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RESUMEN

Se presenta en este articulo un modelo sencillo de cdlculo para el andlisis dindmico de
estructuras de barras sometidas a cargas no lineales. Este modelo se basa en una generalizacién
del calculo matricial habitual y en el empleo de un esquema explicito de integracién en el
tiempo. Se estudia la aplicacién del modelo a dos problemas tipicos en Ingenieria Civil: el
trafico de vehiculos sobre puentes y las oscilaciones de estructuras “offshore” producidas por
el oleaje. Finalmente se presentan los resultados obtenidos del anélisis con microordenador de
tres ejemplos concretos.

SUMMARY

This paper introduces a simple numerical model for the dynamic analysis of framed
structures under non-linear force boundary conditions. The model is based upon a
generalization of the usual matrix structural analysis and it uses an explicit time integration
scheme. The application of this model to both the analysis of bridges under moving loads and to
the study of offshore platforms is discussed. Finally, the results of three sample microcomputer
analyses are presented.

INTRODUCCION

En las aplicaciones practicas de la Mecdnica Estructural se dan con frecuencia
situaciones en las que la naturaleza de las acciones exteriores altera el caracter lineal
de las ecuaciones que gobiernan el movimiento de la estructura, atin cuando se pueda
considerar que el material permanece en régimen elastico y que tanto los movimientos
como las deformaciones del sistema son pequeiios. Tal es el caso, por ejemplo, del trifico
de vehiculos sobre puentes o de las oscilaciones de una estructura sumergida producidas
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por el movimiento del fluido. No es admisible que para las acciones de disefio de estas
obras se produzcan movimientos grandes o deformaciones irrecuperables y, sin embargo,
un célculo riguroso exige aplicar las técnicas del andlisis no lineal para la obtencién de
la respuesta.

Ante situaciones de este tipo el criterio del analista conduce habitualmente a
simplificaciones que tienden a linealizar el problema sin que se alteren demasiado los
resultados.

En el caso de las estructuras sumergidas la simplificacién mds corriente conduce
a modificar el valor de la fuerza de arrastre hasta hacerlo depender linealmente de
la velocidad relativa entre el fluido y la estructura (Brebbia et al'). Esto permite, en
general, aplicar las conocidas técnicas del anélisis dindmico lineal: superposicién modal,
andlisis en el dominio de la frecuencia....

Cuando se trata de estructuras sometidas al trafico de vehiculos se va todavia mas
lejos, ya que la practica tradicional utilizada en el disefio de puentes, y recogida en la
normativa espafiola’®, consiste en analizar la estructura desde el punto de vista estatico
con la carga situada en los puntos que se consideran mas desfavorables. El caracter
dindmico del problema se introduce a través de determinados “coeficientes de impacto”
que mayoran los efectos de la carga estatica. De este modo se supone que las respuestas
obtenidas corresponden a los valores maximos de las respuestas reales.

Estos procedimientos simplificados, de indudable valor practico a nivel de disefio,
tienen el inconveniente de que no permiten acercarse mucho al detalle de la conducta
estructural bajo las acciones reales. Asi, en el caso de puentes, cuando se interpretan
los resultados de pruebas de carga dindmicas (Aparicio et al*) o cuando se estudian los
efectos de la deformabilidad de la estructura sobre la comodidad del viajero (Alvarez
et al®°, Molina et al*!, Alvarez*?), se hace necesario recurrir a modelos de cilculo més
sofisticados que permitan reproducir con mas fidelidad el comportamiento estructural
real.

El objetivo de este articulo es, precisamente, presentar un modelo sencillo de célculo
para el andlisis de estructuras sometidas a este tipo de acciones que alteran la linealidad
de las ecuaciones del movimiento. El modelo no exige ninguna simplificacién en la
formulacién de las acciones, y estd basado en una generalizacién del analisis matricial
habitual y en el empleo de un esquema explicito de integracién en el tiempo.

El campo habitual de aplicacién de la integracién explicita son los problemas de
impacto®®?’) donde las altas frecuencias dominan la respuesta y se requieren pasos de
integracién lo suficientemente pequefios para representarla con precisién (Belytschko®).
Para otro tipo de problemas, en los que la respuesta estructural sea predominantemente
de baja frecuencia, se prefiere generalmente recurrir a esquemas implicitos de
integracién que sean incondicionalmente estables, a pesar de su complejidad, ya que
permiten utilizar pasos de integracién considerablemente mayores.

Sin embargo, la simplicidad de los esquemas explicitos, sobre todo en problemas
no lineales, hace que sigan siendo una alternativa tentadora. La integracién explicita
permite resolver las ecuaciones trabajando a nivel local, sin ensamblar las matrices
generales de la estructura, y proporciona algoritmos sencillos y muy féciles de
programar. Por otro lado, los escasos recursos de memoria que precisan los programas
basados en esta clase de algoritmos, los hacen especialmente adecuados para su uso en
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microordenadores.

La metodologia presentada en este articulo permite, en el caso de que se aplique al
analisis de puentes sometidos a cargas méviles, estudiar de manera totalmente acoplada
las oscilaciones de la suspensién de los vehiculos y las de la estructura, e introducir de
forma muy sencilla y sin apenas simplificaciones la influencia de las irregularidades del
pavimento. Cuando se trata de estructuras sumergidas, el método permite introducir
las fuerzas de arrastre directamente sin linealizar.

En todos los casos, no hace falta considerar més hipétesis en la discretizacion de la
estructura que las habituales en el an4lisis matricial (Alarcén et al®, Przemieniecki®*).
En este sentido, se trata de una generalizacién del método de los elementos
componentes?®, que tan buenos resultados ha dado en el estudio de puentes de
ferrocarril®'.

