

- 1. PRODUCTION
- 2. MATERIAL AND PRODUCTION
- 3. CASE STUDY AND CHALLENGES
- 4. DEMONSTRATOR

PRODUCTION

Project objectives

PRODUCTION — PROJECT OBJECTIVES

PROJECT OBJECTIVES

- GENERAL OBJECTIVE
 - GENERATE EFFICIENT PRODUCTION METHODOLOGIES
- Specific objectives
 - ✓ Develop and qualify production techniques to build large components.
 - ✓ Develop and qualify modular assembly techniques of large vessels parts.
 - ✓ Study and qualify the techniques to manage large composite parts.
 - Analysis of the best facilities to build large composite vessel parts and small-medium shipyard adaptation.
 - O Development of the new classification societies guidance notes for the large vessel composite construction

• Task 5.1 – Optimum building strategy & techniques

- Subtasks:
 - ✓ 5.1.1. Materials and production techniques applicable to build large scale components.
 - ✓ 5.1.2. Modular assemblies and equipment/piping integration.
 - ✓ 5.1.3. Optimum building strategies & techniques versus vessel zone/type and functionalities.

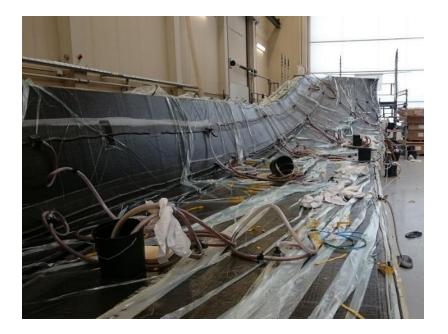
• Task 5.2 – Shipyards adaptation to develop this new activity

- Subtasks:
 - ✓ 5.2.1. Assessment of the existing facilities for small/medium vessel.
 - ✓ 5.2.2. Analysis of the needs to develop this new activity for large length vessels
 - ✓ 5.2.3. Problems and solutions
 - ✓ 5.2.4. Analysis of existing shipyard facilities transformation and economic viability.

- <u>Task 5.3 Development of classification societies' guidance notes for the adoption of new building techniques</u>
 - Subtasks:
 - ✓ 5.3.1. Assessment of the rules and guidelines in use.
 - ✓ 5.3.2. New guidance notes for large length vessels

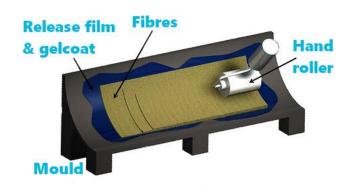
Materials

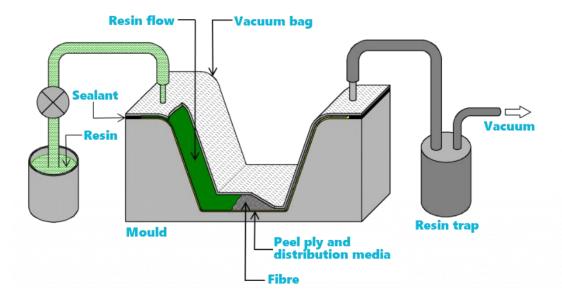
- What is composite
- Fibers, types and orientation
 - Fibreglass will be the predominant reinforcement.
- Resins, types
 - Thermoset resins is the most relevant class of resins and the most familiar to the shipyards.
- Prepregs, pre-impregnated fibers
- Monolithic
- Sandwich
- Many combinations



Materials and production techniques applicable to build large scale components

- Vacuum-assisted Resin Transfer Moulding (VaRTM) has been identified as the manufacturing method which is most feasible and best suited to build large-scale sections.
- Also, manual procedures, i.e. hand lamination and layup, will be indispensable to make e.g. joinings during assembly.

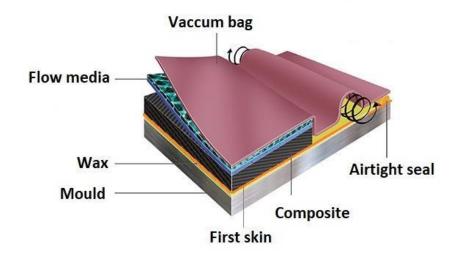


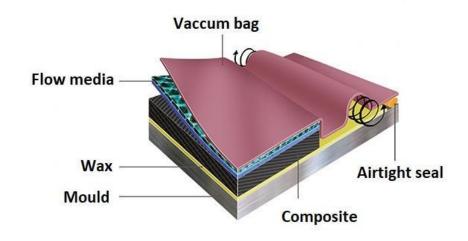

Production techniques applicable to build large scale components

- Most common production process is VRTM, known as "infusion", used for large parts
- Hand-layup is mostly used for connections
- Other alternative production methods for serial production of smaller parts

Hand lay up

Vacuum-assisted Resin Transfer Moulding




Infusion layup, in details

- Best way to produce large composite parts
- Both monolithic and sandwich
- Better ratio between fabric and resin, compared to hand layup
- Reduce risk of human failures

Lay up for infusion with polyester / vinylester

Layup for infusion with epoxy

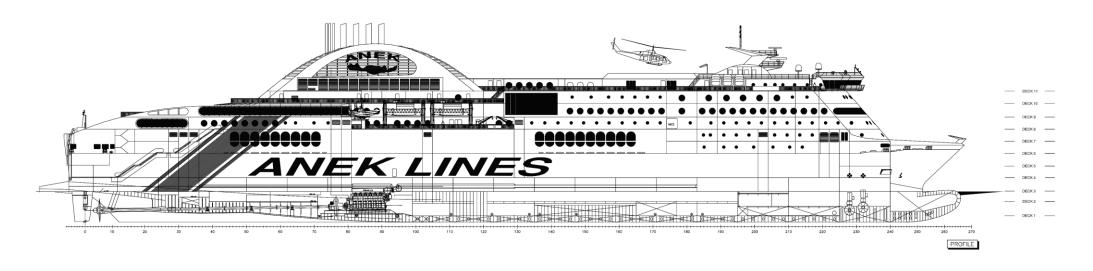
SUMMARY OF WORK DEVELOPED – WP5 – M1-M18

