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Abstract. Most epidemiological models are rooted in the pioneering work proposed by Ker-
mack and McKendrick and are based on systems of deterministic ODEs, which describe the
temporal evolution of the spread of an infectious disease assuming population and territorial
homogeneity. Generally, the concept of the average behavior of a population is sufficient to have
a first reliable description of an epidemic development, but the inclusion of the spatial compo-
nent becomes crucial when it is necessary to consider spatially heterogeneous interventions, as
in the case of the COVID-19 pandemic. Moreover, any realistic data-driven model must take
into account the large uncertainty in the values reported by official sources such as the amount
of infectious individuals. In this work, drawing inspiration from kinetic theory, recent advances
on the development of stochastic multiscale kinetic transport models for the spread of epidemics
under uncertain data are presented. The propagation of the infectious disease is described by
the spatial movement and interactions of individuals divided into commuters moving in the ter-
ritory on a wide scale and non-commuters acting only on urban scales. The resulting models
are solved numerically through a suitable stochastic Asymptotic-Preserving IMEX Runge-Kutta
Finite Volume Collocation Method, which ensures a consistent treatment of the system of equa-
tions, without loss of accuracy when entering in the stiff, diffusive regime. Application studies
concerning the spread of the COVID-19 pandemic in Italy assess the validity of the proposed
methodology.

1 INTRODUCTION

The advent of the COVID-19 pandemic has prompted many researchers in the mathematical
field and beyond to propose epidemic models increasingly suitable for the study of the evolution
of this specific coronavirus, to support the definition of the best strategies for the control of
its spread. Most of the proposed models are rooted in the Susceptible–Infected–Removed (SIR)
compartmental epidemiological modeling proposed by Kermack and McKendrick [21, 14]. In this
deterministic model, which is still widely used, the population is divided into susceptible (S),
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who may contract the disease, infected (I), who have already contracted it and may transmit it,
and recovered (R), who are either healed (and immune) or deceased. The infectious dynamics
is described by a system of ordinary differential equations (ODEs) for the percentages S(t),
I(t), R(t) of the population in the three compartments, measured at time t > 0, which consider
only the temporal evolution of the spread of the epidemic, neglecting the spatial component
in favor of an assumption of homogeneity of population and territory [19]. From the classical
SIR model, more elaborate models have been introduced to represent the population more
realistically, dividing it into further compartments suitable to describe specific characteristic
of the infectious disease of interest. Examples of enriched compartmentalizations proposed to
study the evolution of the COVID-19 pandemic can be found in [13, 18, 25].

However, such modeling is compromised by some major limitations [1]. On one hand, even
though the concept of the average behavior of a population is generally sufficient to have a first
reliable description of the development of an epidemic, the homogeneous “mixing” hypothesis
does not permit to take into account essential aspects related to the infectious spread, such as
the variety of intensity and nature of human contacts based on the age structure of the society
[2, 15], the different viral load carried by individuals [16, 23] and the spatial movement of people
[4, 11, 17, 29]. Particularly with regard to the latter, the inclusion of the spatial component in
epidemiological systems becomes crucial when it is necessary to consider spatially heterogeneous
interventions, as was especially needed at the beginning of the COVID-19 pandemic.

On the other hand, the adoption of deterministic models, although more computationally
efficient, assumes that initial conditions, boundary conditions and all the parameters involved
in the dynamics are known. However, in practical applications, and especially when concerning
social sciences, this assumption does not hold true. In the context of epidemic modeling, indeed,
initial conditions are certainly affected by uncertainty because data are limited, and screening
policy is always a matter of compromises [3, 26].

2 MULTISCALE HYPERBOLIC MODELS OF EPIDEMIC DYNAMICS

In this work, mainly two of the above discussed aspects are addressed through stochas-
tic multiscale kinetic transport models for studying the spread of infectious diseases. These
models describe the spatial movement and interactions of a population partitioned (from an epi-
demiological point of view) on the basis of a chosen compartmental structure and divided into
non-commuters, acting only over an urban scale, and commuters moving also on an extra-urban
scale, through an appropriate system of partial differential equations (PDEs).

