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Abstract. Skin contraction during wound healing is mainly caused by fibroblasts (skin
cells) and myofibroblasts (differentiated fibroblasts) that exert pulling forces on the sur-
rounding extracellular matrix (ECM). Modelling is done in multiple scales: agent–based
modelling on the microscale and continuum–based modelling on the macroscale. The mo-
mentum equilibrium equation is used to simulate this phenomenon in both models, with
different expression of the cellular forces. In this manuscript, we managed to rigorously
establish the link between the two modelling approaches for both closed–form solutions
and finite–element approximations in one dimension.

1 Introduction

Wound healing is a spontaneous process for the skin to cure itself after an injury. In the
proliferation phase, the scar will contract since the regular fibroblasts start proliferating
and exert forces on the extracellular matrix (ECM). For superficial wounds that only
concern epidermis, the wound can be healed without any problem. However, for severe
injuries, in particular, in dermal wounds, scar may contract so much that it will cause
disabilities and disfunctioning of joints. If this happens, then one speaks of a contracture.
Contractures are recognized as excessive and problematic contractions, which occur due
to the pulling forces exerted by the (myo)fibroblasts on ECM. Usually, 5− 10% reduction
of wound area has been observed in clinical trials. A more detailed biological description
can be found in Cumming et al. [1], Enoch and Leaper [2], Haertel et al. [3], Martin [4].
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In our previous work [5], a formalism to describe the mechanism of the displacement
of the ECM in agent-based model has been used, which is firstly developed by Boon et al.
[6] and improved further by Koppenol [7]. Regarding the elasticity equation with point
forces, we realized that the solution to the partial differential equation is singular for
dimensionality exceeding one. Hence, we developed various alternatives to improve the
accuracy of the solution in [8, 9].

We have been working with agent-based models so far, which model the cells as in-
dividuals and define the formalism of pulling forces by superposition theory. However,
once the wound scale is larger, the agent-based model is increasingly expensive from a
computational perspective, and hence, the cell density model is preferred, which considers
many cells as one collection in a unit. In this manuscript, we investigate and discover
the connections between these two models in one dimension as the exact solutions are
available, in the perspective of modelling the mechanism of pulling forces exerted by the
(myo)fibroblasts. As the consistency between the smoothed particle approach (SP ap-
proach) and the immersed boundary approach has been proven both analytically and
numerically [8, 9], we select the SP approach here due to its continuity and smoothness,
to compare with the cell density model using finite-element methods.

The manuscript is structured as follows. We start introducing both models in Section 2.
Section 3 displays both the exact solutions and the numerical results using finite-element
methods. Finally, some conclusions are shown in Section 4.

2 Mathematical Models

Considering one-dimensional force equilibrium, the equations are given by

−dσ
dx

= f, Equation of Equlibirum,

ε = du
dx
, Strain-Displacement Relation,

σ = Eε, Constitutive Equation.

By substituting E = 1, the equations above can be combined to Laplacian equation in
one dimension:

−d
2u

dx2
= f. (1)

2.1 Smoothed Particle Approach

In Peng and Vermolen [9], a smoothed particle approach (SP approach) is developed as
an alternative of the Dirac Delta distribution describing the point forces exerted by the
biological cells, in the application of wound healing:

(BV PSP )

−
d2u

dx2
= PSP

Ns∑
i=1

δ′ε(x− si), x ∈ (0, L),

u(0) = u(L) = 0,

(2)
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where PSP is the magnitude of the forces, δε(x) is the Gaussian distribution with variance
ε and si is the centre position of biological cell i. One can solve the partial differential
equations (PDEs) with finite-element methods. The corresponding weak form is given by

(WF SP)


Find u ∈ H1

0 ((0, L)), such that∫ L

0

u′φ′dx =

∫ L

0

Ns∑
i=1

PSP δ
′
ε(x− si)φdx, for all φ ∈ H1

0 ((0, L)).

