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SUMMARY

A method to compute guaranteed upper bounds for the energy norm of the exact error in the finite
element solution of the Poisson equation is presented. The bounds are guaranteed for any finite element
mesh however coarse it may be, not just in the asymptotic regime. The bounds are constructed by
employing a subdomain based a posteriori error estimate which yields self-equilibrated residual loads in
stars (patches of elements). The proposed approach is an alternative to standard equilibrated residual
methods providing sharper bounds. The use of a flux-free error estimator improves the effectivities of
the upper bounds for the energy while retaining the certainty of the bounds.

key words: Exact/guaranteed/strict bounds; Poisson equation; Error estimation; Adaptivity; Flux-

free estimate; Subdomain a posteriori error estimation; Partition of unity; Residual based estimators

1. INTRODUCTION

A posteriori error estimation techniques are nowadays essential tools to certify the reliability
of numerical simulations in any engineering design process. In practice, it is not sufficient to
assess a global measure of the error, the accuracy has to be controlled for a given quantity of
interest or functional output (depending on the solution field).

Most of the currently used strategies to obtain upper and lower bounds for linear functional
outputs require estimating the error in global energy-type norms. Thus, obtaining sharp bounds
for the energy norm of the error is a key issue also in the goal-oriented error assessment. In
particular, for the advection-diffusion equation, upper bounds for the energy norm of the error
are required for an associated Poisson problem [1].

The present work aims at obtaining sharp and strict upper bounds for the error in the
energy norm of finite element approximations of the Poisson equation. This is regarded as a
basic tool that may be subsequently used to assess the error in linear outputs of the more
general advection-reaction-diffusion equation. The approach presented here combines the flux-
free domain decomposition strategy with a dual formulation of the resulting local problems
yielding a guaranteed upper bound of the solution.
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The dual formulation of the problems follows the ideas introduced in the early 1970s by
Fraeijs de Veubeke who proposed a methodology to obtain an upper bound for the energy norm
of the error minimizing the complementary energy of a global dual approximation (flux fulfilling
the balance equations) [2]. Although the resulting bounds are sharp, the global nature of the
dual approximation yields a relatively costly method. A remedy for the high computational cost
of these methods is to obtain a dual solution solving only local problems. In the early 1980s,
Kelly [3] and Ladevèze and Leguillon [4] proposed the construction of locally equilibrated fluxes
to avoid the global computation of the dual approximation. This approach is widely known as
the equilibrated residual method but it has also been named after hybrid-flux residual method.

The equilibrated residual method is probably the most popular implicit residual type a
posteriori error estimator. This method is based on first constructing a set of equilibrated
fluxes on the edges of the finite element mesh. These fluxes are the Neumann boundary
conditions for the elementary infinite-dimensional problems to recover the local approximation
of the error. The solutions of these problems directly yield an upper bound on the energy
norm of the error. The initial idea of [4] of solving the local elementary Neumann problems
using a local complementary energy approach was immediately replaced by solving the local
problems approximately using a local finite element mesh [5, 6, 7, 8, 9, 10]. This approach has
been extensively used but it does not provide any certainty on the upper bounds. The error
introduced in the solution of the local problem may result in an underestimation of the error
norm.

It has not been until the mid 2000s [11, 12, 13, 14, 15, 16, 17] that the initial idea of [4] has
been revisited to unambiguously certify the numerical results. It is worth noting that while a
proper global dual approximation of the problem may be used to obtain sharp bounds for the
energy norm, the effectivities of the bounds obtained using the equilibrated residual method
depend on the quality of the approximation of the local Neumann boundary conditions for the
local problems (equilibrated boundary fluxes). Although the equilibrated residual method has
been proven to be robust (that is, it provides two-sided bounds for the energy), the bounds
often largely overestimate the error.

The purpose of the present work is to present an alternative to the equilibrated residual
method to produce strict bounds for the energy norm of the error which better effectivities.
The strategy presented in [18] is used to localize the error equation in subdomains different
than elements (local patches of elements called stars). The domain decomposition strategy
introduced in [18] guarantees that these local problems are directly self-equilibrated so there
is no necessity to previously post-process the finite element solution to obtain equilibrated
boundary fluxes. The local complementary energy approach is then used in each star to derive
the strict upper bounds for the energy norm of the error.

The important issue of obtaining a lower bound is not discussed here but it may be easily
obtained using the ideas in [19, 18]. Both the upper bounds and the lower bounds for the
energy norm may be then used to assess quantities of interest for selfadjoint or non-selfadjoint
problems. In [1] the ideas given here have been extended to compute strict upper and lower
bounds for linear quantities of interest of the advection-reaction-diffusion equation. Also,
reference [20] provides the extension of this technique to linear elasticity. A similar approach
is followed in [21].

The strategy presented here can also be used to recover strict bounds from the asymptotic
flux-free estimate presented in [22]. This is because in this work the bilinear operator in
the residual equation is split using a partition of the unity conformed by piecewise constant
functions. Applying the same ideas to the estimators using non-piecewise constant partition
of unity in the operator [23, 24] is not obvious. In any case, we follow here the ideas presented
in [18] because the resulting estimates are much sharper in the asymptotic version and they
are expected to keep the same behavior in the exact bound version.

The remainder of the paper is structured as follows. The model problem and the error
equations are presented in the next section. The flux-free method presented in [18] is briefly
described in section 3 where the idea of guaranteed and asymptotic bounds is also introduced.
Section 4 discusses the complementary energy approach and its application to the flux-
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free estimate. A detailed explanation of the algorithm to numerically implement the error
estimation strategy is given in sections 5 and 6. We conclude with numerical examples
illustrating the performance of the estimator, and clearly showing that the new technique
provides much sharper bounds than the standard equilibrated residual method.

2. MODEL PROBLEM AND FINITE ELEMENT APPROXIMATION

Let Ω be an open bounded polygonal domain in R2, with boundary ∂Ω = ΓN ∪ ΓD, where ΓN

and ΓD form a disjoint partition of the boundary, and ΓD is a non-empty set. The boundary
value problem to be solved is stated as follows: find the real-valued function u such that

−∆u = f in Ω,
u = uD on ΓD,

∇u · n = g on ΓN,
(1)

where the Dirichlet boundary condition uD is assumed to be continuous piecewise linear on
ΓD.

The standard variational formulation of the problem consists of seeking u ∈ U such that

a(u, v) = `(v) for all v ∈ V (2)

where

a(u, v) :=
∫

Ω

∇u ·∇v dΩ and `(v) :=
∫

Ω

fv dΩ +
∫

ΓN

gv dΓ. (3)

The trial and test spaces are U := {u ∈ H1(Ω), u|ΓD
= uD} and V := {v ∈ H1(Ω), v|ΓD

= 0},
H1(Ω) being the standard Sobolev space of functions defined in Ω such that both the functions
and their first derivatives are squared-integrable.

The finite element approximation of problem (2) consists in finding uH ∈ UH such that

a(uH , v) = `(v) for all v ∈ VH . (4)

Here, UH ⊂ U and VH ⊂ V denote the finite-dimensional spaces associated with a finite
element mesh of characteristic mesh size H. The mesh is the union of nonoverlapping nel linear
triangular elements such that the nonempty intersection of a distinct pair of elements is either
a single common node or a single common edge. For the sake of simplicity, the presentation
concerns only linear elements, but the methodology is general and it is also applicable to
higher-order triangular elements.

