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1 Introduction

In an attempt 1o develop efficient finite element sehemes for the nimerical simn
lation of time-dependent conveetive transport problems, Taylor Galerkin (1G)
schemes with third- and fourth-order accuracy in the time step were developed
over the last years and successfully applied in the solution of engineering pro
blems, See for instance veferences [3, 5, 6] for an overview ol Lhe propertios of
third and fourth order TG schemes for pure advection. Practical applications of
TG methods in the solution of linear and nonlinear conveetive Lransport problems
are described in references |7, 18, 26).

By contrast, the application of higher-order TG schemes to mixed problems
desceribing Lransient transport. by both convection and diffusion appears Lo be
much more difficult, This is die to the presence of the Laplacian operator fn e
governing equation which does not allow the TG procedure Lo be carvied out to
third or higher order in conjunction with the use of standard Y finite elements
for spatial discretization. Reference [4] presents an early study of second-orde
Taylor-Galerkin schemes for convection-dillusion problems,

In the present paper, a study Las been made of other high order tine-stepping
methods with the view of identilying schemes that could possibly he nsed for a
time accurale finite element solution of transienl problems describing convective
diffusive transport, Botl explicil and implicit methads are considered,

To be easily implemented, higher-order time-stepping schemes for the convecti
on-chiffusion equation should not involve highet-ovder time derivalives. This s
the case for Runge-Kutta methods [8, 9] , as well as for multi-stage sehemes ema
nating from Padé approximations to the exponential function |1, 17, 21|, As will
be shown, these methods achieve higher-order accuracy through o nwlti slapge
process involving first time derivalives only. Moreover, some implicit methods
possess the interesting property of unconditional stability in application to hy-
bridl parabolic-hyperbolic equations. They should thus prove useful for solving
transienl, advection-diffusion problems using finite elements.

To provide a starting point for the subsequent rlrw-.:h,l[.n'z|m|!-lﬁ. we pecill in Section
2 the basic steps leading to second order accurate TG schemes Tov the linear
advection-diffusion equation.

Ways to improve the accuracy of siuch TG schemes in the presence of conveelion
dominated situations are discussed in Seclion 3.

This is followed in Section 4 by a discussion of multi-stage schomes obtained
from Padé approximations to the exponential function. The properties ol such
schemes are analyzed in detail in Secfion 5 including their stability domain in
1D and 2D, and their phase and damping responses.

Then, Runge-Kutta methods of high order are introdueed in Section 6. Both
explicit. and implicit methods are considered. Their properties are compared
with those of corresponding Padé approximations.

Other higher-order implicit methods are analyzed in Section 7 where nnplictt
schermes of second, fourth and sixth order aceuracy are derived through Simnpaon s




guadrature pule, To this end, a given polynomial vepresentation of the first time
derivative 15 assumed over a lypical time step.

While (e compuber im|':|¢'nl¢.'ni.a.t.i(.m of Lhe ('x;)iiriL Linl('-ﬂl.t'[:lping methods does
ol pose any problem, the situation is quile different when high order implicit
methods are used. In lact, such methods generate sets of coupled [irst-order
equations whicli give rseto large algebrale systems of ungymmetrie and possibly
nonlinear equalions.

Ninnerieal pesults are Lhen 1.n'¢t:~+~::r|t.¢‘.tl in Section 8 to conlirm Lhe accuracy and
atablility properties ol some of the multistage methods considered in Lhe -
per. In particular, a new two dimensional Burgers test problem with analytical
solution is presenfed.

Finally, Section 9 presents the main conelusions of the present study and indicates
the lines of hirther vesearch developements in the area of convection-dillusion
phenomeni.

2  Basic second order TG scheme

I order Lo intraduce the second order TG method for evolulionary adveetion-
dilfusion problems in the simplest possible way, while retaining all the essential
[eatures of the method, we first congider the linear advection-diffusion eruation
for the scalar quantity o

Wy = = Vo uV"-‘u. (1)

where a ix the advection velocity and v = 0 the dillusion coellicient, Both a and
v are assimmed Lo be constant.

By contrast with the current practice in the finite element solution of initial
houndary valiie problems which cousists of performing spatial discretization be
lore Lime diseretization, the reverse is true in the TG au':pl‘ti);].t:]l. i fact, Like
i the Las-Wendroll finite difference method, time diseretization preceeds space
diseretization in the TG approach.

2.1 Time discretization

Let vis thus leave the spatial variables @ continuous and digeretize Fq.(1) in time
with the aid of the following Taylor servies expansion

. ] : .
(u™* = ") AL = a4 ‘E.'_"lf.'!.‘,;', + O(AL*) (2)
which includes lirst- and second-order time derivatives. While the former is pro.
vided divectly by Fe.(1), the latter can be oblained hy taking the time derivative

ol the P.'*“’"“'-'i”l-’. partial differential equation (1) which gives

Uy = —i2» Vi Vi'u‘. (3)

w7



At this point we note that the vight-hand side of (3) has to be left in its mixed
spatial-temporal form, because the elimination of 1, through (1) would introduee
higher-order spatial derivatives which would preclude the use of finite elements
with % eontinuily (e.g. the Lagrange family) for the spatial discretization, For
Lhe same reason Lhe Taylor series expansion (‘J,) had to be limited Lo Uhe second.
order time derivative, This is in contrast with the pure advection case (12 = 0)
for which the third-order thime denvative can be vetained in the Taylor series and
schemes devised with thied-order accuracy in Lhe time step (see t.'i]].

The substitution of u} aned uf) in Taylor expangion (2) yvields the semi-digerete
equalion

(“n.-l-i _ “")X"df‘ - (—ﬂ'v + .';VE)U’-” } :;LU( iV Hv")h:' ()

i) 1

which, upon approximation of ) by (u — ")/ AL can be rearranged as

Il - Elz.ﬂf(--u-v 'I' 5 Vﬂ),('\}t“‘l'r - H")/':\”f =" (—ﬂ_.« v | p\')'i]"u- (f"’)

Scheme (5) is, by construction, second-order aceurate in the Lime step and it
is mmediate to recognize that it represents an neremental form of the Crank
Nicolzson L'lll‘l@*!ilm.‘-lipil‘:g method. This is, however, not the case when variable
coeflicient or nonlinear equations are considered.

2.2  Spatial discretization

To obtain a lully diserete equaltion, we apply the Galerkin formulation Lo scheme
{ﬁ) with local approximalions of the form

(M (a) = 3 Ny(a) U7, (6)
/

Introducing the ineremental unknown W = (/40 _ (/v and denoting by
(*ur, w) the Ly inner produet [ uwwdf? over the domain of the problem, and
(w, w)p the Ly product [owwdl” over the contour of the domain, the Galerkin
equations take the form

(W™t NYAL+ %(a VW OND ¢ .j,.(” VW ¥ N

1
-§<yn-VM"""', Nf}!' = —(a - VU" Np)
—(eNU", O N 4+ (VU Nj)p VI (7)

Fepuation (7) is valid for arbitrary basis functions Ny and form the basis for
developing Taylor-Galerkin finite element schemes for the advection-diffugion
equation (1), Al this poinl, il is important to note that the unknown W™
is governed by an unsymmetrie generalized mass matrix, This is indeed due 1o

6



the presence of the unsymmetric convection operator. Morcover, sinee Uie mass
matrix ineludes all the adeditional terms due to the second-order accuracy i time,
the TG procedure is clearly ineffective for (ransient problems evolving towards a
lighly convective steady state. This diffieulty may be cireumvented by the use
of a splitting-up method in which the advection-diffusion problem is decom posed
mto a pure advection problem followed by a pure diffusion one [4]. This kind of
schemes usnally have a low order precision.

2.3  Application to linear basis functions

L the case of piecewise linear basis funetions on a uniform 1D mesh of size h,
Fep (7) ean be written in terms of the nodal parameters /7 as

Lo .
[l Ebd . {j(—r'f_'\u + fafq’?“]|(f{:"” = l',{,"} = (=ecd + r“"’)f.f;' (8)
where e = adt/h is the Courant number and d = vAL/A? the diffusion number,
Here Ag and 4% ave the standard notations for the central difference operalors:

l
d“ !{J r+— 2:("},!"" = (’J_I)

§8) = Wi = 20 + Uyoy) ()

To analyze the properties of the TG scheme (8), we substitute a Fourier mode
e inte iLoand, setbing € = kb, find an amplification in one time slep of

—iesin€ — ddsin? ¢
Gra(éed) = 14— , S
(&, ¢y d) | - (2 — 2d)sin® 3¢ + Licsiné

e*)E* 4 te(d ;ll-.:t?]fa s as £ = 0,(10)

= | —icf — (d+4

| —

where £ = kb is the dimensionless wave number, while k is the dimensional wive
numiber of the Fourier mode ™7, Gl is called the amplification factor of scheme
(8) and it verifies (/141/ (3 = Ciye,

The corresponding quantity for the differential equation is

o = 618 (11)

where & = dé? and w = ¢f are the exact damping and frequency, respectively.
From (10) it follows that this TG scheme is second-order accurate. To evalu-
ale the aceuracy of the scheme beyond the asymptotic limit, we introduce the
damping 8,,., and frequeney Wy of the fully discrele equations throngh the
relation

C-l'".f'f'r' = I "("'H!h’l A ey uml ( 1 2)
which implies
"-5:.“““ === hl l (J".l‘fr',' l
Waum = _ﬂ-l‘}!.'((;"'}'.':}'). (1 3:]

7



In Tables | and 2 the phase error A = w0 fw — | and the damping ratio
buin /& for the TG scheme are compared with those of the Crank-Nicolson finite
difference scheme (CN-FD) and the explicit Euler-Galerkin finite element seheme
(I5G-T"E) which is only first order accurate,

From Table | one notes that the Taylor-Galerkin scheme shows a substantinl fim-
provement in phase spoed with respect Lo the implieit finite difference seheme ane
the Buler finite element methad, The values of Lhe damping ratio in Table 2 indi

cate that the Taylor Galerkin method reproduces very well the physical diffusion
i Lhe vegion of acenrate spatial resolution (0= &< %) and that it is overdiflu-
sive in Lhe high-requency region where the phiasse-speed error i maximmm. The
Crank-Nicolson finile difference selieme is instoad systemalically underdiffusive,
in particular for short wavelengths, Finadly, the Fuler linite element melhod |as
i rather limited stability interval and does noi exhibit enough damping in the
region of accuracy. Moreover, in the limit & — 0 the damping ratio for Fuley

T —

| ¢ [CN-FD[H0—FE[T0-FE]
/4 =0.1010 =0.0223 —0.0010
0.05 | x/2 —0,3630 ~(,0800 —0.04897
Jr/4 | —0.6D82 ~0.0562 —).2829
/4 0,100 0.0571 (.0042
02100 | «/2 | =(.3592 0.2888 0.0311
Jrefd | ~0.6015 11360 (). |888
m /i ~0.008] e —0.0001
0.2 | n/2 0.3295 —— 1.0375

3 /4 0.6613 —= 0.6122
w/i ~0. 1087 - —0.0145
005 | m/2 0.3748 —— (.0822
dr /4| =0.7009 —- ~0.3187
w/4 —~0.1082 s —0.0137
0.5 0.1 | n/2 —0.3705 - - —0,0696
3/ —0.6945 —— —0.2510
r/d 01060 —— =0.0108
0.2 | /2 —0.3528 - —0.0162
B An /i —[']:gﬁﬁ‘.rl —— (0. 1263

Table 11 Phase errors A lor fully diserete approximations to the adveetion-

diffusion equation. Comparison bhetween Taylor Galerkin scheme with piecewise
linear elements, Buler-Galerkin and Crank-Nicolson finite difference seheies.



[0 [ & [CN—FD[EG—FE[TG~FE]

' w/4 0.945 | 0.650 1.046

0.05 | n/2 0.803 0.841 1.191

3 /4 1.613 1,351 1406

/4 (.945 0.863 1046

0.2 0.1 | m/2 (1.805 I.104 |.197

3r/d | 0617 1704 1.458

w4 | 0946 -~ 1047

0.2 | n/2 .812 = 1,222

gefa) 0636 | oo | L

w/i | 0.920 — 1014

0.05 | =/2 | 0.763 - 1067

3 /4 (.579 1.227

w4 0.921 syt 1.014

0h 0 001 w2 (.765 e 1.06Y9

37 /4 ().G01 - 1,242

wfd | 0.921 . 1015

0.2 | n/2 0.770 -— 1,050

3 /4 0617 = l.2rIH_

Table 2: Damping ralios 8,,./0 Tor lully discrete approximalions Lo the

advection-diffusion equation. Comparison between Taylor-Galerkin scheme with
piecewise linear elements, FEuler-Galerkin and Ceank-Nicolson finite diflerence
sclienies,

scheme is lound to be | — ¢ /2d instead of one. Therefore the diffusion of sig-
nals wilh long waveleugths is not correctly reproduced by this scheme unless
e [2d — 0, a condition which implies the use of exceedingly small lime steps in
advection-dominated problems.

3 New one-step TG schemes

I this section we introduce two new TGaschemes with good accuracy and sta
hility properties for bolh convection and diffusion, These schemes can be seen as
extensions of the second order explicit Taylor-Galerkin scheme TG corvesponding
to a Lax-Wendrofl method (see [3]).

b



3.1 Time discretization

Asin the previous section, we first consider the linear convection-dillusion equa-
tion for the scalar quantity «

i+ aVu=pVu (14)
IFrom (14) we have:

ul! = —a+:Vu" +;;V'311"
upy = (@ VY e ) = eV eV

T S S
(E'V)!'ﬂ." + gyv;ﬂ (”‘_{ﬂ fi

) + (A ) (15)

Now, introducing (15) into the Taylor series expansion in tme lor u, we oblain
the scheme

] uttlh =gyt : Al ;

|l - Al uVi] —m C e V" + N " T)-{c:.v V)" (141)
This s a new TG-algorithm (TG2C2D) for convection-diffusion problems. s
global accuracy is O(ALZ, 12 AL, but in general it has second ovder acenrney he-
cauze usually #* < Al This method is identical to 'T'G2 Ili] lor prire conveetjon
(= 0). However, il represents a valuable extension of TG2 for convection:
diffusion problems because, as will be seen in section 3.3, the new schieme retains
Whe phase accuracy of TG2, bul has a better stability when the diffusion domi
nates the transport process. The scheme (iii') liag Lhe same drawbacls as 1702
lor pure conveetion in that it has a strong stabilily restriction and exhibits some
numerical dispersion. We can cireunvent this problem by incorporating in the
schieme a third order approgimation of the convective term. This leads Lo a new
improved scheme for convection-diffusion equations (TG3C2D) which reads:

Ai* 1wt — . Al .
] - —,[ﬂ-v)? — At u? s —a s Vu" 4 vV 4 (V)"
0 At 2
(17)

The global accuracy of scheme (17) 13 (J(m“,;ﬂm,pdr”), Usually 2 < At
so Lhe scheme is Lhivd order aceurate as regards convection and second order
accurate lor diffusion. If » < Af the method is third ovder aceurate. When
v =0, TGICZD reduces to the classieal TG3 schieme mtroduced in [3].

