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Abstract. Many complex engineering structures, e.g. blades of wind turbines and helicopters, 

are beamlike and non-prismatic. They may be tapered, twisted and curved in their unstressed 

state, undergo large displacements of the centre-line, and cross-sectional warping in and out 

of plane. For their structural modeling, an approach based on beam elements can be the best 

compromise between computational efficiency and accuracy, but classical beam models (see, 

for example, the monumental Love’s treatise) may not be sufficient. Better results may be 

obtained by exploiting geometrically exact and asymptotic approaches. This paper proposes a 

physical-mathematical model for the aforementioned non-prismatic structures. Analytical 

results obtained for small warping and strain fields are presented and compared to the results 

obtainable from nonlinear 3D-FEM analyses. 
 

 

1 INTRODUCTION 

Beamlike structures, e.g. helicopter blades, wind blades, components of civil buildings and 

bridges, are widespread in engineering applications. Such structures may be tapered, twisted, 

and even curved in their unstressed state, have fully deformable transverse cross-sections, and 

undergo large displacements. For their structural modelling the best compromise between 

computational efficiency and accuracy can be obtained via schematizations based on suitable 

beam elements [1-3]. However, classical beam models for extension, twisting, bending and 

shear deformation, e.g. [4-6], may not be sufficient. Models based on geometrically exact and 

asymptotic approaches can provide better results [7]. Over the years several models have been 

proposed for beamlike bodies [8-13], and most of them are also summarized in reviews (e.g. 

[14-16]). Nevertheless, non-prismatic cases still require investigation. Generally speaking, the 

geometry of the non-prismatic beamlike body must be appropriately described, as the taper, 

twist, and curvature are important geometric features and should be explicitly included in the 

model. Moreover, the analysis should not be restricted to small displacements. The model 

should provide the stress and strain fields in the three-dimensional body, be rigorous and 

application-oriented, and provide classical results for prismatic cases. Following such main 

guidelines, a physical-mathematical model for the aforementioned structures is proposed in 

this work. Specifically, this paper addresses the mechanical modelling of non-prismatic 

beamlike elements subjected to large displacements of the centre-line’s points, cross-sectional 
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warping in and out of plane, and small strain, with particular focus on the effects of important 

geometric features, such as the cross-sectional taper. A model suitable for the problem at hand 

is introduced in section 2. Analytical results obtained by its application are presented in 

section 3. Numerical examples and comparisons with the results from nonlinear 3D-FEM 

simulations are finally shown in section 4. 

2 MECHANICAL MODEL 

An important point in modeling structures subject to large displacements is the description 

of their motion [17-22]. We describe a beamlike structure as a collection of deformable plane 

figures (transverse cross-sections) along a 3D curve (beam’s centre-line). The displacement 

from the reference to the current state of each cross-sectional point consists of a global rigid 

motion onto which a local warping motion is superposed. In this way, the cross-sectional local 

motion can be examined independently of the global motion, and it is possible to consider the 

global motion to be large, while the local warping motion and the strain may be small. 

2.1 Kinematics and strain measures 

We begin introducing two local triads of orthogonal unit vectors. The first is the reference 

local triad, bi, with b1 tangent to the reference centre-line. It is a function of the reference arc-

length s, i.e. bi=bi(s). The second triad, ai, is an image of bi in the current state. It depends on 

the arc-length s and time t, i.e. ai=ai(s,t). In general, the orientation of ai and bi relative to a 

fixed rectangular frame, ci, can be defined as 

,i i i ia Ac b Bc      (1) 

where A and B are proper orthogonal tensor fields. Figure 1 schematizes the reference and 

current states of the structure in terms of centre-lines and cross-sections. A cross-section in 

the reference state is contained in the plane of b2 and b3. In the current state it may not remain 

plane (i.e. un-warped) and may not belong to the plane of a2 and a3. Its possibly warped state 

is in fact attained by superposing the aforementioned warping motion to the position of the 

points of the un-warped cross-section (as shown in Figure 1, right). 

