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Se presenta en este articulo un modelo sencillo de cálculo para el análisis dinámico de 
estructuras de barras sometidas a cargas no lineales. Este modelo se basa en una generalización 
del cálculo matricial habitual y en el empleo de un esquema explícito de integración en el 
tiempo. Se estudia la aplicación del modelo a dos problemas típicos en Ingeniería Civil: el 
tráfico de vehículos sobre puentes y las oscilaciones de estructuras Uoffshore" producidas por 
el oleaje. Finalmente se presentan los resultados obtenidos del análisis con microordenador de 
tres ejemplos concretos. 

SUMMARY 

This paper introduces a simple numerical model for the dynamic analysis of framed 
structures under non-linear force boundary ,conditions. The model is based upon a 
generalization of the usual matrix structural analysis and it uses an explicit time integration 
scheme. The application of this model to both the analysis of bridges under moving loads and to 
the study of offshore platforms is discussed. Finally, the results of three sample microcomputer 
analyses are presented. 

INTRODUCCION 

En las aplicaciones prácticas de la Mecánica Estructural se dan con frecuencia 
situaciones en las que la naturaleza de las acciones exteriores altera el carácter lineal 
de las ecuaciones que gobiernan el movimiento de la estructura, aún cuando se pueda 
considerar que el material permanece en régimen elástico y que tanto los movimientos 
como las deformaciones del sistema son pequeños. Tal es el caso, por ejemplo, del tráfico 
de vehículos sobre puentes o de las oscilaciones de una estructura sumergida producidas 
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por el movimiento del fluido. No es admisible que para las acciones de diseño de estas 
obras se produzcan movimientos grandes o deformaciones irrecuperables y, sin embargo, 
un cálculo riguroso exige aplicar las técnicas del análisis no lineal para la obtención de 
la respuesta. 

Ante situaciones de este tipo el criterio del analista conduce habitualmente a 
simplificaciones que tienden a linealizar el problema sin que se alteren demasiado los 
resultados. 

En el caso de las estructuras sumergidas la simplificación más corriente conduce 
a modificar el valor de la fuerza de arrastre hasta hacerlo depender linealmente de 
la velocidad relativa entre el fluido y la estructura (Brebbia et al1). Esto permite, en 
general, aplicar las conocidas técnicas del análisis dinámico lineal: superposición modal, 
análisis en el dominio de la frecuencia .... 

Cuando se trata de estructuras sometidas al tráfico de vehículos se va todavía más 
lejos, ya que la práctica tradicional utilizada en el diseño de puentes, y recogida en la 
normativa consiste en analizar la estructura desde el punto de vista estático 
con la carga situada en los puntos que se consideran más desfavorables. El carácter 
dinámico del problema se introduce a través de determinados "coeficientes de impacto'' 
que mayoran los efectos de la carga estática. De este modo se supone que las respuestas 
obtenidas corresponden a los valores máximos de las respuestas reales. 

Estos procedimientos simplificados, de indudable valor práctico a nivel de diseño, 
tienen el inconveniente de que no permiten acercarse mucho al detalle de la conducta 
estructural bajo las acciones reales. Así, en el caso de puentes, cuando se interpretan 
los resultados de pruebas de carga dinámicas (Aparicio et al4) o cuando se estudian los 
efectos de la deformabilidad de la estructura sobre la comodidad del viajero (Alvarez 
et al5, Molina et alz1, Alvarezz2), se hace necesario recurrir a modelos de cálculo más 
sofisticados que permitan reproducir con más fidelidad el comportamiento estructural 
real. 

El objetivo de este artículo es, precisamente, presentar un modelo sencillo de cálculo 
para el análisis de estructuras sometidas a este tipo de acciones que alteran la linealidad 
de las ecuaciones del movimiento. El modelo no exige ninguna simplificación en la 
formulación de las acciones, y está basado en una generalización del análisis matricial 
habitual y en el empleo de un esquema explícito de integración en el tiempo. 

El campo habitual de aplicación de la integración explícita son los problemas de 
i m p a c t ~ ~ ~ * ~ ' ,  donde las altas frecuencias dominan la respuesta y se requieren pasos de 
integración 1s suficientemente pequeños para representarla con precisión (Belytschkoe). 
Para otro tipo de problemas, en los que la respuesta estructural sea predominantemente 
de baja frecuencia, se prefiere generalmente recurrir a esquemas implícitos de 
integración que sean incondicionalmente estables, a pesar de su complejidad, ya que 
permiten utilizar pasos de integración considerablemente mayores. 