3. FLUX-FREE ERROR ESTIMATES AND ASYMPTOTIC UPPER BOUND

3.1. Weak form of the residual global problem

The purpose of the present work is to develop a method for obtaining computable strict upper
bounds for the error e := u − uH in the finite element approximation uH measured in the
energy norm. That is, if ‖v‖ := a(v, v)1/2 denotes the energy norm of the function v, the goal
is to obtain an upper bound of ‖e‖.

The global equation for the error is recovered from (2) replacing the exact solution u by
uH + e and using the linearity of a(·, ·) in the first argument. In this way, the exact error e lies
in V (vanishes on ΓD) and is such that

a(e, v) = `(v)− a(uH , v) =: R(v) for all v ∈ V, (5)

where R(·) stands for the weak residual associated with the finite element approximation uH .
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3.2. Domain decomposition and upper bound of the error

Let φi, i = 1, . . . , nnp, be the set of linear shape functions associated with the nnp vertex nodes
of the mesh. The support of each φi is denoted by ωi and is referred to as the patch of elements
connected to node i of the mesh or the star associated with node i.

The functions {φ1, . . . , φnnp
} are a partition of unity, that is

nnp∑

i=1

φi(x) = 1 for all x ∈ Ω. (6)

Using this property together with the linearity of R(·), (5) is rewritten as

a(e, v) = R
(
v
( nnp∑

i=1

φi

))
=

nnp∑

i=1

R(φiv) for all v ∈ V. (7)

Following [18], equation (7) is split into nnp local problems defined in every star ωi

aωi(eωi , v) = R(φiv) for all v ∈ H1(ωi), (8)

where aωi(·, ·) is the restriction of a(·, ·) to ωi, namely

aωi(w, v) :=
∫

ωi

∇w ·∇v dΩ. (9)

The error estimation strategy introduced in [18] consists in solving the local problems (8) and
obtaining eωi , i = 1, . . . , nnp. These local solutions are added up to build the global estimate ê

ê :=
nnp∑

i=1

eωi

which is taken as an approximation of the global exact error e providing an upper bound for
its energy norm, that is,

‖ê‖ ≥ ‖e‖. (10)

Remark 1. The estimate ê is, in general, discontinuous across the inter-element edges. Thus,
as stated in detail in [18], the energy norm appearing in equation (10) must be modified to allow
discontinuous functions in its argument. Thus, for v discontinuous along the edges of the mesh,
‖v‖2 is computed as a sum of the squared local norms, associated with the elements and, hence,
integrating only in the interior of the elements.

Note that since the support of the function φiv is the star ωi, the weighted residual in the
right-hand side (r.h.s.) term of (8) is expressed as

R(φiv) =
∫

ωi

fφiv dΩ +
∫

ΓN∩∂ωi

gφiv dΓ−
∫

ωi

∇uH ·∇(φiv) dΩ. (11)

3.3. Upper bound of a reference error

The solutions of the problems (5) and (8) cannot be computed exactly because they are posed
in infinite dimensional spaces, either in the global domain Ω or in a star ωi. Consequently, a
practical alternative is required. The standard approach is to solve these problems numerically,
in a reference mesh much finer than the computational mesh. This reference mesh and the
corresponding approximation space are denoted using the characteristic mesh size h, it is
assumed then that h << H. Associated with this truth mesh a reference solution uh is
introduced such that

a(uh, v) = `(v) for all v ∈ Vh. (12)

It is assumed that uh is a much better approximation to u than uH and, consequently, that
the reference error, eh := uh − uH , is a good approximation of e. Due to the linearity of a(·, ·)
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with respect to the first argument, the reference error can also be seen as the discrete solution
of (5) in Vh, namely

a(eh, v) = R(v) for all v ∈ Vh. (13)

As previously said, the solution of the local problem (8) must also be approximated
numerically. The standard approach is to use a finer mesh locally [18, 23, 22, 24], that is,
equation (8) is solved in a discrete space which is the restriction of the reference space Vh to
the star ωi. By doing this, the resulting local estimates eh

ωi
sum up in a global estimate that

provides an upper bound of the reference error, ‖eh‖, and not anymore an upper bound of the
exact error, ‖e‖. This kind of error bounds are referred as asymptotic because they are indeed
bounds only for h tending to zero. The strategies are said to be exact if they provide bounds
of the error that can be guaranteed regardless of the mesh size used both in the computation
and the error assessment.

4. EXACT ERROR BOUNDS USING THE FLUX-FREE APPROACH

A dual formulation based on the principle of minimizing the complementary energy is used
to obtain a fully computable approximation of the error that provides an upper bound of the
energy norm of the exact error. This approach has been applied in the context of hybrid-flux
residual estimators [25, 26] and it is extended in the present paper to the flux-free methodology.

A first step in formulating the dual solution of a problem given in its weak form, as (5) or
(8), is to write it in its strong form.

4.1. Strong form of the residual global problem

In a first stage, the dual form of the exact error problem (5) is derived. Recall that equation
(5) states that e is such that for all v ∈ V

∫

Ω

∇e ·∇v dΩ =
∫

Ω

fv dΩ +
∫

ΓN

gv dΓ−
∫

Ω

∇uH ·∇v dΩ, (14)

which can be rewritten as∫

Ω

(∇e + ∇uH) ·∇v dΩ =
∫

Ω

fv dΩ +
∫

ΓN

gv dΓ. (15)

The left-hand side (l.h.s.) of the previous equation is rearranged integrating by parts and
accounting for the fact that ∇e and ∇uH are discontinuous across the element boundaries
(although ∇e + ∇uH = ∇u is continuous in Ω):
∫

Ω

(∇e + ∇uH) ·∇v dΩ =
nel∑

k=1

∫

Ωk

(∇e + ∇uH) ·∇v dΩ

=
nel∑

k=1

{
−

∫

Ωk

(∆e + ∆uH)v dΩ +
∑

γ∈∂Ωk

∫

γ

(∇e + ∇uH) · nγ
kv dΓ

}

= −
nel∑

k=1

∫

Ωk

(∆e + ∆uH)v dΩ

+
∑

γ∈Γint

∫

γ

J(∇e + ∇uH) · nγKv dΓ +
∫

ΓN

(∇e + ∇uH) · nv dΓ.

(16)
Here Ωk denotes an element of the finite element mesh and Γint stands for the union of the
interelement edges. Also, for each edge γ a unit normal direction nγ is assigned such that if
γ is an exterior edge nγ coincides with the outward unit normal to ∂Ω, n. Similarly, given an
element Ωk and an edge of this element γ ∈ ∂Ωk, the outward normal to the element associated
with γ is denoted by nγ

k . With this notation, if γ = ∂Ωk ∩ ∂Ωl,

J∇w · nγK = ∇w|Ωk
· nγ

k + ∇w|Ωl
· nγ

l =
(

∇w|Ωk
(nγ · nγ

k) + ∇w|Ωl
(nγ · nγ

l )
)
· nγ .
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Note that, for γ ∈ Γint, nγ is arbitrarily chosen to be either nγ = nγ
k or nγ = nγ

l and the
definition of J∇w · nγK is independent of this choice.