Without this knowledge, the existence and uniqueness of the H1
0 -solution follows as well

from the application of the Lax–Milgram theorem [10], where it is immediately obvious
that the bilinear form in the left–hand side is symmetric and positive definite.

2.2 Cell Density Approach

A cell density approach is often used in the large scale, so that the computational efficiency
is much improved compared with the agent-based model. According to the model in
Koppenol [7], the force in two dimensions can be determined by the divergence of nc · I,
where nc is the local density of the biological cells and I is the identity tensor. In one
dimension, the cell density approach is expressed as:

(BV Pden)

−
d2u

dx2
= Pden

dnc
dx

, x ∈ (0, L),

u(0) = u(L) = 0,
(3)

where Pden is the magnitude of the forces. The corresponding weak form is given by

(WF den)


Find u ∈ H1

0 ((0, L)), such that∫ L

0

u′φ′dx =

∫ L

0

Pdenn
′
sφdx, for all φ ∈ H1

0 ((0, L)).

2.3 Consistency between Two Models

2.3.1 Analytical Solutions with Specific Locations of Biological Cells

To express the analytical solution, it is necessary to determine the locations of the bi-
ological cells, such that the cell density can be written as an analytical function of the
positions. We assume, there are Ns cells distributed uniformly in the subdomain (a, b)
of the computational domain (0, L). Hence, the distance between the center position of
any two adjacent biological cells is constant, which we denote ∆s = (b − a)/Ns and the
first and the Ns-th cell are located at x = a + ∆s/2 and x = b − ∆s/2, respectively.
With homogeneous Dirichlet boundary conditions, and suppose PSP = P∆s and variance
ε = ∆s, the boundary value problem of the SP approach is expressed as

(BV P 1
SP )

−
d2u1

dx2
= P∆s

Ns∑
i=1

δ′∆s(x− si), x ∈ (0, L),

u1(0) = u1(L) = 0,

(4)
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where P is a positive constant and si is the centre position of the biological cells. Utilizing
the superposition principle, the analytical solution is given by

u1(x) = P∆s
Ns∑
i=1

1

2

{(x
L
− 1
)

erf

(
si√
2∆s

)
+
x

L
erf

(
L− si√

2∆s

)
− erf

(
x− si√

2∆s

)}
, (5)

where erf(x) is the error function defined as erf(x) = 2√
π

∫ x
0

exp(−t2)dt [11]. Since the

biological cells are uniformly located between a and b (0 < a < b < L), dnc

dx
can be

rephrased as

dnc
dx

=


1

t
, a− t

2
< x < a+

t

2
,

− 1

t
, b− t

2
< x < b+

t

2
,

0, otherwise,

where t is a small positive constant. Taking t to zero, the above expression converges to
δ(x− a)− δ(x− b). Hence, the boundary value problem of the cell density model can be
written as

(BV P 1
den)

−
d2u2

dx2
= P

dnc
dx
→ P (δ(x− a)− δ(x− b)), x ∈ (0, L),

u2(0) = u2(L) = 0,
(6)

where δ(x) is the Dirac Delta distribution and a and b are the left and right endpoint of
the subdomain (where biological cells are uniformly located) respectively. The analytical
solution is then expressed as

u2(x) = P (G(x, a)−G(x, b)), (7)

where G(x, x′) is the Green’s function [12], defined by

G(x, x′) = (1− x′

L
)x−max(x− x′, 0),

in the computational domain (0, L).
Actually, the convergence between u1(x) and u2(x) can be proven as ∆s → 0+ by a

proposition; see more details regarding the proof in Peng and Vermolen [13].

Proposition 1. Let u1(x) as described in Eq (4) be the exact solution to (BV P 1
SP ) and

u2(x) as described in Eq (6) be the exact solution to (BV P 1
den). As ∆s → 0+, u1(x)

converges to u2(x).