Sin embargo, la simplicidad de los esquemas explícitos, sobre todo en problemas 
no lineales, hace que sigan siendo una alternativa tentadora. La integración explícita 
permite resolver las ecuaciones trabajando a nivel local, sin ensamblar las matrices 
generales de la estructura, y proporciona algoritmos sencillos y muy fáciles de 
programar. Por otro lado, los escasos recursos de memoria que precisan los programas 
basados en esta clase de algoritmos, los hacen especialmente adecuados para su uso en 
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microordenadores. 
La metodología presentada en este artículo permite, en el caso de que se aplique al 

análisis de puentes sometidos a cargas móviles, estudiar de manera totalmente acoplada 
las oscilaciones de la suspensión de los vehículos y las de la estructura, e introducir de 
forma muy sencilla y sin apenas simplificaciones la influencia de las irregularidades del 
pavimento. Cuando se trata de estructuras sumergidas, el método permite introducir 
las fuerzas de arrastre directamente sin linealizar. 

En todos los casos, no hace falta considerar más hipótesis en la discretización de la 
estructura que las habituales en el análisis matricial (Alarcón et al6, Przemieniecki2'). 
En este sentido, se trata de una generalización del método de los elementos 
 componente^^^, que tan buenos resultados ha dado en el estudio de puentes de 
ferrocarrilz1. 

En los apartados que siguen se presenta en primer lugar la discretización espacial 
empleada para la estructura y las acciones exteriores. Seguidamente se describe el 
esquema de integración explícita por diferencias centrales y se comentan los requisitos 
para su estabilidad numérica. Más tarde se estudia la aplicación del modelo al caso 
del movimiento de vehículos sobre puentes y al análisis de estructuras LLoffshore". 
Finalmente se presentan varios ejemplos numéricos y se extraen algunas conclusiones. 

DISCRETIZACZON ESPACIAL 

Estructura 

La estructura se discretiza utilizando elementos viga del tipo Euler-Bernoulli, que 
son los corrientes en el cálculo matricial de estructuras de barras. Centrándose en el caso 
de pórticos planos (Figura l ) ,  se trata de elementos con seis grados de libertad y en los 
que se considera desacoplado el comportamiento axial de la viga de su comportamiento 
a flexión. 

El movimiento longitudinal u de los puntos de la viga se aproxima mediante un 
polinomio de primer grado: 

donde = z ,  L es la longitud del elemento y u1 u2 son los movimientos longitudinales 
de los nodos. 

El movimiento transversal v de los puntos de la viga se aproxima mediante un 
polinomio de tercer grado y se hace la hipótesis de que el giro 8 de las secciones 
transversales es la derivada de v con respecto a la coordenada longitudinal x: 

con ello resulta que: 
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Figura 1. Moviinientos de los nodos en ejes locales. 

donde vl v2 son los movimientos transversales de los nodos y el $2 son los giros de las 
secciones transversales en los nodos. 

A partir de las relaciones (1) y (3))  suponiendo que la sección de la barra tiene las 
mismas características a lo largo de toda su longitud, y haciendo las hipótesis habituales 
en la teoría elemental de vigas, se obtiene (Alarcón et al6) la matriz de rigidez elemental 
Ke. 

La matriz K, proporciona las acciones fe que el elemento ejerce sobre sus nodos 
cuando el movimiento de éstos es u,: 

fe = -K, U, 

En ejes locales (Figuras 1 y 2): 

Se ha supuesto, por otro lado, que la distribución de masa es constante a lo largo 
de los elementos. Como matriz de masas elemental se ha tomado una matriz diagonal 
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Figura 2. Acciones sobre el elemento en ejes locales. 

M,, que en ejes locales o globales de expresa como: 

donde M es la masa total del elemento y se ha mantenido la numeración de grados de 
libertad empleada al escribir la matriz de rigidez. 

Esta expresión de la matriz considera que el elemento aporta a la masa traslacional 
de cada uno de sus nodos la mitad de su masa total; y a la masa rotacional, el momento 
de inercia de la mitad del elemento con respecto al nodo. 

La matriz M, proporciona las fuerzas de inercia i, que aparecen en los nodos 
cuando se comunica a éstos una aceleración ü, (Figura 3): 

Los esquemas de integración explícita requieren, para ser eficientes, matrices de 
masa diagonales. 