3.2 Spatial discretization

We apply the Galerkin formulation in space Lo oblain the fully disereie version
ol the previous schemes. We use the standard local interpolations in Fe.(6) with

10



linear or multilinear shape linclions. Let £2 denote the domain of Lhe problem,
and 1" = a2 its boundary, The scheme TCG3C2D Lukes Lhe lorim:

£ [(Nos M) + A (VN TN = (n- TN, V) )

b AL (- VN a- 9N = (a-DN; a-n Nip) | (U = timyr At =
i |~ (@ VNG NY U = (9N, N U

+ A (= (as VN, ca« VNYUT (s VN anNi) )

+ue (VNG Ny Uy
A similar expression is obiained for 1'G202D.

3.3 Accuracy and stability analysis

I we e piecewise linear basis lanctions on a uniform mesh. (e evolition of a
Fourier camponent, can be written in the form

Ut =Gy

where Uy = Ulag 4oy yo 4 Lhy Lo + ndt) and €7 18 the amplification Tactor (A
and hoarve the time and spatial ipcrements respectively ). The numerical values
ol (/ are compared fo the exact ones in Table 3. where
b 11
c= adt/h  Cowrant number
d = wAA dilTusion number
= hk adimensional wave number
Mo(€) = |+ Heosé — 1) consistent mass matrix
Alé,e) = desing€ 1% order conveetion term
K(&e)= 2c*(cosf —1) 2" order convection term
P(E,d) = 2d(cosé — 1) 1™ order diffusion terim

1D 2D
(e g et e—l-E-icg
Cireacan L4 (D= A+ K/2) /(Mo — D)
Clrcacan | L4+ (D — A4 K/2)[(My — D — K/6)

Table 3: Structure of the amplification lactors,



In 20

Emg_n
[

M€
A(f.n) =
K(E¢) =

INE,d) =

(e1, ¢2) = aAl [/l Courant vector
v ALY diffuzsion number
(€, n) = hk = h{ky, ky) adimensional wave vector
i (I + Lmu{) (l - —tmr;)
ﬁ ln-un{ (l i ’(‘t)'ﬂj) b oegsin r;(i L mq.f)|
J (l + —c‘mu) (cosé — 1) 4« ( i Jtu}.f) (cosay ~ l)ll
—J!f 1egsin fsiny
l!-:-d I(I = %L’nﬁ'q) (cosd — 1) + (l o+ ;}ie';fm"{) (cosy J)I
~2dain £ sty

)
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e
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I waialile
0 e |
0. 200 240

Figure 1: Stability limits in 1D and 2D. (Pe = ¢f/d'is the Péeler number).
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dint. method = (e

1D | TG202D L = 2+ O

1| TG3Ce2D [ Q)

2D [ TG20C2D | 1 — 2dey ~ L& — fcd - felestty — Seielen® + O(&Y)
20| TGsC2h I — 2y 4 O(£")

Table 4: Spatial order of aceuracy.

dimension | method | convection
|G |1/
b [mascep |
2D TG2O2D | 0.28881
oD | TGIC2D | 050020

Table 5: Stability limils in pure conveclion.

The stability linits of sehemes TG2O20 and TG302D in 1D and 2D are shown
in Fig. | and Table 5 .

One notes that TG2C2D and TGRC2D improve the stability limit of the usual
second-order TG methods and maintain a good phase aceuracy when diffusion
increases (see Migs. |-3Iu.|u|| Tables G and 7). Only the damping ratio becomes
aligthly less acenrate with increasing dilfusion for high Irequencies. For a move
complete comparison we also show in Fig, | the stability limits of three other
t'xlnlirii. miethods, The first 1s.a Lhree slape Lhard-order TG scheme [3'1‘(1) |l.'5, 'lG|L
The second is a one-step second-order (for convection) TG scheme (TG2Pe)
(19, 20], while the third method is a iwo-step scheme with operator splitting
(T'G25e) [25]. Also, these three methods suller from a reduced acenracy when
chiffusion is important. As aillistration, we have reported in Fig, 3 the response
of 3T'G and 'TG2Pe,

The spatial accuracy of the new methods can be appraised lrom Table 4, TG2C2D
and TGIC2D arve third and lourth order accurate, respectively, in 11, In 2D a
diffusive term (—zdfq) appears which degrades the damping response, but not
Llhie phase sinee Lhe additional term is real, This term comes from Lhe use of a
consistend imass malrix,



e | d | & [TG2D [ TG0 [TG —TFE| 376G
A8 | +0.0000 | —0.0001 | -0.0006 | -0.0001
afd | 400025 | —<0.0018 | -0.0043 | -0.0023
0.2 0 | «/2 | <0.0166 | —0.0359 [ -0.0521 | -0.0448
Br/d | 02110 | —0.2538 | -0,3008 | -0.30:34

n/8 | 40,0008 | —0.000] 0.0006 [ -0.0001
wfd | 400025 | =00018 | —0.0040 | -0.0024
021005 | =/2 0.0166 (1.0359 =097 [ -0.0470
3[4 0.2110 [ —0.2538 | —0.2829 | -0.3027

/8 | +0.0009 | —0.0001 0.0006 | -0.0001
w/A4 | 40,0025 | —0.0018 0.0033 | -0,0025
0.2 | 01 | x/2 0.0166 | =0.0359 | —0.0311 | -0.0464
Ju/4 | =0.2110 | —0.2538 —0.1888 | 0.2172

n/8 | +0.0000 | —0.0001 0.0004 | -0.0002
afd | +0.0025 | —0.0018 0.0001 | -0.0025
02102 [ x/2 | =0.0166 | —0.0359 | +0.0376 | -0.0077
da/d | —0.2110 | —0.2538 | +0.6122 | 1.3727
7/8 | 40.0065 | 0.0000 0.0033 [ -0.0001
afd | +0.0264 | 0.0000 | -0.0148 [ -0.0015
0.5 0 | a/2 | 401154 [ 0.0000 | -0.0864 | -0.0356
Ba/d | 0.3233 [ 0.0000 0.3392 | -0,2933

m/8 | +0.0065 0.0000 —0.0033 | -0.0001
w/d | 40.0261 10,0000 0045 | -0.0023
0.5 | 0:05 | /2 | 400110 0.0000 0.0822 | -0.0489
dn/d | 408283 | 0.0000 ~(L3187 | -0.3343
/8 | +0.0065 | 0.0000 00033 | -0.0002
w4 | +0.0264 0.0000 0.0138 | -0.0032
0.5 | 0.0 | w/2 | 40.1154 0.0000 0.0696 | -0.0650
Sm/4 | 403233 | 0.0000 —0.2510 | -D.3730
/8 | 40,0065 | 0.0000 —0.0031 | -0.0003
r/4 | 40,0264 0.0000 0.0108 | -0.0051
0.5 02 | nf2 | 40.1154 (,0000 ~0.0162 | -0.1066

Sm/4 | +0.3233 | 0.0000 | 401263 | -0.0229

Table 6: Phase errors A for fully diserete approximations to the advection:
diffusion equation. Comparison between Taylor-Galerkin scheme with piecowise
linear elements TG-FE, 3TG. and the new schemes TG2021) and TGAC2D.
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e [ d | & TTGRCID | TG3C2D [TG-TE | 316G
/5 | 1000 1.000 LOoo | 1.000

#/4 | 0.999 (1.999 1.000 | 1.000

02| 0 | x/2 | 0987 0.956 1,000 | 1.000
dr/d | 0.903 0.905 LO00 | 0.999

/8 | 1013 1.013 1011 1013

w/d | 1,056 1,053 LO46 | 1,053

0.2 ] 005 | o/f2 1241 1,226 [. 18] | 216
Grfd | 1A6Y 1511 406 | 1413

/8 | 1007 1006 101 1.013

[ 1.030 1.026 104G | 1.05:

0.2 00 | /2 | 1118 1.102 1197 | 1.210
drfd | 1.234 1,191 LAGS | 1405

T8 | 0.998 (.994 1011 1.013

w4 | 0.991 (.991 LL.047 | 1.052

0.2 0.2 | w/2 (1.980 (1,966 1.222 | 202
Bfd | 0947 0.917 1726 | 1.373

“x/8 | 1000 L.000 L.000 | 1000

a/d | 0.098 0.907 LO00 | 0.999

Bi| 0 | =/2 0.976 0.943 1.000 0,989
3r/d | 0,820 0.66% 1,000 | 0.9585

/8 | LOLT 1027 1,003 | 1.02]

/i 1071 L 110 {014 | L.086

0.5 | 0.05 | =/2 | 1327 [.492 1.067 | 1344
defd | 1.915 9.395 1227 | 1.485

r/s | 1009 1011 1.003 | 1,017

#/d | 1.037 1.044 1014 | 1.069

05| 01 | w/2 | 1.160 1.197 1069 | 1.271
Br/4 | 1407 1.569 1242 | 1.253

/R | 0.999 0.997 1003 | 1.015

w/4 | 0.998 0.990 1.015 | 1.059

0.5 | 0.2 | x/2 1001 (.986 1080 | 1157
3 /-*l [.033 [.070) |.248 0.621

Table 70 Damping vatios d,um/é for fully diserele approximations to the
aclvaetion-dilfusion equalion, ('h:n'”m.riﬂnu between Taylor-Galerkin seheme willi
piccewise linear elements TG-FE, 3TG, and the new schemes TG202D and
TaGa3c2D.
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4 Multi-stage approach to Padé approximations

4.1 Introduction

IProm the forward Taylor series rlww:lul:-t--nwui.

/N T R B .
= 1 4 Al= # AP £ =8P — 4 .0) W
. ( TR Tl TER Tl TR
i
T Al—) ", ;
n.p(‘.m) i (15)

il 18 apparent that Gime-stepping schemes of varions orders of aceuracy can he
clevised in Lhe form of Padé approximations [9, 21] for the exponential funetion, A
Padé approsunation to the exponential function ¢, where in the present context
gl = #_'1{.;.';3‘,, 1 the quotient of two polynomials Py (x) and Q,.(2) of degrees n
and ne, respectively, We use the notation R, 1o denote this quotient, Padé
approximalions Lo e¥ up Lo order n 4 m = 6 are shown in Table 8 i whicl
¢lassieal t.‘}i]‘)li(:il. and implicit time integration methods are easily rc:c:;}gni:;t‘.t;l,
As already mentioned in the Introduction, higher-order time integration methods
for the convection-dilfusion equation should only involve the first time derivative
of the dnknown if they are Lo be easily inplemented in standard {inite element
codes using elerments with (" continuity for linear and non linear problems.
With the view ol integrating advection-diffusion equations lorward in time using
fiesl Lime derivalives only, we shall now leok al ways of veproducing higher-order
Padé approgimantions through a multi-stage process, Explicit imethods of order
fwo, three, and four corresponding Lo approximantions fri-;‘n, Iy and Hyo will
be considered fivst. Then, multi-stage schomes corresponding to implicit Padé
approximations of order two to six will be examined. Finally the Pade schemes
are specialized Lo deal witl pure advection preblems,

4.2  Explicit multi-stage methods
4.2.1 Second order scheme

Let ws consider first the second-arder time inlegration scheme corresponding Lo
the explicit Padé approximation Ha g in Table 8. The scheme reads

Wt o=t A+ AR, (19)

and corvesponds Lo the well-known Lax Wendrofl method.

To avoid second time derivatives which are dillicull to express in lerms of the
apabial devivalives in the advection-dilfugion eqquation, a Lwo-slep approach Lo
this second order explicit scheme has been proposed by Richtmyer (see [22]) in
the form

|
{E e —— #® Ag LT
T = #'h € lé‘_\f iy

17



n-l-é

w't = w4 diw, (20)

which emianates from the factorization of Padé approximation My, in the form

Dzt de! =1 421 + k)

The two-step Lax-Wendroff method is only conditionally stable,

14.2.2 Third-order scheme

Considering now Padé approximation fy, in Table 8, three stapes are needed 1o
reproduce it wsing first bime devivatives only, The theeestage explicit method
cartesponds Lo the nested Taclorization of Iy

| + &+ g27 4 ¥ = 1+ :t:(l + ¢+ I'-i-.'ir”)
= 1t a(l+ Sa(l + L) (22)
which produces the three-stage scheme
s — + LAl
n‘"“"i’ = u" 4 édfﬂ:ll'-?"
R = Al (23)

This third-order explicit scheme has been employed in references [15] and [16]
i the finite element solution of incompressible flow problems. Like all methods
above e tliugﬁu;ﬂ i Table 8, the third-order seheme c.urrr:mmurliny, Lo H.:;‘.. [
ouly conditionally stalsle,

4.2.3 Fourth-order scheme

Looking now ab the explicit Pade approximation Hyg, four stages ave needed o
reproduce it using first time derivatives only. The fonr-stage explicit method
cortesponds Lo the nested fuclorizalion of Hy
g b dw? o Rad o b " L " 4

I+ 2 + E‘h -+ B | E].i. = ] 4 (| -+ i + fl:l.i'. | .-!t:li )
_ e L ke T ..
= 1 ta(l+ da(l + e + &)
: 4 L 10 q
= L a (4 e (1 F 5+ 1)) (20)

which produces the four-stage explicit method

1
"t o= " 4 %EM T
i

. . nis 3
Wy = w4 #;LH i, '

i 3
" o= " 4 %;‘.U. u.:H &

Al ] n+% aE
1 = u" 4 Al (25)



"3 uoioung fenuauodys oy jo suonewixoxdde sped g-pqe]

i o1 T 0a 0z 5 FE ¥ L 8 —E.y
o o ey e 1 (o v s st (0 1 e = i S ) ot il 3 ok Sen? Y RESTS
L o 0T o % zOC & % rF &=
eF 1 Tefy B 1 F % T+ !
11 = Il [ ) £ Ty,
i A gy Ty i T — gFr T 1 7 = u
o ] 1 [ E -
P Tty 1o T &1 e T+ b
Tt - z¥—1 -1 r—1
= I =1
e o gy 223 %547 s 41 I
€T T3 E T g 1
) C 4 . .
= === I=u p=u [ )™y
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The method is again conditionally stable and presents, as we shall see similarities
with the fourth-order explicit Runge- Kutta method discussed in Section 6.

4.3  Implicit multi-stage methods

We shiall now consider implicit multi-stage methods for the advection-diffusion
equation emanating [rom Pade approximations i Table 8 corvesponding (o m £
0. We shall see that not all implicit methods deriving from Padé approximations
with me £ 0 are unconditionally stable in application to the linear advection
diffusion equation, Actually, it appears (as could he expected) that only those
implicit Padé approximations which are on or helow the diagonal in Table 8, Le
the Hym with i = i, do possess interesting stability properties.