Let us consider initially, for simplicity, the SIR compartmental partitioning [19]. We assume
to have a population with individuals having no prior immunity and we neglect the vital dynam-
ics represented by births and deaths because of the time scale considered. To account for the
spatial movement of the population, individuals of each compartment are subdivided in three
subgroups, S±,0, I±,0, R±,0, traveling in a 1D bounded space domain Ω ⊆ R with characteristic
speeds +λi,−λi and 0 respectively, with i ∈ {S, I,R}. Therefore, we consider a stationary part
of the population, of non-commuters, characterized by a null characteristic speed. The total
compartmental densities are defined as the sum of all the components of the subgroups

S = S+ + S− + S0, I = I+ + I− + I0, R = R+ +R− +R0 . (1)

Moreover, we introduce the random vector z = (z1, . . . , zdz)T ∈ Rd whose components are
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assumed to be independent real valued random variables zk, k = 1, . . . , dz which characterize
possible sources of uncertainty, assuming to know the probability density p(z) : Rdz → Rdz

+

characterizing the distribution of z.
Finding inspiration from the kinetic theory and considering a stochastic framework in which

all the epidemic densities depend on (z, x, t), with x ∈ Ω and t > 0, we can define the discrete-
velocity system of the SIR epidemic transport model of commuting individuals associated to
relaxation times τi, as

∂S±
∂t
± λS

∂S±
∂x

= − βIS±I

1 + κII
+

1

2τS
(S∓ − S±) ,

∂I±
∂t
± λI

∂I±
∂x

=
βIS±I

1 + κII
− γII± +

1

2τI
(I∓ − I±) ,

∂R±
∂t
± λR

∂R±
∂x

= γII± +
1

2τR
(R∓ −R±) .

(2)

Here, the parameter γI(z, x, t) is the recovery rate of infected (inverse of the infectious period).
In the incidence function, βI(z, x, t) is the transmission rate, which may vary based on the
effects of government control actions, such as mandatory wearing of masks, shutdown of specific
work/school activities, or full lockdowns [2, 18], while the parameter κI(z, x, t) ≥ 0 acts as
incidence damping coefficient based on the self-protective behavior of the individuals that arises
from awareness of the risk associated with the epidemic [9, 14].

System (2) is coupled with an ODE SIR model, which describes the evolution of the stationary
population of non-commuters:

dS0
dt

= − βIS0I

1 + κII
,

dI0
dt

=
βIS0I

1 + κII
− γII0 ,

dR0

dt
= γII0 . (3)

Let us finally observe that, under no inflow/outflow boundary conditions, summing up the
equations in (2)-(3) and integrating in the space Ω yields the conservation of the total population,
S + I +R = N . For the definition of the reproduction number related to this model, the reader
can refer to [9].

2.1 Macroscopic formulation and diffusion limit

If we now introduce the macroscopic variables Sc, Ic, Rc for the commuters, with Sc = S++S−,
Ic = I+ + I−, Rc = R+ + R−, and define the fluxes JS = λS(S+ − S−), JI = λI(I+ − I−),
JR = λR(R+ − R−) a hyperbolic model underlying the macroscopic formulation of the spatial
propagation of an epidemic at finite speeds, equivalent to the kinetic one presented in system
(2), but composed of three equations for the densities,

∂Sc
∂t

+
∂JS
∂x

= − βIScI

1 + κII
,

∂Ic
∂t

+
∂JI
∂x

=
βIScI

1 + κII
− γIIc ,

∂Rc

∂t
+
∂JR
∂x

= γIIc ,

(4)
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and three equations for the the fluxes,

∂JS
∂t

+ λ2S
∂Sc
∂x

= − βIJSI

1 + κII
− 1

τS
JS ,

∂JI
∂t

+ λ2I
∂Ic
∂x

=
λI
λS

βIJSI

1 + κII
− γIJI −

1

τI
JI ,

∂JR
∂t

+ λ2R
∂Rc

∂x
=
λR
λI
γIJI −

1

τR
JR ,

(5)

is obtained [9]. Note that the above system is coupled with the equations for the non-commuting
population (3) through identities (1).

From a formal viewpoint, it can be shown that the proposed model recovers the parabolic
behavior expected from standard space-dependent epidemic models in the diffusion limit [9]. In
fact, introducing the diffusion coefficients Di = λ2i τi, i ∈ {S, I,R} that characterize the diffusive
transport mechanism of S, I,R and letting τi → 0 while keeping the diffusion coefficients finite
[22], so entering in the stiff region of the system, from (5) we recover Fick’s laws,

JS = −DS
∂Sc
∂x

, JI = −DI
∂Ic
∂x

, JR = −DR
∂Rc

∂x
,

which, inserted in (4), lead to the following parabolic reaction-diffusion system for the commuters
[4, 24]:

∂Sc
∂t

=
∂

∂x

(
DS

∂Sc
∂x

)
− βIScI

1 + κII
,

∂Ic
∂t

=
∂

∂x

(
DI

∂Ic
∂x

)
+

βIScI

1 + κII
− γIIc ,

∂Rc

∂t
=

∂

∂x

(
DR

∂Rc

∂x

)
+ γIIc .