Para el amortiguamiento estructural se ha empleado la formulación de Rayleigh', 
de manera que la matriz de amortiguamiento elemental C, se escribe: 

donde cr y ,L3 son dos coeficientes reales. 
La matriz C, proporciona las fuerzas de amortiguamiento a, que aparecen en los 

nodos cuando éstos se desplazan con una velocidad u,: 
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Y X  
Figura 3. Fuerzas de inercia en ejes locales. 

Acciones exteriores 

Las acciones exteriores sobre las barras se llevan a los nodos de modo consistente 
desde el punto de vista energético. Para ello se utilizan las funciones de interpolación 
que aparecen en las relaciones (1) y (3). 

De este modo, si n([, t), r ( t ,  t)  y m([, t)  representan las distribuciones de acciones 
sobre una barra en ejes locales (Figura 4), las acciones equivalentes sobre nudo se 
obtienen mediante: 

y el vector de fuerzas exteriores sobre los nodos de la barra se escribe, en ejes locales: 

(t)  = [Fxl, Fvl RI Fx2 FYZ 7 R2I (12) 
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Figura 4. Distribución de acciones sobre elementos. 

Ecuaciones discretas 

A partir de las relaciones (4), (7), (9) y (12) se pueden plantear las ecuaciones 
globales del movimiento de la estructura como: 

donde, 

f ( t )  = A fe(t) = fuerzas de rigidez sobre los nodos 
a( t )  = A ae(t)  = fuerzas de amortiguamiento 
i(t) = A ie(t) = fuerzas de inercia 
p( t )  = A pe(t) = fuerzas exteriores 

La A simboliza el proceso de ensamblaje. 
La ecuación (13) puede ser escrita también en la forma: 

donde, 

u(t) = movimientos de los nodos 
K = A Ke 
C = A Ce 
M = A Me 

y el punto indica derivada total con respecto al tiempo. 
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INTEGRACION EN EL TIEMPO 

La relación (14) representa un sistema de ecuaciones diferenciales ordinarias. Para 
la integración en el tiempo de este sistema se utiliza un esquema explícito que desacopla 
las ecuaciones a nivel local y proporciona así un algoritmo muy sencillo para el ciclo de 
cálculo. 

Integración explícita: ciclo de  cálculo 

La solución del sistema de ecuaciones se busca para sucesivos instantes de tiempo 
t,N, N = 0,1,2..  . separados por un intervalo o paso de integración At : tN+1 = tN + At. 

La integración progresa paso a paso, es decir, en cada ciclo de integración se 
obtienen los valores de las variables en el instante tN a partir de los valores de las 
variables en el instante tN-l, partiendo de las condiciones iniciales del problema. 

Si llamamos: 

etc . . .  

un esquema de diferencias centrales supone que: 

donde u , u y ü son los desplazamientos, velocidades y aceleraciones de los nodos de 
la estructura. 

Por otro lado, si se plantean las ecuaciones (14) en el instante tN, puede obtenerse: 

donde la simplificación iiN E no introduce distorsiones importantes para los 
valores habituales del amortiguamiento estructural y para un paso de integración tan 
pequeño como el necesario para la estabilidad del proceso. 

Obsérvese que la relación (16) puede escribirse de acuerdo con (13): 

donde las fuerzas f N  son función exclusivamente de los movimientos uN de los nodos 
a través de las matrices de rigidez elementales K,, y las fuerzas aN-lf2 son también 
función exclusiva de las velocidades iiN-'f2 de los nodos mediante las matrices C,. 
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Las fuerzas exteriores pN se obtienen a partir de las relaciones ( lo) ,  (11) y (12), y su 
formulación puede ser totalmente arbitraria. 

Entonces, si M es diagonal, el vector de aceleraciones üN puede obtenerse 
recorriendo los nodos, calculando la resultante de las acciones sobre cada nodo y 
dividiendo por la masa correspondiente. Es decir, no hace falta ensamblar las matrices 
globales (rigidez, masa, . . . ) de la estructura para obtener las aceleraciones de los nodos 
en un instante tN determinado. 

Conocido así üN a partir de pN, uN-'l2 y uN, se puede obtener sucesivamente 
uN+'l2 y uN+l a través de las ecuaciones (15) y así cerrar el ciclo de cálculo. Esta 
posibilidad de integrar las ecuaciones (14) trabajando a nivel local es la principal 
ventaja de los esquemas explícitos. El ciclo general podría ser el que se muestra en 
la Figura 5. 