Thus, joining equations (15) and (16) yields the following strong form:

−(∆e + ∆uH) = f in ∪k Ωk,
(∇e + ∇uH) · n = g on ΓN,

J(∇e + ∇uH) · nγK = 0 on γ ∈ Γint.

Consequently, the strong form associated with (14) is the following:

−∆e = r in ∪k Ωk, (17a)
∇e · n = l on ΓN, (17b)

J∇e · nγK = j on γ ∈ Γint, (17c)
e = 0 on ΓD, (17d)

where the strong interior residual is r := f + ∆uH , the singular residual associated with flux
discontinuities is represented by both the non-verification of the Neumann boundary conditions
l := g −∇uH · n and the jump across the interelement boundaries j := −J∇uH · nγK .

4.2. Dual formulation and complementary energy minimization

The dual formulation of the problem consists in introducing a new variable approximating the
flux, q ≈ ∇e. This approximated flux is said to be statically admissible (in analogy with the
mechanical problem) if q ∈ [L2(Ω)]2 and fulfills equations (17a), (17b) and (17c), that is

−∇ · q = r in ∪k Ωk, (18a)
q · n = l on ΓN, (18b)

Jq · nγK = j on γ ∈ Γint. (18c)

The complementary energy associated with a flux q reads

πc(q) :=
1
2

∫

Ω

q · q dΩ =
1
2
‖q‖2L2

, (19)

where ‖·‖L2 is the standard L2 norm.
It is easily shown that any statically admissible flux (that is, fulfilling (18)) is such that

2πc(q) = ‖q‖L2 ≥ ‖e‖.
Moreover, if q ranges in the proper functional space (of derivatives of functions in V) the
minimum of the complementary energy is precisely achieved by the error flux q = ∇e.

A brief sketch of the proof of this essential property is recalled here.
A new bilinear form ac(·, ·) is introduced expressed in terms of flux quantities:

ac(q, p) :=
∫

Ω

q · p dΩ.

Note that ac(·, ·) is equivalent to a(·, ·) in the sense that

a(u, v) = ac(∇u,∇v)

and also that it is related with the complementary energy because

πc(q) =
1
2
ac(q, q).

A statically admissible approximation q of the error flux fulfills (18) and consequently also its
weak counterpart (14) (replacing ∇e by q). This reads

ac(q,∇v) = R(v) for all v ∈ V. (20)

Thus, for v = e, using (5) and (20) yields

ac(q,∇e) = R(e) = a(e, e) = ‖e‖2.
Finally, using the Cauchy-Schwartz inequality, the upper bound property follows

‖e‖2 = ac(q,∇e) ≤ ‖q‖L2‖∇e‖L2 = ‖q‖L2‖e‖ that is ‖e‖ ≤ ‖q‖L2 , (21)

because ‖·‖L2 , in this case, coincides with the norm induced by ac(·, ·).
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4.3. Domain decomposition of the dual formulation of the error equation

As indicated in the previous section, the idea behind the flux-free approach is to split the force
term (the r.h.s. of the equilibrium equation (5)) weighting it with the linear interpolation
functions φi, and restricting each problem to the support ωi. Here, this strategy is directly
reproduced with the dual formulation summarized in equation (18). Actually, the same
conclusion can also be derived by dualizing the strong form of the flux-free residual local
problem (8).

The idea is then to split an approximation q̂ to q = ∇e into local contributions q̂i associated
with the stars, that is

q̂ =
nnp∑

i=1

q̂i. (22)

Each contribution q̂i is defined to be such that the following equations are fulfilled:

−∇ · q̂i = φir in ωi, (23a)

q̂i · n = 0 on γ ∈ ∂ωi − {ΓN ∪ ΓD}, (23b)

q̂i · n = φil on ∂ωi ∩ ΓN, (23c)

Jq̂i · nγK = φij on γ ∈ Γint ∩ ωi, (23d)

where here n is the unit outward normal to ∂ωi. Note that this is nothing but the local version
of (18) with the r.h.s. weighted by φi. The partition of unity property (6) ensures that if every
q̂i fulfills (23), then q̂ defined in (22) fulfills (18). Consequently, the norm of this solution
‖q̂‖L2 is an exact upper bound of the error.

Remark 2. As mentioned before, the strong form of the local equations (23) may also be
derived directly from the flux-free residual local problem (8). First, the strong form of (8) is
derived and then the new variable approximating the flux q̂i ≈ ∇eωi is introduced in the strong
form.

Remark 3. In practice, the local flux q̂i is split into two parts: q̂i = q̂i
∗ − q̂i

h where
q̂i

h = φi∇uH and q̂i
∗ is the solution of

−∇ · q̂i
∗ = φir −∇ · q̂i

h in ωi,

q̂i
∗ · n = q̂i

h · n on γ ∈ ∂ωi − {ΓN ∪ ΓD},
q̂i
∗ · n = φil + q̂i

h · n on ∂ωi ∩ ΓN,

Jq̂i
∗ · nγK = φij + Jq̂i

h · nγK on γ ∈ Γint ∩ ωi,

which rearranging terms yields

−∇ · q̂i
∗ = φif −∇φi ·∇uH in ωi, (24a)

q̂i
∗ · n = 0 on γ ∈ ∂ωi − {ΓN ∪ ΓD}, (24b)

q̂i
∗ · n = φig on ∂ωi ∩ ΓN, (24c)

Jq̂i
∗ · nγK = 0 on γ ∈ Γint ∩ ωi. (24d)

Note that computing q̂i
∗ does not require computing the flux of uH at interelementary edges.

Moreover, equations (24c) enforce that q̂i
∗ is continuous in the normal direction at the edges

inside the star ωi, which implementation is simpler to implement than enforcing a prescribed
jump on the normal direction (23c).

Under the general assumption that fields f and g are piecewise polynomial, it is possible
to determine — amongst all the dual estimates q̂i

∗ fulfilling equations (24) — a piecewise
polynomial solution of (24). That is, for a given suitable interpolation degree q, it is possible
to find q̂i

∗ ∈ [P̂q(ωi)]2 verifying equation (24) where

P̂q(ωi) := {v ∈ L2(ωi) s.t. for every Ωk ⊂ ωi, v|Ωk
∈ Pq(Ωk)}.
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In this case, the global estimate is a piecewise polynomial field, namely q̂ ∈ [P̂q(Ω)]2.

Remark 4. A locally statically admissible flux q̂i fulfills (23) and consequently also its weak
counterpart (8) (replacing ∇eωi by q̂i). This reads

ac
ωi

(q̂i,∇v) = R(φiv) = aωi(eωi , v) for all v ∈ H1(ωi).

Moreover, if q̂i ranges in the proper functional space, the minimum of the local complementary
energy ∫

ωi

q̂i · q̂i dΩ = ac
ωi

(q̂i, q̂i)

is achieved precisely by q̂i = ∇eωi .

