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Summary

This paper presents a survey of the numerical simulation of base isolation systems for the vibration control of
buildings and their equipment, primarilly against earthquakes. Base isolation has received much attention in
the recent twenty years and many buildings have been protected using this technology. The article focusses
mainly on the di�erent numerical methods used in the analysis of base isolated buildings. The conventional
form of solving the equations of motion governing the seismic response of building structures with nonlinear
base isolation consists of using monolithic step by step integration methods. As an eÆcient alternative static
condensation and block iterative schemes can be applied. The particularities of the equations of motion
of buildings equiped with various base isolation systems are described. The linear theory of base isolated
buildings is then presented. After this, numerical solution techniques for the analysis of the seismic response
of buildings with isolation systems are developed in detail in the paper. Finally, numerical results for elastic
and inelastic structures are described. A complete set of references coverning a wide range of studies is
included

1 INTRODUCTION

Traditional seismic design of buildings is founded on structural ductility and redundancy.
Forces induced by severe earthquakes are reduced as a function of the energy dissipation
capacity at the structural components and their connections. Global ductility in a structure
is achieved by local and material plasticity of the subsystems. A sound earthquake resistant
design guarantees that local and material ductility are not exceeded at a certain level of
global ductility demand. Due to uncertainties and nonlinearities it is diÆcult to estimate the
local ductility demands and therefore traditional seismic design provides conservative global
minimum requirements for reinforcement ratios, con�nement reinforcement and for other
design parameters. Besides, nonstructural damage is very diÆcult to avoid in a conventional
seismic design since dynamic forces considerably exceed code design forces. In the recent
twenty years, a number of external energy dissipation devices and base isolation devices has
been proposed to localize the ductility or to shift the natural frecuencies of a building. This
article presents a complete review of base isolation systems in particular regarding their
modeling, behaviour and numerical analysis.

Figure 1 illustrates the basic process of selecting the design lateral loads for earthquake
resistant buildings. The base shear coeÆcient Cs is de�ned as the ratio of the total lateral
forces V and the total weight of the structure W , and in the �gure it is presented as a
function of the fundamental period of a building. The di�erence between the loads induced
by a severe earthquake and the code design loads is permited only as a function of the
ductility and redundancy of the structure. By the contrary, the loads induced by a severe
earthquake on a base isolated building are smaller than actual code requirements. This fact
is particularly important taking into account that isolated buildings respond in the linear
elastic range without plasti�cation of nonstructural and structural components.
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Figure 1. Basic earthquake resistant design criteria

Figure 2. (a) Conventional �x-base building. (b) Base isolated building

Base isolation systems partially uncouple a structure from the seismic ground motion
by means of specially designed, replaceable, devices inserted between the structure and its
foundation. Figure 2 illustrates a conventional �x-base building and a protected base isolated
one. The conventional building reduces dynamic forces by plasticity of the structural and
nonstructural components. The protected building reduces dynamic forces by two basic
mechanisms: (1) a sliding layer made of a low friction material and (2) a exible layer made
of a rubber material. The �rst mechanism corresponds to a friction or sliding base isolation
system. The main parameter in this case is the friction coeÆcient. The dynamic forces are
reduced by the sliding layer since as the friction coeÆcient is reduced the dynamic forces
are also reduced. The second mechanism corresponds to a rubber base isolation system.
The main parameters in this case are the isolator period and its damping coeÆcient. The
dynamic forces are reduced by a period shift since the exible layer modi�es the fundamental
period of the building, ideally far from the fundamental period of earthquakes.

Even though the serious study of base isolation is a recent subject, there is a number of
old historic buildings protected with some kind of isolation. Kirikov (1992) describes various
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procedures used by Sumerians, Greeks, Romans and Byzantins, among others, to protect
their structures against earthquakes. The most usual earthquake protection systems was
to place a layer of thin sand below the foundations in order to obtain a \sliding isolation"
system. This technique was applied by the Knossos builders in Creta, 2000 years b.c. in
various buildings and even in their famous palace. Similar techniques have been used by the
greeks in Chokrak, in the coast of the sea of Azov. The foundations of their temple, built
in the III century b.c., has a layer of sand and two layers of small and medium size rocks.
In this century Jacob Bechtold from Munich, Germany, presented a patent in the United
States for an earhquake resistant building (Buckle and Mayes 1990). Bechtold proposed to
support buildings using a rigid base and spheric rollers. In 1909 a doctor from Scarborough,
England, presented a patent in England for a support system made of talc powder layers.
In 1929, Robert Wladislas de Montalk from Wellington, New Zeland, presented a patent for
a building supported on springs that absorb or minimize impacts.

It is clear that sliding isolation is the most intuitive technique to perform dynamic
isolation. The basic sliding isolation mechanism is to limit the force transmited from the
foundation to the building. Consequently, it is not surprising that various systems have
been proposed in this century using metal rollers. A di�erent and older use of sliding plates
is in bridges, in order to minimize stresses caused by thermal expansions. The di�erence
with sliding base isolation of buildings against earthquake e�ects is that the sliding plates in
bridges often move, since thermal dilations occur frecuently. In sliding isolation the plates
may stick to each other increasing the friction coeÆcient with time (Kelly 1986).

The �rst use of elastomers in base isolation took place in 1969 in Scopje, Macedonia
for a three story building (Kelly 1986). This building was supported on plain elastomers.
Due to its reduced vertical and horizontal sti�ness the building rocked and this system
has never been used again. In contrast to sliding isolation, the basic mechanism to reduce
earthquake forces using elastomers is to shift the natural frecuencies of a building far from the
predominat period of an earthquake. Consequently, horizontal exibility is necessary to shift
the fundamental period, altougth this is not the case for the vertical exibility. Therefore,
reinforced neoprene pads, formed by steel plates and elastomers, were proposed. This system
is probably the most wide spread isolation technique used in present times. However, sliding
isolation has gain attention in the last two years since the largest retroÆtted building in
the United States, the San Francisco Court of Appeailings, has been protected with friction
base isolation (Amin and Mokha 1995).

2 SYSTEMS DESCRIPTION

Modern base isolation started about twenty �ve years ago with the introduction of elas-
tomers, in particular the laminated rubber bearings. This is nowadays the most widely used
isolation system. As illustrated in Figure 3(a), the laminated rubber bearings are formed
by layers of neoprene and steel plates with the rubber being vulcanized to the steel plates.
This connection is very exible in the horizontal direction by sti� in the vertical direction.
A structure supported on these connections has a longer period compared to a similar but
�x-base structure and the frecuency shift reduces dynamic ampli�cations (Fan et al. 1988).
This reinforced neoprene pads are similar to the ones used in bridges. The experience with
bridges allows to ensure their strength and durability even in hard enviroments and �res.

The use of base isolation systems allows to satisfy code requirements without a signi�cant
increase in cost. Therefore, these connections have been investigated in many world wide
institutions. For example, the \Centre National de la Recherche Scienti�que" in Marseille,
France, started in 1972 a research project to study the use of these connections for the
protection of buildings. The results were applied to various structures (Buckle and Mayes
1990).
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Figure 3. Laminated rubber bearing. (a) Scheme. (b) Dynamic model

Figure 4. Lead core laminated rubber bearing. (a) Scheme. (b) Dynamic model

The \Earthquake Engineering Reserach Center" started in 1976 a similar research project
in the University of California at Berkeley (Kelly 1980; Kelly and Beucke 1983; Kelly 1991b).
The study included the posibility of applying this thecnique to protect electric power plants
and secondary equipment in buildings (Kelly 1983a; Kelly and Tsai 1984). Presently this
center continues with the experimental study of elastomers (Koh and Kelly 1986; Tajirian
et al. 1990a; Tajirian et al. 1990b) comparing its results with numeric simulation (Kelly
and Aiken 1989).

The shifting of the fundamental frecuency of a buildings far from the predominat period
of an earthquake does not fully guarantees the protection of the structure from a possible
resonance with higher natural frecuencies. Besides, various earthquakes do not present a
predominant period, but various spectral peaks which may excite the building. Maximum
base isolation displacements must also be restrained to certain acceptable levels (Buckle
and Mayes 1990). For these reasons it is required to use elastomers with high damping
ratio, which dissipate energy at the connections. A system which considerably increases
the connection damping was developed in New Zeland (Robinson 1982). The connection,
illustrated in Figure 4(a), has a lead core.