Condiciones iniciales 
uO = u(0) , u1I2 = ~ ( 0 )  , N = O 

Actualiza movimientos 
= UN + A, ;Jv+1/2 

Calcula fuerzas externas pN+' 

Calcula fuerzas internas fN+' , aN+l 

Para cada elemento: 
(a) f:+' = -Keu;+' 
(b) ensambla f:+' en fN+' 
(C) aN+' E iCeU~+1/2 
(d) ensambla a:+' en aN+' 

Actualiza aceleraciones estructura ÜNt' = M-' [pNf' + fN+' + aN+' 1 

Actualiza velocidades estructura uN+'l2 = uN-'12 + At ÜN 

Impone las condiciones de contorno esenciales a velocidades 

Vuelve a 2. 

Figura 5. Ciclo general de cálculo. 

Estabilidad numérica 

El esquema de integración paso a paso expuesto en el apartado anterior es sólo 
condicionalmente estable. La estabilidad del ciclo general de integración exige que 
(Belytschko8): 

donde wmax es la máxima frecuencia natural del modelo con que hemos representado 
la estructura, y [ es la fracción del amortiguamiento crítico para esa frecuencia. Es 
decir, 
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donde Xmax es el máximo autovalor del problema: 

En general resulta engorroso determinar el paso de integración máximo admisible 
resolviendo el problema de autovalores (17), donde intervienen las matrices globales de 
la estructura. Sin embargo, el máximo autovalor de (17) está acotado superiormente 
por el máximo autovalor de los elementos que componen la estructura (Belytschkos), 
esto es: 

Xmax 5 m ~ x  {XiIax} 

donde Xmax es el máximo autovalor del problema: 

K, u, = Xe M, u, 

Para el elemento barra que se está empleando los autovalores no nulos resultan ser: 

7 

donde p es la densidad del material, E es el módulo de elasticidad, I es el momento de 
inercia de la sección y A es el área de la sección. 

Como < X3, resulta que Xmax = max{XT, As} y, por tanto, para la estabilidad 
del ciclo bastará que, para todo elemento e se cumpla; 

Nótese que los elementos cortos o con relación AII pequeña son los que penalizan 
el paso de integración. 
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APLICACIONES 

La particularización .del modelo descrito a una aplicación concreta se consigue 
introduciendo las acciones exteriores correspondientes. Estas acciones pueden 
formularse en función de los movimientos, velocidades o aceleraciones de la estructura 
sin ninguna limitación, ya que en cada instante de tiempo se dispone de todos los 
parámetros del movimiento del sistema para el cálculo del valor de las mismas. 

En el presente trabajo se han estudiado dos aplicaciones de relevancia práctica en 
el campo de la Ingeniería Civil: el tráfico de vehículos sobre puentes y las oscilaciones 
de estructuras "offshore" producidas por el oleaje. La adaptación del modelo a otro 
tipo de acción seguiría pasos análogos a los que se describen en los párrafos siguientes, 
y no representa ningún problema conceptual adicional salvo el que pudiera introducir 
la propia definición del sistema de solicitaciones. 

Movimiento de vehículos sobre puentes 

Cuando un vehículo atraviesa un puente se produce una interacción entre las 
oscilaciones debidas a su suspensión y las oscilaciones del propio La acción 
resultante sobre el tablero es producto de esta interacción y puede obtenerse fácilmente 
en cada instante de tiempo si se integran simultáneamente las ecuaciones de la vibración 
del vehículo y las del movimiento del puente. 

Así, de forma simplificada, una rueda o eje del móvil puede modelarse como un 
oscilador simple que se desplaza a velocidad c sobre los elementos de la estructura 
(Figura 6). Un vehículo completo podría modelarse utilizando varios de estos 
osciladores simples o, de forma más precisa, utilizando un único sólido rígido soportado 
por varios resortes22. Por razones de simplicidad, en nuestra exposición se utilizará el 
modelo representado en la Figura 6. 

Figura 6.  Modelo para una carga iilóvil. 

El movimiento del nodo 1 (Figura 6) se considera igual en cada instante al del 
punto del elemento i j  sobre el que se encuentra más un valor 5 que puede representar 
la rugosidad del pavimento. Se calcula entonces este movimiento a partir del de los 
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nodos i j ( a través de las relaciones (1) y (3)) y utilizando el valor de 6 correspondiente 
al punto sobre el que se encuentre el vehículo. 