 

Figure 1: Schematic of reference and current states in terms of centre-lines, cross-sections and local frames 
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Two mapping functions, RA and RB, identify the positions of the structure’s points in the 

current and reference states, respectively. The reference mapping function is 

0 1 1( ) ( ) ( ) ( )B i B iR z R z x z b z       (2) 

where R0B provides the position of the reference centre-line relative to triad ci, bα are vectors 

of the reference local triad in the plane of the reference cross-section, xα identify the position 

of such cross-section’s points relative to the reference centre-line, and zi are three independent 

mathematical variables which do not depend on time. More precisely, z1 is equal to the 

reference arc-length s, while zα belong to a bi-dimensional domain which is used to map the 

positions, xα, of the cross-sections points. 

Throughout this paper, Greek indices take values 2 and 3, Latin indices assume values 1, 2 

and 3, and repeated indices are summed over their range.  

It is worth noting that xk may or may not be equal to zk, depending on the modeling 

approach adopted and the structure to be modeled. Here we choose relations between xk and 

zk to explicitly model the shape of the non-prismatic beams considered in this work. In 

particular, the spanwise variation of the cross-sectional shapes is modeled via the map 

i ij jx z        (3) 

where Λij are functions of z1. We consider curved and twisted beamlike bodies with bi-tapered 

transverse cross-sections, with map (3) reducing to 

1 1 2 2 2 1 3 3 3 1, ( ), ( )x z x z z x z z         (4) 

where coefficients Λα are functions of z1.  

A suitable choice of such functions enables reproducing several interesting shapes. Figure 

2, for example, shows a beamlike structure with a three-dimensional curved centre-line, while 

the transverse cross-sections have dimensions and orientations which change from the root to 

the tip of the structure, that is, they are bi-tapered and pre-twisted. 

 

 

Figure 2: Example non-prismatic beamlike structure (left), and its twist and taper parameters (right) 
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The position of the structure’s points in the current state are defined in a similar manner by 

the (current) mapping function 

0 1 1 1( , ) ( , ) ( ) ( , ) ( , ) ( , )A i A i k i kR z t R z t x z a z t w z t a z t      (5) 

where R0A provides the positions of the centre-line’s points in the current state, while wk are 

the components of the 3D warping displacement with respect to ak, introduced to describe the 

structure’s deformed state without a-priori approximations. 

We now introduce the kinematical variables we use to describe the motion of the structure, 

starting with the orthogonal tensor field T, which provides the relative orientation between ai 

and bi, and the skew tensor fields KA and KB, defined as follows 

, ,T T T

A BT AB K A A K B B       (6) 

The apex prime denotes the derivative with respect to the arc-length s. By combining 

equations (6), the following identity holds 

T T

A BT T T K T K       (7) 

The left side of (7) defines a skew tensor field, hereafter denoted as K. The corresponding 

axial vector, k, can be determined by the relation 

T

A Bk T k k       (8) 

where the vector fields kA and kB are axial vectors of the skew tensors KA and KB. Those 

vectors are referred to here as curvature vectors. In particular, k turns out to be the difference 

between the back-rotated current curvature kA and the reference curvature kB. Therefore, k 

contains information on the curvature change between the current and reference states.  

Similarly, the vector field γ, which is associated to the difference between the current and 

reference centre-line tangent vectors, is defined as follows 

0 0

T

A BT R R         (9) 

We also introduce the skew tensor field Ω, whose axial vector is called ω, which is related 

to the variation in the current local triad ai over the time t, as follows 

TA A

 

     (10) 

The apex dot denotes the derivative over time t. The local triad bi does not depend on time 

and so does function R0B. On the contrary, R0A can change over time. Its variation is the time 

rate of change in the position of the current centre-line’s points, v0, that is 

0 0AR v       (11) 

By exploiting (6)-(11), we can also write kinematic relations which provide the time rate of 

vector fields γ and k as functions of vector fields v0 and ω, as follows 

0 0 Av R T

Tk

 



   

 
     (12) 
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where the operator ∧ is the usual cross-product. 

