method symmetric.

Let us finally remark that the volume integrals in (4)–(5) are performed over � D �in [�� ,in.
This means that elements which are cut by the boundary of the domain need to be split for integra-
tion purposes. In the case of 2D linear elements, Figure 2 shows how that the splitting can be done
and the numerical integration points (red points) required in each triangle resulting from this split-
ting. The DOF of the problem to be solved continue to be the ones of the original mesh, because the
splitting is only for integration purposes. See [31] for an extensive description on how to perform
numerical subintegration in 3D high-order finite elements.

2.3. Stability

In this subsection, we prove that the formulation given by (4)–(5) is stable and as a consequence has
a unique solution. We define the norm

jjjŒu, � � jjj2 D kkruk2C
k

h
kuk2

L2.�/
C
1

k
k�k2

L2.�� ,in/
, (10)

where h is the element size. For simplicity, we will assume that Ph is a uniform finite element par-
tition. Note that the subscript L2.�� ,in/ in the last term can be omitted for � h 2 Sh, because these
functions vanish outside �� ,in.

We define the bilinear form on ŒVh � Sh�2

B.Œuh, � h�, Œvh,�h�/D k.ruh,rvh/� h� h � n, vhi� C
1

n
.rvh, � h/�

1

n
k.rvh,ruh/�� ,in

�
1

nk
.�h, � h/C

1

n
.�h,ruh/� h�h � n,uhi� . (11)

An important technical aspect of the stability estimate we will obtain is that it relies on the
following condition: we suppose that Vh and Sh are such that

8vh 2 Vh 9�h 2 Sh j ı1kvhk
2
L2.�/

6 h�h � n, vhi� C ı0hkrvhk
2, (12)

k�hkL2.�/ D kvhkL2.�/, k�hk
2 6 ı2hkvhk2L2.�/, (13)

where ı0, ı1, ı2 are positive nondimensional constants which depend on the geometry of the mesh.
Conditions (12)–(13) are an assumption of our formulation, but let us check that they hold in two

particular cases of interest, in both of which we assume that �K WD � \K is a straight segment
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Case 1
Equal order interpolation. This case is the simplest. �h can be defined within each element by

�hj�K D nvhj�K ,

and then extended by parallel prolongation from �K to the whole element domain K (recall that Sh
is assumed to be made of discontinuous functions). It is obvious in this case that (12)–(13) hold, in
fact with ı0 D 0 and ı1 D 1.

Case 2
Vh made of piecewise linears and Sh of piecewise constants. This is the situation considered in
the numerical examples. Let us start defining vlm,K and vqm,K as the mean values of vh and of v2

h
,

respectively in �K

vlm,K D

R
�K
vhR

�K
1

, vqm,K D

vuutR
�K
v2
hR

�K
1

.

A straightforward application of Schwarz’ inequality yields vqm > jvlmj. Note also that for any
vh 2 Vh, the following Poincaré-type inequality holds

ı1

Z
�K

v2h 6
Z
�K

v2lm,K C ı0h

Z
K

jrvhj
2,

for ı0 > 0, ı1 > 0 that depend on the element shape. Thus, if we define ��
h
jK D nvlm,K , we

immediately get

ı1

Z
�K

v2h 6
Z
�K

��h � n vhC ı0h

Z
K

jrvhj
2. (14)

Let us now introduce � defined by

�hjK D n vqm,K sgn.vlm,K/. (15)

Because

Z
�K

�h � n vh D vqm,K

Z
K

jvhj>
Z
�K

��h � n vh,

from (14), we get

ı1

Z
�K

v2h 6
Z
�K

�h � n vhC ı0h

Z
K

jrvhj
2.

Summing for all K, we have that �h defined in (15) satisfies (12). By its definition, it satisfies
also the first part of (13), and the second is obvious, being �h piecewise constant.

We can proceed now to prove stability of the formulation (4)–(5) in the form of an inf-sup condi-
tion for the bilinear form (11) in the norm (10). Let us take Œvh,�h�D Œuh,�� h�

ˇ
h
k Q�h�, where Q�h

is the element in Sh that makes conditions (12)–(13) hold for uh, and ˇ is a dimensionless constant
to be defined.
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Using assumptions (12)–(13),