En los apartados que siguen se presenta en primer lugar la discretizacién espacial
empleada para la estructura y las acciones exteriores. Seguidamente se describe el
esquema de integracién explicita por diferencias centrales y se comentan los requisitos
para su estabilidad numérica. M4s tarde se estudia la aplicacién del modelo al caso
del movimiento de vehiculos sobre puentes y al andlisis de estructuras “offshore”.
Finalmente se presentan varios ejemplos numéricos y se extraen algunas conclusiones.

DISCRETIZACION ESPACIAL

Estructura

La estructura se discretiza utilizando elementos viga del tipo Euler-Bernoulli, que
son los corrientes en el calculo matricial de estructuras de barras. Centrandose en el caso
de pérticos planos (Figura 1), se trata de elementos con seis grados de libertad y en los
que se considera desacoplado el comportamiento axial de la viga de su comportamiento
a flexién.

El movimiento longitudinal u de los puntos de la viga se aproxima mediante un
polinomio de primer grado:

u=A+ Bz =u (1-§) + v ¢ (1)

donde ¢ = £, L es la longitud del elemento y u; uz son los movimientos longitudinales
de los nodos.

El movimiento transversal v de los puntos de la viga se aproxima mediante un
polinomio de tercer grado y se hace la hipétesis de que el giro § de las secciones
transversales es la derivada de v con respecto a la coordenada longitudinal z:

dv
= — 2
= — (2)

con ello resulta que:
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Figura 1. Movimientos de los nodos en ejes locales.

v=C+ Dz +Ez2* + Fo =
= v (1-362+26%) + 6, Le(E-1)" + (3)
+ vy (362 —26%) + 6, LE2(6—-1)

donde v; v, son los movimientos transversales de los nodos y 6, 8, son los giros de las
secciones transversales en los nodos.

A partir de las relaciones (1) y (3), suponiendo que la seccién de la barra tiene las
mismas caracteristicas a lo largo de toda su longitud, y haciendo las hipétesis habituales
en la teoria elemental de vigas, se obtiene (Alarcén et al®) la matriz de rigidez elemental
K..

La matriz K. proporciona las acciones f, que el elemento ejerce sobre sus nodos
cuando el movimiento de éstos es u,:

fe = _Ke Ue (4)

En ejes locales (Figuras 1y 2):

fetL = - [NI,VI)MI)NZaV2aM2] ( )
5

t
uy = [u1,1,601,uz,vs, 0]

Se ha supuesto, por otro lado, que la distribucién de masa es constante a lo largo
de los elementos. Como matriz de masas elemental se ha tomado una matriz diagonal
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Figura 2. Acciones sobre el elemento en ejes locales.

M., que en ejes locales o globales de expresa como:

M M ML* M M ML? (6)

donde M es la masa total del elemento y se ha mantenido la numeracién de grados de
libertad empleada al escribir la matriz de rigidez.

Esta expresion de la matriz considera que el elemento aporta a la masa traslacional
de cada uno de sus nodos la mitad de su masa total; y a la masa rotacional, el momento
de inercia de la mitad del elemento con respecto al nodo.

La matriz M, proporciona las fuerzas de inercia i, que aparecen en los nodos
cuando se comunica a éstos una aceleracién i, (Figura 3):

ie = - Me ﬁe (7)

Los esquemas de integracién explicita requieren, para ser eficientes, matrices de
masa diagonales. _

Para el amortiguamiento estructural se ha empleado la formulacién de Rayleigh’,
de manera que la matriz de amortiguamiento elemental C, se escribe:

Ce = aM. + ,Bke (8)

donde a y 3 son dos coeficientes reales.
La matriz C, proporciona las fuerzas de amortiguamiento a, que aparecen en los
nodos cuando éstos se desplazan con una velocidad u.:
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Figura 3. Fuerzas de inercia en ejes locales.

a, = — C, 11, (9)

Acciones exteriores

Las acciones exteriores sobre las barras se llevan a los nodos de modo consistente
desde el punto de vista energético. Para ello se utilizan las funciones de interpolacién
que aparecen en las relaciones (1) y (3).

De este modo, si n(,t), r(€,t) y m(&,t) representan las distribuciones de acciones
sobre una barra en ejes locales (Figura 4), las acciones equivalentes sobre nudo se
obtienen mediante:

1
(5] = M) men p e (10)
0
P 1-3g 4268 f(6E - 6)
By | _ M) LEE-1F (-7 +2(E-1)| (6
A R I i MY T R
Fa LeE-1) 2%(E-1)+8

y el vector de fuerzas exteriores sobre los nodos de la barra se escribe, en ejes locales:

ptteL(t) = [Fe1, Fy, Ry Fiz, Fips Ry (12)
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n{§,t)

& Fyz(t) Fx2(t)

2
R2(t)

! r§.t
Fy1{t)

YR1(t)

m(g‘t) Fx‘l(t)

Figura 4. Distribucién de acciones sobre elementos.

Ecuaciones discretas

A partir de las relaciones (4), (7), (9) y (12) se pueden plantear las ecuaciones
globales del movimiento de la estructura como:

f(t) + a(t) + i(t) + p(t) = 0 (13)
donde, |

f(t) = Af.(t) = fuerzas de rigidez sobre los nodos
a(t) = A a.(t) = fuerzas de amortiguamiento

i(t) = Ai.(t) = fuerzas de inercia

p(t) = A p.(t) = fuerzas exteriores

La A simboliza el proceso de ensamblaje.
La ecuacién (13) puede ser escrita también en la forma:

Ku(t) + Cu(t) + Mu(t) = p(t) (14)
donde,
u(t) = movimientos de los nodos
K = A K.
Cc = A C.
M = A M.,

y el punto indica derivada total con respecto al tiempo.