(6)

Therefore, we observe that the relaxation times, together with the characteristic velocities,
can modify the nature of the behavior of the solution, which can result either hyperbolic (for
small relaxation parameters and finite speeds) or parabolic (when considering relaxation terms
that tend to zero and speeds that tend to infinity). This feature of the proposed model makes
it particularly suitable for use in describing the dynamics of human populations, which are
characterized by movement at different spatial scales. It is therefore natural to assume spa-
tially dependent scaling parameters τi(x) and λi(x), which reproduce a diffusive dynamics in
geographic areas densely populated and a hyperbolic regime in other areas or along the main
arteries of communication, avoiding propagation of information at infinite speed over large dis-
tances [9, 11].

2.2 Extension to enriched compartmentalizations

The proposed modeling can be potentially extended to any kind of enriched compartmen-
talization aimed at better analyzing the evolution of the infectious disease under investigation.
Here, to account for specific features of the COVID-19, we consider extending the simple SIR
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compartmentalization by taking into account two additional epidemic compartments, E and A,
resulting in a SEIAR model [5, 8]. Subjects in the E compartment have been exposed to the
virus but are still in the latent period, hence result infected but not yet infectious. Further-
more, among the infectious subjects, we distinguish the population between a group of severely
symptomatic individuals I and a group of asymptomatic or mildly symptomatic individuals A.

Defining the total density of the additional compartments, E = E+ + E− + E0, A = A+ +
A− + A0, the resulting discrete-velocity system of the SEIAR epidemic transport model for
commuters reads

∂S±
∂t
± λS

∂S±
∂x

= − βIS±I

1 + κII
− βAS±A

1 + κAA
+

1

2τS
(S∓ − S±) ,

∂E±
∂t
± λE

∂E±
∂x

=
βIS±I

1 + κII
+

βAS±A

1 + κAA
− aE± +

1

2τE
(E∓ − E±) ,

∂I±
∂t
± λI

∂I±
∂x

= aσE± − γII± +
1

2τI
(I∓ − I±) ,

∂A±
∂t
± λA

∂A±
∂x

= a(1− σ)E± − γAA± +
1

2τA
(A∓ −A±) ,

∂R±
∂t
± λR

∂R±
∂x

= γII± + γAA± +
1

2τR
(R∓ −R±) ,

(7)

which is coupled with the following SEIAR model describing the evolution of non-commuting
individuals:

dS0
dt

= − βIS0I

1 + κII
− βAS0A

1 + κAA
,

dE0

dt
=

βIS0I

1 + κII
+

βAS0A

1 + κAA
− aE0 ,

dI0
dt

= aσE0 − γII0 ,

dA0

dt
= a(1− σ)E0 − γAA0 ,

dR0

dt
= γII0 + γAA0 .

(8)

The quantity γA(z, x, t) is the recovery rate of asymptomatic/mildly symptomatic infected,
which is distinguished from the recovery rate of highly symptomatic infected previously in-
troduced γI(z, x, t); a(z, x, t) represents the inverse of the latency period and σ(z, x, t) is the
probability rate of developing severe symptoms [17, 13]. In this model, the transmission of the
infection is governed by two different incidence functions, simply to distinguish between the
behavior of I and A individuals, where a different contact rate βA and coefficient κA are taken
into account for mildly/no symptomatic people.

Let us observe that, similarly to the diffusive scaling presented in Section 2.1 for the SIR-
type model, introducing the same definition of flux for the additional compartments, JE and
JA, we get an analogous macroscopic formulation also for the SEIAR-type transport model.
Furthermore, defining also DE = λ2EτE and DA = λ2AτA, we recover a parabolic reaction-
diffusion SEIAR-type system in the zero-relaxation limit [22]. The reader can refer to [8] for
more details on this derivation and for the definition of the reproduction number.
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2.3 Extension to network modeling

The multiscale hyperbolic transport models here proposed can be extended to network ap-
proaches in the sense of those presented in traffic, chemotaxis or blood flow models [12, 27, 28].
In fact, it is possible to structure a 1D network considering that nodes of the network identify
locations of interest (such as municipalities, provinces or, in a wider scale, regions), while arcs
represent the ensemble of paths linking each location to the others. The epidemic state of each
node will therefore evolve in time influenced by the mobility of the commuters, always consider-
ing a part of the population composed by non-commuting individuals remaining at their origin
node.

At each arc-node interface, the arising Riemann Problem is solved employing the Riemann
Invariants of the system (which corresponds to the kinetic densities), guaranteeing the conser-
vation of fluxes at the interface and ensuring that the global mass (population) of the system is
conserved. Details of the implementation are given in [8, 9].