En el caso corriente de que el móvil se desplace en dirección horizontal (Figura 6) 
se tiene: 

donde zl es el desplazamiento vertical del nodo 1, v; vj Oi Oj son'los desplazamientos 
verticales y giros de los nodos i j, 6 es el valor de la rugosidad y J = y.  

Si suponemos que el resorte oscila alrededor de la posición de equilibrio 
correspondiente al peso de la masa M, la fuerza P que se ejerce sobre el elemento 
ij se puede poner como: 

donde g es la aceleración de la gravedad. 
En cuanto al movimiento de oscilación de la suspensión, éste viene gobernado por 

la ecuación: 

donde zl y z2 representan el desplazamiento de los nodos 1 y 2 (Figura 6). 
La integración de la ecuación (21) se puede realizar de manera explícita dentro 

del ciclo general a la hora de determinar las acciones sobre la estructura. El ciclo de 
integración se representa en la Figura 7 y exige para su estabilidad que: 

Las operaciones representadas en la Figura 7 permiten obtener la fuerza P sobre 
la estructura que se deriva en cada instante de la interacción entre las oscilaciones del 
puente y las de la suspensión del móvil. Esta fuerza P se lleva a los nodos del modelo 
estructural según el procedimiento general ya expuesto en los párrafos anteriores. 

Respuesta estructural  d e  plataformas "offshore" 

El diseño y construcción de plataformas para extracción de petróleo es, quizá, una 
de las áreas de la ingeniería actual que requiere de las más avanzadas tecnologías. 
Uno de los tipos de plataforma "offshore" más utilizado consiste en una armadura 
tridimensional de miembros tubulares de acero soldados entre sí. En la parte superior 
se disponen los equipos necesarios para la operación de la plataforma así como los 
servicios requeridos por el personal, mientras que la parte inferior llega hasta el lecho 
marino, donde se fija a través de pilotes de acero que se hincan a gran profundidad. 

Dado el tamaño de estas estructuras y el gran diámetro de sus miembros, se 
comprende que la evaluación de las fuerzas hidrodinárnicas derivadas del oleaje marino 
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Condiciones iniciales: en cada móvil 
Z2(0) = Z2(0) , 2 1 2  = ( O )  , N = O 

Cálculo de pN+' en cada ciclo 

Para cada móvil 
(a) determina posición. 

(b) 2;" = V,\E1 + &\E2 + 5\E3 + O j q 4  

(c) 2;" = ZT + At 2 2  
M i - 1 1 2  

(d) z ~ ~ + ~  = -' K (z)+'_ z;+') 
M 

(.) 
i2N+312 - - 2 2  ~ i - 1 1 2  + At Z2"+' 

(f) PN+' = M (9  - ~ 2 ~ " )  

(g) Se obtienen los valores nodales correspondientes 
a PN+' y se ensamblan en pN+'. 

Figura 7. Ciclo de integración para la oscilación de los móviles. 

en situaciones críticas de tormenta reviste la mayor importancia si se desea obtener 
diseños confiables. Básicamente, es necesario disponer de: (a) una teoría que caracterice 
el estado del mar, es decir, que describa el movimiento del fluido y (b) una formulación 
apropiada que permita transformar el movimiento del fluido en fuerzas hidrodinámicas 
aplicadas sobre los elementos estructurales. 

En lo que sigue se describirán brevemente algunas de las teorías más usuales para 
evaluar la interacción fluido-estructura en el contexto que nos ocupa. 

Cinemática de la partícula de agua 

Para el modelado determinista y bidimensional de los estados del mar existen varias 
teorías de onda (Sarpkaya et al1', Dean12). Una de las más simples y utilizadas en la 
práctica es la teoría lineal de Airy. Dado que la derivación de su formulación está bien 
documentada en la literatura técnica, nos limitaremos aquí a hacer un breve recuento 
de las ecuaciones correspondientes. 

La función q5 potencial de velocidades es dependiente de la posición (x, y) de la 
partícula en el seno del fluido y del instante t en consideración, según recoge la expresión 
siguiente: 

Ag cosh{K(y + d ) )  
b ( x , ~ , t )  = - w senh(Kd) sen(Kz - wt) 

donde 

A = amplitud de la onda 
g = aceleración de la gravedad 
w = frecuencia de la onda (rad/seg) 
K = número de onda 
d = altura de la lámina de agua 

La Figura 8 ilustra los parámetros antes descritos. El número K puede ser 
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determinado a partir de la relación no lineal: 

Y 
A 

A 1 2  

nivel de aguas tranquilas 

r X  

d 
-* u,,ux fondo 

Figura 8. Caracterización del oleaje: teoría lineal de Airy. 