B.Œuh, � h�, Œuh,�� h �
ˇ

h
k Q�h�/

D k.ruh,ruh/� h� h � n,uhi�C
1

n
.ruh, � h/�

1

n
k.ruh,ruh/�� ,in

C
1

nk
.� h, � h/�

1

n
.� h,ruh/C h� h � n,uhi�

C
ˇ

nh
. Q�h, � h/�

ˇk

nh
. Q�h,ruh/C

ˇk

h
h Q�h � n,uhi�

> .1� 1
n
/kkruhk

2C
1

nk
k� hk

2C
ˇı1k

h
kuhk

2
L2.�/

�
ˇı
1=2
2

nh1=2
kuhkL2.�/k� hk �

ˇı
1=2
2 k

nh1=2
kuhkL2.�/kruhk � ˇı0kkruhk

2

> .1� 1
n
/kkruhk

2C
1

nk
k� hk

2C
ˇı1k

h
kuhk

2
L2.�/

�
ı
1=2
2

2�h1=2
ˇkı

1=2
2

nh1=2
kuhk

2
L2.�/

�
�h1=2

2ı
1=2
2

ˇı
1=2
2

knh1=2
k� hk

2

�
ı
1=2
2

2�h1=2
ˇkı

1=2
2

nh1=2
kuhk

2
L2.�/

�
�h1=2

2ı
1=2
2

ˇkı
1=2
2

nh1=2
kruhk

2 � ˇı0kkruhk
2

>
�
1�

1

n
� ˇ

� �
2n
C ı0

��
kkruhk

2C
1

n

�
1�

ˇ�

2

�
1

k
k� hk

2C ˇ

�
ı1 �

ı2

�n

�
k

h
kuhk

2
L2.�/

(16)
where � is an arbitrary dimensionless constant. Choosing

n > 1, � >
ı2

ı1n
, ˇ <min

 
1� 1

n

. �
2n
C ı0/

,
2

�

!
,

and taking into account that

jjj.uh,�� h �
ˇ

h
k Q�h/jjj

2 D kkruhk
2C

k

h
kuhk

2
L2.�/

C
1

k
k � � h �

ˇ

h
k Q�hk

2

6 kkruhk2C
k

h
kuhk

2
L2.�/

C
2

k
k� hk

2C
2kˇ2

h2
k Q�hk

2

6 kkruhk2C
k

h
kuhk

2
L2.�/

C
2

k
k� hk

2C
2kˇ2ı2

h
kuhk

2
L2.�/

6 kkruhk2C
k

h

�
1C 2ˇ2ı2

�
kuhk

2
L2.�/

C
2

k
k� hk

2

6max
�
1C 2ˇ2ı2, 2

�
jjj.uh, � h/jjj

2,

we obtain the result we wished to prove.

Theorem 1
Suppose that conditions (12)–(13) are satisfied and that n > 1. Then, the bilinear form (11) satisfies
that for all Œuh, � h�, there exist Œvh,�h� and ˛ > 0 such that

B.Œuh, � h�, Œvh,�h�/> ˛jjjŒuh, � h�jjjjjjŒvh,�h�jjj.

We have proved that our symmetric bilinear form is stable for the Poisson problem for any n > 1.
We consider nD 2 in the following.

The previous analysis allows us to very clearly understand the behavior of the method in terms
of the mesh-dependent constants ı0, ı1, and ı2. The worst case scenario corresponds to ı2 � ı1
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and ı0 � 1. Both cases correspond to ill-conditioned elements; that is, elements which are very
elongated or in the case of embedded methods, suffer from bad intersections with the boundary
of the physical domain. However, we must stress that no matter how bad the intersections are, we
will always be able to find a sufficiently large � and a sufficiently small ˇ such that the method
is stable as soon as n > 1. The stability estimate will be obviously weaker in these cases, lead-
ing to an ill-conditioned but still stable, system of equations. This shortcoming is not particular
of our formulation but shared by most methods designed to prescribe boundary conditions on
nonmatching meshes.

The analysis also shows the importance of taking Sh defined on the element interiors instead of
taking it defined on � (which would lead to a method similar to the one proposed in [15]). In this
case, 7 would also be defined on � , leading to a stability estimate of the type

B.Œuh, � h�, Œuh,�� h �
ˇ

h
k Q�h�/>

�
1�

Ctr

n
� ˇ ..../

�
kkruhk

2C ...

where Ctr is the constant in the trace inequality kvhk2L2.�/ 6
Ctr
h
kvhk

2. In this case, the stability
parameter n would depend on Ctr , which in turn depends on the geometry of the finite element
mesh, whereas in the method we propose, it is sufficient to take n > 1.

2.4. Implementation and comparison to Nitsche’s method

A key feature of the presented method is that because the flux field is discontinuous across interele-
ment edges, it can be eliminated from the final equations. We will show in this section that after
eliminating the flux variables, some of the terms cancel out, and the final expression of the terms
to be implemented is very similar to that of Nitsche’s method but with the important feature that
we have been able to obtain, an estimate for the parameter n of the formulation independent of the
finite element mesh. We will see later how a similar procedure can be applied to Nitsche’s method,
although in this case, the algorithmic parameter is mesh (and geometry) dependent. A similar analy-
sis for general stabilized Lagrange multiplier methods can be found in [32]. Let us also recall that we
have also related the method proposed to the Lagrange multiplier technique. A comparison between
this, our approach and Nitsche’s method will be summarized in Section 7.

Let U and † be the arrays of nodal unknowns of uh and � h, respectively, and let us consider
the matrices and vectors introduced in Table I for the algebraic version of problem (4)–(5). This
problem written in matrix form is"

.1� 1
n
/Kuu Ku� CGu�

K�uCG�u K��

#�
U

†

	
D

�
f

g� Nu

	
.

We can then compute the fluxes as

† DK�1�� .�.K�uCG�u/U C g� Nu/.

In elements cut by � , K�� is block diagonal and therefore easy to invert due to the element-wise
discontinuous flux approximation. This allows for the condensation of the flux unknowns at the

Table I. Matrices and vectors for the algebraic version of (4)–(5).
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element level, and we are left with only the original unknowns of the problem��
1�

1

n

�
Kuu � .Gu� CKu� /K

�1
�� .K�uCG�u/

	
U D Œf � .Gu� CKu� /K

�1
��g� Nu�. (17)

This is the matrix version of the method we propose.
Let us consider now Nitsche’s method for the Poisson problem, which consists of finding uh 2 Vh

such that

k.ruh,rvh/� kh@nuh, vhi� � kh@nvh,uhi� C k
˛

h
huh, vhi�

D hf , vhi� � kh@nvh, Nui� C k
˛

h
h Nu, vhi� , (18)

for all vh 2 Vh, where ˛ > 0 is now the algorithmic parameter of the formulation. First of all, let us
observe that if we take vh D uh in the right-hand side of this discrete variational equation, we obtain

kkruhk
2 � 2kh@nuh,uhi� C k

˛

h
kuhk

2
L2.�/

& kkruhk2 � 2kk@nuhkL2.�/kuhkL2.�/C k
˛

h
kuhk

2
L2.�/

& kkruhk2 �
kˇ

h
Ctrkruhk

2 �
k

ˇ
kuhk

2
L2.�/

C k
˛

h
kuhk

2
L2.�/

where ˇ > 0 can be chosen, and Ctr is the constant in the trace inequality kvhk2L2.�/ 6
Ctr
h
kvhk

2.