1.3.1 Second-order implicit methaods

Approximation Hy

T T T T T —

pproximalion [y in Table 8 reads

and corresponds 1o Lhie second-order aceurate Crank-Nicolson imethod
el i l:_\.t i gl b
7 = u" + A0 () + (27)

A twosstep version of this implicit scheme is oblained in the (orm

1
1l w i i e Ap op
7 = x Je Ak
i (l + H) i i !— 5 U
ut ="y 4 -ffu.”'“ = u"t7 + HT" Thal

This two-step version of the Crank-Nicolson scheme clearly presents no interest
with respect to the one-step scheme. It simply shows in an elementary way how
multi-stage schemes consisting of an explicil predictor followed by an implicit
corrector can be constructed from implicit Padé approximations B, ...

Approximation g,

Let us now consider the second-order implicit approximalion Hy s which corres.
ponds to the scheme:

(| — z{l — JI]) 't o= " (25)
A Lwo-stage version of this seheme is obtained by defining the intermediate vialue
H+! AT
£ — !9 ¥ L
w'tE o= (1= E)m (29)
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which allows o write the Rn,z method in the lorm

i i
T T o el
ol = ( | = ‘;) i

”u-ll — " b "”"'Tj (40']

ol two catipled equations governing the unknowns o2 and " and involving
first time derivalives only.
4.3.2 Third-order implicit methods

Considering now implicit methods of third order, we note from Table 8 that they
correspond Lo approximations By, By and fy

f’u:pmx.'ummm Iy |

e e

rﬂll‘ﬁ-ld( wing Inni. :mpm\lmcu.um Ha4, wesee that it generates the time mibegration

acheme
i L = g ﬁ i
(I :i) 1] — (l + :{.r 4 (i) i
2 '
= (I | i.‘:‘(l 4 fl)) i (31)

which can he decomposed into the following two-stage hird-order method con
siabing of an explicit predictor followed by an fniplicit corvector:

J :
”"* o — The 4 -"I_::I’ H:.]
/ )
Wt = W ...:; ( M:+4 h “;'“) (32)

Approximation Ry

P——— LI L 1 LA Bl

I.U(Jkuu., now at approximation [y 3, we see Lhal it produces the fmplieil e

integration method

which, defining the intermediate valne

i = (I - Zl) i (34)

yields Lhe |'nJ.1uwil'1g [Jn.ir of impﬁuil. eqations

Hu-[-l = = ‘LT'! Hfll'i
2\
.”n-l-l 1" - _.-;_(”':I + ',c?fh) (35)



Approximation Ity ,
Another third-order method 15 provided by approximation fy,4 in Table 8 which
generates the fully implicit scheme

a? a?
V=g = S |t =t (36)

which we rewrite in the form

Defining the intermediatle guantities

i nd1 "‘;-:t ”:I 41
At
fi u' —;é--rF: (35)

the above scheme leads Lo Lhe fu”uwillg system of coupled equations

’ & Al
i@ = u"t - ) ekl
i = wuttt - ﬂu
_— A 3 f
w = W 4§, (39)

4.2.3  Fourth-order implicit methods
These methods correspond Lo Padé approximations Ry, Ry ane 174,

A ppmmmaurm R“
The implicit nmﬂmd corresponding to My reads

(1-30- --,)) o= (14 S0+ 5 (40)

From this expression we deduce the following 4-stage method incorporating two
explicit predictors and two implicit correctors:

1 At
.“Ifrl-l-ﬁ — oy + ‘Tu:'
[
1 Al .*||j
u™i o= w" o+ 5 U #
Al
i = 4t = oyt
g
v ! Al
Wt o= " 4 S, (41)



Approxunation 11,
Looking now at Pade approximation s, in Table 8, we see thal it generates Lhe
Line integralion scheme

(: ~ E;f)-u"'“ - ('1 ! ?:x (1 bl E)))u” (42)

Thereforve, the fourth-order mothod arising from fy, can be implemented in te
forin of Lhree t'.):plit:il slages

ek d Al
e o= oyt 4 ==ty
{
l At nik
i +“ - .”u _'_ ","-I'.-":' i
! :I 'Fl-!--}
BT = " e o7 3 P
o TRR fldi iy ( 13)
[ollowed by the implicit stage
i i ALy
t = g " T'Hla (‘] 4 )

Approxunation £ 4
similarly, from the Padé approximation £ty 4 we obtain the following fourth-order

implicit seheme
(1= (1=50=5))ww = (14 ) w (15)

which can be implemented in the form of one explicit stage followed by three
implicit slagos as Tollows

1 Al
7 S L N i""“"

e Al ]

e

f

il . =
6 :
TR L”'ri it
g e
el | :] = T l 3
U — =Aliy = u 4 (46)
1

4.8.4  Fifth-order implicit methods
Approximation s

Let us now consider the ifth-orderimplicit approximation Haz which corresponds
o Lhe scheme:

(| - ::;(t = ;;}) !l = (l + ";l .(l - 3:41:(1 + én‘))) " (47)
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Therefore, it can be implemented in the form of three explicit stages

i ;
L ! W
u" o = " 4§ —n
g
1 Al nix
u"tr = oyt 4 h—“ﬂ?h’
1
I'|+E! fi 'j P e ;j|
uw’s = u" 4 -"JIL““' (1)
lollowed by two implicit ones
A \
urd-l-| - _g._“;ml =
il B 2401
ut = a™a 4 —a (19)
5

Approximation Ry,
Approximation Iy q in Table 8 8 generates the lolowing tine integration scheme

(1- : (1= get =gt = (14 Zatih L)) on (50)

I'rom this expression we deduce the lollowing H-stage n'kml'u)c'l meorporaking (wo
explicil predictors and three implicil correctors:

u"'!l* = u" 4 %-u,
w'tes = w4 248wy (hl)
0
Thadl ;’d,‘"H =
= :\l!"“r =
utt! — ﬂu, = 'u"+§ (52)
b

4.8.5 A sixth-order implicit scheme

Approximation fys in Table 8 produces the time scheme

- % ) Al : Al
A = g ) o T (= ) g (et alit') 69)

which is sixth-order accurate in the time step AL To implement such a scheme
a mnlti-stage approach iy needed which is based upon the nested factorization of

‘Fi:ﬁ‘.'{
(=3 (-Fa=m))wr = (145 (1+ 30+ 5))w 1)

2{]

”n-}-l




This leads to three explicit stages

! At
L B n i
W'l = W+ =
g
ol Al wpst
'h‘." i h . _”_n i' —'t-’-? t 12
5
) Al w5
yo kS i "
W' o= Mu 4 3 1, (H5)
[allowed by tlivee implicil slages
Loy
.“’rlll — ﬁ”:r” - 7
; A
Wt - g =
3
. Pal) g
am I ?ﬁ’ = y"tz (,m]
=

4.4  Multi-stage schemes for pure convection

When dealing with pure convection problenis it is penerally possible to CX press
fhe second fime derivative of the unknown in terms of spatial derivatives. 11
follows that multi-stage schemes incorporating both first and second time deriva-
Lives might prove nselul for solving problems deseribing purely conveetive trans-
porl.

4.4.1 Third-order methods

Approximation [y

e T ekt

("-un:-:ult‘-rltu.f, fist Lhe expheil approximation Hag, the faclorizalion

eS| ""lk! & i i
i = 3+ g R
¥ ¥
4

(1 a4 ;U + ;)) u (57)

leads Lo the following two-stage explicil method

Hrl-#- 3 = M + %“:1
b owes gk
u"'H = " 4 _.'U 'U.:‘ = ‘E.ﬂf}?{-;:k:‘ (’53]
One ean also decompose Hyg in the form
N 1)
.“:"'rl — (l -l' ﬂ'!(l 'i" % "+ J{_i)) 'Uh (G!))
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which leads Lo the alternative thivd-order explicil sclieme:

oy Al Atf
"t = " _..’. < ~—l,-i—- u.:’f
i
X b .
u*tl o= W+ Ar u;l ? (G0)

Approximation Ry anil I 2
In the case of approximant [y, the following one-stage implicit méthod is ol
tained

) Al Al
Hr 1 = I”nl _+ __Ei_, (“.;1-+| 'I' 1'_!“:.!) 'I' T ”:lr “)I)

Similarly, the third-order implicit method corvesponding to 1#) 5 reads

mel i Al n " d‘* '
M = 4 S (up + 207') - - (62)

Approxunation Iy,
g y i ' i y ; . i i
Finally, in the case of the fully implicit approximant By, the following factori-
gations can be uaed

il :
(! - a4 JE“ . %)) “rc+l = M
£ a*
(I =l = 5+ 'E)) Tl L (63)

The Fiest leads 1o Lhe bwo-stage scheme

; Al
o=ttt - 5 !
gl nl i,_“'.% : :
i = Alu)t + 5t = ", (G1)
while Lthe second gives
3
oo
= (] = = 4 —)ut!
(I=35+ %)
= A, = (65)
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4.4.2 TFourth-order methods

ﬂm:mxr'nmh'r:m Ity

Approximation Iz, which represenis the fourth-order imphicit scheme of Harten
anel Tal-Bzer [ ean be used diveetly in pure adveetion problems. The resulting
time integration method veads

. A2
" = g 4 éi ('u;' f oy "") o élﬁ- (u;', -~ 1'.'.;""") ((i(i)

and its application in combination with linear elements for spatial discretization

has heen diseussed in |3).

T'wo additional fourth-order schemes are provided by Pade approximabions [y

and Ity .

Approximation Iy
[ the case of fiy g the following method is obtaited which consists of Lwo explicit

stapes followed by an implicit one:

% o 3 n : Tl L
w" A A e T A 7]
3 i I‘q i
1] ‘4 i :3 y
Wt o= W + T’;“ M:'
. i d “U
0" 3 [ ' +3 1 _:,i-- ‘4;' el (“.r)

Approximation ffy 4

Considering now approximation ff) 5, we see from ‘Table 8 that it can be im-
]J'h.'.lill'flil-i:.".'.f l‘Ul' l.ll.ll'(“.' 1.?‘.’![I\"i‘§ﬂ1-it]ll ill Lll(.‘ l‘l.l'l'['ll uf e l.‘."\']')“(fil. H{.H-gf,' E(}“('JW(:{I |'.IIY IuW(."
i!'lll!“l'-i I Oes a4 I.H“(?W!-i'.

i Al
e it n
T = @t o i
il
. 3
i o= - ‘—_-\Eu"'"i ) d‘{"ﬂa"H
e I
1 : :

u'tt = 't :IL’—'” ty (68)

4.4.3 Fifth-order methods

Approximation Hy

£l AL

Approximation fa g penerales Lhe time integration scheme

31N 3 Ly ‘
(I : ;;’r - .a“f';) "t = (1 4 -'5'.1?(] + J:r.' -4 -:E;f."!)) i (649)
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which can be decomposed into the form of twa explicil stages

N Al At
W't o= oy 4 Tu}' i e -¥i gy
3 'y I
e S . l,_,!f t, W (70)
lollowed by one implicit stage

2..'.\! 4_\!’ 3

3 nfl e u +1 =y u ] L L 15
' 5 P g Lt

i\f‘.f_[iu'ﬂunmfltm Hg )

Approgimiation / Ity in Table 8 veprosents a Gfth-order accurate iplicit method,
It can be factorized in the form

ALV PSRE S Re S ) [T _( 2 Lo o
(l_ﬁ'!'(l 4 v 36.! )) i = {1 +-El 1 5 )’” (72)

This leads to a threo-stage method including one explicit stage and two implicit
onas as lollows:

2 241 Al
W™t = — 1y u}',
5
At A
- ,uln-i.l . Tu:h}l I fi'}'é_“ni-t
2 341
W = " T'ri-; (73)

1.4.4  Sixth-order method

Approximation ffyy in Table 8 which 1s sixth-order aceurate can also be specii
lized to deal with pure convection problems. The result of the factorization of
Rsa 10 the form

@ o i - T Y

it a lour-stape method lm.'.ludiﬂg two explicit stages and two implicit. ones as
lollows:

AL
“rl-l-'é = ”ll | é‘”l'i‘lr 'I' i'y__';a!
h GO
1 Al
Wt = oy 4 —uw“
2
T = e ﬂuuinl 1 ':__ﬂf_ it
5 1 GD i
| Al -
5 2 4 _".2_..“" (',',r,)



5 Properties of Padé approximations

I the present Section, the emphasis will be placed on the aceuracy and stability
properties ol the vavious schemes derived from a multi-stage approach 1o Padé
approgimalions,

5.1  Stability analysis

To prepave for the analysis of the stability and aceuracy properties of the higher
order Lime inlegration methods discussed above, we fisst provide here o hriel
reminder of the stability definition of numerical schiemes for Lhe time integration
ol initial value problems, This s {ollowed by the analyais of the slability and
accnracy properties of selected Padé approximations.

5.1.1 Introduction

The spatial diseretization of the advection-dilfusion equation leads Lo the [ollo
wing equations to be solved at each station of the time integration procedure:

[EA T

i—‘} = R(u) (76)
where a is Lhe veelor colleeting the nodal values of the unknown and B(w) stands
[or the nodal loads avising from the discretization of the first- and second-ordar
spatial operators deseribing advection and diffusion, respectively,
The time integration of the hybrid hyperholic-parabolic equations (76) normally
proceeds slep-by-step starting from given inilial values. o traly transient situa.
Lions, Lhas l-i“l"'“li’ll'“iii”g process has Lo be performaed in an accurale mauner in
order to maleh the actual time evolution of the physical transport problem. O
the other hand, for stationary proablems only the asymptotic steady solution i
relevant, In sueli eases, the time marching process should be as fast as possible,
regardless of its aceuracy.
Timie integration methods differ from one another by their respective acen-
racy and stability properties, Due to their conditional stability, the explicit
schemes usually lead o severe restrictions on Lhe lime-step size so that all ervor
mades .'}.ri:»-'ilu‘z,' [rom Lritneation errors are 1ol .\.rllplif'it,n.d r]l,u'i,|'|g i he Lin'||'f.-m;-,u-|;-.||ing
process. Ou the other hand, an implicit method can he unconditionally sta-
ble, which means that all error modes are damped during the time integration,
whatever the magnitude of the fine step,

5.1.2  Stability eriterion

In order to diseuss the stability of any time-integration method applicd to e (76),
we fivst define the eigenvalues A of the spatial discretization operator R as |23

Riw) = An (77)
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where v is the eigenvector associated to the cigenvalue A,
Il R{u) corresponds 1o the spahally discrete form of a dilfusive operator (like
the Laplacian V*u), the eigenvalues ave purely veal and negative, o laet related
to the pliysical dissipative effect, On the other hand, it B(w) arises from the
discretization of an advection operator (like the gradient V), the eigenvalues
are complex with a negative real part il upwinding has been performed in the
space diseretization. 1f the diseretization of the advective berms 14 centerad, he
real part is zero and the eigenvalues are purely imaginary,
The necessary and sullicient stability condition of a time integration inethod can
he derived by a von Neumann analysis, which assumes a linear aperator I and
a solution u of the form:

w = (' explal)v (78)

where ' and o are complax constanis. For exainple, let s consider Lhe Fuley
first-order explicit method applied to Viq.(76):

urt-t-l — "

——— = R{u") (79)

since w" = (' (explo i) v, we obtain from (77) and (79):
explodl) ~ 1 = AA{ (80)

The term exp(a Al) is the complex amplification factor of Buler metlod hecanse
u't fu" = exp(aAt). It ean be denoted by

G =1 4+ Al (51}

The stability of the method is ensured if and only il the time step i sueh tha
the value of the modulns of the amplification factor is less than unity lor all the
eigenvalued of Lhe discretization operator B, For the example considered, we
must have

|G = (1 4 Re(AAD)) + (lm(AA)* < 1. (82)

This inequality defines the absolute stability region of the Enler explicit method
in the AAL complex plane (Fig. 4). The boundary which splits the eomplex plane
into stability and unstability regions corresponds to |G| = 1 and is called the
absolule stability curve of the scheme. For a fixed value of X, the time step Al
should be sufficiently small so that AA? is located ingide the absolute stability
1egion.