The lead core in the reinforced neoprene pads increases the damping ratio from about
3% to 15%. The mechanical behaviour of this isolation system is equivalent to the one of a
nonlinear damper (Skinner et al. 1975). There are theoretical studies about the behaviour
of structures supported on this system, as well as shaking table tests. An example of a
building constructed with this system is the Clayton Building in Wellington, New Zeland.
The \high stability" connections, illustrated in Figure 5, have also been developed in this
country (McKay et al. 1990). The system consists of various steel plates separated by
neoprene pads placed at the corners. The horizontal sti�ness is, consequently, very low,
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maintaining the vertical stability even under large displacements (SMIRT11 1991a; Dowrick
et al. 1992).

The high seismicity in Japan has contributed notorioulsy in the development of base
isolation systems. Presently, there are more than 58 buildings constructed in that country
mainly using laminated rubber bearings with or without the lead core (SMIRT11 1991b).
High stability systems have been also studied in Japan (SMIRT11 1991c).

An older approach to base isolation is pure friction. The sismplest idealization for
such a system is illustrated in Figure 6(a). In this context the frictional horizontal forces
oppose the sliding and dissipate energy (Fan et al. 1988; Mostaghel and Tanbakuchi 1983).
Various research projects in the \National Center for Earthquake Engineering Research" in
Bu�alo, New York, have focuss in the use of teon (Mokha et al. 1988; Constantinou et

al. 1990a). The connection by itself does not have any restitutive force and therefore large
remanent displacements may occur. This problem can be solved using curved sliding plates,
as illustrated in Figure 7(a). This system, called the \Frictional Pendulum System (FPS)",
has been developed in the United Stated in the 80's. The restitutive force in this case is
achieved by the weigth of the supported building, minimizing the remanent displacement
(Mokha et al. 1990; Zayas et al. 1988; Zayas et al. 1990).

In China there is a construction technique that separates a building from its foundation
using a layer of sand. This technique arrised from �eld observations after the Tang Shan
earthquake of 1976. In particular, it was reported that masonry block buildings with a
foundation not monolitically constructed to their upper structure, responded better that
conventional structures in which the reinforcement was carried through to the foundation.
It was concluded that the improvement in response was due to horizontal sliding. This
technique is being used in China for low cost housing in seismic areas (Li 1984).

Figure 5. High stability isolation system

Figure 6. Friction isolation system. (a) Scheme. (b) Dynamic model
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Figure 7. FPS connection. (a) Scheme. (b) Dynamic model

Figure 8. EDF connection. (a) Scheme. (b) Dynamic model

An importat application of base isolation is for nuclear power plants. The protection can
be applied to the whole structure or to the nuclear reactor (Tajirian et al. 1990a; Rodwell et
al. 1990). A system for such application has been developed by the \Electricite de France"
and it is called the EDF system. The connection consists of two sliding steel plates and a
neoprene reinforced pad, as illustrated in Figure 8(a). If the structure is a�ected by a low
intensity ground motion, the response is controled by the neoprene pads. If the intensity of
the seismic ground motion is increased and sliding takes place, the force transmitted from
the foundation to the building is limited by the friction of the plates. Consequently, the
sliding plates are for security under extreme earthquakes.

A recently proposed connection is the elastic-frictional one (Mostaghel 1984; Mostaghel et
al. 1986; Mostaghel and Khodaverdian 1987). The systems is made of various teon coated
steel plates and a neoprene nucleous, as illustrated in Figure 9(a). The neoprene provides
the necesary restoring force to keep the remanent displacements under acceptable limits and
the sliding plates dissipate energy by friction (Mostaghel and Khodaverdian 1988; Mostaghel
and Kelly 1987). Other elastic-frictional support systems are described by Ikonomou (1985),
Caspe and Reinhorn (1986) and Nagashima et al. (1987).

Another isolation system uses the combined action of the elastic-frictional system and
of the EDF one. The connection is as the elastic-frictional one but there are sliding plates
joining it to the upper structure. Consequently, for low intensity actions, the system behaves
as the elastic-frictional one. As the intensity increases, the sliding of the upper plates
uncouple the structure from the ground displacements. There is no mechanism to limit
the remament sliding displacement. However, the friction coeÆcient is high and sliding is
activated only under extreme events.
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Figure 9. Elastic-frictional connection. (a) Scheme. (b) Dynamic model

A phenomenon that need to be taken into account is the vertical uplift of the supports.
This situation is caused by moments induced by lateral actions. Experimental studies are
reported by GriÆth et al. (1988a), GriÆth et al. (1988b) and GriÆth et al. (1990a). As a
result, it is not recomendable to design slender structures, altougth there are studies about
how to resist these uplift forces (GriÆth et al. 1990b).

Base isolation was originally intended for new buildings, however, its application has
been extended to rehabilitation of old ones (Kelly 1983b). Seismic upgrade of old hystoric
buildings using conventional techniques may cause a substantial modi�cation of the building,
besides its elevated cost. In the USA this technique has been employed for the retro�tting
of the Salt Lake City and County Building, the Masonic Hall both in Salt Lake City, Utah
(Kelly 1983b) and the Mackay School of Mines in Reno, Nevada (Way and Howard 1992;
Way and Howard 1990). Presently the San Francisco Court of Appeals is the largest and
heavier retro�tted building in the USA. This building was upgraded in 1995 using the FPS
system (Keowen et al. 1994; Amin and Mokha 1995).

Finally, Kwok (1984) and Skinner et al. (1993) present a large list of base isolated
buildings constructed in the world since 1982.

3 GOVERNING EQUATIONS

3.1 General Formulation

The design of base isolated structures aims to maintain the building structure in the
linear elastic range, concentrating the nonlinearities at the base. Considering the notation
presented in Figure 10, the equation of motion for such a system subjected to an earthquake
excitation a(t) is given as

MMM �DDD + CCC _DDD +KKKDDD = �MMM JJJ
h
�d
b
+ a
i

(1)

where DDD is a vector representing the story displacements relative to its base, d
b
is the

displacement of the base relative to the ground, MMM is the mass matrix, CCC is the damping
matrix, KKK the sti�ness matrix and JJJ is the vector that relates the rigid body motion to the
degrees of freedom of the model. For shear buildings, JJJ is equal to the unit vector. The
boundary conditions are

For t = 0 ! DDD = 000; _DDD = 000 (2)

The damping and sti�ness forces applied from the building to the base are obtained from
equation (1) as

JJJ
T

CCC _DDD + JJJ
T

KKKDDD = �JJJTMMM �DDD � JJJ
T

MMM JJJ
h
�d
b
+ a
i

(3)
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Figure 10. Base isolated building. (a) Scheme. (b) Dynamic model

Consequently, the equation of motion for the base is

m
b
( �d

b
+a)+JJJ

T

MMM
h
�DDD+JJJ( �d

b
+a)

i
+f=0 (4)

Here, m
b
is the mass of the base which is on top of the base isolator and f is the force

exerted from the base isolator on m
b
. The governing equation for f depends on the isolator

and the next subsections present the most commonly used ones and their corresponding
equations (Su et al. 1989; Su et al. 1990; Bozzo and Mahin 1990; Molinares and Barbat
1994).