We have used the symbol & to denote > up to positive constants. Choosing ˇ D h
2Ctr

, we observe

that the bilinear form in (18) is coercive in the norm kkruhk
2Ck ˛

h
kuhk

2
L2.�/

provided ˛ > 2Ctr .
This bound depends on the geometry of the computational domain as well as on the finite element
space Vh, whereas for the formulation, we propose the sufficient condition for stability n > 1 does
not suffer from these dependencies.

Let us move our attention now to the matrix form of (18) in order to compare it with the matrix
form of (4)–(5). Using the matrices introduced in Table II, this equation reads

ŒKuuCGuuCG
T
uuCG

˛
uu�U D Œf C gu NuC g

˛
u Nu�. (19)

In order to compare (17) with (19), we can significantly simplify the former with the help of the
following identities:

1

n
KuuU D�ŒKu�K

�1
��K�u�U , (20)

GT
uuU D�ŒKu�K

�1
��G�u�U , (21)

gu Nu D�ŒKu�K
�1
��g� Nu�, (22)

GuuU D�ŒGu�K
�1
��K�u�U . (23)

Let us prove that (20) holds if Sh is made of piecewise polynomials of one order less than the
elements in Vh or higher. The proofs of the other three identities are similar.

Let Q† be such that K��
Q† D K�uU . Then, Q† are the nodal unknowns of Q� h 2 Sh such that

� 1
nk
.�h, Q� h/ D

1
n
.�h,ruh/ for all �h 2 Sh, that is to say, Q� h D �kPSh.ruh/ D �kruh, where

PSh is the L2 projection onto the space of fluxes. Thus, Ku�
Q† DKu�K

�1
��K�uU amounts to say

that 1
n
.rvh, Q� h/D

1
n
.rvh,�kruh/, which implies (20).

Table II. Matrices and vectors for the algebraic version of (18.)

Discrete variational equation �khn � ruh, vhi�
˛k
h
hvh,uhi� khn � rvh, Nui�

˛k
h
hvh, Nui�

Algebraic form GuuU G˛uuU gu Nu g˛
u Nu
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Taking identities (20)–(23) into account, we can write the matrix form (17) as

ŒKuuCGuuCG
T
uu �Gu�K

�1
��G�u�U D Œf C gu Nu �Gu�K

�1
��g� Nu�. (24)

Comparing (24) and (19), we can conclude that the only difference between the presented method
and Nitsche’s method is that we have replaced

G˛
uuU and g˛u Nu, (25)

by

�Gu�K
�1
��G�uU and �Gu�K

�1
��g� Nu. (26)

We end up with a symmetric method which is identical to Nitsche’s method (for a rich enough
discontinuous flux field), except for the so called penalty term. Note that the penalty terms in (25)
involve boundary integrals, whereas in (26), they involve volume integrals. Although the system of
equations is not positive definite before eliminating the stress nodal unknowns, the final matrix after
condensing the element-wise discontinuous stress field is symmetric and positive definite. This can
be seen by doing an analysis similar to the one presented in [33].

As we have seen, the advantage of our formulation is that the algorithmic parameter in our
approach is independent of the geometry and discretization. We will also see in the numerical
examples that results are less sensitive to the value of n in (4)–(5) than to the value of ˛ in (18).

3. INTRODUCING CONVECTION

3.1. Problem statement

In this section, we deal with the convection–diffusion equation. The problem to be solved is no
longer symmetric, and additional terms are needed in order to ensure the stability of the final weak
form. The problem we consider in this section consists of finding u W� �!R and � W�� ,in �!Rd

such that

�r � � C a � ruD f in �, (27)

1

k
� Dru in �� ,in, (28)

uD Nu on � D @�, (29)

where k > 0, a is the advection velocity, f is a given forcing function and Nu is the given Dirichlet
boundary condition. We have already used the two-field formulation presented for Poisson’s prob-
lem. In this case, the advective flux could also be included in the definition of � , which could
be convenient if the equation is written in conservative form, although we will not pursue this
option here.

3.2. Weak form

The variational form of the problem consists of finding uh 2 Vh and � h 2 Sh such that

k.ruh,rvh/� h� h � n, vhi� C .a � ruh, vh/C
1

n
.rvh, � h/�

1

n
k.rvh,ruh/�� ,in C

1

2
havh,uhi�

D hf , vhi�C
1

2
havh, Nui� , 8vh 2 Vh, (30)

�
1

nk
.�h, � h/C

1

n
.�h,ruh/� h�h � n,uhi� D�h�h � n, Nui� , 8�h 2 Sh. (31)

Note that in the previous weak form, we have replaced (6) with

k.ru,rvh/� h� � n, vhi� C .a � ru, vh/D hf , vhi�,
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and we have added the discrete version of

1

2
havh,ui� D

1

2
havh, Nui� ,

which is weakly enforcing (3) tested against a
2
vh. We will see how to define the parameter a in

the following subsections. The need for introducing this term will be clear from the subsequent
stability analysis.

It is observed that, apart from the way to impose the boundary conditions, (30)–(31) is based
on the standard Galerkin method to solve the convection–diffusion reaction equation. This method
is stable only for high values of the diffusion coefficient k. Even though in the examples, we will
consider convection-dominated flows solved using a stabilized formulation; for the sake of concise-
ness, the exposition will be developed in the diffusion-dominated case. Likewise, we will consider
a constant for simplicity.

3.3. Stability

In this subsection, we prove that the formulation given by (30)–(31) is stable and as a consequence
has a unique solution.