5. NUMERICAL IMPLEMENTATION

5.1. Piecewise polynomial representation for q̂i
∗

The unknown q̂i
∗ of problem (24) is taken to be polynomial of degree q in each element

of ωi, thus, q̂i
∗ may present discontinuities at the internal edges of the star ωi. Let Ki =

{k1, k2, . . . , km} be the set of indices of the elements lying in ωi, that is, such that

ω̄i = ∪k∈KiΩ̄k,

where m is the number of elements in star ωi (that is, the cardinal of Ki). Note that the
dependence on i is omitted to simplify the notation but clearly, m depends on i.

Then, for each k ∈ Ki, the restriction of each component of q̂i
∗ to Ωk is a polynomial of

degree q. Thus, q̂i
∗ is expressed as c̄T

kP k, where P k is a column vector containing a basis
of the polynomial space restricted to Ωk and c̄k are the coefficients describing the unknown
polynomial. Typically, for q = 2, the trivial basis of polynomials is used and the following form
for P k is assumed:

P T
k =

[
1, x, y, x2, xy, y2

]
for (x, y) ∈ Ωk and P k vanishing elsewhere.

Note that, in practice, all vectors P k are identical, except for where they are supported.
Then, the representation for q̂i

∗ is

q̂i
∗ =

∑

k∈Ki

c̄T
kP k.

In order to account for the vectorial character of q̂i
∗ (in 2D a vector of two components),

the coefficients c̄k must be arranged in a two-column matrix with the following shape

c̄T
k =

[
(cx

k)T

(cy
k)T

]
=

[
cx,1
k cx,2

k . . . cx,N
k

cy,1
k cy,2

k . . . cy,N
k

]
,

N being the number of components of P k, that is, in 2D N = (q +1)(q +2)/2. Thus, the total
number of unknowns in every star is 2 mN .

In practice, the following equivalent representation is used

q̂i
∗ =

∑

k∈Ki

Qkck, (25)

where

cT
k =

[
(cx

k)T (cy
k)T

]
=

[
cx,1
k cx,2

k . . . cx,N
k cy,1

k cy,2
k . . . cy,N

k

]
and Qk =

[
P T

k 0
0 P T

k

]
.

(26)
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All these unknowns are collected in a column vector c

cT =
[
cT

k1
cT

k2
. . . cT

km

]
=

[
(cx

k1
)T(cy

k1
)T (cx

k2
)T(cy

k2
)T . . . (cx

km
)T(cy

km
)T

]

=
[
cx,1
k1

cx,2
k1

. . . cx,N
k1

cy,1
k1

cy,2
k1

. . . cy,N
k1

. . . cx,1
km

cx,2
km

. . . cx,N
km

cy,1
km

cy,2
km

. . . cy,N
km

]
.

Thus, the following compact form for the polynomial representation (25) is introduced

q̂i
∗ = Qc, (27)

where

Q =
[
Qk1

Qk2
. . . Qkm

]
=

[
P T

k1
0 P T

k2
0 . . . P T

km
0

0 P T
k1

0 P T
k2

. . . 0 P T
km

]
.

Note that the dependence on i of the vector c and matrix Q is omitted to simplify the notation
but clearly, c and Q depend on i.

5.2. Imposing the divergence condition to the polynomial flux

In every star ωi, the restrictions (24) have to be imposed to the trial fluxes defined in (25) or
(27).

Equation (24a) sets the pointwise value of the flux divergence, ∇ · q̂i
∗. Following (27) the

flux divergence is

∇ · q̂i
∗ = (∇ ·Q)c =

[
∂xP T

k1
∂yP T

k1
∂xP T

k2
∂yP T

k2
· · · ∂xP T

km
∂yP T

km

]
c.

In particular, the value of the divergence ∇ · q̂i
∗ in an element Ωk ⊂ ωi in the case q = 2, that

is, for P T
k =

[
1, x, y, x2, xy, y2

]
, is precisely

∇ · q̂i
∗
∣∣∣
Ωk

= (∇ ·Qk)ck =
[
∂xP T

k ∂yP T
k

] [
cx

k

cy
k

]
= [0, 1, 0, 2x, y, 0, 0, 0, 1, 0, x, 2y]

[
cx

k

cy
k

]
.

Thus, a representation of ∇ · q̂i
∗ analogous to (25) follows

∇ · q̂i
∗ =

∑

k∈Ki

[0, 1, 0, 2x, y, 0, 0, 0, 1, 0, x, 2y] ck (28)

that is straightforwardly generalized to higher polynomial degrees.
The r.h.s. term of (24a) φif −∇φi ·∇uH , is assumed to be polynomial in every element of

the mesh. This assumption is not restrictive because it holds if the source term is polynomial
in each element of the mesh (not necessarily the same polynomial in the whole domain). Thus,
it suffices to take q large enough such that equation (24a) can be fulfilled by the trial flux q̂i

∗.
For instance, for a piecewise constant source term s, the r.h.s. term of (24a) is linear and q = 2
suffices.

As shown in (28), for q = 2 the divergence of the flux is one degree less than the flux itself.
In particular, in this case it is linear and therefore imposing this function to be equal to some
other linear function results in 3 equations. Indeed, if the r.h.s. of (24a) in the element Ωk is
a linear function fk := φif −∇φi ·∇uH

∣∣∣
Ωk

= ac
k + ax

kx + ay
ky, the condition ∇ · q̂i

∗
∣∣∣
Ωk

= fk

turns out to be

cx,2
k + 2xcx,4

k + ycx,5
k + cy,3

k + xcy,5
k + 2ycy,6

k = ac
k + ax

kx + ay
ky,

which in matrix form is


0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 2 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 2


 ck =




ac
k

ax
k

ay
k


 .

Note that the previous equations are equivalent to imposing the equality (∇ ·Qk)ck = fk at
the three points x = 0 and y = 0, x = 1 and y = 0 and x = 0 and y = 1. A different option to
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5.5. Imposing statical admissibility to q̂i
∗

Putting together the three sets of linear equations corresponding to the interior equilibrium
and the edge equilibrium for both the boundary edges and the interior edges results in a
compact form

Dc = d, (29)

where D is obtained appending D1, D2 and D3 and it is a rectangular matrix with 2mN
columns and nrest rows, with

nrest := m(q + 1)q/2 + (mb + mi)(q + 1).

Note that nrest stands for the number of restrictions.

Remark 5. In the case where the star ωi does not intersect the Dirichlet boundary ΓD the
previous equations are not linearly independent, since one of the equations is redundant. The
number of linearly independent equations is in this case nrest − 1. This is easily shown by
considering that
∫

ωi

q̂i
∗ ·∇vdΩ =

∫

ωi

[
∇ · (q̂i

∗v)−∇ · q̂i
∗v

]
dΩ = −

∫

ωi

∇ · q̂i
∗vdΩ +

∑

k∈Ki

∫

Ωk

∇ · (q̂i
∗v)dΩ

= −
∫

ωi

∇ · q̂i
∗vdΩ +

∑

k∈Ki

∑

γ∈∂Ωk

∫

γ

q̂i
∗ · nγ

kvdΓ

= −
∫

ωi

∇ · q̂i
∗vdΩ +

∑

γ∈∂ωi

∫

γ

q̂i
∗ · nvdΓ +

∑

γ∈Γint∩ωi

∫

γ

Jq̂i
∗ · nγKvdΓ

from which taking v = 1 yields

−
∫

ωi

∇ · q̂i
∗dΩ +

∑

γ∈∂ωi

∫

γ

q̂i
∗ · ndΓ +

∑

γ∈Γint∩ωi

∫

γ

Jq̂i
∗ · nγKdΓ = 0.