Materials and production techniques applicable to build large scale components

• Example of VaRTM infusion process of 35m Carbon catamaran hull

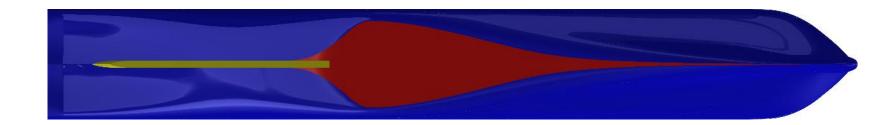
Automated processes

- Example of automated tape laying
- Process is still not flexible
- Process / system is very expensive
- Mostly used for small parts with high value and ratio between strength and weight



Production element	Production method	Tools
Flat hull sides	VaRTM	Flat table
Curved hull sections	VaRTM	Mould
Decks	VaRTM / aut, process	Flat table
Beams	VaRTM / aut. process / hand layup	Dedicated mould
Bulkheads	VaRTM / aut. process	Flat table
Stringers/girders	VaRTM / hand layup	Dedicated mould / in-situ
Stiffeners	VaRTM / hand layup	Dedicated mould
Pipes connections		
Fin	VaRTM	Mould / in-situ

Ropax profile



Colour-coded profiles

- Grey flat side panels
 - 4.773m²
- Blue curved area
 - 5.539m²
- Red flat bottom panels
 - 810m²

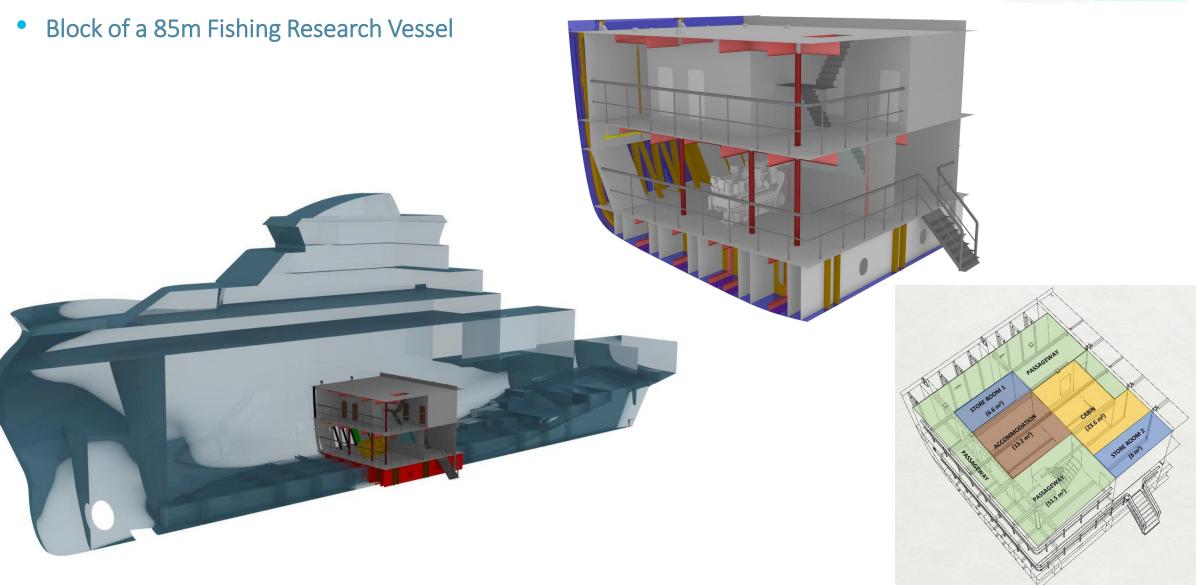
- Tooling as the main challenge
 - The designated manufacturing method
 - Generally, there are two types of moulds
 - Prototype moulds

- Tooling as the main challenge
 - Production moulds

CHALLENGES

- Approval of large composite ships by the rules
- Economically viable strategies for employment of methods for production of larges structures.
- Scaling and adaptation of existing facilities and transformation of work flows and supply chains
 - Facilities (drydock, quays, buildings, cranes, storage of raw materials etc)
 - Moulds (logistics, building, movement and storage)
 - Industrialisation (flat panels, beams)
 - Workforce (engineering / design, workshop)
 - Safety and environment (chemical products, dust)
 - Subcontracting (standardised elements)
 - Competitiveness
 - Composites vs. steel
 - Balance of economy between steel and composite has to include fuel savings and reduced maintenance and not only production cost.

CONCLUSIONS – PRODUCTION


- Main conclusion:
- A production method has been identified and qualified, which suits the materials and designs developed in Fibreship.
- Difficult to reuse molds, low cost mold development is important
- Today automated process are not developed for large composite shipbuilding activities
- Transformation of shipyards
 - From existing large steel yard to composite yard
 - Small composite yard to large composite yard
 - Small composite yard sub-contracting parts/blocks to large yards

DEMONSTRATOR

DEMONSTRATOR

GENERAL OBJECTIVE

Demonstrate the technical feasibility

Specific objectives

- Adaptation of the tooling due to the size
- High thickness monolithic hull with "fire resistant system"
- Bloc junction
- Structure designed for large composite ship
- Insertion of fittings we can encounter on a ship
- Lab tests related to the demonstrator

DEMONSTRATOR

2nd WORKSHOP, FIBRESHIP, 25th June 2019

www.fibreship.eu