Hereafter γ and k are also referred to as 1D strain measures, while the Green-Lagrange 

strain tensor E is referred to as 3D strain measure. Such tensor is moreover written in a form 

based on the assumptions of small warping and strain fields considered in this work. In 

particular, we assume that the reference dimension, h, of the cross-sections is much smaller 

that the characteristic length, L, of the centre-line (the beam is slender); the beam’s curvatures 

are much smaller than 1/h; the warping fields, wk, are considered small in the sense that their 

maximum order of magnitude is hε, ε<<1 being a non-dimensional parameter, while the order 

of their derivative with respect to z1 is at most εh/L. In general, all components of the 1D and 

3D strain measures are assumed to be small in the sense that their order of magnitude is at 

most ε. For the considered structure, the strain tensor E can be written in the form 

2

T TT H H T
E I


     (13) 

where tensor H, which is the gradient of the current position RA with respect to the reference 

position RB, is defined as follows 

A

B

R
H

R





      (14) 

 

2.2 Stress measures and constitutive model 

Given the strain tensor E, the corresponding stress fields in the structure can be determined 

when a constitutive model is chosen. Limiting our attention to elastic bodies in a purely 

mechanical theory, in the case of small strain, the second (symmetric) Piola-Kirchhoff stress 

tensor, S, is expressed in terms of the Green-Lagrange strain tensor, E, as follows 

2S E trE I        (15) 

where μ and λ are known material parameters and I is the identity tensor [23]. 

We can now define the stress resultants on each transverse cross-section of the structure, in 

terms of force and moment resultants, F and M, as follows 

1

1

i i

i i

F P a

M x P a a 







 




    (16) 

In (16), Σ is the domain corresponding to the cross-section on which integration is performed, 

the force and moment vector fields, F and M, depend on arc-length s, and the components Pij 

of the first Piola-Kirchhoff stress tensor, P, are defined as follows 

ij i jP P a b        (17) 

where symbol ∙ is the usual scalar (or dot) product, symbol   is the usual tensor (or dyadic) 

product and, in the considered case, P=TS. In the present case it is moreover possible to write 

the classical Cauchy stress tensor, C, as C=TST
T
. 
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2.3 Expended power and balance equations 

To complete the model formulation, we introduce the principle of expended power and the 

balance equations for the considered structure. First of all, we assume that the beamlike body 

studied in this paper is three-dimensional and hyper-elastic [23]. Its interactions with the 

external environment are quantified, for each velocity field attainable by the body, through the 

following linear functional of its velocity field, Πe, called the external power 

e
V V

p v b v


          (18) 

In (18), b are body loads per unit reference volume V, p are surface loads per unit area of the 

reference boundary ∂V, and v is the referential description of the time rate of the current 

position of the body’s points, given by 

0v v x b w         (19) 

where w
•
 is the time rate of the warping displacement. 

Interactions among different parts of the body are instead quantified by the internal power 

Πi, which is defined as follows 

i
V

d

dt
        (20) 

where Φ is the energy density of the body, defined as twice the scalar product of tensor fields 

S and E (i.e. 2Φ=S∙E). 

According to the principle of expended power, for any velocity field attainable by the 

body, its interactions with the external environment and among its parts are such that at any 

value of the evolution parameter t the total power vanishes (i.e. Πe=Πi). Exploitation of such 

principle is a usual technique in continuum mechanics to obtain balance equations in terms of 

the unknowns of the problem (see, e.g., [13] and [23]). In our case, it makes it possible to 

write balance equations for the stress resultants, F and M, in the form  

0 0

s

A s

F + F = 0

M R F M



    
    (21) 

where Fs and Ms are the resultants of the body and surface external loads per unit length of the 

reference centre-line. The same principle also enables writing balance equations to determine 

the warping fields, wk, which govern the cross-sectional deformation. In particular, in the case 

in which the body loads and surface actions on the beam’s lateral surface are neglected in 

calculating the warping fields, or vanish, it is possible to reduce the determination of the 

warping fields, wk, to those that verify the following variational statement 

0
V

         (22) 

where the symbol δ denotes the variation of the energy function with respect to the warping 

fields. Note that suitable warping fields satisfying (22) can be obtained via the corresponding 