Thus, equations in (29) that are setting the values of ∇ · q̂i
∗ in ωi, q̂i

∗ ·nγ
k on ∂ωi and Jq̂i

∗ ·nγK
on Γint ∩ωi are not linearly independent because they are linked by the previous equation. One
of the equations in (29) is recovered as a linear combination of the others and therefore the
rank of D is nrest − 1.

The undetermined system of equations (29) is compatible, that is it admits solutions. This
is proven using the same rationale as that followed in to analyze the solvability of equation
(8) which is based on the fact that R(φi) = 0 (for nodes i not on the Dirichlet boundary ΓD).
Indeed, using equations (24) and (11) with v = 1

0 = −
∫

ωi

∇ · q̂i
∗dΩ +

∑

γ∈∂ωi

∫

γ

q̂i
∗ · ndΓ +

∑

γ∈Γint∩ωi

∫

γ

Jq̂i
∗ · nγKdΓ

=
∫

ωi

[
φif −∇φi ·∇uH

]
dΩ +

∑

γ∈∂ωi∩ΓN

∫

γ

φigdΓ = R(φi)

which holds for any shape function φi not intersecting the Dirichlet boundary ΓD.

The conditions (24) to obtain a statically admissible field q̂i
∗ which is piecewise polynomial

of degree q inside each element of the star yield equations (29). The total number of degrees of
freedom are 2mN = m(q+1)(q+2) and equations (29) determine nrest−1 linearly independent
conditions in the case where the star does not intersect the Dirichlet boundary, ∂ωi ∩ ΓD = ∅,
or nrest otherwise.

For instance, in the case q = 2 the total number of degrees of freedom is 12m. The number
of conditions given by equation (29) depends on the following cases, see figure 3:

(i) star corresponding to an interior node,
(ii) the center of the star is a boundary node and its boundary intersects only the Neumann

boundary,
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to minimizing the energy of the accumulated flux approximation.
The local estimates q̂i are computed using an arbitrary order of the elements, from i = 1

to i = nnp. Thus, given a star ωi, the estimates q̂j , j = 1, . . . , i− 1 are already computed, and
the local estimate q̂i is chosen to minimize

∫

Ω

( i∑

j=1

q̂j
)
·
( i∑

j=1

q̂j
)

dΩ,

which is equivalent to minimize
∫

ωi

( i∑

j=1

q̂j
)
·
( i∑

j=1

q̂j
)

dΩ

because the degrees of freedom of q̂i only affect the contribution of the star ωi to the total
complementary energy.

5.6.1. Minimization of the local complementary energy The local complementary energy
associated with q̂i is
∫

ωi

q̂i · q̂i dΩ =
∫

ωi

(q̂i
∗ − q̂i

h) · (q̂i
∗ − q̂i

h) dΩ =
∫

ωi

q̂i
∗ · q̂i

∗ dΩ +
∫

ωi

q̂i
h · q̂i

h dΩ− 2
∫

ωi

q̂i
∗ · q̂i

h dΩ.

Using the vectorial notation introduced in (27) q̂i
∗ = Qc, the local complementary energy is

∫

ωi

q̂i · q̂i dΩ =
∫

ωi

(Qc) · (Qc) dΩ− 2
∫

ωi

(Qc) · q̂i
h dΩ + Ci

= cT
(∫

ωi

QTQ dΩ
)
c− 2cT

(∫

ωi

QTq̂i
h dΩ

)
+ Ci =: cTMc− 2cTb + Ci

where Ci does not depend on c.
The minimum of the local complementary energy restricted to the equilibrium conditions

(29), Dc = d, is enforced by the Lagrange multiplier technique

min
c∈R2mN ,λ∈Rnrest

cTMc− 2cTb− 2λT(Dc− d)

which yields the linear system of equations
(

M DT

D 0

)(
c
λ

)
=

(
b
d

)
.

The matrix M is a symmetric block diagonal matrix, the usual mass matrix. Indeed, if the
matrix Q is represented using the matrices Qk defined in the elements of the star

Q =
[
Qk1

Qk2
. . . Qkm

]
,

yields

QTQ =




QT
k1

Qk1
QT

k1
Qk2

. . . QT
k1

Qkm

QT
k2

Qk1
QT

k2
Qk2

. . . QT
k2

Qkm

...
...

. . .
...

QT
km

Qk1
QT

k1
Qkm

. . . QT
km

Qkm


 .

Thus, the matrix M is the diagonal block matrix

M =
∫

ωi

QTQ dΩ =




∫
Ωk1

QT
k1

Qk1
dΩ 0 . . . 0

0
∫
Ωk2

QT
k2

Qk2
dΩ . . . 0

...
...

. . .
...

0 0 . . .
∫
Ωkm

QT
km

Qkm
dΩ




.
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Moreover, if the flux field q̂i
h is represented using the matrix Q,

q̂i
h = Qch,

then, the vector b is computed using the matrix M as

b :=
∫

ωi

QTq̂i
h dΩ =

(∫

ωi

QTQ dΩ
)

ch = Mch.

5.6.2. Minimization of the accumulated local complementary energy Given a star ωi, the
previously computed local estimates q̂j , j = 1, . . . , i − 1 sum up to build the accumulated
global estimate

q̂i−1
ac =

i−1∑

j=1

q̂j .

Then, the local estimates q̂i are chosen such that the accumulated local complementary energy
is minimum ∫

ωi

(
q̂i−1

ac + q̂i
)
·
(
q̂i−1

ac + q̂i
)

dΩ.

Thus, the goal is to minimize
∫

ωi

(
q̂i−1

ac + q̂i
)
·
(
q̂i−1

ac + q̂i
)

dΩ =
∫

ωi

(
q̂i−1

ac + q̂i
∗ − q̂i

h

)
·
(
q̂i−1

ac + q̂i
∗ − q̂i

h

)
dΩ

=
∫

ωi

(
q̂i
∗ − (q̂i

h − q̂i−1
ac )

)
·
(
q̂i
∗ − (q̂i

h − q̂i−1
ac )

)
dΩ

As in the previous approach it is useful to represent the flux field q̂i−1 using the matrix Q,

q̂i−1
ac = Qcac,

which is associated with the vector bac

bac :=
∫

ωi

QTq̂i−1
ac dΩ = Mcac.

In this case, the minimization problem that has to be solved is

min
c∈R2mN ,λ∈Rnrest

cTMc− 2cT(b− bac)− 2λT(Dc− d)

which yields the linear system of equations to determine the unknowns c
(

M DT

D 0

)(
c
λ

)
=

(
b− bac

d

)
,

where the only difference with the previous approach is that the r.h.s. term of the equations
concerning the minimization of the local complementary energy contains an extra term.

6. ALTERNATIVE REPRESENTATION FOR q̂i
∗

An alternative representation of the flux fields q̂i
∗ is considered by taking advantage of the

decomposition of the space H(div, Ωk) used in the context of mixed or hybrid elements.