Using mode superposition, the general solution to equation (1) is obtained as

DDD(t) =

qX
i=1

'''
i
�i(t) (5)

where '''
i
are the mode shapes and q is the number of modes included in the analysis. The

modal amplitudes �
i
are determined by

��i(t) + 2 �i !i _�i(t) + !2
i
�i(t) = �

'''
T

iMMMJJJ

'''TiMMM '''
i

[ �d
b
+ a] = Qi [ �db + a] (6)

Here, !i and �i are the natural frequencies and damping coeÆcients of the building and Qi

is de�ned as the modal participation factor. Introducing equation (5) into equation (4), the
resulting equation governing the motion of the base mass m

b
is

m
b
( �d

b
+a)+JJJ

T

MMM
h qX
i=1

'''
i
��i(t)+JJJ( �db+a)

i
+f=0 (7)

In addition, in general, the isolators require diplacement restrainers which limit excessive
displacements. From the point of view of the equations of motion, these stops add a further
condition to the treatment of the non-linearity. During the time period when the base is
stick against the stop, there is no interaction. Obviously, in a well designed isolation device,
these stops are not reached for a seismic ground motion within the design range.
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3.2 Pure-friction Base Isolator

This is the simplest base isolator and corresponds to a building supported on sliding con-
nections (Mostaghel and Tanbakucci 1983; Kelly and Beucke 1983; Constantinou and Tad-
jbakhsh 1984; Dorka 1994; Tsopelas and Constantinou 1994). A scheme of this connection
and the corresponding dynamic model are presented in Figure 6. The equation of motion for
the base |equation (7)| corresponding to a pure Coulomb constant friction base isolator
and assuming that the sliding surfaces are always in contact, is rewritten as

m
b
( �d

b
+a)+JJJ

T

MMM
h qX
i=1

'''
i
��i(t)+JJJ( �db+a)

i
+� gm

tot
sign( _d

b
)=0 (8)

Where g is the acceleration of gravity and � is the friction coeÆcient |typical values range
from �=0:1 to �=0:3| and m

tot
is the total mass above the isolator m

tot
= JJJ

T

MMMJJJ +m
b
.

Equation (8) describes the behaviour of the system in the sliding phase. If the base mass
sticks to the foundation, the non-sliding condition

_d
b
=0 (9)

holds as long as

m
tot
g � >jm

tot
a+JJJ

T

MMM

qX
i=1

'''
i
��
i
(t) j (10)

If the stick condition represented by equation (10) fails, slip takes place and equation (8)

applies. During the sliding phase, if _d
b
is zero, the stick condition has to be checked in order

to determine if the base mass remains in sliding phase or sticks to the foundation.
Equation (6) together with equations (8) or (9) forms a system of q+1 coupled di�erential

equations which determines the base displacement d
b
and the modal amplitudes �i(t). With

�i(t) known, the deection, the relative velocity and the relative acceleration at any point
of the building is evaluated using equation (5).

The friction coeÆcient � varies signi�cantly with the nature of friction surfaces, the
relative velocity, and the axial force at the connection. Previous results reported by Con-
stantinou et al. (1990a) and by Mokha et al. (1988) suggest to model the friction coeÆcient
as

� = �max � (�max � �min
) exp(�bj _d

b
j) (11)

where �max is the friction coeÆcient at high sliding velocities, �min
is the friction coeÆcient at

velocities near zero, b is a parameter controlling the friction coeÆcient variation with velocity

and _d
b
is the sliding velocity. The parameters involved in the expression are obtained for a

given axial pressure at the sliding surface. This velocity dependent model implies that the
friction coeÆcient is a monotonic increasing function of the sliding velocity. In general, the
e�ect of an increment in the axial force is to reduce the friction coeÆcient.

The e�ect on response due to variations in the friction coeÆcient during sliding may
be signi�cant, specially for limited strength structures, such as retro�tted ones (Bozzo and
Barbat 1995). Variations in ductility demand are not linearly dependent on variation in the
friction coeÆcient.

Another factor that inuence the frictional force at a connection is the vertical accelera-
tion, which may change signi�cantly during an earthquake. The frictional force is directly
proportional to the reactive weigth | m

tot
in equation (8)| which is a function of the

instantaneous vertical acceleration.
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3.3 Frictional Pendulum System (FPS System)

An scheme of this connection and the corresponding dynamic model is presented in Figure 7.
The equation of motion for the base corresponding to a building supported on ideal FPS
connections and assuming that the sliding surfaces are always in contact is

m
b
( �d

b
+a)+JJJ

T

MMM
h qX
i=1

'''
i
��i(t)+JJJ( �db+a)

i
+� gm

tot
sign( _d

b
)+k

b
d
b
=0 (12)

where k
b
is the e�ective sliding lateral sti�ness (Zayas et al. 1988; Zayas et al. 1989; Bozzo

and Mahin 1990). This additional restoring force is provided by metalic springs or by the
curvature of the sliding surface in the FPS-system. The sliding lateral sti�ness is useful
to de�ne the period of the connection T

b
. This parameter corresponds to the period of a

perfectly rigid structure sliding at the connection and it is given by T
b
= 2�

q
m

tot
=k

b
. For

the FPS system, T
b
= 2�

p
r=g, where r is the radius of curvature of the sliding surface.

The aforementioned equation (12) describes the behaviour of the system in the sliding
phase. Similarly to the pure friction system, if the base mass sticks to the foundation, the
non-sliding condition

_d
b
=0 (13)

holds as long as

m
tot
g �>jm

tot
a+k

b
d
b
+JJJ

T

MMM

qX
i=1

'''
i
��i(t) j (14)

If the stick condition represented by equation (14) fails, slip takes place and equation (12)

applies. During the sliding phase, if _d
b
is zero, the stick condition has to be checked in order

to determine if the base mass remains in sliding phase or sticks to the foundation.
Equation (6) together with equations (12) or (13) forms a system of q+1 coupled

di�erential equations for determining the base displacement d
b
and the modal amplitudes

�i(t). With �i(t) known, the deection, the relative velocity and the relative acceleration at
any point of the building is evaluated using equation (5).

The friction coeÆcient and period of the connection in this system vary between 0:05 �
� � 0:15 and 2 � T c � 3 s, respectivelly.

3.4 Laminated Rubber Bearing Isolator (LRB System)

An scheme of this connection and the corresponding dynamic model is presented in Fig-
ure 3. The equation of motion for the base of a building supported on rubber bearings
or viscodampers and excited by a horizontal earthquake ground acceleration a(t) can be
represented as

m
b
( �d

b
+a)+c

b
_d
b
+k

b
d
b
+JJJ

T

MMM
h qX

i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (15)

where c
b
is the equivalent damping and k

b
is the equivalent sti�ness of the base isolator

(Kelly 1991a). The equivalent linear system for the isolator enables a simple numeric solution
of the problem. The modal amplitudes �i(t) and the base displacement d

b
are obtained

solving the linear system of coupled di�erential equations given by equations (6) and (15).

A common rubber bearing design period is about T
b
= 2 s (where T

b
= 2�

q
m

tot
=k

b
).

The equivalent damping coeÆcient of the rubber varies considerably. For low strain, it is as
high as about �

b
= 0:3 (where �

b
= c

b
=2!

b
) but for high strain it is as low as about 0:05.

A common value used for design is �=0:1.
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An additional source of instability in rubber bearings, compared to friction base isolation
is the potential buckling of the bearings. The large horizontal displacements sustained by
the isolators may induce signi�cant secondary P�� moments. The instability is similar to
that of a conventional column but dominated by the low-shear sti�ness of the bearing (Koh
and Kelly 1986; Koh and Balendra 1989; Kelly 1993).

3.5 Resilient-Friction Base Isolation System (R-FBI System)

An scheme of this connection and the corresponding dynamic model is presented in Figure 9.
The resilient-friction base isolator uses the parallel actions of resiliency of rubber and friction
of teon coated plates. The equation of motion for the base of a building supported on R-FBI
isolators can be expressed as

m
b
( �d

b
+a)+c

b
_d
b
+k

b
d
b
+� gm

tot
sign( _d

b
)+JJJ

T

MMM
h qX
i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (16)

where c
b
is the equivalent damping and k

b
is the equivalent sti�ness of the base isolator

and � is the friction coeÆcient.
Equation (16) describes the motion of the base in the sliding phase. Initially when the

base stars from rest whenever the friction plates are sticking to each other through the
friction force, the non-sliding condition given by equation (9) holds as long as

m
tot
g �>jm

tot
a+k

b
d
b
+JJJ

T

MMM

qX
i=1

'''
i
��i(t) j (17)

If the non-sliding condition given by aforementioned equation is not satis�ed, slip takes place
and the motion is governed by equation (16). If the relative velocity becomes zero during the
sliding phase then the non-sliding condition given by equation (17) must be veri�ed. The
veri�cation indicates if the base remains in the sliding phase or sticks to the foundation.

The modal amplitudes and the base displacement are obtained solving simultaneously
equation (6) and equation (16) or (9). Common values of parameters for the R-FBI system
are: T

b
=4s and 0:03< �< 0:05 and �

b
=0:1 (Mostaghel 1984; Mostaghel and Khodaverdian

1987).