Euler-Lagrange equations [24] by using numerical methods or, in particular cases, by means 

of analytical approaches providing closed-form results, as is discussed in the following. 
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2.4 Cross-sectional warping and centre-line deflection 

So far we have introduced the main ingredients of our modeling approach for the structures 

considered in this work, which are three-dimensional, beamlike, slender, and non-prismatic, 

and have defined the strain measures, stress measures, and balance equations we use to 

describe their mechanical behavior. By exploiting such ingredients, the resolution of the 

three-dimensional nonlinear elasticity problem for the aforementioned structures is now 

reduced to the solution of two main problems: the first governs the cross-sectional warping 

motion and its strong formulation can be given in terms of partial differential equations 

(PDEs) defined over a reference bi-dimensional domain (as is further discussed in the 

following section). The second problem governs the centre-line motion and can be expressed 

in terms of a set of nonlinear ordinary differential equations (ODEs) defined over a reference 

line (as in [18], for instance).  

Specifically, in the following we exploit condition (22) to obtain the PDEs problem the 

solution of which enables determining the warping of the transverse cross-sections (and show 

a case in which we can obtain analytical closed-form solutions). The displacements of the 

centre-line’s points are instead determined by solving the nonlinear ODEs problem based on 

the balance equations (21) for the stress resultants and the corresponding kinematic and 

constitutive relations introduced in the previous sections 2.1-2.3. Such nonlinear problem is 

integrated (numerically) with respect to arc-length s. 

3 ANALYTICAL RESULTS 

The stress and strain fields in the considered structure are determined by exploiting 

condition (22). To this end, we use the corresponding Euler-Lagrange equations, in which we 

keep the terms up to the order εh/L. In this way we obtain a mathematical problem based on 

partial differential equations (PDEs) with Neumann-type boundary conditions the solution of 

which enables determining the components of E. In doing this, we choose the current local 

triads to be tangent to the current centre-line, while possible shear deformations are directly 

accounted for through the warping fields. Note that hereafter we focus only on the effects of 

the cross-sectional taper on the stress and strain fields; other geometric effects, such those 

related to the cross-sectional pre-twist, are not considered. 

Proceeding in this way, the components E11, E21 and E31 of tensor E, associated to the out-

of-plane deformation of the transverse cross-sections, can be written in the form 

11 2 3 3 2 1 1,1

1

21 1,2 1 3 2 3 3 2 1 2 2 2 2

1

31 1,3 1 2 2 3 3 2 1 3 3 3 3

2 2(1 )( )

2 2(1 )( )

E k x k x e

E e k x k x k x x e

E e k x k x k x x e



 

 





   

        

        

  (23) 

where ij i jE E b b   , υ is Poisson’s ratio, the subscript comma denotes the derivative with 

respect to xi, and the scalar fields e1, e2, e3 can be obtained by solving the PDEs problems 

1,22 1,33

1,2 1 3 2 1,3 1 2 3

0

( ) ( ) 0

e e in

e k x n e k x n on

  

    
   (24) 
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2,2 3,3 2 2 3 3

3,2 2,3 2 2 3 3

2 2 3 3 0

e e a x a x in

e e b x b x in

e n e n on

   

   

  

     (25) 

In (24)-(25), Σ and ∂Σ are the cross-sectional domain and its boundary, nα are components of 

the outward unit normal vectors on ∂Σ, and coefficients aα and bα are linear functions of the 

strain measures kα and their s-derivative. Such coefficients, which also depend on the beam’s 

initial shape through the taper coefficients Λ2 and Λ3, are given by 

 
 

1 1

2 3 3 3 2 2 3

1 1

3 2 2 2 3 3 2

1

2 2 2 2 2

1

3 3 3 3 3

2(1 ) 2(1 ) 2

2(1 ) 2(1 ) 2

2 2(1 )