6.1. Piecewise polynomial representation for q̂i
∗
∣∣∣
Ωk

Let qk be a flux field in an element Ωk such that qk ∈ [Pq(Ωk)]2, that is, each component of
the flux field qk is a polynomial of degree q inside the element Ωk. In this case, the flux field
can be represented as

qk = Qkck
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where Qk and ck are defined in equation (26). Recall that the total number of unknowns in
2D is 2N = (q + 1)(q + 2).

However, this is not the natural representation of the flux field qk to enforce equations
(24). In order to introduce the natural degrees of freedom, some functional spaces have to be
introduced. Let Rq(∂Ωk) be the space of functions which are polynomial of degree q along the
edges of the triangle ∂Ωk and let Pq

0(Ωk) be the space of polynomials of degree q in Ωk with
zero average, that is:

Pq
0(Ωk) = {v ∈ Pq(Ωk),

∫

Ωk

v = 0}.

Let us consider the space

Φq(Ωk) = {pk ∈ [Pq(Ωk)]2,∇ · pk = 0 in Ωk, pk · nk = 0 on ∂Ωk},
where nk denotes the unit outward normal to the element Ωk. In fact, the space Φq(Ωk) is
also described using the cubic bubble function bk vanishing on ∂Ωk as

Φq(Ωk) = {curl(bkv), v ∈ Pq−2(Ωk)}.
Then, the natural degrees of freedom for qk are the following:

∫

Ωk

qk ·∇vdΩ ∀ v ∈ Pq−1
0 (Ωk),

∫

∂Ωk

qk · nkvdΩ ∀ v ∈ Rq(∂Ωk),
∫

Ωk

qk · pkdΩ ∀ pk ∈ Φq(Ωk).

It is worth noting that dim(Pq−1
0 (Ωk)) = q(q + 1)/2 − 1, dim(Rq(∂Ωk)) = 3(q + 1) and

dim(Φq(Ωk)) = dim(Pq−2(Ωk)) = (q − 1)q/2, thus

dim(Pq−1
0 (Ωk)) + dim(Rq(∂Ωk)) + dim(Φq(Ωk)) = (q + 1)(q + 2) = 2N.

6.2. Statically admissible flux field q̂i
∗

In order to obtain a statically admissible flux field, q̂i
∗ has to verify the restrictions given by

(24).
The degrees of freedom of q̂i

∗ in the star ωi composed by the elements of indices Ki =
{k1, k2, . . . , km} are for j = 1, . . . , m

∫

Ωkj

qkj
·∇vdΩ ∀ v ∈ Pq−1

0 (Ωkj
), (30a)

∫

∂Ωkj

qkj
· nkj vdΩ∀ v ∈ Rq(∂Ωkj ), (30b)

∫

Ωkj

qkj
· pkdΩ ∀ pkj

∈ Φq(Ωkj ), (30c)

where qkj
represents the restriction of the flux field q̂i

∗ to the element Ωkj
.

Using these degrees of freedom, equations (24b) affect only the degrees of freedom associated
with (30b). Indeed, equations (24b) yield

∫

γ

qkj
· nkj vdΩ = 0 ∀ v ∈ Rq(γ) , γ ∈ ∂Ωkj ∩ ∂ωi − {ΓN ∪ ΓD}. (31)

Similarly, equations (24c) yield
∫

γ

qkj
· nkj vdΩ =

∫

γ

φigvdΩ ∀ v ∈ Rq(γ) , γ ∈ ∂Ωkj ∩ ΓN. (32)
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Finally, equations (24d) also affect the degrees of freedom associated with (30b), since they
yield ∫

γ

qkj
· nkj vdΩ +

∫

γ

qkl
· nkl

vdΩ = 0 ∀ v ∈ Rq(γ) , γ ∈ ∂Ωkj ∩ ∂Ωkl
. (33)

Thus, equations (24b), (24c) and (24d) only affect the degrees of freedom associated with
(30b).

Using these degrees of freedom, it is also easy to impose (24a) and in this case these
restrictions relate both the degrees of freedom associated with (30a) and (30b). Indeed,
equation (24a) is equivalent to imposing

−∇ · qkj
= φif −∇φi ·∇uH in Ωkj , j = 1, . . . , m.

Since all the expressions in the previous equations are at most polynomials of degree q − 1,
the previous equation is equivalent to

∫

Ωkj

−∇ · qkj
vdΩ =

∫

Ωkj

[φif −∇φi ·∇uH ] vdΩ ∀v ∈ Pq−1
0 (Ωkj ) ∪ P0(Ωkj ).

Now, integrating by parts the l.h.s. yields
∫

Ωkj

−∇ ·qkj
vdΩ =

∫

Ωkj

[
−∇ · (qkj

v) + qkj
·∇v

]
dΩ =

∫

Ωkj

qkj
·∇vdΩ−

∫

∂Ωkj

qkj
·nkj vdΓ.

Thus, equation (24a) is equivalent to
∫

Ωkj

qkj
·∇vdΩ−

∫

∂Ωkj

qkj
·nkj vdΓ =

∫

Ωkj

[φif −∇φi ·∇uH ] vdΩ ∀v ∈ Pq−1
0 (Ωkj )∪P0(Ωkj ).

For v ∈ P0(Ωkj ), that is, for v constant in the element Ωkj , the previous restriction affects the
degrees of freedom associated with (30b)

−
∫

∂Ωkj

qkj
· nkj dΓ =

∫

Ωkj

[φif −∇φi ·∇uH ] dΩ, (34)

whereas v ∈ Pq−1
0 (Ωkj ) determines the degrees of freedom associated with (30a) in terms of

the degrees of freedom on the boundary associated with (30b),
∫

Ωkj

qkj
·∇vdΩ =

∫

∂Ωkj

qkj
·nkj vdΓ+

∫

Ωkj

[φif −∇φi ·∇uH ] vdΩ ∀v ∈ Pq−1
0 (Ωkj ). (35)

Once the degrees of freedom on the boundary of the elements (30b) are set, equation (35)
determines the value for the interior degrees of freedom (30a). Moreover, it is clear that the
degrees of freedom associated with (30c) may be set arbitrarily since they do not affect the
conditions of being statically admissible.

Equations (31), (32), (33) and (34) are (mb + mi)(q + 1) + m restrictions for the degrees
of freedom associated with the boundary, (30b). However, one of these equations is linearly
dependent of the others in the case of a star that does not intersect the Dirichlet boundary.
On the other hand, equations (35) uniquely determine the degrees of freedom related to the
interior, (30a).

Thus, for a star that does not intersect the Dirichlet boundary, the degrees of freedom which
are not determined by the condition of being statically admissible are the degrees of freedom
lying on the boundary not determined by (31), (32), (33) and (34) and the degrees of freedom
associated with the space Φq(Ωkj ). That is, there are

3m(q + 1)− (mb + mi)(q + 1)−m− 1 + m(q − 1)q/2

degrees of freedom which may be used to minimize the complementary energy.
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6.3. Complementary energy minimization

The use of the natural degrees of freedom (30) shows that given a statically admissible flux
field q̂, then

q̂ + q̂Φ

is also a statically admissible flux field, where q̂Φ ∈ Φ̂q(Ω),

Φ̂q(Ω) = {q̂, q̂|Ωk
∈ Φq(Ωk)}.