480 F. BELTRAN Y M. CERROLAZA

INTEGRACION EN EL TIEMPO

La relacién (14) representa un sistema de ecuaciones diferenciales ordinarias. Para
la integracién en el tiempo de este sistema se utiliza un esquema explicito que desacopla

las ecuaciones a nivel local y proporciona asi un algoritmo muy sencillo para el ciclo de
cdlculo.

Integracién explicita: ciclo de calculo

La solucién del sistema de ecuaciones se busca para sucesivos instantes de tiempo
tny N =0,1,2... separados por un intervalo o paso de integracién At : ty41 = ty + At

La integracién progresa paso a paso, es decir, en cada ciclo de integracién se
obtienen los valores de las variables en el instante ¢y, a partir de los valores de las
variables en el instante ¢5_;, partiendo de las condiciones iniciales del problema.

Si lamamos:

u’ = u(ty)
le+1/2 - ﬁ(tN+1/2)
v = ﬁ(tN)
tysr2 = v +0.5 At etc ...

un esquema de diferencias centrales supone que:

l'lN+l/2 = l:lN—1/2 + AtV

e = ¥ + At le+l/2 (15)

donde u , u y u son los desplazamientos, velocidades y aceleraciones de los nodos de
la estructura. ‘
Por otro lado, si se plantean las ecuaciones (14) en el instante ¢y, puede obtenerse:

" = M1 (pV - Ku' - CuV) » M7 (p¥ - Ku¥ — CuVV2)  (16)

donde la simplificacién @V ~ uV~1/2 no introduce distorsiones importantes para los
valores habituales del amortiguamiento estructural y para un paso de integracién tan
pequefio como el necesario para la estabilidad del proceso.

Obsérvese que la relacién (16) puede escribirse de acuerdo con (13):

¥~ M (pN + £y + aN—l/z)

donde las fuerzas fV son funcién exclusivamente de los movimientos u™ de los nodos
a través de las matrices de rigidez elementales K., y las fuerzas a¥~1/2 son también
funcién exclusiva de las velocidades u¥~1/2 de los nodos mediante las matrices C,.
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Las fuerzas exteriores p” se obtienen a partir de las relaciones (10), (11) y (12), y su
formulacién puede ser totalmente arbitraria. '

Entonces, si M es diagonal, el vector de aceleraciones ¥ puede obtenerse
recorriendo los nodos, calculando la resultante de las acciones sobre cada nodo y
dividiendo por la masa correspondiente. Es decir, no hace falta ensamblar las matrices
globales (rigidez, masa, . . .) de la estructura para obtener las aceleraciones de los nodos
en un instante ¢, determinado. S '

Conocido asi iV a partir de p¥, a¥~1/2 y u", se puede obtener sucesivamente
uNtl/2 y uN+l 3 través de las ecuaciones (15) y asi cerrar el ciclo de calculo. Esta
posibilidad de integrar las ecuaciones (14) trabajando a nivel local es la principal
ventaja de los esquemas explicitos. El ciclo general podria ser el que se muestra en
la Figura 5.

1. Condiciones iniciales
u=u(0) , a/?2=u(0) , N=0

2. Actualiza movimientos
udt = u” + At ﬁN+1/2
Calcula fuerzas externas p™+?!

4. Calcula fuerzas internas f¥+! | a¥t!

Para cada elemento:

(@) £ = K,urtt

(b) ensambla £¥+1 en £V 1!
(c) aM*t! =~ _cuNt/?
(d) ensambla a¥*! en a
Actualiza aceleraciones estructura a¥+! = M~! [p*! + £V H1 4 Ml
Ne—N+1

Actualiza velocidades estructura u¥+1/2 = a¥-1/2 4 At.4¥

N+1

Impone las condiciones de contorno esenciales a velocidades

 ® N > o>

Vuelve a 2.

Figura 5. Ciclo general de célculo.

Estabilidad numeérica

El esquema de integracién paso a paso expueésto en el apartado anterior es sélo
condicionalmente estable. La estabilidad del ciclo general de integracién exige que

(Belytschko®):
2
At < m(\/l'i'ﬁz - £)

donde wmax es la maxima frecuencia natural del modelo con que hemos representado
la estructura, y £ es la fraccién del amortiguamiento critico para esa frecuencia. Es
decir,
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2
Wmax — /\max

donde Amax es el maximo autovalor del problema:
Ku=2AMu (17)
En general resulta engorroso determinar el paso de integracién méaximo admisible
resolviendo el problema de autovalores (17), donde intervienen las matrices globales de
la estructura. Sin embargo, el maximo autovalor de (17) estd acotado superiormente

por el maximo autovalor de los elementos que componen la estructura (Belytschko®),
esto es:

Amax < meax {’\fnax}
donde Amax es el maximo autovalor del problema:
K. u. = A M, u,

Para el elemento barra que se esta empleando los autovalores no nulos resultan ser:

o o 4E . 2 [E
= — — W] = — 4f—
Topl? AR
e L 48EI .2 [12EI
= —_— W = -
27 pAL* 27 L\ pAL?
e o 192EI . 2 [48ET
= —— B — = — —_—
8T AL “s T T\ pAL?

donde p es la densidad del material, E es el médulo de elasticidad, I es el momento de
inercia de la seccién y A es el 4rea de la seccién.