3.6 Electricite de France Isolator (EDF System)

An scheme of this connection and the corresponding dynamic model is presented in Figure 8.
The EDF system uses an elastomeric bearing and a friction plate in series. The equations of
motion of the base in the sliding phase for a building supported on EDF isolators are given
by

m
b
( �d

b
+a)+� gm

tot
sign( _d

b
� _x)+JJJ

T

MMM
h qX

i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (18)

c
b
_x+k

b
x�� g m

tot
sign( _d

b
� _x)=0 (19)

Here, k
b
and c

b
are the equivalent sti�nes and damping coeÆcient of the elastomeric pad

and � is the coeÆcient of friction. When there is no sliding in the friction plate, the EDF
base isolator behaves as a laminated rubber bearing and its motion is governed by

m
b
(�x+a)+c

b
_x+k

b
x+JJJ

T

MMM
h qX
i=1

'''
i
��i(t)+JJJ(�x+a)

i
=0 (20)

_d
b
� _x=0 (21)
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In these equations, d
b
is the displacement of the base relative to the ground and x is the

deection experienced by the neoprene pad.
Whenever the base sticks to the top of the elastomeric pad, equations (20) and (21)

govern the motion as long as the non-sliding condition

m
tot
� g> jm

tot
(a + �d

b
)+JJJ

T

MMM

qX
i=1

'''
i
��i(t)j (22)

hold. As soon as this condition fails, slip occurs and equations (18) and (19) apply. In a

sliding phase, if _d
b
= _x, the non-sliding condition given by equation (22) must be checked in

order to determine whether the sliding on the friction plate continues or the stick condition
prevails. Common practical applications values for the parameters are T

b
=1 s and �=0:2.

3.7 New Zeland Isolator (NZ System)

The NZ system is similar to the laminated rubber one but it includes a central lead core
in order to reduce base relative displacement and to provide additional energy dissipation
(Kelly 1986; Buckle 1985). An scheme of this connection and the corresponding dynamic
model is presented in Figure 4. The force-displacement relatioship for this system can be
represented using the Wen's hysteretic model (Wen 1976). Accordingly, the expression for
the restoring force f(t) in a hysteretic damper is

f(t)=�
fy

dy
d
b
(t)+(1��)fyz (t) (23)

where z is a dimensionless hysteretic component satisfying the following non-linear �rst
order di�erential equation:

dy _z = A _d
b
� �jzjn _d

b
� jzjn�1zj _d

b
j (24)

where, dy and fy are the yield displacement and force of the hysteretic damper, repectively,
and A, �,  and n are dimensionless parameters. Parameter n is an integer which controls the
smoothness of the transition from elastic to plastic response and � is the post to preyielding
sti�ness ratio. The values of fy =46kN, dy =7:7mm, �=0:157, � =�0:54, =1:4, A=1
and n=1 are suggested so that the predicted response from the model �ts the experimental
results from certain lead-core laminated rubber bearings (Constantinou and Tadjbakhsh
1984). An alternative approach for the numerical simulation of the NZ isolator is to develop
a �nite element model taking into account the rubber, steel and lead (Ali and Abdel-Gha�ar
1995).

The equation of motion of the base for a building supported on hysteretic base isolators
is

m
b
( �d

b
+a)+c

b
_d
b
+k

b
d
b
+�

fy

dy
d
b
+(1��)fyz+JJJ

T

MMM
h qX

i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (25)

where the hysteretic component z is determined from the equation (24). The damping and
sti�ness of the base isolator are c

b
and k

b
, respectivelly.

As noted before the system of equations governing the motion of the base mass as given
by equations (24) and (25) must be solved simultaneously with equation (6) governing the
time evolution of the modal amplitudes.
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3.8 Sliding Resilient-Friction Isolator (SR-F System)

The equations of motion of the SR-F base isolator is somewhat more involved due to the
presence of two di�erent friction coeÆcients. In the fully sliding phase, the equations of
motion are given as

m
b
( �d

b
+a)+� gm

tot
sign( _d

b
� _x)+JJJ

T

MMM
h qX

i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (26)

c
b
_x+k

b
x+�

1
g m

tot
sign( _x)�� gm

tot
sign( _d

b
� _x)=0 (27)

where � and �
1
are the coeÆcients of friction of the upper plate and the base isolator plates,

respectively.
Whenever there is no sliding in the upper plate, but the friction plates of the base isolator

are sliding, the equations of motion become

_d
b
� _x=0 (28)

m
b
(�x+a)+c

b
_x+k

b
x+�

1
g m

tot
sign( _x)+JJJ

T

MMM
h qX
i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (29)

In this case the behaviour of the base isolator is identical to that of the R-FBI system.
When only the upper plate slides, the base isolator behaves as a pure-friction system and
the equations of motion are given as

m
b
( �d

b
+a)+� gm

tot
sign( _d

b
)+JJJ

T

MMM
h qX

i=1

'''
i
��i(t)+JJJ( �db+a)

i
=0 (30)

_x=0 (31)

If there is no sliding, the equations of motion simply become

_d
b
= _x=0 (32)

The non-sliding condition for the upper friction plate continues as long as

m
tot
g �> jm

tot
( �d

b
+a)+ JJJ

T

MMM

qX
i=1

'''
i
��i(t) j (33)

The stick condition for the friction plates in the body of the base isolator continues as
long as the inequality

m
tot
g �

1
> jm

tot
( �d

b
+a)+ k

b
x++JJJ

T

MMM

qX
i=1

'''
i
��i(t) j (34)

is satis�ed.
The modal amplitudes �i(t) of the structure and the coeÆcients '''

i
are determined by

the equations (6) and (5), respectively. For the SR-F base isolater to work e�ectively, �
must be larger than �

1
. The values of �

1
=0:04, �=0:1, �=0:1 and a natural period of 4 s

for the SR-F base isolation system are used.
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4 LINEAR THEORY OF BASE ISOLATION

4.1 Introduction

It is clear that, in general, the precise analysis of structures supported on base isolation
systems requires a nonlinear step by step analysis. However, for certain systems, such as
the laminated rubber bearings, it is possible to linearize the nonlinear equations based on a
equivalent sti�ness and damping coeÆcients. This simpli�cation proposed by Kelly (1991a)
enables to gain insigths into the behaviour of isolated structures. For sliding isolation it
is, in general, diÆcult to linearize the equations of motion and equivalent nonlinear single
degree of freedoms systems have been proposed (Bozzo and Mahin 1990). There are also
analytical solutions for the dynamic characteristics of base isolated shear buildings supported
on laminated rubber bearings (Pan and Cui 1994). The aforementioned work gives exact
and approximate solutions for the preliminary design of non-rigid base-isolated buildings.

An important fact which will be demonstrated in this section is that the fundamental
period of rubber base isolated structures is similar to the period of the isolation devices.
The original �xed base period is shifted to a much longer one. The objective is to depart
the fundamental period far from the predominant period of earthquakes. For base isolated
structures, the participation factors for modes larger than the �rst one are negligible com-
pared to the participation of the �rst one. If for some reason the natural frecuency of the
isolation system is close to the predominat frecuency of an earthquake, the structural re-
sponse would be worse than the response of the original conventional �xed base structure.
Consequently, it is important to predict accuratelly the frecuency content for the design
earthquakes at the actual location of the building.

Even though the fundamental frecuency of a base isolated structure is well separated
from the predominant period of an earthquake, the �rst mode of vibration is still excited.
Therefore, damping in the base isolation system is necesary to limit maximum displacements.

The studies presented in this section for single degree of freedom structures supported on
laminated rubber bearing systems are based in Kelly (1991a), Skinner et al. (1992), Skinner
et al. (1993) and in Shustov (1992). The main objective is to examine the parameters
that govern the behaviour of these isolated structures gaining insigths into the structural
response through simple models.

4.2 Single Degree of Freedom Models

Figure 11 shows a single degree of freedom structure supported on neoprene pads and its
corresponding dynamic model. The massesm

b
andm

1
correspond to the the base and to the

single degree of freedom structure, respectivelly. The sti�ness k
b
and the damping coe�cient

c
b
de�ne the mechanical properties of the isolation system. The sti�ness k

1
and damping

coeÆcient c
1
de�ne the mechanical properties of the single degree of freedom structure.