2.3.2 Finite-Element Method Solutions with Arbitrary Locations of Biolog-
ical Cells

For the finite-element method, we select the piecewise Lagrangian linear basis functions.
We divide the computational domain into Ne mesh elements, with the nodal point x1 = 0
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and xNe+1 = L. For the implementation, we define the cell density as the count of
biological cell in every mesh element divided by the length of the mesh element, hence, it
is a constant within every mesh element. In other words, in the mesh element [xj, xj+1],
the count of the biological cell is defined by

Nc([xj, xj+1]) =

∫ xj+1

xj

nc([xj, xj+1])dx = hnc([xj, xj+1]),

for any j ∈ {1, . . . , Ne}, where h is the size of every mesh element. Different from
(BV P 1

SP ) where ∆s is the variance of δε, for finite-element methods, we set ε = h/3, such
that the integration of δh/3(x− x′) for any 0 < x′ < L over any mesh element with size h,
is close to 1 (see Peng and Vermolen [13]). With the two approaches, the boundary value
problems with Dirichlet boundary condition are defined by

(BV P 2
SP )

−
d2u1

dx2
= Ph

Ns∑
i=1

δ′h/3(x− si), x ∈ (0, L),

u1(0) = u1(L) = 0,

(8)

and

(BV P 2
den)

−
d2u2

dx2
= Ph

dnc
dx

, x ∈ (0, L),

u2(0) = u2(L) = 0,
(9)

where si is the position of biological cells, h is the mesh size and Ns is the total number of
cells in the computational domain. The consistency between (BV P 2

SP ) and (BV P 2
den) can

be verified by the following theorem, and the proof can be found in Peng and Vermolen
[13].

Theorem 1. Denote uh1(x) and uh2(x) respectively the solution to (BV P 2
SP ) and (BV P 2

den).
With Lagrangian linear basis functions for the finite element method, uh1(x) converges to
uh2(x), as the size of the mesh element h → 0+, regardless of the positions of biological
cells.

3 Results

Since the objective of this manuscript is to investigate the consistency and the connec-
tions between the SP approach and the cell density approach, all the parameters are
dimensionless.

We show the results by analytical solutions in Figure 1 with various values of ∆s (i.e.
depending on different number of biological cells in the subdomain (a, b)). Here, the
computational domain is (0, 7) with L = 7 and the subdomain where the biological cells
locate uniformly is (2, 5) with a = 2 and b = 5. With the decrease of the variance in
the Gaussian distribution in (BV P 2

SP ), the curves gradually overlap, which verifies the
convergence between the analytical solutions to these two approaches.

To implement the model, there are two different algorithms shown in Figure 2 and 3.
Depending on different circumstances, the implementation method is elected. The cell
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(a) ∆s = 0.3 (b) ∆s = 0.06

(c) ∆s = 0.03 (d) ∆s = 0.006

Figure 1: The exact solutions to (BV P 1
SP ) and (BV P 1

den) are shown, with various values of ∆s, which
is the distance between centre positions of any two adjacent biological cells. Blue points are the centre
positions of biological cells. Red curves represent the solutions to (BV P 1

SP ) and blue curves represent
the solutions to (BV P 1

den).

Cell density

Cell count in length d

Cell density approach

Cell positions SP approach

Figure 2: With exact expression of cell density function and the first order derivative of the function
exists, cell density approach is implemented directly. Based on the cell density, the number of cells
in a certain region with length d is determined and subsequently, the center positions of cells can be
generalized. Hence, the SP approach is implemented.

density in one dimension is defined as the number of cells per length unit. In other words,
the cell count in a given domain can be computed by integrating the cell density over
the domain. If the cell density function can be expressed analytically and the first order
derivative of the function exists, then a certain bin length d is chosen and the cell count
in every bin of d length is calculated. Then we generalize the center positions of cells in
every bin of length d, thus, the SP approach can be implemented, as it is indicated in
Figure 2. However, it is not always straightforward to obtain the analytical expression of
cell density. If the center positions of cells are given, the number of cells in each mesh
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element can be counted, hence, the cell density will be computed analogously at each
mesh points. Therefore, the boundary value problem of cell density approach is solved by
numerical methods, for example, the finite-element methods.