We define the bilinear form on ŒVh,Sh�� ŒVh,Sh�

B c.Œuh, � h�, Œvh,�h�/D k.ruh,rvh/� h� h � n, vhi� C
1

n
.rvh, � h/�

1

n
k.rvh,ruh/�� ,in

C .a � ruh, vh/C
1

2
havh,uhi� �

1

nk
.�h, � h/C

1

n
.�h,ruh/� h�h � n,uhi� . (32)

Taking Œvh,�h�D Œuh,�� h�
ˇ
h
k Q�h�, with Q�h as in the proof of Theorem 1 in the previous section,

we have

B c.Œuh, � h�, Œuh,�� h �
ˇ

h
k Q�h�/

D k.ruh,ruh/� h� h � n,uhi� C
1

n
.ruh, � h/�

1

n
k.ruh,ruh/�� ,in

C .a � ruh,uh/C
1

2
hauh,uhi� C

1

nk
.� h, � h/�

1

n
.� h,ruh/C h� h � n,uhi�

C
ˇ

nh
. Q�h, � h/�

ˇk

nh
. Q�h,ruh/C

ˇk

h
h Q�h � n,uhi�

>
�
1�

1

n
� ˇ

� �
2n
C ı0

��
kkruhk

2C
1

n

�
1�

ˇ�

2

�
1

k
k� hk

2C ˇ

�
ı1 �

ı2

�n

�
k

h
kuhk

2
L2.�/

C
1

2

Z
�

.n � aC a/u2h,

where the same steps as in (16) have been carried out. From this, we obtain

Theorem 2
Suppose that conditions (12)–(13) are satisfied, that n > 1 and that the parameter a is chosen such
that aCa �n> 0 on � . Then, the bilinear form (32) satisfies that for all Œuh, � h�, there exists Œvh,�h�
and ˛ > 0 such that

B c.Œuh, � h�, Œvh,�h�/> ˛jjjŒuh, � h�jjjjjjŒvh,�h�jjj.

Taking the condition aC a � n> 0 into account, the obvious definition for a is

aD�a � n, if a � n< 0

aD 0, otherwise.
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This definition of the weighting term a is very similar to the one used in the weak imposition
of boundary conditions in [34], the main difference being that in our case is accompanied with
a1
2

factor.

4. EXTENSION TO THE STOKES PROBLEM

In this section, we extend the previous ideas to the Stokes problem, for which we obtain a sym-
metric method again. Once the method is defined for the Stokes problem, we can deal with the
Navier–Stokes equations just by putting together the formulation presented in Section 3 and the one
in the current section.

4.1. Problem statement

Let us consider a three-field formulation for the Stokes problem, which consists of finding u W� �!
Rd , p W� �!R and � W�� ,in �!Rd�d such that

�	�uCrp D f in �, (33)

r � uD 0 in �, (34)

1

	
� Dru in �� ,in, (35)

uD Nu on � D @�, (36)

where 	 > 0, f is a given forcing function and Nu is the given Dirichlet boundary condition. Note
that � only accounts for the deviatoric part of the pseudo-stresses (we could also formulate the
method in terms of the strain rate tensor rsu).

4.2. Discrete weak form

Let us consider the finite element spaces Vh �H 1.�h/
d , Qh � L

2.�h/ (we will consider Vh and
Qh made of continuous functions) and Sh � L2.��/d�d (we will consider Sh made of element-
wise discontinuous functions). The standard finite element approximation of the Stokes problem is
not stable for an arbitrary u, p interpolation. This is the reason why we add stabilization terms to the
original weak form of the problem, which allow us to use equal interpolation spaces for velocity and
pressure. Our stabilized approach to the problem is based on the formulation proposed in [35, 36].
In this case, it will not be necessary to stabilize the additional pseudo-stress � h because, as in the
problems discussed previously, its stability relies on the way to choose Sh.

The formulation we consider here consists of finding uh 2 Vh, ph 2Qh and � h 2 Sh such that

	.ruh,rvh/� .r � vh,ph/� h� h � n, vhi� C hn � vhphi�

C
X
K


K.	�vh,�	�uhCrph/K C
1

n
.rvh, � h/�

1

n
	.ruh,rvh/�� ,in

D hf , vhi�C
X
K


K.	�vh,f /K , 8vh 2 Vh, (37)

� .qh,r � uh/�
X
K


K.rqh,�	�uhCrph/K C hqhn � uhi�

D�
X
K


K.rqh,f /K C hqh,n � Nui� , 8qh 2Qh, (38)

�
1

n	
.�h, � h/C

1

n
.�h,ruh/� h�h � n,uhi� D�h�h � n, Nui� , 8�h 2 Sh. (39)
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In these equation, .�, �/K � .�, �/L2.K/ and the so called stabilization parameters 
K are com-
puted as


K D
�
c1
	

h2

��1
, (40)

in each element, where h is the element size. For the numerical experiments, we have taken c1 D 4.
Note that for the exact solution u, p, � there holds

	.ru,rvh/� .r � vh,p/� h� � n, vhi� C hn � vh,pi� D hf , vhi�,X
K


K.	�vh,�	�uCrp/K D
X
K


K.	�vh,f /K ,

1

n
.rvh, � /�� ,in �

1

n
	.rvh,ruh/�� ,in D 0,

�.qh,r � u/D 0,X
K


K.rqh,�	�uCrp/K D
X
K


K.rqh,f /K ,

hqh,n � ui� D hqh,n � Nui�

�
1

n	
.�h, � /�� ,in C

1

n
.�h,ru/�� ,in D 0,

�h�h � n,ui� D�h�h � n, Nui� .

The method we propose is obtained by summing all these equations and replacing the continuous
solution by the finite element approximation. Thus, it is fully consistent. Let us remark that it is
important to add the terms hqh,n � uhi� and hqh,n � Nui� to obtain a symmetric problem, and also,
that the stabilization terms are independent of the way boundary conditions are imposed.