[ situations where diffusive effects are wmall with respect 16 the convective
ones, the eigenvalues of R are distributed close to the imaginary axis of the AA
vomplex plane, A time integration method whose stability region encloses (he
imaginary axis is then necessary. In the frame of explicit methods, the Euler
scheme has therefore (o be rejected in favor, for instance, of higher-opder explicil
Pade approximations or multi-step Runge-Kutta methods which are presented in
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Figure 4: Stability region ol forward and backward Euler method.

fhe next section. However, even if an explicit method has an extended absolute
h|-HTJi|il-}' rr-giim which encloses parl of the imagimary axis, the problem of a
maximum allowable time step sbill remains, This s aciually the case for all
explicit methods.

We have fo turn to implicit methods in order to reach unconditional stability.
The absolite stability region then encloses the whole lelt half-plane of the AA/
comples plane, i|u'||.u|i||g Wlies inln.giniu"\,' axis. A an example, the Euler fivat-order
implieit time scheme applicd to Ee.(76) provides

! - "

- = R{u"™" R
A ( ) (83)
and a stability analysis gives the following expression of the amplification factor:
(= — 31)
AN (

[t modulus is lower than unity for all complex munmbers AAL having a negative
teal part. The atability curve lies entively in the Hgm ha-lf—p]il.nt' (I"i‘&". 1). The
Faler implicit method is thus unconditionally stable.,

As mentioned above, the eigenvalues associaled with the convective terms are
purely tmaginary, while those associated with diffugive terms are real and nega-
tive, Hence, an unconditionally stable method whose absolute stability region
contains the whole left hall (including the imaginary axis) of the AAL comiplex
plane is suitable for npj‘:lir.'al.!.iunu to advection-diflusion prablems. [_);Lljlqui:,-t, [',2‘,2]
gives the name of A-atability to this nnconditional :ﬂt.al'Jilil,y (wii;html; meluding the
imaginary axis). If we aceept |(7] = | we can say that by continuity, A-stability
is Lhe same as unconditional stability, The Crank-Nicolson scheme is a second
order accurate A-stable method. As will be seen later, Padé approximations
and the Runge-Kutta methods can provide implicit infegration schemes of order
higher than two thal possess Lthe property of A-stability, Such methods are
Ltherefore of great potential interest for a time acenrate finite element solution of
adveetion-diflusion problems,



5.1.3 Stability analysis

In order to analyze the stability properties of the various Padé approximations
when applied to integrate the first-order initial value problem

du
5 = Flw)
w(l) = wy (8h)

we [ollow the von Netmann methodology presented in the previows section ani,
as before, we deline the eigenvalues A of the spatial discretization aperator B ax

R(v) = Av (361

where v is the eigenveclor associatod Lo the cigenvaliue A

To listrate Lhe application of the von Neumann stability analysis to Padd
approximations, we shall consider successively approximiation Hi.l- Llier Cleanyle
Nicolson method, and approximatiom Mg, which corresponds to the Lax-Wen-
drofl method,

When applied Lo Fq.(85), approximation [y, yields, see Bag.(27),

.“,.IH | wh l .
— z2-(&(%”) f R(-u.“”)) (B7)
Now, according Lo i (78), one has
w' = Clexp(a AL))'v
g = expla ) u" (88)

and noting that expla A1) is the complex amplification factor ¢, we find from
Ligs.(87) and (86) thal Padé approximation [ possesses the [ollowing amplifi-

caltion [ackor:
| 4 f:f.U.

GlR) = 5 (39)
2

This velation indicates that the amplification factor of Padé approximation [t
has the same structure as the approximation itsell, We have, by definition of
the schemes; the same property for all R, methods, [t follows that Table 8
containg the amplification factors of all Padé approximations, provided we pose
= AAL

At this point, we can analyze the region of absolute ﬂi.ah“if.y of the various Pade
approximations using the amplification factors in Table 8, As alveady mentioned,
the stability of a time integration method is ensured if and only if the time step is
such that the value of the modulus of the amplification factor is less than unity
for all the eigenvalies of the diseretization operator K. If we admit the unii
modulus this leads Lo the well-known stability condition

G = [R(G)] + (iG] < 1. (90)
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Some jmphicit Pade approximations do possess the interesting property of uncon-
ditional stability or A-stability, As shown n [9, 10, 17], a Padé approximation
[0 18 tnconditionally stable i 0 satisfies the condition:

m—2 = n == H,»is A =stable (41)

It follows that the implicit Padé approximations

ft"r',u. fr’.;,l. Hn.g. H.;I-g. ”.;;Ig. th, Hgl;“ H,;;“-j

are: Avstable and therefore potentially interesting for the time integration of
advection-diffusion equations.

5.2  Phase and damping responses

The |.)|I.-L'-u' error 2 and Lhe damping ratio &, ﬂ) ol Lhe ]mpliuii. A-stable Padé
approximations £y o, Wy g, Bog, oy and B oare given in the following Tables for
alues of the Courant number in the range (L5 < ¢ = 4 and several valnes of (he
dilfusion numiber d, The value of the Poelel nimber Pe = (,-fcf 15 also indicaled i
the Tables. Values of Pe = | indicate that convection dominates the Lransport
process, o appradse thie response of the schemes in the imit Pe - 0 and
Pe — oo, we have also produced the phiase and damping responses for Lhose
limiting cases.

The fully mpliciv £y, methods ave disregarded because of thetr poor [pliase
HOCCHTACY,

The phase and daniping properties in Tables 9 1o 25 have heon evaluated using
the mnlti-stage schemes discussed i Uie previous section assuming o unilorin

i i ex. R22 R33
L I -I

o
o, B
.

t‘.ﬂﬂ:'{-"-‘----‘_ifi--‘------rr-.i--- &t i e ¥ T 1 1

.04 Z.0n o, 88 B, @, ok 2,00 4.0 it
w=cf =k

Figure 51 Aceuracy of A-stable [, .. methods for pure convection,
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Figure 6: Acenracy of A-stable [ methords for conveelion-dilfusion,

mesh ol linear finite elements (CY interpolations) and naing o congistent mass
malrix (standard Galerkin melhod).
Figures b Lo 7 give a graphical vepresentation of the phase and damping res.
ponses of the selected implicit Padé schemes. 'These ]:jgmw show Lhe response
of a Fourier mode e when applied to the linear convection-diffusion Fquation
(1). Note that the amplification lactor of the schemes is given by the stmple
relationship

(:“'i"u.mJ = Hyy g (ALL), (U'.:.JJ

We observe that all methods exibit a good aceurncy for diffusion dominated
siluations {(Fig. 7 and Tables 9, 22-25),

On the other hand, several conclusions ean be drawn fromng Fiige, 5 and 6 and
Tables 10-21.

First of all, we note that scheme [y 5 exibits a poor aceuracy When the Courant
number ¢ exceeds 2. Also scheme B4 has poor properties for ¢ = 3.

Second, we note that, as expected, the R, methods are non dissipative and
therefore not ideally suited to deal with pure convection problems if centered
(Galerkin) approximations are used [or Lhe spatial discretization of the conveetive
terms. These methods should therefore be combined with peneralized Galerkin
(or Petrov-(3 alerkin) methods for the spatial representation, Unfortunately, such
methods like for instance the SUPG method of T.0.R, Hughes [14] inchide a
free paraimeter which governs the amplitide of the added numerical diffusion.
We are currently investigating ways of improving the spatial aceuraey of Uhe
convective lerms withoul introducing any free parameter and will report on this
in a fortheoming publication.

Finally, it should be noted that methods 3, and f;4 cannot be operated with
a Courant number ¢ = 4, because of a rather severe aceuracy degradation.

B8
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[ l'l P(? qﬁ R].g fﬁ] 1] )fﬂg'u E:J ] !_13:3'3
n/8 | L0129 [ 10120 | 1.0120 | 10129 | 1.0120
01005 0 | &/4 | L0524 [ 1L.OS24 | 1.0524 | 1.0524 | 1.0524
w/2 | L2159 | L2159 | 1.2159 | 12159 | 1.2159
dm/a | L4281 | 14271 | 14270 1A270 | 14270
w/8 | LOL29 [ L0129 | 1.0129 | 1.0129 | 1.0120
O 0.0 | 0| w/4 | 1.06524 | 1.0524 | 1.0624 | 1.0524 | 1.0524
m/2 | L2163 | 1.2159 | 1,2159 | L2158 | 1.2150
Bu /4 | 14354 | 14279 | 1.4270 | 1.4262 | 1.4270
a/8 [ L0129 | 1.0129 | 1.0129 | 1.0129 | 1.0129
002 [0 «/1 | L0524 | 1.0524 | 1.0524 | 1.0524 | 1.0524
w/2 | 12191 | 12161 | 1.21568 | 1.2156 | 1.2159
dm /4 | 1.4925 | 1.4382 | 1.4258 | 14127 | 14273

Table 9: Damping ratio 8,,,, /6
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dx /4

3#/4

3 /4

/8
m i

m/2

/8
m /A

/2

7/8
/A
/2

-1.0002
-(0.0036
.0604
10,3191

-0,0015
-0.0211
AT

0.4166

(L0067
-0.0726
L3160

0.5273

0.0001
0016
-0,0478
). 20967

0.0006
0.006:

0,025
0.2098

0,0042
0.0207
0. 1322
-0.3949

0.0001

0.0023

0.04153
<0.3039

0.0001
A0,00206
A.0561
A.316]

A.0002
0.0054
1100
-0.3679

0.0002
0:0028
-0.0509
03096

0.0006
00094
0.1051
A1.3508

00,0026
0.0319
02075

TMﬂe]U:lhﬂﬂﬁVﬂphnm:ﬂwnrél

d

B

0

W/S
w/d
7 /2
A /4

/8
7 /4
m/2
3/

x/8
/4
T/2
3 /4

Mg

Bya |

oy

| Raa

04445

. _TEE:_m

0.0001
00,0023
0,0152
030035

00001
-0.0024
-0.0495

0,304

00002
0.0036
LOTVT
1h}L337?

59907
0.9951
0.9481
0.9305

0.0951
0.9400
06860
0.6367

0.9776
(71,5086
04712

0.4297

10000
(.9998
0.9914
(,9558

00,9998
(.9890
0.7433
(0,6600

0.9979
0,006
0.3685

0.3040

10000
1.0000
0.9986
0.9977

L0000
0.9982
0.9465
0.9200

0.9997
(1.9838
0.7643
0.7058

L0000
L0000
1.0000
L0000

10000
1.0000
1.0000
L4000

1.0000
[.0000
1.0000

[.0000

L0000
10000
1.0000
L0000

1.0000
1.0000
1.0000
L0000

1.0000
1.0000
L0000
1.0000

Table 11: Modulus of amplification factor |(.'"m,,'
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C o I?e £ !Ih B ﬁ'| 3 II'.-;I;J ”.glg H.r],.;
© | w/8 ] -0.0002 | -0.0001 | -0.0001 | -0.0001 | -0.0001
0.05 | 10| w/4 | -0.0026 | -0.0022 | 0.0023 | -0.0023 | -0.0023
rr{'z,‘ AL0ADT | <0.044% | L0481 | -0.0453 | -0.045]
e /4| -0.3101 | -0.3044 | -0.3037 | -0.3032 | -0.3030
rer A.0002 | -0.0001 | -0.0001 | -0.0001 | -0.0001
0.5 0.1 5 rrfii 0.0029 | -0.0022 | -0.0023 | -0.0023 | -0.00:23
/2 | -0.05817 | -0.0455 | -0.045] | -0.0449 | -0.045]
S/ [ -0.3030 | -0.3050 | -0.3034 | 03018 | -0,3037
ﬂ'/B L0002 1 -0.0001 | 00001 | -0.0001 | -0.0001
0.2 [ 25 | «o/4 | -0.0082 | -0.0023 | -0.0023 | -0.0023 | -0.0023
w2 | -0.0490 | -0.0465 | -0.0450 | 00437 | 0.045]
B /4 | -0.2203 | -0.2891 | -0.3046 | -0.3176 | -0.3088 |
Table 120 Relative pliase error A
4 ,'l Pe: _f _”_-l,‘.i _H-l,:! ”-'1,:1 Hf:.': H»u.;.t
rr/B [OLBS | 10129 | 1.0129 | 1.0129 | 1.0129
0.05 | 10 | /4 | 1.0620 | 10527 | 10524 | 1.0522 | 1.0524
wf2 | L2357 | 1.2197 | 1:2159 [ 1.2135:| 1,2158
:.hrfd 1ALSH | 14291 | 14268 | 14246 | 1.4270
rr/ﬂ 102 | 10129 | 1.0129 | 10129 | 1.0129
051 0.1 5] vr;ﬂl L.OGG3 | 1.0527 | 1.0524 | L.0522 | 1.0524
fr/‘.e,‘ 12133 | 1.2179 | 1.2187 | L2141 | 1.2158
3w /A | 13933 | L4227 | 14270 | 1.4208 | 1.4270
/8 | 1.O135 | 1.0129 | 1.0129 | 1.0129 | 1.0120
0.2 |25 m*/fl- 10630 | 1.0526 | 1.0524 | 1.0523 | 1.0524
'-'r,:’fp‘ L1969 | 1.2146 | 1.2157 | 1.2163 | 1.2159
Sw/d | 13919 | 1LAIGT | L4302 | L4479 | 1.4265

Table 13: Damping ratio b, /6
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d Pe E Hl.'l Hl.ll H.g.;, H.gr-g ﬁ:'!.!*_

/8 [ -0.0003 | -0.0001 [ -0.0001 | -0.0002 | 0.000]
0.05 [ 20 [ w/4 |-0.0046 | -0.0016 | -0.0023 | -0.0028 | -0.0023
m/2 [ -0.0708 | -0.0413 | -0.0457 | -0.0501 | -0.045]
Sz /4| -0.3370 [ 03059 | -0.3048 | 0.3068 | -0.3036

x/8 | -0.0004 [ -0.0001 | -0.0001 | -0.0002 | -0.000]
0.0 |10 [ o/4 | -0.0055 | -0.0017 00238 | -0.0027 | -0,0023

m/2 | -0.0788 | -0.0452 | -0.0460 | -0.0489 | -0.0451
B /a | 08420 | 03142 | 20,3041 | 02086 | <0.3034

w/8 [ 0.0005 [ -0.0001 | -0.0001 | -0.0002 | -0.0001
0.2 | 5 | #/4 | -0,0072 | -0.0020 | 0.0023 | -0.0026 | -0,0023
w/2 | 00872 [ -0.0520 | -0.0459 | -0.0432 | -0.0449