2 2(1 )

a k k

a k k

b k k

b k k

 

 

 

 

 

 





           

           

      

      

   (26) 

The approach used can also provide relations for the components E22, E33, and E23 of E, 

related to the in-plane deformation of the transverse cross-sections, plus the relevant PDEs 

problem. It is worth noting that the components of the stress resultants (16) depend on the 

components E11, E21, E31 of E, and the additional term ESV=E22+E33+2vE11, which is related to 

the aforementioned in-plane deformations. However, we also note that in the present case ESV 

is of higher order with respect to other terms in the expressions of the stress resultants [18], 

and vanishes for prismatic beams [4,23]. Hereafter, we do not go into the details of the 

problem related to the in-plane deformation. Instead, we proceed to study the effects of the 

cross-sectional taper included in functions e1, e2, and e3, which significantly affects the stress 

and strain fields in the non-prismatic structures considered in this work. 

3.1 The case of the bi-tapered elliptical cross-sections 

Let us consider non-prismatic beams with bi-tapered elliptical cross-sections. For such case 

we can provide analytical closed-form solutions, while for generic cross-sectional shapes the 

PDEs problems introduced in the foregoing have to be solved with the aid of numerical 

methods. However, this is not surprising. In fact, analytical solutions are available only for a 

limited number of cases even in the classical linear theory of prismatic beams [4].  

In this case, problems (24)-(25) can be solved without resorting to numerical methods. In 

particular, we obtain the following analytical results 

2 2 2

3 2
1 1 2 32 2 2

3 2

2 2 22

3 3 2 2 2 32
2 2 2 2 2 2 2

3 3 2 2 3 3

2 2 22

2 2 3 3 3 32
3 2 2 2 2 2 2

2 2 2 2 3 3

1
2

1
2

d d
e k x x

d d

c x x c a d xx
e

d d d

c x x c a d xx
e

d d d

 

 














  
     

   

  
     

   

   (27) 

In (27), d2 and d3 are the major semi-axes of a reference elliptical cross-section (e.g. the one at 

the root section), while coefficients c2 and c3 are defined as follows 
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2 2 1 2 2

2 2 3 3 3

2 2 1 2 2

3 3 2 2 2

( )(1 3 )

( )(1 3 )

c b a d

c b a d

 

 



  

   

   
   (28) 

where ρ=Λ3/Λ2 is a known function of z1. Using such results, we can also calculate the strain 

fields in the structure (23), and the corresponding stress fields. An important result is that the 

effects of the cross-sectional taper appear explicitly in all above equations in terms of two 

application-oriented functions, i.e. the taper coefficients Λ2 and Λ3. It is also worth noting that 

the model and results presented so far generalize those of the linear theory of prismatic beams 

[4,23] and reduce to the them for prismatic beams undergoing small displacements. 

Unfortunately, analytical solutions to problems (24)-(25), like those shown here (27), can 

be obtained only for a few cases. However, such problems can always be solved with the aid 

of numerical methods for all other cases as well. 

4 NUMERICAL EXAMPLES 

In this section we show the results obtainable via the modeling approach introduced in the 

previous sections. The model has been implemented in a numerical code written in the Matlab 

language, referred to as 3D-BLM. The results from 3D-BLM in terms of displacement, strain 

and stress fields are compared with those from 3D-FEM simulations performed with Ansys to 

show the computational efficiency and accuracy of the proposed approach. 

In the test case reported here, we consider a straight beam, with bi-tapered elliptical cross-

sections, undergoing large displacements. The reference transverse cross-section at the root 

has its major semi-axes equal to d2=2m (edgewise) and d3=2m (flapwise). The dimensions of 

the other cross-sections reduce from the root to the tip, with linear reduction edgewise (equal 

to 50% at the tip) and parabolic reduction flapwise (85% at the tip). The material properties 

are described in terms of reference values of Young’s modulus, 70GPa, and Poisson’s ratio, 

0.25. The structure is fixed at one end (the root), and loaded at the other (the tip) by a flapwise 

force, F, of progressively increasing magnitude, as shown in Figure 3 (left). 