4.3. Stability

In this subsection, we prove that the formulation given by (37)–(39) is stable and as a consequence
has a unique solution. We define the norm

jjjŒu,p, � �jjj2 D 	kruk2C
	

h
kuk2

L2.�/
C
h2

	
krpk2C

1

	
k�k2

L2.�� ,in/
. (41)

Subscript L2.�� ,in/ in the last term can be omitted for discrete functions � h, because elements
in Sh vanish outside �� ,in. We also introduce the bilinear form on ŒVh �Qh � Sh�

2

B s.Œuh,ph, � h�, Œvh, qh,�h�/

D 	.ruh,rvh/� .r � vh,ph/� h� h � n, vhi� C hn � vhphi� C
1

n
.rvh, � h/

�
1

n
	.rvh,ruh/�� ,in C

X
K


K.	�vh �rqh,�	�uhCrph/K � .qh,r � uh/

C hqh,n � uhi� �
1

n	
.�h, � h/C

1

n
.�h,ruh/� h�h � n.uhi� . (42)

Similarly to the Poisson problem, we assume that Vh and Sh are such that the vector counter-
part of (12)–(13) holds. With this, we can proceed to prove stability in the form of an inf-sup
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condition for (42). Let Q�h be such that the vector counterpart of (12)–(13) holds for uh. Taking
Œvh, qh,�h�D Œuh,�ph,�� h �

ˇ
h
	 Q�h�, with ˇ as a constant to be determined, we have

B s

�
Œuh,ph, � h�,

�
uh,�ph,�� h �

ˇ

h
	 Q�h

	�

D 	.ruh,ruh/�
1

n
	.rvh,ruh/�� ,in �

X
K


K.	�uh, 	�uh/K

C
X
K


K.rph,rph/K C
1

n	
.� h, � h/

C
ˇ

nh
. Q�h, � h/�

ˇ	

nh
. Q�h,ruh/C

ˇ	

h
h Q�h � n,uhi�

>
�
1�

1

n
� ˇ

� �
2n
C ı0

��
	kruhk

2 �
X
K


Kk	�uhk
2
K C ˇ

�
ı1 �

ı2

�n

�
	

h
kuhk

2
L2.�/

C
X
K


Kkrphk
2
K C

1

n

�
1�

ˇ�

2

�
1

	
k� hk

2

>
�
1�

1

n
� ˇ

� �
2n
C ı0

�
�C1

�
	kruhk

2C ˇ

�
ı1 �

ı2

�n

�
	

h
kuhk

2
L2.�/

CC2
h2

	
krphk

2C
1

n

�
1�

ˇ�

2

�
1

	
k� hk

2,

where C1 is such that, making use of a classical inverse estimateX
K


Kk	�uhk
2
K 6 C1	kruhk2,

and C2 is defined as 1
c1

in (40). Imposing

n > 1, � >
ı2

ı1n
, ˇ <min

 
1� 1

n

. �
2n
C ı0/

,
2

�

!
,

with C1 sufficiently small (i.e., c1 sufficiently large), we can now define the constant

˛0 Dmin

�
1�

1

n
� ˇ

� �
2n
C ı0

�
�C1,C2,

1

n

�
1�

ˇ�

2

�
,ˇ

�
ı1 �

ı2

�n

��
,

for which there holds

B s

�
Œuh,ph, � h�,

�
uh,�ph,�� h �

ˇ

h
	 Q�h

	�
> ˛0jjj.uh,ph, � h/jjj

2.

We now take into account thatˇ̌̌
ˇ
ˇ̌̌
ˇ
ˇ̌̌
ˇ
�
uh,�ph,�� h �

ˇ

h
	 Q�h

	ˇ̌̌
ˇ
ˇ̌̌
ˇ
ˇ̌̌
ˇ
2

D 	kruhk
2C

	

h
kuhk

2
L2.�/

C
h2

	
krphk

2C
1

	





�� h � ˇh	 Q�h





2

6 	kruhk2C
	

h
kuhk

2
L2.�/

C
h2

	
krphk

2C
2

	
k� hk

2C
2	ˇ2ı2

h
kuhk

2
L2.�/

6 	kruhk2C
	

h

�
1C 2ˇ2ı2

�
kuhk

2
L2.�/

C
h2

	
krphk

2C
2

	
k� hk

2

6max
�
1C 2ˇ2ı2, 2

�
jjjŒuh,ph, � h�

2,

which allows us to obtain the result we were looking for.
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Theorem 3
Suppose that the vector counterpart of conditions (12)–(13) is satisfied, that n > 1 and that c1 in
(40) is sufficiently large. Then, the bilinear form (42) satisfies that for all Œuh,ph, � h�, there exist
Œvh, qh,�h� and ˛ > 0 such that

B s.Œuh,ph, � h�, Œvh, qh,�h�/> ˛jjjŒuh,ph, � h�jjjjjjŒvh, qh,�h�jjj.

5. TRANSIENT NAVIER–STOKES EQUATIONS

The proposed method for imposing boundary conditions in the transient Navier–Stokes equations
consists simply in putting together the terms appearing in the convection–diffusion equation with
the ones in the Stokes problem. As in the Stokes problem, a stabilized formulation is required so
that equal interpolations for the velocity and pressure can be used. Moreover, additional stabiliza-
tion terms are added so that we can deal with convection-dominated problems. For details on the
stabilized formulation employed, see [36].

5.1. Problem statement

Let us consider a three-field formulation for the transient Navier–Stokes equations, which consists
of finding u W� �!Rd , p W� �!R and � W�� ,in �!Rd�d such that

@tu� 	�uC u � ruCrp D f in �, (43)

r � uD 0 in �, (44)

1

	
� Dru in �� ,in, (45)

uD Nu on � D @�, (46)

for t > 0, where @tu is the local time derivative of the velocity field. Appropriate initial conditions
have to be appended to this problem.