B /4 | -0.3001 | -0.3158 | 0.2074 | -0.2686 | -0.3042

Table 14: Relative phase arvor A

d [ Pe 1t 2 It 4 lay | Iy Mg

£

/8 | LOMS | LOL3G | 1.0130 [ 1.0128 | T.0120
0.05 | 20 | =/4 | 12020 | 10622 | 1,0533 | 10495 | 1.0524
m/2 | 16435 | 1.3154 | 1.2236 | 11814 | 1.2150
3r/4 | L5039 | 1.5002 | 1.4263 | 1.3749 | 1.42587

/8 | 10333 | 10134 | 1.0129 | 1.0128 | 10129
0.1 |10 | =/4 | L1216 | 1.0588 | 1.0528 | 1.0498 | 1.0524
7/2 | 13148 | 1.2715 | 1.2169 | 1.1828 | 1.215]
3r/4 | 13429 | 14421 | 1.4200 | 1.3882 | 1.4269

r/8 | 10226 | 1.0182 | 1.0129 | 10128 | 1.0129
0.2 | 6 | m/4 | 1.0795 | 10569 | 1.0525 | 1.0499 | 1.0524
w/2 | 11853 [ 12364 | 1.2127 | 1.1880 | 1.21566
Br /4 | 1.2264 | LA76Y | 1A260 | 14549 | 14296

Table 15: Damping ratio 8,.,,, /8



« d | Pe £ | Mg I I—Hi.:s Map | Iy
/s | 00017 | 0.0006 | -0.0001 | -0.0006 | -0.0001
005 | 10 i'r/-‘l L0238 | 0.0056 | -0.0027 [ -0.0004 | -0.0024
n/2 | 001838 [ -0.0462 | 0.0597 | 01044 | 0.0196
B /4 | 04353 | 003324 | 0.3231 | -0.3566 | 0.3080)
m /8 -0.0020 [ 0.0006 | -0.0001 | -0.0006 | 0.000]
20000 [ 20 a/4 | -0.0263 | 0.0047 | -0.0028 | -0.0093 | -0.0024
w /2| 00940 | -0.0622 | 0,0626G | <0.1024 | -0.049]
:,i’:rf-’l. 0078 | -0.3570 | -0.325G | 03466 | -0.3046
7 /8 | -0.0024 0.0005 | -0,0001 | -0.0006 | -0,000]
L2 L0 [ a/4 | 00311 [ 0.0028 | 0,003 | -0.0090 | -0.0024
r /2| -0.2099 | -0.0893 | -0.0660 | -0.0939 | -0.0470
| Ir/4 | 04562 | 0.3874 | -0.3161 | -0. :.il].'if') . 0.2918
Table 16: Relative phase ervor A
e L d Pl & T Bia [ Fig [ Fag [ Fog | By
/80| LGA3T | L0419 | LOIGY [ 10104 | 1.0129
0.06 [ 40 | w/4 | 29642 [ 14461 | L1071 | 10170 | 1.0514
/2 | 3.7334 | 3.5062 | 1.5696 | 0.9202 | 1.1785
S /d | 23330 | 26452 | 15549 | LO0OIG | 1.3614
/8 | L3244 | 10291 | 10149 | L0104 | 10129
20 [ 00 |20 w/4 ) 19590 | 1.2653 | 1.0781 | 1.0I71 | 1.0514
w2 | 22042 | 22855 | 1.3403 | 0.9205 | 1.1793
Jr /4 | L5159 | 18642 | 1.3908 | 1.0006 | 1.3688
mf8 | L1643 | 1.0227 | 10139 | 1.0104 | 1.0129
0.2 |10 | =/4 | 14525 | 1.1720 | 1.0632 | 1.0173 | 1.05615
m/2 | L4353 | L6616 | 12182 | 0.9215 | 1.1825
/4 | 10862 | 14279 | 1.2972 | 0.9915 | 1.4024
Table 17 Damping ratio &, /6
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¢ | d [Pe| £ B Ity 4 Moy | Hay I3
w/8 | -0.0072 | 0.0031 | -0.0002 [ -0.0026 | -0.0002
0.05 | 60 | w/4 |-0.0758 [ 0.0178 | -0.0059 | -0.0319 | -0.0036
7/2 [ 0.3229 | 01467 | 00154 | -0.2071 | 0,077
Jm /4 | -0.6881 | 04178 | 03768 | -0.4430 | -0.3360
w/8 [ -0.0076 | 0.0030 | -0.0002 | 0.0026 | -0.0002
.00 0.0 1300 w/4 | -0.0780 | 0.0150 | -0.0064 | -0.0318 | -0,0036
wf2 | 03293 | 00601 | 0.1200 | -0.2060 | 0,076/
dr /4 | 05468 | 04373 | 0,882 | 04386 | -0.3310
7 /8 | -0.0085 | 0,0029 | -0.0002 | -0.0026 | -0.0002
0.2 [ 15| w/4 | -0.0847 | 0.0095 | -0.0073 | -0.0313 | -0.0035
wf2 | -0.3404 | 01842 | -0,1267 | -0.2017 | -0.0724
3x /4 | -0.5584 -U.‘i()'ﬁ?'_l 0.3826 | -0.4214 -{'].:]I]'!in_‘
Table 18: Relative phase error A
T dPe] € | Fug | Tig | Joaa | oz | fioa |
w/8 | BOLT6 | 1.3042 | 1.05GT | 1.0009 | 1.0127
.05 | 60 | «/4 [ 7.6109 [ 4.2928 | 1,5608 | 0.9190 | 10432
m/2 | 6.ATO2 | 8.6884 | 3.0120 | 05901 | 1.0018
Im/4 | 34202 | 4.8869 | 2.1241 | 0.6054 | 1.0902
w8 | 24484 | 1LIGGO | 1.05345 | 1.0009 | 1.0127
300 0.0 |30 | «/4 | 40857 | 2.6907 | 1.2943 | 0.9190 | 1.0432
w/2 | 34228 | 4.6463 | 19198 | 0.5805 | 1.0023
dr /4| 19038 | 2.7519 | 14907 | 0.6002 | 1.0918
w/8 [ 17130 | 1.0966 | 1.0234 | 1.0009 | 10127
0.2 | 15 | /4 | 24709 | 18827 | 1.1596 | 0.9192 | 1.0433
w/2 | 19015 | 2.6281 | 1.3693 | 0.5868 | 1.0042
i S /4 | 11447 | 16857 | 1.1508 | 0.5784 | 1.0970
Table 19: Damping ratio 6., /8



l I’¢ £ Iy {l'-t.-i H!.{i- 22 -H:l.,‘j

, /8 [ 0.0198 [ 0.0081 | -0.0005 | -0.0071 | -0.0003
0.05 [ 80 | /4 | -0.4515 [ 0.0059 | 0.0175 | -0.0733 | -0.0085
m/2 1 <0353 | -0.2707 | -0.2030 | -0.3127 | -0.1374
B [ 06173 | 05067 [ 04975 | -0.5243 | -0.3002

w/8 | -0.0201 | 0.0082 | -0.0005 | -0.0074 | -0,0003
O {40 w/d | 00541 [ 0.0017 | -0.0185 | 0.0732 | -0.0085
m/2 | 0.4392 | -0.2790 [ 02067 | -0.3122 | -0.1366
3rf4 06220 [ 05101 | -0.4522 | 205225 | -0.3870

o/8 | 00207 | 0.0078 | -0.0006 | -0.0073 | -0.0003
0.2 (20 w/4 [ 04591 | -0.0064 | -0.0202 [ -0.0728 | -0.0084
w2 | -0.4963 | 0,2947 | -0.2128 | -0.3103 | -0.1336
A4 | 0.6319 | -0.5400 | -0, -]E(i? A.5156 l]ﬂ.{.‘i?fl{i

———

Talslie 20: Iheinl.}w- Nnuw CrIGr ,-_'\

d_[Pe| & | Rig | fy | Ray | Hag | laa_
/8 00025 | 24971 | 1.2426 | 0.9736 | 1.0120
005 | 80 | w/d | 13,030 | 12323 | 3.1410 | 0.7690 | 1,012]
w2 | B.TA0T | 13.529 | 5,0319 | (0.3740 | 0,7353
o /4 | 423550 | 69183 | 2.9065 | 0.3738 | 0.7516

T/8 [ 49629 | L7728 | 11266 | 0.9786 | 1.0120
0.1 [ 40 | =/4 | 7.2427 | 6.6208 | 2.0409 | 0.7690 | 1.0121
w/2 | 44881 | 6.9384 | 2.7808 | 0.3735 | 0.7350
3m /A | 22015 | 3.6402 | 1.7301 | 0.3708 | 0.7514

w/8 | 29422 | 14009 | 10684 | 0.9786 | 1.0120
0.2 |20 1 w/d | 3.8990 | 37649 [ 15023 | 0.7690 | 1.0122
n/2 | 23600 | 3.6490 | 1.6692 | 0.3717 | .07338
3 /A L2677 | 200119 | 11377 | 0.8592 | .07376

Table 21: Damping ratio d,u, /6




& f| PL‘ . ﬁ'.”; H.li,-_g H.'g‘u .’I’,H H;;.:;
'-.rr,’s 0.0001 | -0.0001 [ -0.0001 | 00001 | -0.0001
0025 1005 (05 /4 | -0.0023 | -0.0023 | -0.0023 | -0.0023 | 0.0023
w2 -0.0449 [ -0.0451 | -0.0451 | -0.0451 | 0.045]
Sr /403010 | -0.3035 | -0.3036 | 0.3088 | -0.3036
w/s [ -0.0001 | -0.0001 | -0.0001 | 0.0001 | -0.000]
0.05 | 0.1 | 0.5 afd [ -0.0023 | -0.0023 | 00023 | 0.0023 | 0.0023
/2 | -0.0438 | 0.0450 | -0.0451 | -0.0451 | 0.0451
Ar /4| 02878 | 03017 | -0.3038 | -0.305G | 0.3036
w/8 | 0001 | -0.0001 | -0.0001 | -0.0001 | 0.0001
1 0.2 105 | w/4 [ -0.0022 | -0.0023 | -0.0023 | 0.0023 | -0,0023
w2 ] -0,0858 [ 00442 | -0.0451 | -0.0458 | -0,045]
dr /4 -U..IT-'II_ 02787 | -0.3084 _.u.:s:mz ~u,:ur.eh'.
Table 22: Relative phase error 2
= d Pe £ HIQ ﬁ'-l..'.l_- H.H. My ﬁ’n
ne A /3 L0120 | LOT20 | L0129 | 1.0120 | 1.0129
L025 [ 0,05 | 0.5 | o/ | 10524 | 10524 | 1.0524 | 1,052 | 1.0524
w/2 | L2159 | 12159 | 1.2159 | 1.2159 | 1.2150
S fd | LAZ8L | 14271 | 14270 | L4270 | 14270
w/8 [ L0120 | L0129 | 10129 | 1.0129 | 1.0129
.05 | 0.0 |05 [ w/4 [ 1.0524 | 1.0524 | 1.0524 | 1.0524 | 1.0524
n/2 [ L2161 | 1.2159 | 1.2159 | 1.2158 | 1.2159
3r /4| LASA9 | 14278 | 14270 | 14263 | 14270
w/8 | 10129 | 1.0129 | 10129 | 1,0120 | [.01209
0.1 0.2 105 | o/4 | 1.0524 | 10524 | 1.0524 | 1.0524 | 1.0524
wf2 | L2179 | L2160 | 1.2159 | 1.2158 | 1.2159
3w fd | LASTT | 1.4372 | 1.4256 L4144 | 14272

Table 23: Damping ratio 6., /8




¢ | d [ Pe| & Ry | f;;t..'lm” Iy Ity
p— w /8| 00001 | -0.0000 | -0.0001 | -0.0001 | 00001 |
0005 | 005 [ 01| /4 | -0.0023 | -0.0023 | -0.0023 | 0.0023 | -0.0023
w2 [ -0.049 | 00451 | -0.0451 | -0.0451 | -0.045)
dw /| 08015 [ 03035 | -0.3036 | 03038 | -0.3036
a /5 [ -0.0000 | -0.0001 | 0.0001 | -0.0001 | -0.000]
000 | 0 0] m/d | -0.0023 | -0.002:3 | -0,0023 | -0,0023 | -0.0023
w/2 [ -0.0438 | -0.0450 | -0.0451 [ -0.0451 | -0.045]
G /4| 02876 [ -0.3016 | -0.3088 [ -0.3056 | -0.3036
/8 [ -0.0000 | -0.0001 | -0.0001 | 0.0001 | -0.0001
002 [ 02 [ 00| 7/4 | -0.0022 | -0.0023 | -0.0023 | -0.0023 | -0.0023
afd | -0.0353 | -0.0441 | L0451 | -0.0460 | -0.0451
a4 [ 00T | -0.2783 | -0.3086 | 0.3401 | 03028
Tahle 24: Relative phase error A
i (‘|_ I]""t?‘ E f'llfh_e H;"; _\[_\_“J-'j."i H:-};__g J’If.l;;nl

w/8 | L0129 [ 10129 | 10129 [ Lol20 | 1.0120

0.005 | 0056 [ 0.1 [ w/4 | L0524 | 10524 | 10524 | 10524 | 1.0521

r/2 | 12159 | 12159 | 1.2159 | 1.2159 | 1.2169

/4| VAZRL [ LA2TL | 1A270 | L4270 | 14270

w/8 | L0129 | 1.0129 | 1.0129 | 1.0129 | 1.0129

000 | 0L O [ w/4 | LOB2 | 10524 | 1.0524 | 1.0624 | 1.0524

w/2 | L2163 | 1.2159 | L2159 | 1.2158 | 1.2159

S /A | LASSE | L4279 | LA270 | 1.4262 | 14270

. w/8 [ L0129 | L0129 | L0129 | 1.0129 | 1.0120

0.02 | 0.2 100 | =/4 | L0524 | 1.0524 10524 [ 10524 | 1.0624

/20| L2190 | 1.216] | 1.2168 | 1.2156 | 1.2159

i Br/d | 14924 | LASRL | 14253 | 14128 | 14273

Table 25: Daniping ratio 8,,,, /8




6 Runge-Kutta and Padé methods. Relations

The Runge-Kutta methods are multi-stage methods that only make use of Lo
solution u™ at time 1" to compute the next solution "' This is achieved
by computing a number & of intermediate values of the time derivative of the

unknown , within the interval Ab = " — 1 Applicd Lo the differential
eeuation
el
| 34
- Rl t) (93)

the most general form of A kstage Runge Kubta method is wiilten as follows

9. 17, 21]):