Como A§ < A§, resulta que Amax = max{A$, A§} y, por tanto, para la estabilidad
del ciclo bastara que, para todo elemento e se cumpla;

At < nun{w%( 1+5%—51),;2§( 1+ €2 - &)} (18)

Nétese que los elementos cortos o con relacién A/I pequefia son los que penalizan
el paso de integracién.
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APLICACIONES

La particularizacién del modelo descrito a una aplicacién concreta se consigue
introduciendo las acciones exteriores correspondientes. Estas acciones pueden
formularse en funcién de los movimientos, velocidades o aceleraciones de la estructura
sin ninguna limitacién, ya que en cada instante de tiempo se dispone de todos los
pardmetros del movimiento del sistema para el cdlculo del valor de las mismas.

En el presente trabajo se han estudiado dos aplicaciones de relevancia practica en
el campo de la Ingenieria Civil: el trifico de vehiculos sobre puentes y las oscilaciones
de estructuras “offshore” producidas por el oleaje. La adaptacién del modelo a otro
tipo de accién seguiria pasos andlogos a los que se describen en los parrafos siguientes,
y no representa ningin problema conceptual adicional salvo el que pudiera introducir
la propia definicién del sistema de solicitaciones.

Movimiento de vehiculos sobre puentes

Cuando un vehiculo atraviesa un puente se produce una interaccién entre las
oscilaciones debidas a su suspensién y las oscilaciones del propio puente®?'?2. La accién
resultante sobre el tablero es producto de esta interaccién y puede obtenerse facilmente
en cada instante de tiempo si se integran simultdneamente las ecuaciones de la vibracién
del vehiculo y las del movimiento del puente.

Asi, de forma simplificada, una rueda o eje del moévil puede modelarse como un
oscilador simple que se desplaza a velocidad ¢ sobre los elementos de la estructura
(Figura 6). Un vehiculo completo podria modelarse utilizando varios de estos
osciladores simples o, de forma ma4s precisa, utilizando un tnico sélido rigido soportado
por varios resortes??. Por razones de simplicidad, en nuestra exposicién se utilizara el
modelo representado en la Figura 6.

—_—C

xp

i N

Figura 6. Modelo para una carga moévil.

El movimiento del nodo 1 (Figura 6) se considera igual en cada instante al del
punto del elemento ij sobre el que se encuentra mds un valor § que puede representar
la rugosidad del pavimento. Se calcula entonces este movimiento a partir del de los



484 F. BELTRAN Y M. CERROLAZA

nodos ¢ j { através de las relaciones (1) y (3)) y utilizando el valor de § correspondiente
al punto sobre el que se encuentre el vehiculo.

En el caso corriente de que el mévil se desplace en direccién horizontal (Figura 6)
se tiene:

2 = v (1-362+26%) + 6LE(E-1)° + v; (32 —2€%) + 6,LE%(E-1) + &
= vy + O + vips + B9 + 6 (19)

donde 2z es el desplazamiento vertical del nodo 1, v; v; 6; 6; son los desplazamientos
verticales y giros de los nodos 7 j, § es el valor de la rugosidad y ¢ = 3.

Si suponemos que el resorte oscila alrededor de la posicién de equilibrio
correspondiente al peso de la masa M, la fuerza P que se ejerce sobre el elemento
1j se puede poner como:

P = Mg+ (z2—2)K (20)

donde g es la aceleracién de la gravedad.
En cuanto al movimiento de oscilacién de la suspension, éste viene gobernado por
la ecuacién:

(21—22)K + MZz =0 (21)

donde z; y z; representan el desplazamiento de los nodos 1 y 2 (Figura 6).

La integracién de la ecuacién (21) se puede realizar de manera explicita dentro
del ciclo general a la hora de determinar las acciones sobre la estructura. El ciclo de
integracién se representa en la Figura 7 y exige para su estabilidad que:

Las operaciones representadas en la Figura 7 permiten obtener la fuerza P sobre
la estructura que se deriva en cada instante de la interaccién entre las oscilaciones del
puente y las de la suspensién del mévil. Esta fuerza P se lleva a los nodos del modelo
estructural segin el procedimiento general ya expuesto en los parrafos anteriores.

Respuesta estructural de plataformas “offshore”

El disefio y construccién de plataformas para extraccién de petrdleo es, quizd, una
de las 4reas de la ingenieria actual que requiere de las mas avanzadas tecnologias.
Uno de los tipos de plataforma “offshore” mas utilizado consiste en una armadura
tridimensional de miembros tubulares de acero soldados entre si. En la parte superior
se disponen los equipos necesarios para la operacién de la plataforma asi como los
servicios requeridos por el personal, mientras que la parte inferior llega hasta el lecho
marino, donde se fija a través de pilotes de acero que se hincan a gran profundidad.

Dado el tamafo de estas estructuras y el gran didmetro de sus miembros, se
comprende que la evaluacién de las fuerzas hidrodindmicas derivadas del oleaje marino
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e Condiciones inicialqs:llezn cac.la mévil
Z2(0) = 25(0) , Z," =2,(0) , N=0
e Célculo de p¥*! en cada ciclo

Para cada mévil
(a) determina posicién.
(b) ZY*'=Vi¥, +6,%; +V;¥5+6,¥,

© Z5H =z o
(d) Z-2N+3/2: _%{NIEJZZ;H - le:i)
(e) Zs = Zs + At Z,

N+1

(f) PP =M (g-2Z )
(g) Se obtienen los valores nodales correspondientes
a PV*! y se ensamblan en pNtl,

Figura 7. Ciclo de integracién para la oscilacién de los méviles.

en situaciones criticas de tormenta reviste la mayor importancia si se desea obtener
disefios confiables. Bisicamente, es necesario disponer de: (a) una teoria que caracterice
el estado del mar, es decir, que describa el movimiento del fluido y (b) una formulacién
apropiada que permita transformar el movimiento del fluido en fuerzas hidrodinamicas
aplicadas sobre los elementos estructurales.