5.2. Discrete weak form

Let us consider the finite element spaces Vh, Qh, and Sh as for the Stokes problem. Suppose that
ıtuh is an approximation of @tuh obtained from a partition of the time domain, using for example
a backward difference approximation, it is still denote by uh, ph, and � h the velocity, pressure, and
pseudo-stress at the time step where the problem is solved.

The discrete variational form of (43)–(46) consists of finding uh 2 Vh, ph 2 Qh, and � h 2 Sh
such that

.vh, ıtuh/C 	.ruh,rvh/C .vh,uh � ruh/� .r � vh,ph/� h� h � n, vhi�

C hn � vh,phi� C
X
K


K.	�vhC uh � rvh, ıtuh � 	�uhC uh � ruhCrph/K

C
1

n
.rvh, � h/�

1

n
	.rvh,ruh/�� ,in C

1

2
havh,uhi�

D hf , vhi�C
X
K


K.	�vhC uh � rvh,f /K C
1

2
havh Nui� 8vh 2 Vh,

� .qh,r � uh/�
X
K


K.rqh, ıtuh � 	�uhC uh � ruhCrph/K C hqh,n � uhi�

D�
X
K


K.rqh,f /K C hqh,n � Nui� , 8qh 2Qh,

�
1

n	
.�h, � h/C

1

n
.�h,ruh/� h�h � n,uhi� D�h�h � n, Nui� , 8�h 2 Sh,
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and now, the stabilization parameter is computed as [36]


K D

�
c1
	

h2
C c2
juhjK

h

��1
,

where juhjK is the mean velocity modulus in element K. We take the stability constants as c1 D 4
and c2 D 2. The parameter a in the momentum equation is taken as

aDmax.0,�n � uh/.

6. NUMERICAL EXAMPLES

6.1. Diffusion and convection–diffusion equation

In this subsection, we illustrate the behavior of the proposed method for the scalar diffusion and
convection–diffusion equations. The problems are posed in a domain � enclosed in a circle of
radius R < 1. We choose the hold-all domain B D .�1, 1/� .�1, 1/, where a system of Cartesian
coordinates .x,y/ with its origin at the center of the circle has been adopted. A structured mesh
of right-angled linear triangular elements is constructed in B , h being the length of the edges
corresponding to the cathetus.

6.1.1. The Poisson equation. Let us start solving the Poisson equation with k D 1, a D 0, f D 1
to check the performance and convergence of the proposed method. The analytical solution for this
case is known to be

u.x,y/D
1

4
.R2 � x2 � y2/.

Figure 3 shows the errors ku� uhkL2.�/ versus the element size h, both using the method pro-
posed in this paper and Nitsche’s method for different values of the algorithmic parameters of both.
The coarsest mesh is built of 1250 elements, whereas the finer one is built out of 320,000 elements.
From the convergence curves, we can conclude that: (1) both methods display quadratic conver-
gence when linear elements are used; (2) accuracy is in general better with the present approach;
and (3) Nitsche’s results are more sensitive to the algorithmic constant ˛ than the method proposed
here to the value of n. The best approximation is obtained for nD 2, which strictly ensures stability
according to the stability analysis (n > 1).

6.1.2. Convection–diffusion. Figure 4 shows the behavior of the method in the convection–
diffusion problem, where k D 10�2, a D .1, 0/, f D 1. A stabilized formulation similar to the

−1 −0.5 0 0.5 1
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h
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e

Figure 3. Results and error convergence for the solution of the diffusion equation.
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10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

h

h
u−

u
L2

Slope 2
n = 2

Figure 4. Results and error convergence for the solution of the convection–diffusion equation.

Figure 5. Solution comparison for the convection–diffusion equation with diffusion coefficients 10�1,
10�2, and 10�5.

one described in Section 5 has been used. In order to obtain the error, we have computed the solu-
tion for a very fine mesh (h D 2/800, 1,200,000 elements) which we have used as the reference
solution. Again, the method shows quadratic convergence.

It is also interesting to observe how the method behaves in strongly convection-dominated prob-
lems. In Figure 5, the solutions for the problem with different diffusion coefficients are compared.
We can observe that when convection grows, the corresponding boundary layer becomes thinner,
and the mesh is no longer capable of capturing the boundary layer geometry. Because of the fact
that the weak formulation does not weight the boundary conditions against convection velocity in
the outflow boundary, we can observe that there are no spurious oscillations in the outflow boundary
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layer. As the diffusion decreases, the solution of the problem resembles the solution of the pure
transport equation, where no boundary conditions are imposed on the outflow.

6.2. Stokes problem

In this section, we solve the Stokes problem, and we check the convergence properties of the pro-
posed method. We study the stationary Stokes flow around a cylinder. We use linear interpolations
both for the velocity and pressure and the stabilized formulation proposed in the previous sections.
The setting of the problem is shown in Figure 6. A parabolic inflow profile with unitary mean hor-
izontal velocity is set on x D 0. Velocity is prescribed to zero on y D 0 and y D 1 and on the
cylindric boundary. The proposed method for weakly imposing boundary conditions has been used
both in the immersed cylindrical interface, and also in the external grid matching boundaries, even
if these conditions could have been imposed exactly there.

In Figure 7, velocity and pressure fields for a fine mesh are shown. In Figure 8, we have plotted
the error versus the mesh size, both for the velocity and pressure fields. The coarsest mesh is built
of 625 elements, whereas the finer one is built out of 40,000 elements. Again, results for each mesh
size have been compared against results in a much finer mesh (160,000 elements). We can see that
quadratic convergence rates are obtained in both cases.