5
"5| = d’ }ﬂ (“‘” 'l- }I.:fhj ((,_} i (" 'l' f?f‘rd‘) = P ;"l [{JI ]
If'::l
3
e < 36 (95)
i=|
The associated consistency conditions are (see . 19])
R &
o= 3 a,  and Yobo=| (96)
=1 ml

The widely nged explicil Runge-ISulta methods are such tha ai; =0 fory =,
Some of them are recalled in the nest section. 11 this condition is nol saliglied,
the methods are implicit. Some implicit Runge-Kutta methods will he presenbed
i :Sl.llJ!'.u:l.'“H‘.l'll. aub-sections. Despite their complexily, such methods appear ta
be of great interest due Lo their aceuracy and stability properties,

As we have seen in section 5.1.2, we need 1o study the test equation dy/di = Ay
where y = p(l) and A & € 1o take into account the atability and acenracy
properties. We can compute the amplification factor € fiom Lhere, €7 is 4
funchion of z = AAl defined by R(z) = P(2)/Q(2) where P(z) and () are
polinomials. R(z) is called the stability function and & = {z € C; |K(2) <1}
the stability domain, Using this notation we can say thal the nomerical method
is A-gtable if and only if & 3 {z € C|Re(z) = 0}, There is a necessary il
sufficient condition for A-stability which is obtained from the maxinm prineiple
applied Lo €7 [10].

li(z) analytic for Re(z) = 0
|Rla)| =1 Yoe R

} w2  A-stable (97)

I is shown in [10] that if the temporal order of a numerical method i . Lhen Ii(=)
iz an approximation of order n to the exponential, e e - Riz) = (21",
The reciprocal relation jg also Lue if w s the masgionim integer thal verifies the
last relation,

1



6.1  Explicit Runge-Kutta methods

The most simple explicit: Rimge-Kntta method 15 the second-order fwo-slape
et bl

& = AbR(u", 1)
By = n:!i!h,(“” { ;ahf" . _LJJ.)

e ol (I ' :i (fr\| ) (!JH)
This method is unfortunavely not adapted o deal with conveetion dominated
prablems, hecanse, as shown in IFig. 8, Lhe associaled stability region does not
tnelude any portion of the imaginary asis. This method has e same shability
funetion Lhat Lhe miltistage i, Paddé approximation,

The most popular explicit Runpe-Kutta method is the ¢lassical fourth-order four
dtape scheme:

o = A", 1)
hy = MK (u" [ iﬁl.;" it .l.f_”)

by = ALR (" 4 §oy, 1 4 Lar)
o= MBSy 0" 4 A
I . .
gt = M -}- f-il(m t 2y o 205 4+ 4) (H4)

nitAAD

-

Re(AAL)

Figure 8: Stabilivy region of t!KIJ]it'H Paclé anel Runge-Kutta methods of arder s,



As shown in [13], the amplifieation factor of the above fourth-order Runge- Ky
method is given by:

G =1 4 (AAL) + *Jl,(,\,_\z)" + ;I:T(,\.-.-uz)" | -il,-(Mt)' (100
The method is effectively fourth-order accurate since € matelos exp(AAL) Lo
the Tourth-order term. The associated absolule stabilily curve is the same as
that of Padé approximalion fy, and is shown i Mig. & I cuts the real and
imaginary axes al —2,78 and £2/2, respectively 3] Binee thie absolite stability
region contauns a finite portion of the imaginary axis, the miethod can be sl
in convection dominated situations.

6.2 Similarities between explicit Runge-Kutta and Padé
methods

In the explicit alporithms like 0 ov explieit Runge Kutla R{z) i3 a polinomial,
thal is, @2(2) = |, From there we can deduce that any explicit method can not he
Asstable hecanse deg(Q) < deg(P), The stability fanction of an n order explicit
method is

2 - i
=) = A ] .i- ...... oty ,": Jiere I-\.-' r )Erﬂl
h(=) i+”|2!| +”!+H} where 7'(2) = O(z"*")
Lhat is,
Hiz) = Ryplz) + T(z) where T'(z) = O 2N (1)

[n the multistage Taylor-Galerkin methods (explicit mglhstage Padé methods)
we obtain that 7'(2) = 0 (zee secbion 5.1). We have the same property i Lhe
explicit n-order n-stages Runge Kutla methods [10]. We can conclude Lhat the
multistage Taylor-Galerkin and the n-stages n-order Runge-Kutta methods are
equivalent for Hnear [Jl‘ﬂ"ﬂt‘.ll'lﬁ. The difference resides only an the inplementation.
We st remember that the maximum order of a mestage n-order Runge-Kutta
method is 4,

6.3 Classical implicit Runge-Kutta methods

Generally, the application of an implicit Runge-Kutta method reduites Lhe si
multaneous solution of the & equations for the inerements & (i =1,-++, k). Each
of these inerements is a nonlinear function of all the Si(i =100, k)
An example of a bwo-stage implicit Runge-Kutta method is given by

Y
]

Al R(u")

| S
b = AR (w* + 5o ém)
" i I ] ,
(1 1 = i f‘ 215[ + E(”; ':I[l'”

16



which is of course the trapezoudil rule, The method is of order bwo and A-stable,
Butcher (see oo [9]) hag deeply investigated A-stage Runge-Kutta methods and
shown that, Tor each value of &, there is one method of order 2k Moreover,
Crouzeix [2] has demonstrated that such ligh-order methods are A-stable. This
i indeed o very allractive property of i||'|l'sliq-il Hung(‘--l\"lll_!,}l_ methods 1n view of
thetr application in the solution of transient advection-difusion problems. This
kind ol methods are the Ganss methods. There are other classical fanilies of
inplicil Runge Kotba methods, They are the Radau-TA and Radan-11A fe-stage
ol order 20 < 1, and the LobuttosHITA, Lobatto- 1B and Lobalto 1O § slage of
arder 2k - 2 (9. 17],

The only lourth-order aceurate twostage implieit Runge-Kotea methiod is Jived
by [17]

! Lo o8 ! 1 _ ¥3
ol il | i (o 2 zo 2 @ i
ey = 4 ..!'. h — : = . (103)
Thie ynethod Chen reads
o= MR A andy A odgade, 1" 4 r'.;,-:'.\f]
by = A" A andy + agd 1" 4 e
UL Fobidy 4 by (104

The size of the implicil system associated with this method is double when com-
IH!I"".I i :-i|-i|-|l£!ﬂ|'t| :H't'.l.'.l'llt'l"l'rl'{]f'l' '[I'n‘”".m.’h-«, e a0 anel 6'2 sl he :qim||]1'.;1,||{\,m.|:-1j}'
determined. This is the price Lo pay to oblain an unconditionally stable fonrth-
order accurate Lime integration seheme. To solve such sel of nonlinear viualions,
a Newton Raphson iteralive process should be applied. We can not use a fixed
point iteralion, it transforms the algorithm into an explicit method and destroys
Lhe gnm! M.nhilil.y prapertios ||lJ]r

6.4 Similarities belween classical implicit Runge-Kutta
and Padé methods

As i 6.2, we can say that Lwo methods are equivalent il they have the same
stability Tunclion. You can see this velations in Table 26 (see Section 5.1 and
[17]), The plase and danmiping properties of these schenies have been studied in
Seclion 5,

The extensions of Simpson quadrature rale (see Section 7) have n steps and
order 2n. 5o, e stalality Tanetion P{2)/Q(z) is a 2n-order approximation to the
cxponeitial function with deg( £) < 0 and deg(@2) < n. The Padé approximation
Ry 2) ds the wnigque vational function with these properties. Therefore Lheir
stability Tunction 1, (z). This family 18 equivalent to the multistage Padé
schemes /0 and the ganssian implicit Runge-Kutla methods, and they have
the same stability and accuraey praperiies,

47



Implicit KK

r11u|1.i:i|.;{g¢‘ el

shability

miethiad et lod arel function
Clatiss H,. " 2n lw = ]
Radau A h,,... » I =1 | Rpcinlz)
~ Radau 11A t'i’,, 1 2n — | H,,_ (——)—
Lobatto 1T1A oz 2| R |.. :(_J_
Lobatto 11113 Ritin-1 2 —2 | Bt i (2)
_'_Lc;ahil,l.l.m [ R 241 on— 2 Ryzalz)

Table 26: Relations hetween the implicit Runge-Kutba methods and the Padé
ﬂ("llf.’l]l('!ﬁ.

6.5 Other implicit Runge-Kutta methods

Among the variety of implicit Runge Kabla methods, there s oan inloresting
family ol schemes in view of its disgonally implicit character (DRI imetliod).
The maiux A that defines these methods is lower teianguilar, thal is, a, =0l
1< g. The great advantage of this family of methods s indeed e absence of
(-UHIJhlU; between fwo stages which reduces (he size of Lhe systems to be sofved
aloeacli step of the Llime integrabion procedure, This is o uice corpilational
feature, The ﬂt}u.hili!.y [unetion of a DIRK method is then defined h}'

.. F'(z)
(1= z)(] = agpz)
whore s i3 the number of stages. Notice that (z) = det(/ -

Lhe identity matrix.
A known DIRK method is the one defined by [23)

[uul:[ ‘L ‘:‘ a;=(;!';) e;:=(:) (106)
~ BB i 3

With the above parameters, the two step third-order niethod reads:
8 = AR+ 4, .-NJ
. , |
:5.3 = AtHK (N” = I—'\!"l -+ i‘f{i-jq " - ‘_I_“)
IR 1 ] :;
1 = u Tb, + Tﬁu
While the above third order method works well for pure conveetion. its belaviour
in mixed advection-diffusion situations is penecrally disappointing. (See Talles
27-28, Figa. 9-11 and references [10, 23, 27]):
Similarly 1o other DIRK methods the previons one has 1o solve two uneonpled
systems al each time step, By contrast, the twostage fourth-order methord in

H(z) =

(1 - =) (105)

=) wherve [ s

(107)

1s



E e [d [P DIRK e[ d [Pe|DIRK [ ¢ [ d |Pe| DIRK
K L0041 10,0069 0.0190
wfdl [ 05 [ 00 [ oo [ 00187 [ 0.5 0056 | 10 | -0.0283 || 1.0 [ 0.05 | 20 | -0.0695
w2 -0.0077 0.1292 -0.2219
B! 0, 4486 0.3943 045806
/8 0.0166 0.0094 0,021
afd | 1O 0.0 | ae | 00617 || 05 ] 0.1 S0 -0.037 | LO o0 10| 00767
w2 0,2044 0.1524 (.2349
3/ 0.4353 0.4063 G5 ]
T /8 01,0600 0.0143 0.0254
afd |20 [ 0.0 ] 0o [ 00796 | 05 ] 0.2 | 25 -0,0538 [ 1.0] 0.2 | 5 | -0.0000
¥/ L3976 1776 0.2495
47 /4 105815 03335 04250
Table 270 Phase errors A of DIRK method.
£ ¢ | d | Pe| DIRK || « d [Pe]DIRKT ¢ [ d [Pe] DIRK
r/s | 0,9937 T 8232 11591
w/d LA 00 ] co | 0.9758 || 0.5 | 0.05 | 10 | 17932 || 1.0 | 0.05 | 20 | 3.7197
x/2 0.9220 16781 2.63806
3 /4 11.9096 [A4930 17580
/8 09767 14098 2.5600
a4 11000 oo | 00161 |05 00 | 5 [ 139l | Lo 0.0 | 10| 2.2069
m/2 (0.7906 13397 | .6895
Am /i 0.769] |.3082 |.2927
% /8 0.9155 1.2013 L7590
afd 120 [00] 00 | 07801 |05 0.2 [ 25 ] 11844 || 10| 0.2 | 5 | 16829
w2 0.6325 1612 12176
3/ 0.6161 |.2261 10544

Table 28 Damping ratios &, /86 of DIRK method, For Pe = oo the maodulns
ol the amplification factor |(7],
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5. (103) leads 1o fully coupled equations aid the sizé of the associated e
system in the Newton-Raphson iterative solution process s doubled with respect
Lo this thivd-order method.

We consider now some more general Tamilios of DIRK micthods,  For example,
Lhie two stage methods defined by

/Ll ) iyt =
A= ( ) .;::p,) b= (i";") ¢ = ( ﬂi’_‘u,) (108)
f' 3 A | 2
have third order and are Agtables il p = - !/-./5 (DTEKN(L) mothod) and il
po==1/3 (Eq.(106), DIRK(2) method),

IT all the diagonal tevms of the matix A are the saine, il s a singly dingonally
imiphicit. Runge-IKutta method (SDTRI), A family of tweo stage SDIRIS metliods

is given by
|
¥ Ji { 2 o 1 :
"l._(l—'.).p ;r) HIJ_(,I,,) ‘ (|—ﬂ.)' (109)
2

IM e = {3 g?)fh it has third order and s A-gtable (501 RK(1) wiethod), aned if
Ho= (2 - \.ﬂ)f?. it has second order and 15 A-stable (SOTHK(2) method), The
three stage SDIRK family defingd by

14
Lty 0 () P e

A=| =& L 0 h=|l=5k | e=| ¢ (110
I+ f = 2}'" I'.JJ"‘LI ‘;;‘J"_, l:i.l'.‘.

has fourth order i 3 — 35 — 1 = 0, but it is fourth order A-siable ouly il
jo=2eos(w /18)/v/3 (SD1RK(3) method),

There is another family of Runge-Kutty methods ealled singly tinplicit Runge-
Kutta methods (SIRIK). ln this case you can dingonalize the mabrix A, and it
has only one eigenvalue. A two stage SIRK method is defined [y

(:'iu(-’l -V2) :ss/:_?-')) : (n'-i'ﬂl*-'f,@—'-"i") [ \/ﬁ),.f)
i,u(ri it i\/}) 5-“(4 - \/QJ . :!EL’—_;{?IM (2 + ﬁ}“

(111
[Lis Lhird order A-stable if = (34 V3)/6 (STRE method),
There is a hig \"Fll"ll’.'t_\’ of DIRK, SDIRK and SIRK methods, These schemoes
increase the number of stages but not the order. This generally diminishes some
of ity alractive proporlies,
The methods DIRK(1), SDIRK(1), and STRE are equivalents, because they
have the same stability function. The stability funetions of DIRI sehemes are i
Table 29, The main difference between Table 29 and 26 i thal (he poles of Lhe
stability function in Table 26 are pure complex, and those of Table 29 are ieal.
It makes the possibility to ho uncoupled the DIRK, SDIRK and SIRK schemes
and Lo solve them more easily,

A=

ot



et hod

stalility function

DIRIN(L)