En lo que sigue se describirdn brevemente algunas de las teorias mas usuales para
evaluar la interaccién fluido-estructura en el contexto que nos ocupa.

Cinemadtica de la particula de agua

Para el modelado determinista y bidimensional de los estados del mar existen varias
teorias de onda (Sarpkaya et al'’, Dean'?). Una de las mas simples y utilizadas en la
practica es la teoria lineal de Airy. Dado que la derivacién de su formulacidn esta bien
documentada en la literatura técnica, nos limitaremos aqui a hacer un breve recuento
de las ecuaciones correspondientes. '

La funcién ¢ potencial de velocidades es dependiente de la posicién (z,y) de la
particula en el seno del fluido y del instante ¢ en consideracién, segin recoge la expresién
siguiente:

Ag cosh{K(y+ d)}

&z, y,t) = o senh(Kd) sen(Kz — wt) (22)
donde
A = amplitud de la onda
g = aceleracién de la gravedad
w = frecuencia de la onda (rad/seg)
K = nimero de onda

d = altura de la lamina de agua

La Figura 8 ilustra los pardmetros antes descritos. El mimero K puede ser
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determinado a partir de la relacién no lineal:

w? = Kgtanh(Kd) (23)

i nivel de aguas tranquilas
> A \E X
. 1
uy.dy

¢ > Ux.Uy fondo

NMMWM/W

Figura 8. Caracterizacién del oleaje: teoria lineal de Airy.

Si d es suficientemente grandé entonces tanh(Kd) — 1 y se puede escribir una
expresion simplificada para el cdlculo de K:

. w?
K ~ — 24
. (24)

Por otro lado, la longitud de onda X puede ser calculada mediante la relacién:

27 2xd

T = X tanh(——) (25)

donde T es el periodo de la onda. Otra vez aqui, si d es grande, puede escribirse:
T?g

Derivando (22) con respecto a la posicién se obtienen los campos de velocidades
en el fluido:

0¢ KAg cosh{K(y+ d)}

Up = oo = senh(Kd) cos(Kz — wt) o
_ 0¢ _ KAg senh{K(y+d)} _
i senh( K d) sen(Kz — wt)

Si ahora se derivan las ecuaciones (27) con respecto al t1empo se obtienen los
campos de aceleraciones del fluido:
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cosh{K(y + d)}

U = 5 = K Ag senh( Kd) sen( Kz — wt) as)
. _ Ou, _ _  senh{K(y+d)}
Uy = w KAg senh(Kd) cos(Kz — wt)

La teoria lineal de Airy resulta conveniente para la formulacién del problema
dado su caracter lineal y su sencillez. Es bueno destacar aqui que los cémputos de
velocidades y aceleraciones en cada instante ¢t se efectian de una forma expedita,
simplemente evaluando una expresién algebraica. Teorias no lineales —por ejemplo
Stokes de quinto orden {Dean'?, Cerrolaza'®)— requeririan de cédlculos mas complejos,
traduciéndose ésto en un gran esfuerzo computacional. Por otro lado, la teoria
lineal de Airy presenta un rango adecuado de aplicabilidad para diversos pardmetros
oceanograficos, como lo sugiere el estudio de Dean'?.

Fuerzas hidrodinamicas sobre elementos estructurales

Cuando el elemento estructural no perturba significativamente la propagacién
de la onda incidente, es posible utilizar la ecuacién de Morison (Morison et al'?) para
el calculo de fuerzas hidrodindmicas sobre cilindros esbeltos. Tal es el caso de la gran
mayoria de las plataformas de acero, donde los elementos estructurales usualmente no
superan didmetros de dos metros, frente a longitudes de onda que son generalmente
mayores de cien metros para las olas de disefio.

La ecuacién de Morison es una férmula de tipo semiempirico, propuesta
especialmente para cilindros rigidos verticales, cuya formulacién puede establecerse asi:

D D? | ‘D? |
F:CDp3-|u|u+(CM—1)p7r—4—u+p7rTu (29)
donde

F = fuerza hidrodindmica por unidad de longitud

u = velocidad de] fluido

u = aceleracién del fluido

p = densidad del fluido

D = didmetro del cilindro

Cp,Cy = coeficientes de arrastre e inercia respectivamente.

Nétese que la componente de arrastre varia no linealmente con la velocidad del
fluido, lo que obliga generalmente a la utilizacién de procedimientos especiales (Brebbia
et al') si se quieren emplear las técnicas habituales del an4lisis dindmico lineal.