6.3. Transient Navier–Stokes equations

In this section, we deal with the transient incompressible Navier–Stokes equations. As in the pre-
vious subsection, we will solve the flow around a cylinder, although the overall domain is larger
in this case in order to allow the development of the vortices which arise behind the cylinder. The
setting of the problem is depicted in In Figure 9. A parabolic inflow profile with mean horizontal
velocity equal to 1 is set on x D 0. Velocity is prescribed to zero at y D 0, y D 8, and the cylindric
boundary. The proposed method for weakly imposing boundary conditions has been used both in
the immersed cylindrical interface and in the external grid matching boundaries. Viscosity has been
set to 	 D 10�2, which yields a Reynolds number Re D 100 based on the diameter of the cylinder
and the mean inflow velocity. A backward Euler scheme has been used for the time integration with
time step ıt D 0.2. A 12,566 linear element mesh has been used to solve the problem. The mesh has
been refined in the area around the cylinder, but it is still a rather coarse mesh in which the length
of the cylinder is only 12 times the element length.

In Figure 10, velocity and pressure fields at the end of the simulation (t D 100) are shown. Fully
developed vortices behind the cylinder and a smooth solution around the immersed boundary can be
appreciated. Figure 11 shows the time history of the vertical velocity at a point behind the cylinder
.10, 4/. After the initial transitory stage, an oscillatory pattern of amplitude 0.6 and period 4.9 is
established.

6.4. Weak imposition of boundary conditions in the pure transport equation

In this subsection, we study the pure transport equation in which only boundary conditions on the
inflow are needed. We solve the problem described in the convection–diffusion subsection, but we

Figure 6. Geometry and boundary conditions for the Stokes flow around a cylinder.
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Figure 7. Velocity and pressure fields for the Stokes flow around a cylinder.

10−2 10−1
10−4

10−3

10−2

10−1

h

h
u−

u
L2

h
u−

u
L2

n = 2
Slope 2

10−2 10−1
10−2

10−1

100

101

100 102

h

n = 2
Slope 2

Figure 8. Convergence plots for the velocity (left) and pressure (right) fields in the Stokes flow around
a cylinder.

Figure 9. Geometry and boundary conditions for the transient Navier–Stokes flow around a cylinder.
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Figure 10. Velocity and pressure fields for the transient Navier–Stokes flow around a cylinder. Results at
t D 100.
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Figure 11. Vertical velocity evolution at .10, 4/.

only impose boundary conditions on the inflow. Linear convergence is obtained for linear elements.
The problem does not seem to be in the outflow but in the inflow, where the method does not impose
boundary conditions strongly enough.

In Figure 12, we can observe the error for different meshes in the pure transport equation. It can be
seen that the error diminishes linearly with the mesh size, and also, most importantly, that the com-
puted solution is displaced, that is, the error does not oscillate around 0 but around 0.08 .hD 1=50/,
0.04 .h D 1=100/, and 0.02 .h D 1=200/. This suggests that the boundary conditions are not
imposed strongly enough. A specific definition of the boundary condition terms should be devised
for the pure transport equation in order to obtain quadratic convergence also for this equation.

Figure 13 shows the convergence rates for the solution of the pure transport for the stabilized and
the Galerkin transport equation. We can see that the convergence is linear if a stabilized formulation
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We can observe that the error is diminishing linearly with h. Moreover, 0.08, 0.04, and 0.02 is displaced

from the 0 position. A stronger imposition of boundary conditions would improve the solution.
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Figure 13. Convergence plots for the pure transport equation.

is used. If no stabilization is used, and the mesh nodes are aligned with the advection direction,
the convergence is closer to quadratic. This suggests the use of weighting terms proportional to
the stability parameters for the imposition of boundary conditions, a possibility which we will not
explore here.

7. CONCLUSIONS

In this paper, we have proposed a way to weakly prescribe Dirichlet boundary conditions in embed-
ded grids. The key feature of the proposed method is that we can ensure stability without the
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need of a large, mesh-dependent penalty parameter, and that it is symmetric for symmetric prob-
lems. In the Poisson problem, this is achieved by introducing an additional element-discontinuous
stress variable. Additional terms are required in order to guarantee stability in the convection–
diffusion equation, in which we weight the boundary conditions with a particular norm of the
convection velocity and the Stokes problem where we test the imposition of boundary conditions
against the pressure test functions. The proposed strategy is then easily extended to the transient
Navier–Stokes equations.

From the conceptual point of view, the method we propose can be related both to the Lagrange
multiplier technique and to Nitsche’s method. The relationship with the former is that in our
case, we prescribe the Lagrange multiplier to be the normal trace of the flux of the unknown,
the flux condition being approximated in a least squares sense. The main benefit of our approach
with respect to the use of Lagrange multipliers is that the additional variable we introduce
(the flux) can be condensed at the element level, yielding a problem posed in terms of the
original unknowns alone. Concerning the relationship with Nitsche’s method, it can be intro-
duced at the purely algebraic level, simply as a different way to evaluate the penalty terms
that enforce the boundary conditions. The advantage of the approach we have presented is that
the algorithmic constant is independent of the geometry and approximation. Moreover, from numer-
ical experiments, we have observed that the results are less sensitive to this parameter than in the
case of Nitsche’s formulation.

The method proposed turns out to be accurate (second order for linear elements) and robust for
all the problems tested except for the pure transport equation, in which we are not able to recover
quadratic convergence. From the implementation point of view, the method satisfies the main design
condition of using only the DOF of the mesh of �h in the final system of equations to be solved.
Moreover, the final resulting method is very easy to implement, because it only requires some
additional boundary integrals to be added to the original variational form.

REFERENCES

1. Codina R, Houzeaux G, Coppola-Owen H, Baiges J. The fixed-mesh ALE approach for the numerical approximation
of flows in moving domains. Journal of Computational Physics 2009; 228:1591–1611.

2. Baiges J, Codina R. The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction
problems. International Journal for Numerical Methods in Engineering 2009; 81:1529–1557.