3 NUMERICAL METHOD

To investigate the effects of uncertainties involved in the proposed stochastic multiscale trans-
port models on the solution of the problem, we couple a second-order Implicit-Explicit (IMEX)
Runge-Kutta (RK) Finite Volume (FV) method with a stochastic Collocation approach [8]. The
Stochastic Collocation method is chosen because of two main advantages:

� it is a non-intrusive method which simply requires the evaluation of the solutions of the
corresponding deterministic problem at each collocation point and, because of this feature,
avoids the loss of important structural properties of the original system (e.g. hyperbolicity,
well balancing, positivity);

� it belongs to the class of pseudo-spectral methods that reflect the high accuracy of gener-
alized Polynomial Chaos (gPC ) approaches. Indeed, when the solution possesses sufficient
smoothness in the stochastic space, these methods have been proven to achieve an expo-
nential convergence rate and to preserve this accuracy in the diffusive (stiff) limit.

To evaluate the solution at each collocation point, for the time discretization we consider a
second-order IMEX RK schemes proposed in [10] for applications to hyperbolic systems with stiff
relaxation terms. The chosen scheme benefits from the Asymptotic-Preserving (AP) property,
which guarantees that the scheme consistently captures the diffusion limit and that the choice
of the time discretization step is not related to the smallness of the scaling parameter τ . At
each internal stage of the IMEX RK scheme, we apply a total variation diminishing (TVD)
FV method. To achieve second-order accuracy also in space while avoiding the occurrence of
spurious oscillations, a classical minmod slope limiter is used.

We remark that, given the non-intrusive nature of the stochastic Collocation method, the
AP property of the deterministic IMEX scheme is preserved also in the stochastic framework,
leading to a stochastic AP scheme that permits to switch from a stochastic Collocation method
for the advection problem to a stochastic Collocation method for the diffusive problem in a
uniform way with respect to the involved parameters [20].

For further details regarding the numerical method and the convergence analysis the reader
is referred to [6, 8].
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Figure 1: Left: representation of the network of the Lombardy test case, composed of 5 nodes, corre-
sponding to the provinces of interest and 5 arcs, connecting each city to the others, considering all the
main paths of commuters. The dimension of the node is proportional to the dimension of the urbanized
area of the province. Middle and right: estimated spread of COVID-19 in Lombardy during the first
wave of the virus on March 12, 2020 (middle) and March 27, 2020 (right). The radius of the nodes in the
network and the width of the arcs is proportional to the amount of total infected individuals, including
asymptomatic individuals.

We would like to emphasize that for the stochastic Collocation method to be used, the PDF of
the random inputs must be known. Among the various techniques of uncertainty quantification
(UQ), the approaches based on stochastic strategies that do not necessarily require the a-priori
knowledge of the probability distribution of the uncertain parameters are particularly interesting
in view of a comparison with experimental data. We invite the reader to refer to [7] for an
example of alternative UQ method based on a Bi-Fidelity approach for multiscale epidemic
transport models which efficiently alleviate such a limitation.

3.1 APPLICATION TO THE EMERGENCE OF COVID-19 IN ITALY

To analyze the effectiveness of the proposed approach in a realistic geographical and epidemic
scenario, we designed a numerical setting reproducing the evolution of the first outbreak of
COVID-19 in the Lombardy Region of Italy, from February 27, 2020 to March 27, 2020, with
respect to uncertainties underlying the initial conditions and chosen epidemic parameters.

A five-node network is considered, whose nodes represent the 5 main provinces interested by
the epidemic outbreak in the first months of 2020: Lodi (n1), Milan (n2), Bergamo (n3), Brescia
(n4) and Cremona (n5). The arcs connecting each node to the others identify the main set of
routes and railways viable by commuters each day. A schematic representation of this network
is shown in Fig. 1 (left).

The characteristic speed associated to each arc is fixed to permit a full round trip in each
origin-destination section within a day, while the relaxation time is assigned so that the model
recovers a hyperbolic regime. On the other hand, a parabolic setting is prescribed in the cities
for commuters in order to correctly capture the diffusive behavior of the disease spread which
typically occurs in highly urbanized zones. For the compartment I, we fix λI = 0 in all the nodes
of the network, because we assume that all the severely symptomatic individuals are detected
and quarantined. The amount of total inhabitants of each province is given by 2019 data of the
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Italian National Institute of Statistics. Transmission coefficients at arc-node interfaces as well
as percentages of commuters belonging to each province are instead imposed recurring to official
national assessment of mobility flow.