En la realidad los elementos estructurales son miembros flexibles que
experimentan movimiento al entrar en contacto con el fluido. La férmula de Morison,
en consecuencia, ha sido modificada a fin de tomar en cuenta el movimiento de los
miembros. Este acoplamiento fluido-estructura puede ser modelado mediante el método
de 1a velocidad relativa'*, el cual supone que la velocidad efectiva en la ecuacién (29)



488 F. BELTRAN Y M. CERROLAZA

corresponde a la diferencia entre la velocidad del fluido u y la velocidad estructural
&. Asimismo, se acepta que la aceleracién efectiva de (29) es la diferencia entre la
aceleracién del fluido % y la aceleracién estructural £. De este modo, sustituyendo u
por u— & y % por u — &, se tiene:

2 2

D . : D . D .
F = CDp?|u—a:|(u—:c) + (C’M—l)pvrT(u—:c) + pr— U (30)

Notese que la sustitucién de @ por @ — Z no se efectud en la tercera componente

de (29). Esto se debe al hecho de que el términopn -11—2 @ es producido por la variacién
de las aceleraciones del fluido o, en otras palabras, por la distorsién de las lineas de
corriente del fluido y se considera que este efecto es independiente de la aceleracién
estructural.

Reorganizando (30) se obtiene:

D, D* D*
F = CDp?Iu—:cKu—:c) + CMpru - (CM—l)pr:c (31)

Los coeficientes de arrastre y de inercia (Cp y C), respectivamente) dependen
del nimero de Reynolds, del nimero de Keulegan-Carpenter y de la rugosidad del
miembro.

Otro aspecto digno de mencién es la manera de proceder cuando el miembro
estructural estd inclinado con respecto al plano incidente de la onda. La férmula
de Morison (29) fue deducida en forma semiempirica mediante ensayos de campo y
de laboratorio sobre elementos estructurales verticales sometidos a un desplazamiento
horizontal de la onda incidente. En la literatura pertinente (Wade et al'®, Cerrolaza'®
y Ferrante et al'") se pueden encontrar al menos cinco técnicas diferentes para
proceder en estos casos. En este trabajo se ha optado por trabajar con la técnica
propuesta por Borgman'®, la cual considera que sélo producen fuerzas las velocidades
y aceleraciones normales al elemento estructural, desprecidndose las componentes
tangenciales (Figura 9a). Esta técnica ha demostrado producir unos resultados
aceptables y que concuerdan razonablemente bien, dentro de la incertidumbre inherente
a procesos de esta naturaleza, con los experimentos (Chakrabarti et al'?, Kim et al?®).

Asi pues, disponiendo de una teoria que describa la cinemética de la particula
de fluido y de una formulacién capaz de evaluar las fuerzas ejercidas por el movimiento
del mismo, es posible determinar las acciones sobre un elemento estructural en todos
aquellos puntos que se precise. Para el presente trabajo dichas fuerzas se calculan en los
extremos y punto medio de los elementos que modelan los miembros estructurales, con
lo cual la distribucién de fuerzas queda caracterizada por un polinomio de segundo
orden (Figura 9b). A continuacién, las distribuciones de cargas asi obtenidas son
transformadas en fuerzas equivalentes nodales mediante el procedimiento ya descrito
en pérrafos anteriores.
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Figura 9. Carga hidrodinimica sobre el elemento inclinado.
F, = fuerza de arrastre
F, = fuerza de inercia
u, = velocidad relativa
%, = aceleracidn relativa.

EJEMPLOS NUMERICOS

Para mostrar la efectividad del modelo de calculo presentado en los apartados
anteriores se ha desarrollado un programa de ordenador basado en las ideas expuestas.
El programa se ha escrito en lenguaje FORTRAN 77 y funciona en un ordenador
personal compatible con coprocesador matematico.

De los casos analizados con este programa se han seleccionado tres. El primero
de ellos es un ejemplo sencillo para el que la solucién analitica es conocida; se ha escogido
este caso con objeto de comprobar la precisién del esquema de calculo. El segundo
ejemplo se aproxima a un caso real de puente atravesado por un convoy ferroviario,
mientras que en el tercer ejemplo se intenta representar una plataforma “offshore”
sometida a la accién del oleaje. Con estos dos 1ltimos ejemplos se pretende poner de
manifiesto las posibilidades del método en el andlisis de estructuras reales.

Los tiempos de ejecucién del programa no superan la media hora en los dos
primeros ejemplos, mientras que en el tercer ejemplo se empleé una hora y media
aproximadamente. '

Ejemplo 1: Vehiculo sobre puente de hormigén

El ejemplo 1 se ha tomado de Inbanathan et al°. Se trata de un puente
de hormigén simplemente apoyado de 50 metros de luz con seccién en cajén. Las
caracteristicas del material y de la seccién se dan en la Figura 10. No se considera
amortiguamiento estructural. El puente es atravesado por una carga de 500 kN que se
desplaza a una velocidad constante de 26.82 m/seg.

La estructura se ha modelado como una viga biapoyada y se han utilizado para
ello cuarenta elementos. Para conseguir el efecto de una fuerza constante sobre la viga,
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al mévil se le ha asignado una masa de 50000 kg y una rigidez baja (5 kN/m), de modo
que su frecuencia propia de oscilacién sea mucho menor que la principal del puente.

— 26.82 m/s

500 KN
/| L025m
o “
0.6 m ‘
A A
k 5m M
1 —
-?' L=50m -'l' 1" 10m -J|L
10
E=334x10 Nm-2 1=6.0 m
S; = 2400 Kg m-3 Az 7.5 md

Figura 10. Caracteristicas de la estructura.

En la Figura 11 se muestran los resultados obtenidos para la flecha en el centro
del vano. Si se compara esta solucién con la obtenida analiticamente por Timoshenko'®
utilizando los tres primeros modos de vibracién de la viga, se encuentra que son
indistinguibles a la escala del dibujo.