Thus, given a computed statically admissible flux field a simple post-process in each element
of the mesh allows minimizing the total complementary energy. Given a statically admissible
flux field q̂, the goal is to compute q̂Φ ∈ Φ̂q(Ω) minimizing

∫

Ω

(q̂ + q̂Φ) · (q̂ + q̂Φ) dΩ =
nel∑

k=1

∫

Ωk

(qk + qΦk) · (qk + qΦk) dΩ, (36)

where qk and qΦk are the restrictions of the global flux fields q̂ and q̂Φ to the element Ωk.
Moreover, qΦk = curl(bkv) for some v ∈ Pq−2(Ωk).

Thus, the minimization of the total energy (36) yields nel independent minimization
problems, one for each element of the mesh,

min
∫

Ωk

(qk + qΦk) · (qk + qΦk) dΩ.

Since both qk and qΦk belong to the space [Pq(Ωk)]2, using the vectorial notation introduced
in (26), the local flux fields qk and qΦk is represented using the matrix Qk as

qk = Qkck , qΦk = QkcΦk,

and the complementary energy in the element Ωk is
∫

Ωk

(qk + qΦk) · (qk + qΦk) dΩ =
∫

Ωk

qk · qk dΩ +
∫

Ωk

qΦk · qΦk dΩ + 2
∫

Ωk

qk · qΦk dΩ

= cT
Φk

(∫

Ωk

QT
kQk dΩ

)
cΦk + 2cT

Φk

(∫

Ωk

QT
kQk dΩ

)
ck + Ck

= cT
ΦkMkcΦk + 2cT

ΦkMkck + Ck

where Ck does not depend on the degrees of freedom cΦk.
Note however that not all the values cΦk are actual degrees of freedom since dim(Φq(Ωk)) =

(q− 1)q/2 while cΦk ∈ R(q+1)(q+2). Then, denoting by cdof
Φk the actual degrees of freedom, one

has

cΦk = QΦcdof
Φk

where QΦ is the (q + 1)(q + 2)× (q − 1)q/2 transformation matrix.
Thus, the minimization problem reads:

min
cdof
Φk ∈R(q−1)q/2

(cdof
Φk )TQT

ΦMkQΦcdof
Φk + 2(cdof

Φk )TQT
ΦMkck + Ck,

leading to the system of equations

QT
ΦMkQΦcdof

Φk = −QT
ΦMkck.

Note that for q = 2, Φ2(Ωk) = {curl(bkv), v ∈ P0(Ωk)} = 〈curl(bk)〉.
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has more degrees of freedom. However, numerical examples show that there is no considerable
gain in increasing the interpolation degree q. On the contrary, the choice of the local refinement
parameter nh is crucial in order to obtain upper bounds which indeed overestimate ‖e‖. Small
values of nh the reference error provides a crude approximation of ‖e‖ and the upper bound
for ‖eh‖ is not in general an upper bound for ‖e‖.
Table I provides a brief sketch of the degrees of freedom for both the asymptotic and the strict
strategies. As can be seen, the cost of computing the dual estimates q̂i

∗ for q = 2 using the less
efficient strategy (Lagrange multipliers) is the same as the asymptotic bounds for nh = 6.

asymptotic bounds
nh 2 3 4 5 6

d.o.f. 3m + 1 6m + 1 10m + 1 15m + 1 21m + 1

strict bounds
q d.o.f. nrest free d.o.f. d.o.f. lagr. mult.
2 12m 9m− 1 3m + 1 21m− 1
3 20m 14m− 1 6m + 1 34m− 1

Table I. Number of degrees of freedom of the local problems for an interior star with m elements, both
for the asymptotic and strict strategies.

7. NUMERICAL EXAMPLES

The behavior of the estimates presented above is analyzed in four numerical examples. Some
of the selected examples have been used by other authors to assess the performance of different
error estimation techniques for the Poisson problem [11, 28, 29, 30].

Linear triangular finite elements and subproblems of degree 3, q = 3, are employed in all
the examples. In the examples where the analytical solution is known, the quality of the error
estimates is measured with the index

ρ := ‖e‖est/‖e‖ − 1.

Index ρ is the usual effectivity index minus one. The accuracy of the error estimate is given by
the absolute value of ρ and the sign indicates if the estimate is an overestimation (positive ρ)
or an underestimation (negative ρ) of the true error. For instance, ρ = 2% indicates that the
estimated error is larger than the true error with a factor 1.02 and ρ = −0.3% means that the
true error is underestimated by a factor 0.97. Note that for strategies providing strict upper
bounds for the energy, ρ is positive, whereas asymptotic strategies may provide negative values
of ρ mainly for coarse meshes.

The statically admissible flux field q̂ also provides local error information which can be used
as an indicator for mesh adaptivity via the elemental contribution to the total complementary
energy,

‖e‖2ub :=
∫

Ω

q̂ · q̂dΩ =
nel∑

k=1

∫

Ωk

q̂ · q̂dΩ =:
nel∑

k=1

ηk.

The elemental contributions ηk can serve as informative mesh adaptivity indicators for
controlling the error in the energy norm.

Two different adaptive strategies are used both based on the elemental contributions ηk

to the total upper bound ‖e‖2ub. First, at each level of refinement, only elements for which
ηk > ‖e‖2tol/nel are refined, where ‖e‖2tol is a user specified tolerance for the precision of the
global energy norm and nel is the number of elements in the triangulation at that level. Second,
the target ‖e‖2ub < ‖e‖2tol is achieved producing a series of adapted meshes by subdividing at
each remeshing step a fixed percentage of the elements, those with larger contribution to the
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upper bound ‖e‖2ub. In both strategies, by preferentially refining the mesh elements contributing
more to the total upper bound, we obtain a simple but effective adaptive strategy.

The behavior of the upper bound for the energy norm introduced in the present work is
compared with the strategies presented in [18, 31, 11]. As mentioned in section 3.3, [18] solves
the local problems (8) using a local finer mesh, thus yielding asymptotic upper bounds for the
energy norm. The strategy presented in [31] is a classical hybrid flux method where first the
(linear) equilibrated fluxes are computed and then the local elementary problems are solved
using a local fine submesh (asymptotic upper bound). Finally the results are compared to the
strategy presented in [11] which also provides strict bounds for the energy norm and differs
from [31] in the solution of the local elementary problems. Instead of using a local submesh,
strict bounds for the energy are recovered using a dual approach.

The bounds computed using the strategies presented in [18], [31] and [11] are denoted
in the following as asymptotic flux-free bounds, asymptotic equilibrated bounds and strict
equilibrated bounds respectively.

7.1. Uniformly Forced Square Domain

A simple diffusion model for the temperature distribution u(x, y) in a square plate Ω =
(−1, 1)×(−1, 1) is considered. The specific source term in this example models uniform heating
of the plate f = 1, and the boundary condition models the edge of the plate being kept at an
ice-cold temperature, that is, homogeneous Dirichlet boundary conditions are considered on
all the boundary.

The simple shape of the domain enables the solution to be explicitly represented,

u(x, y) =
1− x2

2
− 16

π3

∞∑

odd k=1

sin(kπ(1 + x)/2)(sinh(kπ(1 + y)/2) + sinh(kπ(1− y)/2))
k3 sinh(kπ)

.