Cell positions

Cell count in mesh element

SP approach

Cell density Cell density approach

Figure 3: Given the center positions of cells, one can directly implement the SP model. Computing the
number of cells in every mesh element and divided by the length of the mesh element results into the cell
density. Subsequently, cell density approach can be implemented.

In this manuscript, all the numerical results are derived by finite-element methods
with Lagrangian linear basis functions. Regarding the first implementation method (see
Figure 2), we show the results with a Gaussian distribution and sine function as cell
density functions; see Figure 4 and 5. We start with the simulations in which we keep the
number of cells and the center positions of the cells the same, then we refine the mesh. In
Figure 5(a)-(c), the bin length d is 0.35, and the mesh size is a function of d. The results
solved by SP approach become smoother. With various values of d, the solutions to the
approaches are overlapping only when the factor between the d and mesh size is closer to
1. From Figure 5(d) to (f), the mesh is fixed and we vary the value of d. We note that in
Figure 5(f), the solution to the SP approach is significantly different from the solution to
the cell density approach. It is mainly caused by the fact that d is too small and there is
barely any fluctuation with the count of cells in every d length subdomain, while with the
Gaussian distribution as the cell density function, the majority of the cells are centered
around x = 3.5. Hence, the solution to SP approach still manages to be comparable
with the solution to the cell density approach; see Figure 4(f). Numerical results of the
simulation in Figure 4 are displayed in Table 1. There are some noticeable differences
between two approaches, in particular the convergence rate in the H1-norm: thanks to
the given, differentiable cell density function, the cell density approach converges faster.
In addition, the cell density approach requires less computational time with a factor of
15.

We consider cells that are located uniformly in the subdomain (2, 5), which implies
that the gradient or divergence of the cell density vanishes inside the subdomain but
does not exist at two endpoints of the subdomain. Hence, we utilize the implementation
method in Figure 3, as the center positions of the cells are given, then the local cell
density can be calculated per unit area. Compared with the results shown in Figure
1, the results in Figure 6 and Figure 7 show the solutions to (BV P 2

SP ) and (BV P 2
den)

respectively. Note that, in the finite-element method solutions, the magnitude of the
forces in both approaches are the same, and the variance of δε(x) is related to h rather
than ∆s. Furthermore, these figures verify that the convergence between SP approach
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(a) h(d) = d/5, h = 0.07, d =
0.35

(b) h(d) = d/10, h = 0.035, d =
0.35

(c) h(d) = d/50, h = 0.007, d =
0.35

(d) d(h) = 2h, h = 0.07, d =
0.14

(e) d(h) = h, h = 0.07, d = 0.07 (f) d(h) = h/4, h = 0.07, d =
0.0175

Figure 4: The cell density function is Gaussian distribution and using the algorithm in Figure 2,
different simulations are carried out with various mesh size and the total number of cells. Blue curves
represent the solutions to (BV P 2

SP ), and ref curves are the solutions to (BV P 2
den) with nc(x) = 50 ×

1/
√

2π × 0.12 exp{−(x − 3.5)2/(2 × 0.12)}. In Subfigure (a)–(c), we set d = 0.35 and cell positions are
fixed, as h is decreasing. From Subfigure (d) to Subfigure (f), we use the same finite-element method
settings (where h is sufficiently small with h = 0.07), and simulations are carried out with various values
of d.

Table 1: Numerical results of two approaches in one dimension, where the cell density function is
Gaussian distribution: nc(x) = 50× 1/

√
2π × 0.12 exp{−(x− 3.5)2/(2× 0.12)}. Here, we define Ns = 88

and the mesh size h = 0.07. The results are solved by finite-element method with algorithm in Figure 2.