P —_— SOLUCION 40 ELEM.
2 _— SOLUCION ESTATICA

Flecha centro luz {rm)

.00 .30 «60 .90 1.20 1.50 1.80

Tiempo (seg)

Figura 11. Ejemplo 1. Historia de la flecha en el centro del vano.
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Ejemplo 2: Convoy ferroviario sobre puente de celosia

En este ejemplo se analiza la estructura representada en la Figura 12. Se trata
de una de las vigas principales de un puente metalico con tres vanos de 35, 21 y 35 m.
Las propiedades del material y las caracteristicas de las barras se dan en la Tabla I. Se
considera un amortiguamiento estructural minimo del 2% del critico a 5 Haz.

| 35.00 m I 21.00 m

Figura 12. Ejemplo 2. Geometria de la estructura.

E =210 GPa
p = 7500 kg m~3

Area (10~ *m?) Inercia (10~ *m*)
Cordén inferior 385.4 11.6484

Cordén superior
y diagonales en 156.6 2.0568

apoyos extremos

Diagonales en
apoyos interiores 193.9 0.8563

Resto diagonales 149.1 0.8563

TablaI. Ejemplo 2. Caracteristicas de las barras.

Sobre el cordén inferior de la estructura se hace pasar el tren de cargas
representado en la Figura 13, que corresponde a un convoy formado por una locomotora
y cuatro vagones que se desplazan a una velocidad de 16.67 m/seg.

En la Figura 14 se puede ver la mitad del modelo empleado para la estructura.
Se han utilizado 53 nodos y 77 elementos barra. En los nodos del cordén inferior se ha
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Figura 13. Ejemplo 2. Tren de cargas.

8 20

Figura 14. Ejemplo 2. Vista del modelo.

colocado, ademds de la masa correspondiente a las barras, una masa muerta de 4200
kg por nodo para tener en cuenta la presencia del tablero, balasto y via.

Las cargas moéviles se suponen de idénticas caracteristicas con una masa de
15000 kg y una rigidez de 270 kN m™?.

En las Figuras 15 y 16 se presentan los resultados obtenidos para la flecha de los
nodos 8 y 20, que corresponden a nodos aproximadamente centrados en el primer vano
y en el vano central respectivamente. Se observa el efecto de la deformacién general de
la estructura superpuesto al de la deformacién local del corddn inferior. Esta dltima
cambia de sentido segin esté recibiendo las cargas un médulo de 7 m o sus médulos
contiguos.

Las Figuras 17 y 18 muestran los resultados obtenidos para los esfuerzos axiles
en las barras 8 (centro primer vano) y 40 (primer apoyo). Puede verse facilmente que
el esfuerzo crece cuando el tren se adentra en el primer vano, se alcanza luego un valor
mads o menos estable al igualarse las cargas que entran y salen del vano y finalmente
decrece el esfuerzo al salir el tren del vano.

Por 1ltimo, el momento flector en el extremo izquierdo de la barra 8, que esta
situada en el centro del primer vano, se representa en la Figura 19. Se observan aqui
los cambios de signo en el esfuerzo debidos de nuevo a la modulacién introducida tanto
por el corddn inferior de la estructura como por el tren de cargas.



ANALISIS DINAMICO DE ESTRUCTURAS 493
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Figura 15. Ejemplo 2. Historia de la flecha en el centro del primer vano.

0.002

~— 0.000

20

O —-0.002

—0.004

—0.006

MOVIM. Y nod

povev v brr e v e b e e bes i aaal
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0.00 - 2.00 4.00 6.00 8.00 10.00
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Figura 16. Ejemplo 2. Historia de la flecha en el centro del vano intermedio.
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Figura 17. Ejemplo 2. Historia del axil en la barra 8.
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Figura 18. Ejemplo 2. Historia del axil en la barra 40.
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Historia del momento flector en el centro del primer vano.

Ejemplo 3: Plataforma “offshore” sometida a cargas de oleaje.

495

Se analiza el comportamiento dindmico de un modelo bidimensional simplificado
de una estructura offshore real'. La Figura 20 ilustra el modelo adoptado con sus
respectivas dimensiones. Sobre él actdan las mismas cargas que se esperan sobre una
plataforma real. La estructura se discretiza con 37 elementos barra y 22 nodos. Las
barras empleadas son de seccién tubular y sus caracteristicas geométricas se especifican

en la Tabla II.

-{Seccién Num.

Didmetro (mts)

Espesor (mts)

Barras

[

0.85
0.60

0.0250
0.0125

3,6,9,12,15,18,21,24,26,27
Todas las demads

Tabla II. Caracteristicas geométricas de las secciones.

El material empleado es acero: médulo de Young = 210 GPa,; coeficiente de
Poisson = 0.3 y densidad = 7500 kg/m3. El amortiguamiento estructural minimo se
ha definido como el correspondiente a una fraccién del amortiguamiento critico igual
al 3% a 5 Hz. Se ha supuesto que los equipos operacionales sobre la parte superior de
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i #

Figura 20. Ejemplo 3. Vista del modelo: discretizacion y geometria.

Nodo Masa (kg)
19 30000.0
20 60000.0
21 60000.0
22 30000.0

Tabla III. Masas concentradas en la plataforma.

la plataforma pueden ser representados por sendas masas traslacionales concentradas,

cuyos valores se dan en la Tabla III.

Por otro lado, en este andlisis, se ha supuesto que la estructura est4 fija al fondo
del mar. La inclusién, no obstante, de los pilotées de fundacién en el modelo asi como su
interaccién no lineal con el terreno, no representa ningin problema adicional mediante
el procedimiento general descrito en anteriores apartados.