3. Baiges J, Codina R, Coppola-Owen H. The fixed-mesh ALE approach for the numerical simulation of floating solids.
International Journal for Numerical Methods in Fluids 2011; 67(8):1004–1023.

4. Gerstenberger A, Wall WA. An extended finite element method/Lagrange multiplier based approach for fluid-
structure interaction. Computer Methods in Applied Mechanics and Engineering 2008; 197(19–20):1699–1714.

5. Gerstenberger A, Wall WA. Enhancement of fixed-grid methods towards complex fluid-structure interaction
applications. International Journal for Numerical Methods in Fluids 2008; 57:1227–1248.

6. Wall WA, Gamnitzer P, Gerstenberger A. Fluid-structure interaction approaches on fixed grids based on two different
domain decomposition ideas. International Journal of Computational Fluid Dynamics 2008; 22:411–427.

7. Shahmiri S, Gerstenberger A, Wall WA. An XFEM based embedding mesh technique for incompressible viscous
flows. International Journal for Numerical Methods in Fluids 2011; 65:166–190.

8. Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972;
10:252–271.

9. Lai M-C, Peskin CS. An immersed boundary method with formal second-order accuracy and reduced numerical
viscosity. Journal of Computational Physics 2000; 160:705–719.

10. Leveque RJ, Li Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular
sources. SIAM Journal on Numerical Analysis 1994; 31(4):1019–1044.

11. Lee L, Leveque RJ. An immersed interface method for incompressible Navier–Stokes equations. SIAM Journal on
Scientific and Statistical Computing 2003; 25(3):832–856.

12. Xu S, Wang ZJ. An immersed interface method for simulating the interaction of a fluid with moving boundaries.
Journal of Computational Physics 2006; 216:454–493.

13. Babuška I. Error bounds for finite element method. Numerische Mathematik 1971; 16:322–333.
14. Dolbow J, Mourad HM, Harari I. A bubble-stabilized finite element method for Dirichlet constraints on embedded

interfaces. International Journal for Numerical Methods in Engineering 2007; 69:772–793.
15. Barbosa HJC, Hughes TJR. The finite element method with Lagrangian multipliers on the boundary: circumventing

the Babuška-Brezzi condition. Computer Methods in Applied Mechanics and Engineering 1991; 85:109–128.
16. Ji H, Dolbow JE. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended

finite element method. International Journal for Numerical Methods in Engineering 2004; 61:2508–2535.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 90:636–658
DOI: 10.1002/nme



658 J. BAIGES ET AL.

17. Glowinski R, Pan T-W, Périaux J. A fictitious domain method for Dirichlet problems and applications. Computer
Methods in Applied Mechanics and Engineering 1994; 111:283–303.

18. Glowinski R, Pan T-W, Hesla TI, Joseph DD, Périaux J. A distributed Lagrange multiplier/fictitious domain method
for flows around moving rigid bodies: application to particulate flow. International Journal for Numerical Methods
in Fluids 1999; 30:1043–1066.

19. Glowinski R. Finite element methods for incompressible viscous flows. In Numerical Methods for Fluids (Part 3),
Handbook of Numerical Analysis, Vol. 9. Elsevier: North-Holland, 2003.

20. Haslinger J, Renard Y. A new fictitious domain approach inspired by the extended finite element method. SIAM
Journal on Numerical Analalysis 2009; 47(2):1474–1499.

21. Gilmanov A, Sotiropoulos F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D,
geometrically complex, moving bodies. Journal of Computational Physics 2005; 207:457–492.

22. Ferziger JH, Tseng YH. A ghost-cell immersed boundary method for flow in complex geometry. Journal of
Computational Physics 2003; 192:593–623.

23. Mohd-Yusof J. Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries.
CTR Annual Research Briefs, Stanford University, NASA Ames, 1997.

24. Codina R, Baiges J. Approximate imposition of boundary conditions in immersed boundary methods. International
Journal for Numerical Methods in Engineering 2009; 80:1379–1405.

25. Lew AJ, Buscaglia GC. A discontinuous Galerkin-based immersed boundary method. International Journal for
Numerical Methods in Engineering 2008; 76:427–454.

26. Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems.
Computer Methods in Applied Mechanics and Engineering 2002; 191:5537–5552.

27. Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods. Computer Methods
in Applied Mechanics and Engineering 2004; 193(12–14):1257–1275.

28. Nitsche J. Über ein Varationsprinzip zu Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die
keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematisches Seminar der Universität 1971;
36:9–15.

29. Dolbow J, Harari I. An efficient finite element method for embedded interface problems. International Journal for
Numerical Methods in Engineering 2009; 78(2):229–252.

30. Gerstenberger A, Wall WA. An embedded Dirichlet formulation for 3D continua. International Journal for
Numerical Methods in Engineering 2010; 82:537–563.

31. Mayer UM, Gerstenberger A, Wall WA. Interface handling for three-dimensional higher-order XFEM-computations
in fluid-structure interaction. International Journal for Numerical Methods in Engineering 2009; 79:846–869.

32. Stenberg R. Analysis of mixed finite element methods for the Stokes problem: a unified approach. Mathematics of
Computation 1984; 42:9–23.

33. Stenberg R. On some techniques for approximating boundary conditions in the finite element method. Journal of
Computational and Applied Mathematics 1995; 63:139–148.

34. Bazilevs Y, Hughes TJR. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and
Fluids 2007; 36:12–26.

35. Hughes TJR. Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models,
bubbles and the origins of stabilized formulations. Computer Methods in Applied Mechanics and Engineering 1995;
127:387–401.

36. Codina R. A stabilized finite element method for generalized stationary incompressible flows. Computer Methods in
Applied Mechanics and Engineering 2001; 190:2681–2706.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 90:636–658
DOI: 10.1002/nme