The seismic motion is represented by the ground displacement d(t), velocity v(t) and
acceleration a(t) acting at the basement. The soil vibrations are propagated through the
isolators inducing displacements in the base and structure. The displacement of mass m

1

with respect to the isolator is d
1
(t). The displacement of mass m

b
with respect to the

ground is d
b
(t). D'Alembert dynamic equilibrium principle enables to write the equations

of motion for the masses m
1
and m

b

m
1

h
�d
1
(t) + �d

b
(t) + a(t)

i
+ k

1
d
1
(t) + c

1
_d
1
(t) = 0 (35)

m
b

h
�d
b
(t) + a(t)

i
+m

1

h
�d
1
(t) + �d

b
(t) + a(t)

i
+ k

b
d
b
(t) + c

b
_d
b
(t) = 0 (36)
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Figure 11. (a) Single degree of freedom structure with base isolation. (b) Dynamic model

In matrix notation, these equations are represented in the following compact form:

M �D +C _D +KD = �M J a(t) (37)

where

M =

"
m

b
+m

1
m

1

m
1

m
1

#
; C =

"
c
b

0

0 c
1

#
;

K =

"
k
b

0

0 k
1

#
; J =

"
1

0

#
; D =

"
d
b

d
1

#

The eigenvalues and eigenvectors problem asociated to equation (37) is

(K � !2M)''' = 000 (38)

where ! is the frecuency of the system and ''' is the corresponding modal shape. The
characteristic equation for this simple system can be expressed in the following explicit
polynomial form:

!4(1�)�!2

 
k
b

m
1
+m

b

+
k
1

m
1

!
+
k
1

m
1

k
b

m
1
+m

b

=0 (39)

where  = m
1
=(m

1
+m

b
). The solution of this equation gives the two natural frecuencies

of the system. De�ning the fundamental natural frecuencies of the structure !s and of the
isolation system !

b
as

!s =

s
k
1

m
1

; !
b
=

s
k
b

m
b
+m

1

(40)

allows to express equation (39) in the following form:

!4
�
1� 

�
� !2

�
!
b

2 + !s
2
�
+ !

b

2!s
2 = 0 (41)

The solution of equation (41) is

!2 =
!
b

2 + !s
2

2 (1� )

"
1�

s
1�

4 (1� ) "
(1 + ")2

#
(42)
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where the coeÆcient " = !
b

2=!s
2 has been introduced.

Since the structural sti�ness k
1
is much larger than the sti�ness of the isolation system

k
b
, equations (40) indicates that the parameter " is very small, about 1%, according to

Kelly (1991a). Consequently, considering "2 ' 0 and (1 + ")2 ' 1 (Kelly 1993), equation
(42) simpli�es to

!2 '
!
b

2 + !s
2

2 (1� )

�
1�

�
1� 2 (1� ) "

��
(43)

The corresponding eigenvalues are

!
1

2 '
!
b

2 + !s
2

2 (1� )
2 (1� ) " ' !

b

2 (1 + ") ' !
b

2 (44)

!
2

2 '
!
b

2 + !s
2

2 (1� )

 
2� 2 " (1� )

!
'

!s
2

1� 
(45)

In these equations !
1
represents the modi�ed natural frecuency of the isolation system and

!
2
represents the modi�ed fundamental frecuency of the structure. The eigenvectors '''

1

and '''
2
are obtained using the frecuencies !

1
and !

2
to solve the linear system of equations

(38). Following the notation

'''
1

T

=
�
'
1

b '
1

s
�
; '''

2

T

=
�
'
2

b '
2

s
�

where s corresponds to the structure and b corresponds to the base and using equation (38)
the following two equations are written:h

k
b
� !

1

2 (m
b
+m

1
)
i
'
1

b � !
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(46)

The eigenvector '''
1
is normalized as '

1

b = 1. Therefore

'
1

s =
k
b
� !

1

2 (m
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1
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2
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(47)

and, considering equation (44), the fundamental frecuency is aproximated to the frecuency
of the isolation device as !

1

2 ' !
b

2. According to these simpli�cations

'
1

s '
!
b

2 � !
b
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(48)

Normalizing the second mode shape as '
2

b = 1, enables to write
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k
b
� !

2
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1
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(49)

Taking into account equation (45), an approximate value for the second natural frecuency
of the system is !

2
2 ' !s

2=(1� ), which permits to write '
2

s as

'
2

s '
(1� )!

b

2 � !s
2

 !s
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=
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(50)
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Therefore, the eigenvectors have the following approximate expresions:

'''
1

T

= [ 1 �"= ] (51)

'''
2

T

= [ 1 �1= ] (52)

The vectors '''
1
and '''

2
form a complete base and they are used to uncoupled the equations

of motion (37), writting

D(t) =

�
d
b
(t)

d
1
(t)

�
= �

1
(t)'''

1
+ �

2
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2
(53)

where �
1
(t) and �

2
(t) are the unknown time functions. Taking into account the components

x
b
(t) and x

1
(t) individually and considering equations (51) and (52), it is obtained

x
b
(t) = �
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(t)�
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(55)

Substituting equation (53) into equation (37) and considering the orthogonality proper-
ties of the modal matrix ��� = ['''

1
'''
2
] with respect to the massM , sti�ness K and damping

matrix C, it is obtained
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where the following notations are used:
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i
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i
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MJ
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i
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where �
1
and �

2
are the damping ratios corresponding to the two modes.

Equations (44) and (51), and the aforementioned de�nitions for M and C, enable to
write the following equations:

'''
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T
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1
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b
+
c
1
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2
(59)
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Using equation (58) and neglecting the "2 terms, the damping ratio �
1
is

�
1
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c
b
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Applying Taylor'series to the former equation the coeÆcient �
1
simpli�es to
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De�ning
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as damping ratio for the isolators and using again !
1
' !

b
, it is concluded that �

1
' �

b
.

The de�nitions forM and J along with expresion (51) for '''
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T

allow to evaluate '''
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From result (60) and equation (64), the de�nition (58) for the coeÆcient Q
1
is written as
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The terms '''
2

T

C'''
2
and '''

2

T

M'''
2
are rewritten using equations (45) and (52), as well as

the de�nitions for C andM
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The second equation (58) enables to express �
2
as
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Considering the approximate value for !
2

2 given by equation (45), it is obtained
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The de�nition for the damping ratio �s for the structure

�s =
c
1

2!sm1

(70)

is introduced, and equation (69) is rewritten as (Kelly 1993)
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This results shows that the structural damping is increased by the isolator damping afected
by a factor 

p
". The product �

b

p
" may contribute signi�cantly to the term �s . Conse-

quently, a high damping coeÆcient for the isolators contributes signi�cantly to reduce the
response in the second mode of vibration. This fact is positive because a signi�cant response
in the second mode would considerably reduce the advantages of seismic isolation.
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it is obtained using the expressions '''
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where, in this case, expression (50) has been used to write '''
2
. Equation (72) is expanded

to
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MJ = (m
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1
)(1� )" (74)

Neglecting " terms, equation (73) is simpli�ed as
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The expresion for the mode participation factor Q
2
is obtained substituting equations (74)

and (75) in equation (58)

Q
2
' " (76)

The results enable to make some general observations about the behaviour of base isolated
structures. If the fundamental frecuency of an earthquake is close to the natural �x base
frecuency of a building, the base isolation system should have a frecuency far from them.
A protected single degree of freedom structure has two natural frecuencies !

1
and !

2
while

the similar but unprotected structure has one frecuency !s . Equation (44) shows that the
frecuency !

1
is similar to !

b
. In order to avoid resonance between the �rst mode frecuency

and the predominant frecuency of an earthquake, it is convenient that !
1
be smaller than !s .

Furthermore as equations (51) show, the displacements in the �rst mode are concentrated
at the isolation raft, while the structural interstory drift is very small, the system behaving
almost as a rigid body (Bozzo and Mahin 1990; Kircher and Lashkari 1989).

The second natural frecuency, !
2
, is larger than !s , and may be enough in order to avoid

resonance in the second mode. Equation (52) indicates the potential danger of a building
vibrating in the second mode since interstory drifts are increased compared to the �rst
mode. However, equation (76) shows that the participation factor for the second mode is
small and close to " which is about 0.01. The coeÆcient  is always smaller than one and
therefore it reduces even further the participation factor. As a result, the acceleration a(t)
is considerably reduced in equation (57). Consequently, even for a second mode resonance
condition, the response �

2
(t) would be small. A general conclusion applicable to rubber

isolation systems is that the response is minimized not by energy dissipation but by changing
the dynamics of the original system.