Los pardmetros que caracterizan el estado del mar son los siguientes:

Altura de la l4mina de agua  ( d)
Amplitud de la ola de disefio ( A)
Periodo de la ola de disefio (T)

= 35.0 mts.
= 3.0 mts.
9.0 seg.

il
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Los coeficientes hidrodindmicos se han tomado como C,; = 1.5y Cp = 1.0.

En cuanto a las condiciones iniciales, a falta de informacién mdés confiable,
se ha adoptado la hipétesis de velocidades y movimientos nulos en el instante inicial
t = 0, es decir, 2, = z, = 0. Esta hipdtesis, aunque estrictamente hablando no refleja
fielmente la realidad fisica, se basa en la suposicién de que el estado del mar previo a la
tormenta de disefio es relativamente calmo. Asi, cuando ésta sobreviene, las velocidades
y movimientos estructurales seran pequefios en comparacién con los introducidos por
la tormenta en los instantes iniciales pudiendo, por tanto, asumirse como nulos.

Con la finalidad de evaluar los resultados proporcionados por la técnica aqui
empleada, se ha analizado el mismo modelo con el programa comercial ABAQUS?.
Este programa permite la definicién de cargas de oleaje mediante varias teorias y
efectia el andlisis a través de métodos implicitos de integracién en el tiempo. En las
Figuras que siguen la respuesta proporcionada por ABAQUS se representa con linea
de trazos, mientras que los resultados obtenidos con el programa desarrollado en el
presente estudio quedan recogidos con linea continua.

La Figura 21 muestra la historia de desplazamientos horizontales del nodo 19,
correspondiente a la parte superior de la plataforma, mientras que la Figura 22 hace lo
propio con la velocidad horizontal del mismo nodo.

— — —  ABAQUS

0.003 _— Presente estudio

)

m
©
©
S
N

19 (

0.001

o
o
S
S

- —0.001

MOVIM. X nodo

|
©
o
O
NS

eyl rcceoc o e oo by e Lot e

—-OAO(}s TIT T ¥ 1Ty r 1 ¥ 1T T 110 T T3 7f Tl 1T 11171 F717T

0.00 500 10.00 15.00 20.00
Tiempo (seq)

Figura 21. Ejemplo 3. Historia del desplazamiento horizontal del nodo 18.

La Figura 23 recoge la historia de desplazamientos de un nodo sumergido (nodo
8), mientras que la Figura 24 ilustra los esfuerzos axiles obtenidos en la base de la
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Figura 22. Ejemplo 3. Historia de la velocidad horizontal del nodo 19.
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Figura 23. Ejemplo 3. Historia del desplazamiento horizontal del nodo 8.
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estructura (nodo 1), cuyas magnitudes resultan esenciales para el posterior andlisis y
disefio de los pilotes de fundacidn.

_—_ = — ABAQUS

1E+005- —_— Presente estudio

1

[EESERINENRRE RN SURNENRE NI ARUREN !
-‘%

=" 5E+004

—_

™) 0F+000

O -
Q _sp4004d]

=3 A+H0QS T T T T T T T T T T T T T
0.00 5.00 - 10.00 15.00 20.00

Tiempo (seg)

Figura 24. Ejemplo 3. Historia del esfuerzo axil en el nodo 1 barra 3.

En las Figuras descritas puede notarse la excelente coincidencia entre los
resultados aqui obtenidos y los proporcionados por el programa ABAQUS. Los valores
pico de los regimenes transitorios calculados con ambos programas no difieren en mas
del 5%, mientras que las diferencias son menores alin en los respectivos regimenes
permanentes. Como era de esperar, las figuras reproducen cualitativamente la forma
cuasi-sinusoidal de la sefial de exitacidén una vez alcanzado el régimen permanente.
Asimismo, en la Figura 21 pueden observarse unos ligeros puntos de inflexién en el
régimen estable de la respuesta estructural, debidos, fundamentalmente, a los efectos
no lineales de la componente de arrastre en la férmula de Morison.

CONCLUSIONES

Se ha presentado un modelo sencillo de cilculo que aplica esquemas de
integracién explicita al estudio de cargas mdéviles y no lineales sobre estructuras de
barras.

La integracién explicita produce el desacoplamiento a mnivel local de las
ecuaciones del movimiento y genera por tanto algoritmos sencillos que permiten
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implementar con facilidad y con escasas simplificaciones cualquier tipo de formulacién
de las acciones que actian sobre la estructura.

Por otro lado, los esquemas explicitos aplicados a estructuras de barras, al no
tener necesidad de ensamblar las matrices globales de la estructura (rigidez, masa,...),
ni de resolver sistemas de ecuaciones, generan programas que precisan relativamente
de poca memoria. Esto los hace especialmente aptos para su uso en ordenadores
personales. La limitacién del paso de integracidn, necesaria para la estabilidad
numérica, no debe dar tiempos de ejecucién excesivamente largos, a menos que se
empleen barras muy cortas o con una relacién area/inercia muy pequeiia.

Se ha presentado la aplicacién del modelo a dos problemas tipicos en Ingenieria
Civil: el trafico de vehiculos sobre puentes y las oscilaciones de plataformas “offshore”
producidas por el oleaje. En el primer caso el modelo permite estudiar con facilidad
el movimiento acoplado de la estructura y de la suspensién de los vehiculos, asi como
introducir las irregularidades del pavimento. En el segundo caso el modelo no exige
la linealizacién previa de las fuerzas de arrastre. Los resultados obtenidos en los casos
analizados han sido satisfactorios, lo que indica que programas basados en el modelo
numérico presentado, o en otros analogos, pueden utilizarse con confianza para analizar
el comportamiento real de estructuras sometidas a cargas no lineales.
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