143 .2
_l = B = _-En b

L= (14 g5) = 4+ (42) 22
[ | — 2y — 150
DIRIN(2) 1_—‘{} = ;_2
-l :’.n'.
e |4 (V2 — 1)z
SDIRK(2) ‘ he e =
| - ('.-.‘— \/2‘) z 4 (1— — \,/.é) 34
— Th i :"2.- -j' =L Ay A PP ] .;'J' 4 .I.‘l—: IH_I ? h_.___
SDIRI(3) 2Ap A (3607 4 120) 5+ (6 — 18p") 2% 4 (3 — By = O = i — 2)

(=8 (124 120) = = (6 4 120 + 6p?) 2% + (Bp + B b g 4 1) =)

.I’.u.'l::tt' 29: Stability functions of DIRK methods (ﬁ, = v»}; CU% (?ﬂ&))
There is o more general feature. Let Riz) = P(=)/Q(2) an irveducible A-stable
polinomial quotient satislying P(0) = Q(0) = 1, gr( ) = pr(@) = s and ¢ -
li(z) = O(z"*'). Then Lhere exists an s slage A-slable neorder Runge-Kutia
method with (=) as stability Funetion |10}, So, it is possible (o find as Ay
A=stable Runge-Kutia mefhods as irreducible A-stable polinomial quoticents,

6.6 Similarities between non classical implicit Runge-Kutta
and Padé methods

We extend here the multistage Padé methods. 11 we take an irreducible A-stalle
pelinomial quotient (=) = P(2)/Q(z) satislying H(z) — ¢* = O(z"*"). Then
there exisls an s-stage porder multistage methed where s < dog(€2) + deg( 1)
(like Padé methods) with R(=) as stability function. We will eall Lhese et liods
as A-stable exponential methods, |

For instance, the function

| = g2 — 12
fi(z) = —3——2= 112
il ey ey (112)

15 an aproximation to the exponential function of order 3, 1 carresponds Lo the
stability function of the DIRK method defined in Equation (1 06). We can factor
like:

| - =t | = — oz
B(=) = { ‘;"]' _‘”:))“(_ i; z) (113)
Hl



This lactorization allows s Lo write Lhe [:Jl]uwin[,; exponential melliod

(]—%:I.‘)fﬂ = {(1=-—2

@) u
—3-=f 3 i
o aaned _ = ) % { 1 ] j
(Il =wju = (/] i)

where o = Al There are two tincotipled implicit equations 1o solve al eacl,
Lime step. We can also factor in another way

(115)

piving an equivalent methed. By this lactorization the cxponential methiod rewds

o= (] 1-'5-:-;!: "
(I=wjic = (1—2z)umti (116)

=f']

(l - %:ﬂ) puhttl —

There are more possibilities, bat all of them are equivalent.
I |

ox
| oo — .
Wrum I Gl \:ﬂ -~
& o o=0 \ —
: ‘n—l @, iy e B _-.\-':-\_\_ = B“"Kﬂ)
§ — i
B T DBIRE(D
SDIRE() S -
450 RrER: SDIRK(2)
G
2. BA
@281
{ [5=0 |
ﬁuﬂ%:';;l'l'l‘-l-l-i r?rlﬁm-r--—rrr;‘rmrv—r—r-t?: i Hlﬂgl- LRl r'F:;:.'I"J;"'F‘ "'"ﬂ'l'I’:" ey ’F':._'FF-'_'

Figure 9: Accuracy of DIRK methods for pure convestion.

I'rom the preceding resulls we ean conclude that if (=) = P(2)/Q(2) is an irve:
ducible A-stable polinomial quotient satislying fi(2) —e” = O(2" ). Then theve
existy an sslage n-order exponential method with [(z) as stability funetion
(¢ = deg(Q) + deg{ 7). And also there exists an s-stage n-ovder Runge-1<nita
mebhod with H(I) a8 EI(‘.H.h“iLy funetion (.-c = rj.::.ng)) '[jc;ul_h methods pre f.l{.]”i\’}‘.
lent. The difference in linear problems is only the implementation, Note that it is
easy to lind the exponential method and it is quite dificult to find the equivalen
Reonge-Kutta method.
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Figure 100 Accuracy ol DIRK mebhods for conveetion-dillnsion,

What is in'qmrl.;glu. 15 not only the numerieal schemes bhut the acenracy, Thi
phase and damping precision of DIRI methods are shown in Figures 9-11. 11
is possible to see that always the Padé schemes (Mg 5:7) have betler aceuracy
thian DIRIEK methods, Other aontors have alse noticed that the DU s mietliods

are generally disappointing [10, 23, 27].

Al thie niplicit methiods consideved are Astable, so they Lhaven't any stability
restriction. The Tt on A6 comes rom accuracy constderations. Lel 4 the H[3h

Bal inerement, £ = kh the dimensionless wave nomber, & the dimensional wave
numiber and e and o the Conrant number and the diffugive factor respectively.

The vegion of acenrate spatial resolution is 0 < £ < 5 Thal means 0 = <

Th

The exact damping and frequency are & = df? and w = ¢£. Then the important

LIS 15

|Gl

4 8 H

o, W)

.58 e e SSE———

@i PN = i fa - 1ACY ﬁ

Figure 110 Acenracy of DIRIS methods for pure diffusion.




. . - . I s o
regrons are 0 < w < ef and 0 < § < f{:—‘;i. IFw, and &, are the limits on precision
we obtain the following acenracy limits on the Courant number and e difussive

[actar

e < owpd e |,2782) W, i
By (17)
d o= 5o, = L6214,

Let ¢ the tolerance of ervor that we admit, that is, |e" = Ri{z)| <t wy wiied by ave
the maximum satisfying [¢F — I(z)| < e whero z =8 + 1w, dies

W, = Mmax{w; |r“"“’ - BlS )

e b€ )
, . (118)
by =  nax{6; |r-"+‘“' ~ 1 4 u.-.r)| < t, wE !}

where fg is the interval of damping and £, Ue interval of fiequencies on conside-
ralion. I is also possible Lo consider a different tolerance for phase and damping
EITOTS.

Notice that the acenracy limits on DIRK methods are too restrictive for a given
¢, (0= ¢ < 1), The Padé methods have higher accuracy limite. 1 seens Uhal
the more acenvate A-stable family of methods ate the A-stable mntllistage Padd
sehemes, or equivalently, the classical implicit Runge- IS utte methods.

7 Implicit schemes based on Simpson’s quadra-
ture rule

Considor the partial differential aquation
= = i) (119)

where ft represents the advection-diffusion operator. Over a Ly pieal time step
At = 1"t — % the change of « is given by

. " Ou -
S I / e gl (120)
i il I

We shall exploit this relationship to rediseover some classical implicit time step.
ping schemes with high-order accuracy in the time step.

To evaluate the integral in the vight-hand side of the above equation, we shall
nse polynomial approximations for 2% which, as before, will be denotod w,. Using

the normalised coordinate £ (—1 < & < 1), we write

1 |

f U= + s+ (121)
|I+| n ’

al = !'T‘riﬁ - %rﬂf (122)
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50 Lhat expression (120) reads

i |
'u"“ — " = I:'-ti/: T"-."(E}dﬂ' “2:”

We shall now suecessively consider inear, quadratic and cubic polynomial ap-
proximations 1o ().

7.1 Linear approximation

[T 0y s aggmmed to vary linearly lvom 2% 1o 1", e

| . . .

mlg) = S =ui + 501+ &u™ (124)

one ablains from (120) the well-known trapezoidal rule, or Crank-Nicolson scheme
A :

W o = =+ W4 (125)

which is second-order acairate i the time step 21

7.2  Quadratic approximation

Lt ais now assiie Lhal wy has o gquadratico variation over Lhe Lime interval 27
given i levms of Lhe normalised coordinate £ by

ai(€) = E(€~ 1yap + (1 — & uyE o e 1y (126)

Illlrmlnc:ing his expression inlo (123} we lond Uhe schemse

—‘“' el
i = i = = (”:.' + Ay : - u}""') (127)
T'hs 13 o fourth-order acenrate generalization of Simpson's quadrature as can he
verilied by inserting the following Taylor series in the above schame:

+1 .j! u‘lfz ,'_1!.” )
=+ Tl t T+ e+ O (128)
A A ,
H,;H‘l = H.:‘ + dﬂ'-"l,'r" -+ Tn:'” - (_'_iu:*‘“ | O(.ﬂfl) (139)

Scheme (127) invelves three time levels and can therefore not be directly imple-
mented. A two-stage implementation of the seheme is regnired which reads

L ,"_\f IR E :I' K
Wt -t = Tl— (-r'jn'-':l T H i H;'.I.]) “'-"'”
| Al "y
”il El ”"+ ) -— T):II ( - H;I -}- #i”-' e '+' n”rlll‘) ( |3l )



1 .
The expression for «"*2 results from Llie integration ol relation (126) from 1 1o

(72 whiile the expression for W™ arises from the integration from 112 1o (11

ln the ease of pure convection, second tLime derivatives con lue incorporated i)

the time integration scheme and one might consider clitninaling the intermediate
t

L : ‘ i p
value wg - # using Uhe forward and backward approximal ions

n--!! Al .'_.ﬁ?' ‘

i o= gy ot g+ (AL (132)
A Al e A

w4 = g St + :L-q-—u;',',” b O(AM) (134)

Taking the arithmetiec mean of the above CXProssions gives

1 / i
15 o [ i .d’-'if " il l—“ il ¥
T 5 (u:‘ + gt ') | T (-u.,, -y ’) - 16 (u}}, t ) ') (134)
anil llt)billg, Lliat
1 :
-u;-;H — Mty = o I('“-:.{” + It-:}';'l) + O0AF) { 135)
one obbains
gt | M 3 )
u;l' = 7 (”,;‘ fs u;"H) -4 H (H,.:" — 'n;',' '} (136)

Now, introducing Ihis expression iito relation (127) vields

Al AL? .
= u"” = = (uj' + u “) e ik (H",', ”'.5.':”) (137

TRER
Thix is the fourth-order acenrate time stepping scheme of Harten and Tal-1ze
corvesponding to Padé approximation f,, in Talle 8.

7.3 Cubic approximation

Lt us now assume that the time derivadive e hiag.a cibic variation over the Hine
interval Al

To define uy, we shall use a cubic expansion based upoii four nodes located al
the Lobalto points

£ = -L0, -13., +1.0
3

I
—_— — + .
VB
and upon Lagrange shape funcétions defined in terms of Uhe norialized coordinate

£ by
X

)

M) = 20 -6 -

Ny(€) = ﬁ%’:—-'—1-‘(:‘:— 3?)({“ = 1)



Ni(€)

Ny(&) = ;-H FO)(EF ~ z) (138)

Illll'i" cithic W‘I-I'if'rlii.lll “l- i i-“ Inlll.‘-ll I‘K|JI'(‘HSI:H| ill HH" |'m'm:

i
(&) = 2 Nil€) (139)
i=1
whigre

Wi = u;‘

wa = 't

tya = ”;JH-‘

g = 'u.;"“ (110}

Wl'lf?l‘{‘.' Wit IIH.V!‘.‘. *'lﬂ!—lt'?l’]

5— 5 . BB

fy = — j = —r—
[0 [0
Now. introducing expression (139) into velatiouship (123), we obtain the schienie
ik | - no__ :"'\_j‘ (”H _I_ r o fieday i £ 4l i il I ||
i ' [ Lt Doy Doy -, (111)

This is a sixth-ovder accurate peneralization of Simpson’s quadriture, as can be
verihed by development inko Taylor series around time 2", Hs stability Tunction
s Haals) (see Seclion G00). Scheme (141 involves four time levels and, like
BITS t:|u:u'|l'n.!..ir' achee, it must be taplemented inlo slages. Three Alages are
needed in Che present case amnd they corvespond (o the intermediate Lime levels
(7 Cand o the end-ol-step time level ¥,

Lo abtain the equations governing the three stages, we fiest integrale expression
(139) for w, (&) from Lime 1" to time ("N then from " Lo (P and fnally
from "M ta Lime 194

This gives the lollowing equations for the three stages of the gixth-order scheme:

) — .
oz ((11 4+ VB + (25 = VB)uit™ + (25 — 13/5)u "

(1 = VB *)
u" gt = IF% (—2\/5*“.;' + 1Bt 4 LBt - z\/fiu;"“)
A (0= B + (25— 1BVEN o+ (25 — VE)ups?
NITRRVTeD)

fif=ih Vi

i =

G el =

|20

(112)




Sitiee the sixth-order scheme involves three coupled equations, 1 will he very
expensive Lo use. Therefore, a eritieal agsessment ol Uhe advanbage of a Ligher
accuracy againgl the inereased computational cost should be made hefore nsing
gueh a scheme in practical applicabions,

& Numerical results

Numerical tests were performed 1o assess the perlormance of selected tmplich
Yadlé sehemes of hagh order in the solution of conveetion and convectiondiffusion
problems. '

The selected schiemes ave ) g, Ryu. Baqand Iy,

8.1 Convection-Diffusion of a Gaussian Profile

To illnstrate the performance ol the selected high-ovder Padé schemes and com-
pare them to standard explicit schemes, consider first the linear convection-
diffusion problem over the spatial interval [0, 150] defined by the following initial
andd boundary conditions:

s | ]\FJ'
e l)) = —=pg7F
u( ) %
w(l.f) = 0
2.1 2
W(150,1) = =2k (114)
Ty '

with' X = (v — &)/, & =35, L = (150 =5 = i)/ ey, o) = r.r\/l + 2l fear? and
ag = 20 for Pe =5 and xy G0 for FPe = 0.1, A unil convection velocily i
assimaod and the calenlations were made uﬁinp, a uniform mesh ol linear elemenis
with & = |.