There are, however, earthquakes whose predominant frecuency may be low and close to
the frecuency !

1
. Such isolated systems respond worse than non isolated buildings. In this

case the response is limited by the damping �
b
which for rubber systems varies between 5%

and 30% of the critical one (Derham 1986; Tajirian and Kelly 1987). A commonly used
value is 10%.

It is clear from previous considerations the necesity of proper seismological studies in
order to determine the range of predominant earthquake periods expected at a given location.
A sound base isolation design depends greatly on such studies.

Table 1 summarizes the order of magnitude on the response for isolated structures
subjected to the armonic motion a(t) = dmaxsin(�t). The ampli�cation coeÆcients As

and A
b
are de�ned as

As =
jd

1
(t)jmax

dmax

(77)
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A
b
=
jd

b
(t)jmax

dmax

(78)

where dmax is the maximum ground displacement. The ampli�cation coeÆcient A corre-
sponds to a linear elastic unprotected single degree of freedom structure with a similar
fundamental period. The excitation frecuency is �.

The two cases in which the order of magnitude for the ampli�cation factor is 1=" con�rm
the aforementioned danger of an excitation frecuency close to the frecuency of the isolation
devices. Some authors (Lin et al. 1989) attribute the efectiveness of base isolation to its
energy dissipation capacities, not relying on its period shift. In general, sliding isolation
devices reduce dynamic forces though energy dissipation and not by their period shift
(Zayas et al. 1989). Certainly, for rubber base isolation, if the excitation frecuency is
close to the fundamental one of the isolated building, the maximum response is limited by
the isolator damping. The proximity of both frecuencies may be caused by uncertainties
in the de�nition of the input motion. Besides an earthquake is composed by di�erent
frecuencies which vary along the wave propagation. There are some strong earthquake
records measured at close epicentral distances, such as the Pacoima Dam one during the
San Fernando Earthquake in 1971, that indicate clearly the presence of long pulses atributed
to the epicentral proximity. Those long pulses may also contribute negatively to the response
of isolated buildings concentrating large displacements at the base raft.

� A As A
b

!
1

" 1 1="

!
2

1 1 1
!s 1=" " 1

Table 1. Order of magnitude for the structural response

From Table 1, the most favorable situation corresponds to an armonic motion close to the
building frecuency !s. In this case, the ampli�cation factor As for a rubber isolated building
is " which is a much lower factor than the corresponding one for a �x base structure 1=".
The ampli�cation factor for the base is A

b
which in this case has an order of magnitude 1.

Furthermore, the ampli�cation factors A
b
and As corresponding to the second mode also

have an order of magnitude 1.
It is diÆcult to perform a comparative study about the reponse of isolated structures,

since there is not a unique criteria for such evaluation. For example, Hadjian and Tseng
(1986) suggest eleven di�erent considerations. The most accepted ones are to limit the
maximum base displacements, to limit the maximum roof accelerations and to limit the
maximum roof drift. The maximum base displacement is important since it governs the
design of the service lines such as pipes and wires connecting the ground and the building.
If the maximum base displacement exceeds the design value the whole advantages of isolation
are missed. An eventual impact between the isolation base and the surrounding foundation
may cause high frecuencies and dynamic ampli�cations. Furthermore, some of the few
buildings dynamically isolated and already subjected to strong earthquakes have experience
such problems. The roof acceleration is an important parameter which governs the damage
to the building equipment. The roof drift is a measure of the nonstructural damage that
may be caused by an earthquake.
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4.3 Multy Degree of Freedom Structures

The extension of the linear base isolation theory presented in section (4.2) has been de-
veloped by Kelly (1993). The analytical model is similar to the one for a single degree of
freedom structure. In matrix notation, the equation of motion in this case is

M �D +C _D +KD = �M J a(t) (79)

where
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Ks is the structural lateral sti�ness matrix, Cs is the structural damping matrix, mT
is the

total structural mass m
T
=
P

N

i=1mi and mi is the story mass.

The eigenvalues and eigenvectors problem asociated to equation (79) is

(K � !
2

M)''' = 000 (80)

assuming that '''
i
CCC'''

j
= 0, if i 6= j.

The mode shapes and natural frecuencies can be obtained directly from these equations
using any standard procedure. Kelly (1993) indicates, however, that such alternative may
conduce to numerical errors caused by a bad conditioned matrix since the diagonal element
is two orders of magnitude smaller than the others. Therefore, he proposes an iterative
procedure based on the �x base eigenvalues and eigenvectors. Numerical results indicate
that the high frecuencies are not a�ected by the isolators and they are close to the original
�x base ones. Clearly, the low frecuencies are strongly shifted by the isolators.

5 NONLINEAR THEORY OF BASE ISOLATION

5.1 Introduction

A numerical simulation of the seismic response of structures equipped with base isolators
requires eÆcient algorithms capable of performing nonlinear step by step analyses (Nagara-
jaiah et al. 1991). Di�erent numerical schemes for solving the equations of motion have been
proposed. The most often used numerical procedures are monolithic step-by-step integration
schemes. These schemes lead to algebraic systems of equations involving both the degrees
of freedom corresponding to the structure and the foundation. This approach, however, is
not eÆcient since it does not take into account that the nonlinearities introduced by the
isolators are localized just at certain prede�ned locations. Therefore, static condensation
schemes have been proposed, in order to reduce the size of the nonlinear problem (Leger
et al. 1986). Besides static condensation, there is the possibility of coupling the two sets
of unknowns interatively, rather than by solving the full algebraic system. These iterative
methods, when combined with the proper linearization of the nonlinear terms, yield block
iterative schemes (Barbat et al. 1996). The application of static condensation and of itera-
tive schemes in computing the seismic response of building structures with base isolation is
considered, being this a problem of two systems coupled across their boundary conditions.
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5.2 Monolithic Step-by-step Integration Schemes

Consider the equation of motion

M �D +C _D + f(D) = F (81)

which is similar to equation (79) but the vector f(D) represents the nonlinear forces.
The monolithic step-by-step integration schemes solve the equivalent nonlinear static

problem at each step, considering the complete system. These procedures do not partition
the degrees of freedom into those corresponding to the linear and nonlinear regions. At
each step, the solution is obtained using a tangent sti�ness matrix or using a pseudo-force
approach. The evaluation and decomposition of the tangent sti�ness matrix at each time
step is a costly procedure and consequently this approach is not convenient (Leger et al.

1986). An alternative is to evaluate equivalent pseudo static forces at each time step. The
equation of motion becomes

M �D +C _D +KoD = F � F
N

(82)

where the vector f(D) is linearized in the following form:

f(D) =KoD + F
N

The sti�ness matrix Ko is thus linear and the pseudo load vector F
N
is displacement-

dependent. The matrix Ko can be the initial tangent sti�ness.
The main advantage of this alternative is that the original sti�ness matrix is decomposed

once at the begining of the time integration process. At each step the nonlinear problem
is restricted to the evaluation of the pseudo forces. If these forces are limited to a small
number of components, the approach is eÆcient since the computations are at the element
level.

5.3 Static Condensation Schemes

The monolithic integration schemes presented previously do not take into consideration that
base isolation devices are located just at certain prede�ned locations. Besides, the number
of degrees of freedom asociated to the isolators is ussually very small compared to the total
number of degrees of freedom. A more rational approach based on substructuring techniques
has been proposed by Leger et al. (1986). This approach was initially used for the dynamic
analysis of structures having localized nonlinearities. One alternative is to partition the
equations of motion as

M =

"
M

11
M

12

M
21

M
22

#
; C =

"
C

11
C

12

C
21

C
22

#
; K =

"
K

11
K

12

K
21

K
22

#
(83)

and de�ne the following transformation matrix:
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000 I
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; � = TD (84)

where �
11

is the �x base modal matrix corresponding to the �rst q modes of vibration with

dimensions (n � q) for the nonisolated structure. The degrees of freedom 1 and 2 corre-
spond to the linear and nonlinear regions, respectively. Using this transformation matrix
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the equation of motion is modi�ed to

M
*�� +C * _� +K *

N
� = F * (85)

where
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The transformation uncouples the equations of motion and the mass, damping and sti�ness
matrix are written as follows:
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The vector basis �
11

for the transformation can be the standard mode shapes or the Ritz

vectors presented in reference (Leger et al. 1986). The advantage is that the vector basis
needs to include just a few modes. Using mode shapes or Ritz vectors the advantage of this
approach is to reduce considerably the size of the problem. The eigenvectors or the Ritz
vectors are calculated once at the begining of the integration. At each step the nonlinear
problem is limited by the degrees of freedom for the isolator devices.