SP Approach
Cell Density
Approach

‖u‖L2((0,L)) 0.544148107 0.361979308
‖u‖H1(((0,L)) 0.964215173 0.871720645

Convergence rate of L2 − norm 1.75281178 1.826378221
Convergence rate of H1 − norm 1.70114233 1.716659924

Reduction ratio of the subdomain
(a, b) (%)

13.88062 9.52381

Time cost (s) 0.045070 0.0032084

and cell density approach is determined by the mesh size rather than by the distance
between any two adjacent cells. Table 2 displays the numerical results of the simulation
in Figure 6, in the perspective of the solution, the reduction ratio of the subdomain and
the computational cost. Similarly to the figures, there is no significant difference between
the norms and the deformed length of the subdomain. However, the simulation time in
the cell density approach is much shorter than in the SP approach with a factor of 35.
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(a) h(d) = d/5, h = 0.07, d =
0.35

(b) h(d) = d/10, h = 0.035, d =
0.35

(c) h(d) = d/50, h = 0.007, d =
0.35

(d) d(h) = 2h, h = 0.07, d =
0.14

(e) d(h) = h, h = 0.07, d = 0.07 (f) d(h) = h/4, h = 0.07, d =
0.0175

Figure 5: The cell density function is sine function and using the algorithm in Figure 2, different
simulations are carried out with various mesh size and the total number of cells. Blue curves represent
the solutions to (BV P 2

SP ), and ref curves are the solutions to (BV P 2
den) with nc(x) = 40| sin(2x)|. In

Subfigure (a)–(c), we set d = 0.35 and cell positions are fixed. From Subfigure (d) to Subfigure (f), we
use the same finite-element method settings (where h is efficiently small with h = 0.07), and we take
different values of d.

(a) h = 0.7 (b) h = 0.07

(c) h = 0.014 (d) h = 0.007

Figure 6: The finite-element method solutions to (BV P 2
SP ) and (BV P 2

den) are shown where cells are
uniformly located. With the fixed positions of cells, the solutions are convergent as h→ 0+. Blue points
are the centre positions of biological cells. Red curves represent the solutions to (BV P 2

SP ) and blue
curves represent the solutions to (BV P 2

den).
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(a) Ns = 10 (b) Ns = 50

(c) Ns = 100 (d) Ns = 500

Figure 7: The finite-element method solutions to (BV P 2
SP ) and (BV P 2

den) are shown with uniform
distribution. Compared to the analytical result, the consistency between two approaches are unrelated to
the number of cells, and the solutions are convergent as h→ 0+. Here, we use h = 0.007. Blue points are
the centre positions of biological cells. Red curves represent the solutions to (BV P 2

SP ) and blue curves
represent the solutions to (BV P 2

den).

Table 2: Numerical results of two approaches in one dimension with biological cells located uniformly.
Here, we define mesh size h = 0.07 and Ns = 50, which means ∆s = 0.06. The results are solved by
finite-element method with algorithm in Figure 3.

SP Approach
Cell Density
Approach

‖u‖L2((0,L)) 0.1858655201 0.1858660118
‖u‖H1((0,L)) 0.2780804415 0.2914497482

Convergence rate of L2 − norm 0.9940317098 0.9985295706
Convergence rate of H1 − norm 1.002001685 1.004380036

Reduction ratio of the subdomain
(a, b) (%)

7.96908 7.98821

Time cost (s) 0.10391 0.0030458

4 Conclusions

We discussed the link between an agent-based model and a continuum-based model in a
one-dimensional setting. For this one-dimensional setting, the exact solution to the prob-
lem is known for a specific distributions of the locations of biological cells that pull their
immediate environment. Since the Dirac delta functions and its smoothed Gaussian reg-
ularization are, de facto, probability density functions, Chebychev’s Inequality and the
Squeeze Theorem are used to establish convergence between the continuum-based and
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agent-based approaches. Furthermore, for Lagrangian linear basis functions, we demon-
strate the consistence between both approaches in the finite element space as the element
size tends to zero for generic spatial arrangements of the cells. Further efforts in this
research will be directed to generalize the mathematical results to higher dimensionality.
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