For the model calibration, we first solve an optimization least square error (LSE) process
using the cumulative number of infected I(t) + RI(t) reported by the Italian Civil Protection
Department, recurring to an SEIAR ODE model for the whole Lombardy Region. In the min-
imization we fix γI = 1/14, γA = 1/7 and a = 1/3 according to [13, 17], as given clinical
parameters, and σ = 1/12.5 as in [13], fixing κI = κA = 30. We estimate βA = 0.545, setting
βI = 0.03βA as in [13, 17]. Since after February 23, 2020, Codogno city (Lodi), is put under
strict lockdown as “red zone”, a reduced transmission rate is considered for the node of Lodi,
with βA = 0.500. With the above setting, we obtain an initial expected value of the reproduc-
tion number in the whole network E[R0] = 3.6 which is in agreement with literature estimations
[13, 17]. Subsequent social restrictions have been implemented by suitable reductions of β and
increment of κ, as well as changes in the number of commuters (following mobility data tracked
by Google GPS systems).

Due to the screening policy adopted in Italy during the first wave of COVID-19, we chose to
associate all detected infected individuals to the I compartment, still considering that the track-
ing of positive individuals cannot be considered exempt from uncertainty. Thus, we introduce a
random input z ∼ U(0, 1) and define initial conditions for compartment I, at each node, as

I(x, 0, z) = I0(1 + z) , (9)

with I0 density of infectious people on February 27, 2020, as given by data recorded by the Civil
Protection Department of Italy. To evaluate the initial condition for the rest of the compartments
(excluding removed, being R(x, 0, z) = 0), the problem is solved prior to February 27, recurring
again to an SEIAR ODE model for the whole Lombardy region and imposing an initial condition
of one single exposed individual, estimating E(x, 0, z) ≈ 10 I(x, 0, z) and A(x, 0, z) ≈ 9 I(x, 0, z),
and evaluating for conservation S(x, 0, z) = N(x, 0)−E(x, 0, z)−I(x, 0, z)−A(x, 0, z)−R(x, 0, z).
Finally, also βI is considered a random parameter, with

βI(0, z) = βI,0

(
1 +

z

0.06

)
,

indicating that the more the number of infected in I increases relative to the observed value, the
more the transmission rate of this compartment tends to that of compartment A, proportionally
to the error in I. For further details the reader can refer to [8].

4 DISCUSSION AND CONCLUSIONS

Numerical results are reported qualitatively for the whole network in Fig. 1 (middle and
right) and quantitatively in Fig. 2 for three representative cities, namely Lodi, Milan, Bergamo,
and the whole Lombardy network. In the first column of Fig. 2, the expected evolution in time
of each class of infected individuals, together with 95% confidence intervals, is shown. Each
plot is also associated with the temporal evolution of the reproduction number R0(z, t). One
can see the capacity of the model to reproduce a very heterogeneous epidemic trend in the net-
work, highlighting the relevance of taking into account the spatial component in epidemiological
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Figure 2: Expected evolution in time, with 95% confidence intervals, for chosen representative cities,
Lodi (first row), Milan (second row), Bergamo (third row), and the whole Lombardy network (fourth row),
of: compartments E, A, I, together with the basic reproduction number R0 (left); cumulative amount
of severe infectious (I + RI) compared with data of cumulative infectious taken from the COVID-19
repository of the Civil Protection Department of Italy (middle); cumulative amount of severe infectious
(I+RI) with respect to the effective cumulative amount of total infectious people, including asymptomatic
and mildly symptomatic individuals (I + A + R) (right). Vertical dashed lines identify the onset of
governmental lockdown restrictions.

models. The agreement between the evolution of the reproduction number and the epidemic
spread can also be observed. In particular, it is confirmed the decline of the daily number of
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infected as R0 reaches values below 1, as shown in the plots for Lodi (first row) and Bergamo
(third row). On the other hand, the persistence of the virus in the complete network (last row),
and especially in Milan (second row), is noticed until the last day of the simulation, where the
reproduction number remains greater than 1.

As visible from the second column in Fig. 2, the lower bound of the confidence band of
the cumulative amount in time of the severely symptomatic individuals is comparable with the
observed data of the Civil Protection Department of Italy. As expected, the mean value of
infected people is higher, especially in Milan (the province most affected by the virus during the
beginning of the pandemic), due to the uncertainty of available data.

The comparison between the expected evolution in time of the cumulative amount of I with
respect to the effective cumulative amount of total infectious people, including also compartment
A, is shown in the third column of Fig. 2. Here, it can be noticed how much of the spread of
COVID-19 has actually been lost from the observed data during the first outbreak and the
impact that the presence of asymptomatic or undetected subjects has had on the epidemic
evolution.
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