Usually, in rubber base isolation there is an additional story above the isolators. This
story is rigid on its own plane and, consequently, the number of degrees of freedom to fully
represent the nonlinear problem is just 3. For sliding base isolation, this is not necessarily
the case and the aforementioned San Francisco Court of Appealings is being retroÆted
using a single isolator below each column without a rigid oor. Consequently, the number
of degrees of freedom, in this case, is in general, 6� nc where nc is the number of isolators.
This number is still small compared to the total number of degrees of freedom.

5.4 Block Iterative Schemes

A monolithic algorithm requires a certain discretization procedure for the equations of
motion and solves them in a single iterative loop that considers their linearization and
coupling (Su et al. 1989). The structure-base system is diÆcult to analyse and any
numerical procedure requires the use of very small time increments. They all have the
disadvantage of requiring a large number of iterations, as their convergence process is very
slow. An alternative is the block iteration which reduces the number of iterations and
improve convergence (Codina 1992). An eÆciency study is made in Barbat et al. (1996), by
comparing the block iteration scheme to the monolithic scheme, which treats non-linearity
as an iterative actualization of the isolation force f .
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The Newmark discretization for the velocity and the acceleration for a nonlinear system
is (Barbat and Canet 1994)
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In equations (89){(90), the subscript k refers to the time step considered.

General theory

The equations that describe a generic coupled problem may be reduced by the application
of a discretization procedure to a non-linear algebraic system with the form (Codina 1992)
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where xxx and yyy are the vectors to be determined, qqq
1
and qqq

2
are the force vectors and
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where AAA
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is a linearized form of AAA
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. Starting from equation (91) the following monolithic

form can be obtained "
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Using equation (93) the coupling equations for block iteration can be written using block{
Jacobi:
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This represents a �rst approach for implementing the block iteration procedure. Equation

(94) is solved �rst to give a value for xxx
(i)

, and this is then used to solve equation (95) to

give the vector yyy
(i)

.

Case of the uncoupled structure

The uncoupled equations of motion for the structure and the isolator (6) and (7) may be
expressed in the following compact form
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where ��� is the modal matrix corresponding to the �rst q modes of vibration with dimensions
(n�q), ��� is the diagonal matrix of damping ratios and 


 is the diagonal matrix of frequency.

The terms ��k and _�k in equation (96) and �d
bk

in equation (97) can be expresed in function

of the displacements �k and d
bk

by applying, for example, the Newmark discretization

presented in equations (89) and (90). The following problem, with the same characteristics
as that described by the system of equations (93), is thus produced:
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where Q is a vector containing the modal participation factors and ���
k
, _���

k
and ����

k
are

vectors containing know displacements, velocities and accelerations, respectivelly, at the
time interval k. For example, for friction isolation, the nonlinear force f is given in equation
(8), with cb = 0; kb = 0 in equation (98b).

EÆciency of the procedure

The eÆciency and convergence of the numerical block iteration schemes, applied to the
problem of base isolated buildings has been studied by Barbat et al. (1996). A comparison is
made between the monolithic Newmark method and the iterative block scheme for the case
that considers the modal uncoupling of the system of equations of the structure (including
the 10 modes of vibration) and it is shown in Figure 12 for a hysteretic base isolation
system. The seismic excitation a(t) has been de�ned in this case as a sinusoidal acceleration

a(t) = A sin �t with an amplitude A of 3:5m/s
2

and a frequency � of 10 rad/s. The process of
iterative blocks has a lower number of iterations throughout the calculation of the response
of the system than the monolithic one.

Figure 13 shows the same comparison between the monolithic solution method and the
iterative block for a frictional base isolation system. The results of Figure 13 correspond to
the case of using prior modal uncoupling. Comparison of Figures 13 and 12 shows that the
average number of iterations is similar for both types of bearings. Nevertheless, there is a
greater variation in the number of iterations between calculation steps in the frictional case.

Figure 14 compares the variation of the residual norm for numerical simulations using
iterative block schemes and monolithic solutions. This comparison is made at the step in
which the maximum number of iteration occurres and considering frictional isolators. A
tolerance of 1% in residual forces has been considered in the evaluation of the convergence
of the iterative process.
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Figure 12. Total number of iterations in each step, structure with modal uncoupling (New-
mark method), hysteretic NZ base isolation system

Figure 13. Total number of iterations in each step, structure with modal uncoupling (New-
mark method), frictional case base isolation system

6 SEISMIC RESPONSE COMPUTATIONS

6.1 Single Degree of Freedom, Elastic and Inelastic Building Response

The aforementioned linear theory of base isolation indicates that, in general, base isolated
buildings behave as rigid body systems concentrating the maximum displacements at the
isolators. Consequently, single degree of freedom approximations are usefull to simulate their
response, at least for preliminary design and for the purpose of comparing the performance
of di�erent isolation systems. For example, Figure 15 illustrates the maximum relative
structural displacement for a single degree of freedom building subjected to El Centro
ground motion, reported by Barbat et al. (1993) and Molinares and Barbat (1994). The
�gure presents the response for various isolation systems and for a conventional �x-base
(FB) structure. The period in the �gure corresponds to the �x-base structural one.

A �rst observation is that the relative structural displacements for a building equiped with
any of the isolation sistems are considerably smaller than the corresponding displacements
for a convetional �x-base structure and for the whole range of periods. The largest relative
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Figure 14. Variation of the residual norm, structure with frictional isolation (Newmark
method)

Figure 15. Maximum relative structural displacement

displacements among the isolated structures correspond to the friction and EDF systems.
The smallest relative displacements correspond to the NZ system. The response for the
buildings protected with R-FBI and SR-F systems is the same for the whole range of periods
and it is represented by the same line in Figure 15. The similarity in response is because
the El Centro ground motion does not induce the sliding of the upper steel plate from the
SR-F system.

Figure 16 presents the maximum absolute structural acceleration for a single degree of
freedom system supported on various isolation devices. The period in the �gure corresponds
to the �x-base structural one. The �gure indicates that the acceleration is rather constant for
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the whole range of periods considered and it is considerably smaller than the corresponding
�x-base (FB) aceleration. The structure with the friction device has the largest acelerations
and the building with the NZ device has the smallest ones. The response for buildings
equipped with NZ and LRB isolators is very similar, as it is the case of the EDF and
R FBI/SR F systems.

Figure 16. Maximum absolute aceleration

Figure 17 presents the maximum base displacement for isolated single degree of freedom
structures supported on various isolation systems. The period in the �gure corresponds to
the �x-base case. The displacements present a rather jagged variation, altough in an average
sense they may be considerated as constant for the whole range of structural periods. The
smallest displacements correpond to the friction devices and the largest ones correspond to
the LRB devices. The displacements for the NZ, EDF and R FBI/SR F systems are rather
similar. Nevertheless, the base displacements are, in general, larger than the structural
displacements presented in Figure 15, fact which con�rm the rigid body assumption.

Usually the design criteria for a new base isolated building seeks to maintain the structure
in the linear elastic range. The response of old weak buildings or the response of new
buildings subjected to extreme earthquakes may not be, necesarily, in the aforementioned
ideal elastic range. Therefore, a recent study investigate the relationships between the
variation in friction coeÆcient and the response of sliding base isolated structures, in
particular for low strength buildings, whose response may be in the nonlinear range (Bozzo
and Barbat 1995). In the inelastic range, the inuence of the sliding velocity on the friction
coeÆcient may modify notoriously the behaviour of these weak structures and some results
for such structures supported on sliding connections are given. The model incorporates
variations in the friction coeÆcient caused by changes in the sliding velocity.