Figure 5. Example 1: series of uniformly h-refined linear triangular meshes. Initial mesh (left), finite
element approximation on the mesh with 2048 elements (center and right).

The convergence of the bounds is analyzed for a uniform mesh refinement in a series of
structured meshes. The initial mesh is composed of 8 triangular elements (half squares) and in
each refinement step every triangle is divided into four similar triangles. Both the initial mesh
and the finite element approximation obtained with the mesh of 2048 elements are shown in
figure 5.

The upper bounds for the error in the energy norm are shown in table II. Five different
strategies have been used to compute an upper bound for ‖e‖. The upper bounds computed
using the flux-free strategy presented in this work — either using the minimization strategy
presented in section 5.6.1 or 5.6.2 — are denoted by ‖e‖ub and ‖e‖acub respectively. That
is, the degrees of freedom for the flux field q̂ are determined either minimizing the local
complementary energy or accounting for the accumulated energy. Note that the superscript ac
stands for accumulated. The improvement described in section 6.3 has also been implemented
for the two approaches (that is, after computing the statically admissible flux field q̂, for each
element the 3 degrees of freedom associated with Φ̂3(Ω) are determined to minimize the total
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strict asymptotic
nel ‖uH‖ ‖e‖ ‖e‖ub ‖e‖acub ‖e‖equb ‖eh‖ub ‖eh‖equb

8 0.66667 0.34331 0.34344 0.34344 0.41276 0.32042 0.38216
32 0.69722 0.27604 0.28877 0.27802 0.41079 0.27931 0.37885
128 0.73412 0.15288 0.15948 0.15384 0.23194 0.15492 0.21375
512 0.74574 0.07857 0.08178 0.07909 0.11949 0.07958 0.11013
2048 0.74883 0.03956 0.04112 0.03984 0.06009 0.04005 0.05539

Table II. Example 1: upper bounds for the error in the energy norm in a series of uniformly h-refined
linear triangular meshes.

strict asymptotic
nel ‖e‖/‖uH‖ ρ ρac ρeq ρh ρeq

h

8 0.51497 0.036% 0.036% 20.228% −6.669% 11.316%
32 0.39591 4.611% 0.718% 48.817% 1.187% 37.246%
128 0.20825 4.314% 0.629% 51.708% 1.333% 39.813%
512 0.10535 4.088% 0.671% 52.082% 1.287% 40.172%
2048 0.05283 3.948% 0.698% 51.886% 1.244% 40.017%

Table III. Example 1: quality of the upper bounds, ρ, for the error in the energy norm in a series of
uniformly h-refined linear triangular meshes.

complementary energy). However, the results are nearly identical to those obtained without
this minimization strategy and therefore are not shown in table II. Thus, the minimization
strategies described in sections 5.6.1 and 5.6.2 implicitly minimize the complementary energy
with respect to the degrees of freedom associated with Φ̂3(Ω). The strict upper bound computed
using the strategy presented in [11] is denoted by ‖e‖equb, where the superscript eq stands for
equilibrated. Finally, the asymptotic version of ‖e‖ub and ‖e‖equb have also been computed
following [18] and [31] respectively, and are denoted by ‖eh‖ub and ‖eh‖equb. The reference mesh
is obtained dividing each element of the finite element mesh into 16 new elements. Table III
shows the quality of the bounds for each of the strategies. As expected, the upper bounds
provided by the asymptotic strategies are lower, and hence sharper, than the corresponding
upper bounds obtained using strict strategies. However, this is not always a positive feature:
for rather coarse meshes the asymptotic upper bound is not an actual upper bound of the
exact solution (note the negative sign in the index ρh). Since the asymptotic upper bound
estimates are only guaranteed to overestimate the reference values, for coarse enough meshes,
they do underestimate the exact value ‖e‖.

It is clear that flux-free strategies provide much better effectivities than the flux equilibration
strategies. Moreover, the minimization of the complementary energy accounting for the
accumulated nature of the flux field provides very good effectivity indices (ρac < 10−2

which implies an overestimation of the ‖e‖ of less than 1%). In fact, in this example the
minimization of the accumulated complementary energy provides better effectivity indices
than the asymptotic bounds, i.e. ρac < ρh in all the meshes but the coarsest one where the
index ρac can not be lower than ρh since strict bounds always produce positive indices ρ.
Figure 6 also shows the bounds and their effectivity indices. As can be seen, all the strategies
have the expected rate of convergence O(h), and the upper bound ‖e‖acub provides a very good
approximation to the exact error ‖e‖.

Figure 7 shows the spatial distribution of the exact energy norm ‖e‖2 and of the upper
bound (‖e‖acub)2 for the final mesh of 2048 elements, that is, in each element Ωk the local
contributions ‖e‖2k and ηac

k are shown. The spatial distribution of (‖e‖acub)2 is nearly the same
as the distribution of ‖e‖2 thus the quantities ηac

k serve as good indicators to drive an adaptive
procedure aimed at reducing the error in the energy norm. The spatial distribution of the local
effectivity index ηac

k /‖e‖2k and the histograms representing the occurrences of local effectivity
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seen, in this example the accumulated strategy improves the effectivity index by a factor 2
which is not such a remarkable behavior than in the first two examples. The effectivity indices
associated with the hybrid-flux strategy are all above 60%.

bounds effectivities
nel ‖uH‖ ‖e‖ ‖e‖ub ‖e‖acub ρ ρac

384 1.3492583 0.1232893 0.1353269 0.1283561 9.76% 4.11%
686 1.3524293 0.0814326 0.0891861 0.0847853 9.52% 4.12%
1788 1.3541502 0.0444125 0.0479465 0.0462233 7.96% 4.08%
5880 1.3548864 0.0207903 0.0223122 0.0215768 7.32% 3.78%
10428 1.3549815 0.0145790 0.0155984 0.0151040 6.99% 3.60%
23662 1.3550356 0.0088861 0.0095018 0.0091826 6.93% 3.34%

Table V. Example 4: upper bounds for the error in the energy norm in a series of adaptively h-refined
linear triangular meshes and their quality.

8. CONCLUDING REMARKS

This paper introduces a new technique to compute strict upper bounds for the energy norm
of the error in the finite element approximation in the context of the Poisson equation. The
bounds are obtained using a modification of the flux-free technique presented in [18] where
asymptotic bounds for the energy norm are computed. The strategy is described in detail
emphasizing the numerical implementation of the bound procedure.

The main advantage of the presented flux-free approach with respect to the hybrid-flux
methods is that the local problems are self-equilibrated and there is no need to compute the
equilibrated flux to ensure the solvability of the local problems. The value of the fluxes of the
statically admissible flux field at interelementary boundaries are implicitly computed by the
flux-free strategy, and do not require the user to make an initial guess on the value of the
fluxes as in the hybrid-flux method (the fluxes on the edges are taken to be linear and an
initial constant guess for the fluxes is computed using the finite element approximation). This
causes that the flux-free approach yields much sharper bounds than the hybrid-flux method.

It is worth noting that the upper bounds for the energy norm may be used to assess the
accuracy of numerical approximations of quantities of interest taking into account that the
error in a quantity of interest may be rewritten in terms of energy norms [5].

Finally, the distribution of the local contributions to the error are well suited to guide
adaptive procedures.
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