 

Figure 3: Global deflection with 3D-BLM for increasing F (left) and 3D-FEM for F=500kN (right) 
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The results obtained from 3D-BLM, and those given by nonlinear 3D-FEM simulations, 

are now summarized. Specifically, Figure 3 (left) shows the structure’s un-deformed shape 

(F=0), its deformed shapes obtained from 3D-BLM for F=500kN, F=1000kN, F=1500N (left), 

and the deformed shape given by 3D-FEM for F=500kN (right). Figure 4, instead, presents 

comparisons in terms of tip-displacements (left) and simulation times (right), which show the 

computational efficiency and accuracy of the proposed modeling approach. 

 

Figure 4: Comparison of tip-displacements (left), tip-displacement differences and simulation times (right) 

Apart from such results, the proposed model (3D-BLM) can also provide other meaningful 

information, such as the rotation of the local triads, the 1D strain measures (8)-(9), the 3D 

strain fields (13), and the corresponding stress fields (15) and stress resultants (16). 

By way of example, in the following we compare the results obtained from 3D-BLM with 

those obtained from nonlinear 3D-FEM in terms of Cauchy stress fields. Specifically, the 

comparisons are for the longitudinal normal stresses CXX, in Figure 5, and the transverse shear 

stresses CZX, in Figure 6, for a tip-force F=1500kN (which corresponds to a tip-displacement 

of about 14.2m), at three reference cross-sections (i.e. 30%, 50%, 70% spanwise). In general, 

we have observed that the normal stresses follow a Navier-like distribution in the transverse 

cross-sections (they are almost linear in x3), while the transverse shear stress distributions are 

quite different from those predictable by the linear theory of prismatic beams. In fact, the 

shear stresses in non-prismatic beams do not generally vanish at the cross-section’s boundary 

and their distributions can change from cross-section to cross-section (i.e. spanwise). 

 

 

Figure 5: Comparison of longitudinal stress CXX in cross-sections at 30%, 50%, 70% span, for F=1500kN 
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Figure 6: Comparison of transverse shear stress CZX in cross-sections at 30%, 50%, 70% span, for F=1500kN 

Similar results have been obtained for other cross-sections and tip-forces, as well as for 

other geometries (see, e.g., [18]). In all cases the results obtained confirm the computational 

efficiency and accuracy of the proposed approach compared to nonlinear 3D-FEM. 

The proposed model can thus be used to predict the mechanical behavior of non-prismatic 

beamlike structures as those considered in this work, which may undergo large displacements 

of the centre-line’s points, warping of the transverse cross-sections in and out of plane, and 

small strains, as it can furnish accurate information on the deformed states of such structural 

elements in terms of displacement, strain and stress fields. 

6 CONCLUSIONS 

Many complex engineering structures, e.g. blades of wind turbines and helicopters, are 

beamlike and non-prismatic. Their mechanical behavior can be simulated by exploiting 3D 

beam models which are computationally efficient, accurate, and explicitly consider the main 

geometric design features of such structures, the large deflections of their centre-line and the 

3D warping of their transverse cross-sections. In this work, non-prismatic beamlike structures 

have been modeled analytically. Their main geometric features (e.g. the cross-sectional taper) 

have been explicitly included in the model. The approach presented has been shown to be 

suitable for large deflections of the centre-line and small warping of the cross-sections. The 

3D strain tensor has been calculated analytically in terms of the structure’s geometric 

parameters, 1D strain measures and 3D warping fields. A variational approach has been 

exploited to obtain suitable warping fields. The analytical results obtained for bi-tapered 

beams, which generalize those of the linear theory of prismatic beams, have been presented 

and compared to the results of nonlinear 3D-FEM analyses. The results presented confirm the 

effectiveness of the modeling approach and show the information it can provide. 
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