Using the rate dependent model, Bozzo and Barbat (1995) perform a simulation using
a two degree of freedom model such as the one illustrated in Figure 11. Two cases were
considered, one corresponds to an elastic structure and the other corresponds to an elasto-
plastic structure. The assumed strength in the latest case is 10% greater than the strength
required to start the sliding. This case corresponds to a weak structure supported on sliding
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Figure 17. Maximum base displacement

Figure 18. Time history response for elastic structures subjected to the NS component
of the El Centro 1940 earthquake, � = 5%. Elastic structural response. (a)
Force-displacement isolator response (constant friction). (b) Force-displacement
isolator response (variable friction). (c) Force-displacement structural response
(constant friction). (d) Force-displacement structural response (variable friction)

connections, such as a building being retro�tted. The connection period in both cases is 3 s.
The constant friction coeÆcient selected corresponds to the minimum velocity-dependent
value and the earthquake ground motion is the NS component of the El Centro 1940 record.

Figures 18 and 19 show the response for the linear elastic structure and the elasto-plastic
structure, respectively. Each �gure presents comparisons between the constant friction
model and the velocity dependent model. Figure 18(a)-(d) indicates that the shear forces
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are not signi�cantly varied between the constant and rate dependent models. For example,
Figures 18(c) and 18(d) show that the maximum shear force in the structure for a constant
friction model is very close to the similar value for the rate dependent model. Figure 18(b)
shows that, in general, for long sliding displacements, the force decreases as compared to
the constant friction model. This seems to be explained, since long sliding diplacements
are asociated to higher velocities compared to small sliding displacements, and the velocity
dependent model gives lower friction coeÆcients for larger velocities.

Figure 19 presents the response for the elasto-plastic systems. In this case there is
a signi�cant di�erence in response between the constant and velocity dependent friction
models. For example, Figures 19(c) and 19(d) show that the maximum structure interstory
drift for the constant friction model is increased three times as compared to the rate
dependent model. Consequently, the structural ductility demand using the rate dependent
model is three times the ductility demand using the minimum friction model. This can be
explained since as the friction coeÆcient is increased, the sliding displacement is reduced.
Taking into account that sliding base isolation reduces forces through energy dissipation, as
the sliding displacement is reduced, larger ductility requirements in the structure should be
expected.

Figure 20 presents response spectra generated for periods ranging between 0.1 and 1.0s.
Figure 20(a) illustrates a shear forces spectrum and Figure 20(b) illustrates a ductility
demand spectrum. The period of the sliding connection is 3 s and the typical El Centro
NS 1940 record, corresponding to sti� local soil conditions, is considered. Figure 20(a)
indicates that the shear forces for elastic structures are always increased using the rate
dependent model compared to the minimum friction coeÆcient model. This increment is
expected because the friction coeÆcient for the constant model is generally smaller than the
friction coeÆcient for the rate dependent model. Nevertheless, the shear forces are always
considerably smaller compared to those obtained in a linear structure and the di�erence
between the friction models is not signi�cant.

Figure 19. Time history response for inelastic structures subjected to the NS component
of the El Centro 1940 earthquake, � = 5%. (a) Force-displacement isolator
response (constant friction). (b) Force-displacement isolator response (variable
friction). (c) Force-displacement structural response (constant friction). (d)
Force-displacement structural response (variable friction)
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Figure 20. Response spectrums for structures subjected to the NS component of the El Cen-
tro 1940 earthquake, � = 5%. (a) Base shear (elastic structures). (b) Structural
ductility demands ( inelastic structures)

For elasto-plastic structures, Figure 20(b) illustrates that the friction model is an impor-
tant parameter regarding the ductility demands. For example, the ductility demand for a
structure with a period equal to 0:6 s is increased more than two times, weather the model is
based on a minimum friction or a rate dependent model. Furthermore, the bene�ts of sliding
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isolation in reducing ductility demands with respect to nonisolated structures is, in general,
considerably reduced for elasto-plastic structures. Figure 17(b) shows that a nonisolated
inelastic structure, with a fundamental period larger than about 0:8 s has similar ductility
demands than isolated structures modeled using the rate dependent model.

Apparently, the variation in the friction coeÆcient is important for weak elasto-plastic
structures because the mass and damping forces are small at the connection level. By
dynamic equilibrium, the equality between the shear force at the connection and at the
columns is required. However, for these limited strength systems, the restoring force capacity
is bounded by Ry and consequently the connection force and the sliding displacements are
limited by Ry. In other terms, if the isolated structure enters the inelastic range, the system
tends to stop the sliding, consequently increasing the ductility requirements and structural
drifts for the isolated building. This observation is conservative, since there is generally at
least some deformation hardening in the columns.

6.2 Multy Degree of Freedom Buildings

Numerical simulations for multy degree of freedom buildings are performed in various studies
(Way and Jeng 1988; Kircher and Lashkari 1989; Gadala 1991; Molinares and Barbat 1994).
For example in Molinares and Barbat (1994) a shear building with ten stories and one degree
of freedom in a horizontal direction is considered. The mass of each of the ten storeys, as well
as that of the base, is the same. The structural sti�ness of the columns diminishes with the
story. The top story sti�ness is half the sti�ness of the base columns. The damping ratios
have been �xed at 0:05 for all vibration modes. The earthquake ground motion corresponds
to El Centro NS 1940 record. Figure 21 illustrates the isolator displacement for the ten
story building. The �gure compares the numerical response for an isolator using the Wen
(1976) model, an elasto-plastic model and an equivalent linear model. The time histories
between the models are quite di�erent, although their maximum values are close. Figure 22
presents a similar comparison but for the structure relative top displacement.

Figure 21. Isolator time history displacement response
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Figure 22. Relative top time history structural displacement

Figure 23. Maximum relative oor displacement

Figure 23 illustrates the story relative displacement for a building using the NZ system
and the NZ system and friction added in series (NZ + F SER) and in parallel (NZ +
F PAR), both illustrated in Figure 24. The displacements correspond to the oor structural
drift expresed as a percentage of the story height. The �gure indicates that the structural
drift does not change signi�cantly with the story for the di�erent isolators considered. The
drift for the protected structures is much smaller than the corresponding one for the �x-base
structure. The smallest structural drifts correspond to the building using the NZ system
plus friction in parrallel. The largest structural drifts correspond to the building using the
NZ system. The average result corresponds to a building protected using the NZ system
with friction added in series.
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Figure 24. (a) (NZ + F SER) and (b) (NZ + F PAR)

Figure 25. Absolute oor aceleration

Figure 25 presents the absolute story aceleration for a building using the NZ system and
the NZ system with friction added in series (NZ + F SER) and in parallel (NZ + F PAR).
The aceleration is nearly constant with height and its relative values is similar for the various
isolators considered. The �x-base aceleration is considerably larger that the corresponding
one for the isolated buildings.

7 CONCLUSIONS

The paper presents an extensive overview of numerical simulation techniques proposed for
the dynamic analysis of base isolated buildings. Analytical expresions for the nonlinear
restitutive forces corresponding to various isolation systems, are given. Monolithic inte-
gration of the equations of motion, static condensation and block iterative techniques are
discussed for the numerical analysis of these structures. The numerical experiments show
that convergence improves when block iterative methods are used. For the block iterative
scheme, the resulting algorithm has a linear convergence rate, with a slope steeper than
using the monolithic one. Static condensation techniques are also usefull for the analysis of
these structures, since the nonlinearities are usually concentrated at the base.

In general, the seismic response of buildings using any of the existing base isolation
systems is considerably improved compared to a conventional �x base design. For frictional
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base isolation systems, a constant mimimum friction coeÆcient model generally provided an
upper bound to total sliding displacements and a lower bound to structural drifts, compared
to a rated dependent friction model. For inelastic structural response, the constant friction
model provided a lower, unconservative, bound for the ductility demands. The di�erence is
considerably more important for weak structures |such as retro�tted ones| compared to
ideally elastic models. Consequently, it is fundamental to consider a realistic friction model,
particularly for weak structures, whose response may be in the inelastic range. Variations
in ductility demands due to changes in friction coeÆcient are not linearly dependent.

Finally, the paper includes an extense set of references, covering specially the last ten
years. The passive control of buildings includes base isolation and energy dissipation devices,
but this work deals only with base isolation. Energy dissipation devices have received much
attention in the recent years and there are many experimental as well as some analytical
studies, about their dynamic response. It is expected that in the future this technique will
be use more frecuently.
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