In Figs. 12 1o 17, we compare the profiles of the Gaussian oblained at various
time levels with the implit:ii. Padé schemes Bya Ras, Boq and By y with the
three-stage explicit scheme Rap (3TG) and with the second order explicit scheme
of Peraive [19] (TG2Pe). Two values of the Péelel number were considered,

[3d1] [rair)
w0308 i 0234
il = fim il = 007
".nn [HTE
LA -] =8 i\.ll"l [T - < e W .":-/---- i
a8 (58,88 Wb LT 1O, ik 100, B

Figure 120 Convection-diffusion of a Ganssian by 3TG [15] and TG2P [19] with
Pe =5 [ov [ =0, 12, 60, 108,
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Figure 13: Conveetion-diffusion of a Gaussian by Hyz and Rz, with Pe = 5 al
¢ =23 for | =0, 12, 60, 108.

namely Pe = 0.0 and Pe = 5 The vesulis for Pe = 0.1 are at times 1 =
0.2, 00 20, while they we al imes 1= 0, 12, 60, 108 Tor Pe = 5, The explial
schemes were operabed with a time step equal 1o 90 pereent of Lheir eritical valuge,
wlile Lhe imp]it'il piies sed ia.rgn values of Lhe Courant :';'u:'nlwr o Lo appraise
their acenracy well beyvond the stability imit of the explicit schemes. The results
indicate that the implicit schomes ean produce very acenrate answers for large
valnes of the fime step, The discontinuous lines in 1 s, 12 to 17 correspond fo
Lhe analytical solution of the prablent.
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F“lj.l,’!il‘t‘ [y Clonvection diffusion of o Gaussian by ﬁ‘!ﬁ-‘;, Al ff,;_;l;; willy Pe = 5§ al
= 4. G lort =0, 12, 60, 108,
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Figure 15: Convection-diffusion of a Gaussian by 3TG [15] and TG2Pe [19] witl
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Figure 16: Convection-diffusion of a Gaussian by #; 5 and By with Pe = 0.1 al
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8.2 Rotating Cosine Hill

This standard test problem considers the convection of a product cosine hill in
a 2D piire rotation velocity field. The initial conditions are

wlas, 0) = ¢ i1 A cos m X [U A cornXy) XY + X =
] ollicrwise

whore X' = (& —wo) /o, wg and o being the initial position of the centre and the
Fadins of the cosine ill, The advection lield s a pure rotation wii.h |||"|iL w"-IIHII'Hr'
velocity given by a(a) = (—wy, @)

A uniform mesh of 30 = 30 quadrilateral elements over the nuil square | _f” “ ¥
[ =5 5] has been employed in the calenlations of the Figures 18-19 and the stan-
dard Galerkin hinite element method has been used for the spatial diseretization.
Here again, the implicit methods Iy p, [y, Hax and Ry are compared (o the
explicit schemes 376G and TG2Pe, The numerical solutions lor the case @, =
(ll‘ ";] and o = 0.2 are shown i Figs. 18 and 19, They give the elevations of
Lhe rotat ng cosine Il alter one Tull revalution. To compare Lhe aceuracy of the
various schemes, Lhie masimum and minimum valies of the mimerical solutions
are: provided, together witli the valie of the maximum Conrant mumber in the
finite element mesh computed in thie middle of the sides of the boundary, One
notes that by contrast with the explicil schemes the implicit methods can be
aceurately operated with quite lilrgn Cinre steps, Scheme Iy, appears to be the
less aceurate implicit A-stable method as conld be expected from Lthe aconracy
properbies shown in Figs, 57,

|'TG2Pe ¢y1,=0.183]
Telm .

max= (1,940

min=-0,0141

Figure 18: Solution of the Rotating Cosine Hill using 37 and T'G2Pe explicil
methods.

Table 30 shows a relation between precision and coal in a non structired iesh
(g 20) with 4501 bilinear elements and 4576 nodes. The spatial increment is
fis = 0,004, Ay = 0.08, hiwian = 0.012415. We have done mlly e t;lng{'nm[m-
sition of Lhe matrix, 1 s possible to see that the pew implicil schemes are more
cllicient than the explicit ones maintaining good accuraey.
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Fignre 190: F_J()Iut.iml of the Rotating Cosine il with (e inplicit Padé selicmes
By, Mapy Bys and Iy for o= 3. '

Figure 20: Non structured mesh used with the rolating cosine hill,
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methad | time | time steps | e | CPU Wiridid Uiy

~ RI2 | O 261 3| 282 101160 [ -0.04991
R29 | 27 264 3 286 | 1.OTAI8 | -0.01973
R23 | 2r 364 3 663 [ 1.OTI50 | -0.050741
R33 | 2rx 964 3 637 | L0101 [-0.05116

TG2pe | 2r | 4276 | 0.1837 | 1657 | 0.99144 | -0.03012
TS 2 {120 0.702 | 1207 | 1.00592 | -0.0519 |

Riz | 20x 2620 3| 2338 [ 110229 | 0.21855
R22 | 207 | 2620 307 | 11088 | 031301
R23 | 20w 2620 3 1685 | 1,10270 | -0.22145
R33 | 207 2620 3 1387 | 1.10001 | -0.22505

TCG2pe | 207 | 42752 | 0.1837 | 1687 | 1.04292 | -0.08770
TGY | 20m | 11089 | 0702 [ 12723 | 1.08634 | -0.24244

Table 30: Results for ihe rotating cosine hill without diffusion with the non
structired mesh (CPU in seconds),

8.3 Rotating Cosine Hill with Diffusion

This is an advection-diffusion problem and ity description is the same as in the
previous example, except Lthat physical diffision lias heen added Lo give a maxi-
mm value of the Péelet mumber of 20,

As before, the Pade implicit schemes are compared to second- and Chivd-oriler
aceurate explicit methods,

The nuimerical solubions obitained alter a qnmplnlv i valm.mn are qlmwn ||| |"3—;"'
21 Lo 25, No analytical solution is available in the present case and Whe varions
schemes have Lo be compared between them. The Padé sehemes can work with
high Courant numibers without losing significant acenuraey.

RI1Z  Pe=20 fedn RIZ  Pes2p | Iin
iz {3, 3H2549 w (370285
’ o2 0 dei.] b= 0,0010259 e=40 d=02 :f:n .001765

Figure 210 Solution of the Rotating Cosine IHI with diffusion by H ..
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Figure 24: Solution of the Rotating Cosine Hill with diffusion by £y,
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e 8635 de0,043176 max= (1392556 TG2Pe Pas=20
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mine 0001286 | ©=0:3339  d=0.016699 | Mot el
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iy, = S,
NN

Figure 26: Solution of Che Rotating Cosine Tl with diffusion by $71°C0 and
TG2Pe.

8.4 Burgers equation in 1D

One of the main objectives of the A-atable implicil methods 8 to solve nonlinear
sUIE problems, As o lirst nonlinear test, we have solved the Burgers advection
dillusion equation i 1D Lo appraise [l |1‘t:!‘fm'nm.nt7t! ol Ll Iliﬁ;ll-nl‘tlul' *aeles
schemes with respect 1o the standard explicit schemes. We consider the Burgers
problem over Lthe spatial jnterval i_U. |] delined by

i I‘ ity = My
wlw, 0) = sinlwe)
w(0,) = w(l,l) =10 (1)

for Pe =1 and ¢ = 0.000 A wniform mesh of linear elements of size b = 0,001
has been used,

Figures 28 Lo 26 show the results obtained with botl implicit and explicit. me-
thods and one can appreciate the efliciency of the high order Padé methods from
the test data in Table 31. The Ry and the Bya methods are more than seven
Lirnes aster than the TG2Pe mathod, and more than seventeen times faster (han
the 3T'CG method. The explicil schemes were operated with a time step equal
to 75 percent of their evitical value, while Ry and Rz s used large values of the
Courant number e. Note that in the fty4 and Ry methods a nonlinear system
had to be solved al each time station by Newton-Raphson iteration. Only two
iterations were needed fo abiain an aceuracy in excess of 107,

Thig simple test problem provides a good illustration of the penalization intro-
duced by the conditional stability of explicit methods when a refined spatial
dizeretization of convection—diffusion p;'qlnlcmn i required,
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Figure 26: Solution of 11 Burgers equation by Ry, and Ky, with Pe
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Fignre 280 Soliition of 1D Burgers equation by 3T [15] and TG2Pe [19] with
e =1 lor =10 0204, 0.6 05 1.0,

method Chiic il At L S I e sleps

TG2Pe [ 0.072 [ 0.0727 ] 0.000072 | 2215 | 13809
3G 0.0907 | 0.0907 | 0,0000907 | 5216 | (0=
O Ri2 3 30008 | 257 335
CORIZ |6 G 0.006 | 126 | 170
TR 3 3 0.005 | 263 T35
{22 6 i 0.006 Bl 170
123 3 : 1.003 haT 315
12 G G 0.006 | 280 1700
Ray | @ | @ | woox | a7z | 3
1333 i1 i (.00 S0G [70)

Table 31 Comparison of implicit Pade schemes and explicit methods for the 1D
HLII’!.‘;(’..‘I'H ]H'Ulll“[ﬂ.

8.5 Nonlinear convection-diffusion problem in 2D

As a lasl lest cnse, we consider the solulion of a new 210 Burgers problem over
the square domain 2 = [0, 1] = [0, 1] for which an analylical solution can he
devised, thus allowing a cllr( sl assessment of the quality of the numerical results
abtaimed with the high-order Padé scheémes,

The pluhlem s defined |w Lo erriations

w4 (u,0) Vo = vV

[45)
n o+ (wv)- Ve = #Viy, (

which are coupled through their nonlinear convective terms, and by the lollowing
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Figure 200 Solution ue, @ 1) of 2D Burgers problem by By, faw, Rey and Iy
with Pe =333, e =3, d =09 tor 1 =0, 0.2. 0.6, 1.

initial and boundary condibions:

w(a, y, 0) = sin(ma) cos(my)  v(a,y,0) = cos(ra)sin(ry)

w(0.5.0) = u(l,y t) =10 ola 0,0) = vl 1.1) =0 (116)
u S v iy

g aslil) = (e L) =0 5-(0,931) = 2 (Liyt) = 0
The analytical solution 1o the n.i'mW:: Burgers problem is given by

§ wJ‘(m'! i, ”

Lty Wal) = -7
(e, 1)
dyl) = —2ptnt L
W) = =g o ®)
where
= ' ' ; [Tume CERN.
'b(-.ﬂ‘y'f.-) = tym ﬂ()ﬁ('ﬂlﬂ-’\“) m:i('?'n#y)e -l mE
R
(o)
b,y l) = —n z a1t 810 ) coslmay )e (g m et (118)
I s mmil o
Lo
fﬁu(“'.."!-ﬂ) = =¥ E g 111 L‘-uﬂ(i-tﬂr:i‘};r-iil'l(-nuw),,-[n*ll-m‘)ug'g

=l ni=1

(it



and ag,, are the coefficients of a double Fourier series defined by

Ll ,
= /.l [ l._lt“"!f"-"-‘]i."'mlrru”(.hi!'l":l dn fh/
Ju Jo
1 1 . ; .
fipy = tyy, = ?-f _/ gromm) coslmn/ (Eem) cog(mire) die dy (149)
u Ju

1opl
thn = Oimy = Jl[ f pros ) cos(miM ) con(nrar) cos(mmy ) da dy.
i i

The problem defined by Eqs.(145) and (146) exhibits various symumelries, Foy
mstance, along a transverse section of the domain one has ulx, 2. 1) = v{x, x, )
and wlw o d) = —ull = @, 1 = 2,1), Moreover, one has u(x,y, 1) = vly, 2. 1) and
(o b) = —u(l — 2, | —9,0) over the global domain,

When convection dominates Lhe nonlinear Lransporl, the solution includes ilie
[ormiation of A shock n|u:|g Lhe t.Iiag,'nnid ol Lhie domain Im.ﬂsing 1.11{‘4_:1_1@;[1 L ol
(0, 1) and (1,0). Since a conventional Galerkin method is used herein Tor the
apatial representation, the numerical solutions were computed for a moderate
valile of Lhe Péelel number in order 1o avord unphysical oscillations. The resulls
obtained on a uniform mesh of 30 % 30 bilinear elements with both explicit and
implicit methods are shown in Pigs, 29 to 360 The results along the domiin
diagonal reported in Figs, 29 and 30 are compared to the exact selution which
ig represented by discontinuous lines. Because a rather coarse mesh has been
cmployed in the present test problem, the explicit methods could be operaled
with rather large Lime steps (80% of the critical value) and were found Lo he
competilive with respect to the implicit methods as regards the computing time
needed Lo complete the problem.

e s
[Taape|

=) KR
d = 0,057

316 |
c= 0,207
il = 0.090

8, Al

i u-&nm“.lenu:u“v;uu.i:.mum..qm._..l..w..,.l.l.h a f::;a." S s

Figure 30: Solution u(z,2,4) of 2D Burgers problem by T'C2F¢ and 370 with
Pe=333for! =0, 02, 0.6, 1.
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Figure 310 Solution w(z,y, 1) of 2D Burgers problem by £, 4 with Pe = 3.33 for
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Figure 34: Solution u(e, gy 1) of 2D Burgers problem by Ry, with Pe = 3,33 for
o= B, o= 0.0.
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9 Conclusions

v Ll present stady, o major objective has heen to achiove a high accuracy jn
Lhee Lime integralion of Cransient advection-diffusion problems,

Standard onestep Taylor-Galerkin (TG) methods ave not ideally suited 1o deal
with problems in this class, as their temporal aceuraey is limited Lo second order
b O finite elements are employed lor space discretization. This is in conirasi
with the pure advection case for which explicit and implicit Taylor-Galerkin
schoemes ol higher order ean be f,ll'\!{_'lupm‘rl in connection with the use of €9 finite
clemernts,

Liv the Tirst part of this report (Section 3), variants of the standard second-order
accurale Taylor-Galerkin method have been introdieed in the lorm of modified
explicil TG methods, Such methods possess an extended stability domain with
vespect Lo the Lax-Wendroll finite element scheme B, o though maintaining good
phase and damping properties. They are, however, still limited (o an overall
second-order lemporal accuracy,

Toimprove on this situation, we have shown in Section 4 liow a multi-stage
approach Lo Padé approximations of the exponential function can |n'|m"|i|r' inlépay.
Ling expheit and implicit fime-stepping methods ol higher-order, Suel methods
HH'N illl\’ﬂ"r’(‘- first time derivatives and are therelore casier to implement than
Taylor-Galerkin methods in apphication to advection-diffusion problems.
Multi-stage explicil schemes of arder thiree and four were derived whiel; [ssess
both higher accuracy and an extended stability domain with respect Lo second-
order methads of the Lax- Wendrofl or Taylor-Galerkin type.

i the arvea of implicit methods, Padé approxmmations of order three 1o six were
presented and their practical inplementation in the form of coupled equations
involving fivst time derivatives only was diseussed,

The properties of the multi-stage schemes devived from Padé approximalions
were studied in Section 5 as regards their domain of numerical stability and (heir
phase and damping responses. 1L was shown that some implicit Padé schemes
o possess remarquable accuracy properties while being unconditionally stable.
Such schemes are thevefore promising lor achieving time-accurale solutions to
transient advection-diffusion problems.

As regards the computer simplementation of the hnplicit Padé methods /s and
M35, we have seen that the schemes obtained from Simpson/Lobatto guadrature
(Section 7) are more compact than those obtained tirough the divecl Facloriza-
tion of Padé approximalions.

Rurige-Kutta methods were considered in Section 6, as being methods invalving
lival fime derivatives only and possessing interesting stability properties. Ac
bitally, it appears Lhat Runge-Kutta methods and multi-stage schemes derived
lrom Padé approximations to the exponential linetion are inbimely related and
possess sunilar stability domains and phase and damping properties.

Numerical tesis, including an original 21 Burgers problem witlh analytical so-
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lution, have been performed to assess the performance of selectad hiph-order
Padé approximations in linear advection-diffusion problems. Those first pesulis
have clearly shown that, when compared to traditional second-order methods,
the high-order schemes permit the use of larger time-step values for an identical
global fime accuracy.

Linplicit methods of high order appear competitive with respect to explicit meth-
ods in situations where the solution exhibits localized behiaviour, thus reemiring
maesh refinement Lo achieve accurate results,

Further research efforts should he devoted to ways of improving the spatial acen-
racy and thereby achieve a uniformly high-order accurate computational method
for Lransient advection-diffusion problems,
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