Si d es suficientemente grande entonces t d ( K d )  -t 1 y se puede escribir una 
expresión simplificada para el cálculo de K: 

Por otro lado, la longitud de onda X puede ser calculada mediante la relación: 

donde T es el periodo de la onda. Otra vez aquí, si d es grande, puede escribirse: 

Derivando (22) con respecto a la posición se obtienen los campos de velocidades 
en el fluido: 

Si ahora se derivan las ecuaciones (27) con respecto al tiempo, se obtienen los 
campos de aceleraciones del fluido: 



ANALISIS DINAMICO DE ESTRUCTURAS 

u , = -  aUx - KAg cosh{K(y + d)} 
a t  

sen(Kz - wt) 
senh(K d) 

- a% - se*{K(y + d ) }  cos(Kz - wt) 
(28) 

- ay - -KAg senh(Kd) 

La teoría lineal de Airy resulta conveniente para la formulación del problema 
dado su carácter lineal y su sencillez. Es bueno destacar aquí que los cómputos de 
velocidades y aceleraciones en cada i~~stante  t se efectúan de una forma expedita, 
simplemente evaluando una expresión algebraica. Teorías no lineales -por ejemplo 
Stokes de quinto orden (Dean12, Cerrolaza16)- requerirían de cálculos más complejos, 
traduciéndose ésto en un  gran esfuerzo computacional. Por otro lado, la teoría 
lineal de Airy presenta un rango adecuado de aplicabilidad para diversos parámetros 
oceanográficos, como lo sugiere el estudio de Dean12. 

Fuerzas hidrodinámicas sobre elementos estructurales 

Cuando el elemento estructural no perturba significativamente la propagación 
de la onda incidente, es posible utilizar la ecuación de Morison (Morison et al1=) para 
el cálculo de fuerzas hidrodinámicas sobre cilindros esbeltos. Tal es el caso de la gran 
mayoría de las plataformas de acero, donde los elementos estructurales usualmente no 
superan diámetros de dos metros, frente a longitudes de onda que son generalmente 
mayores de cien metros para las olas de diseño. 

La ecuación de Morison es una fórmula de tipo semiempírico, propuesta 
especialmente para cilindros rígidos verticales, cuya formulación puede establecerse así: 

D D2 -D2 
F = C D p  2 I U ~ U  + (CM - 1) p ñ  - U + p ñ  - U 

4 4 (29) 

donde 

F = fuerza hidrodinámica por unidad de longitud 
u = velocidad del fluido 
U = aceleración del fluido 
p = densidad del fluido 

D = diámetro del cilindro 
CD, CM = coeficientes de arrastre e inercia respectivamente. 

Nótese que la componente de arrastre varía no linealmente con la velocidad del 
fluido, lo que obliga generalmente a la utilización de procedimientos especiales (Brebbia 
et al1) si se quieren emplear las técnicas habituales del análisis dinámico lineal. 

En la realidad los elementos estructurales son miembros flexibles que 
experimentan movimiento al entrar en contacto con el fluido. La fórmula de Morison, 
en consecuencia, ha sido modificada a fin de tomar en cuenta el movimiento de los 
miembros. Este acoplamiento fluido-estructura puede ser modelado mediante el método 
de la  velocidad relativa", el cual supone que la velocidad efectiva en la ecuación (29) 
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corresponde a la diferencia entre la velocidad del fluido u y la velocidad estructural 
2. Asimismo, se acepta que la aceleración efectiva de (29) es la diferencia entre la 
aceleración del fluido u y la aceleración estructural 2. De este modo, sustituyendo u 
por u - 2 y u por u - E, se tiene: 

(29 
las 

Nótese que la sustitución de u por u - x no se efectuó en la tercera componente 
). Esto se debe al hecho de que el térrninop~ ti es producido por la variación 
aceleraciones del fluido o, en otras palabras, por la distorsión de las líneas de 

corriente del fluido y se considera que este efecto es independiente de la aceleración 
estructural. 

Reorganizando (30) se obtiene: 

Los coeficientes de arrastre y de inercia (CD y CM respectivamente) dependen 
del número de Reynolds, del número de Keulegan-Carpenter y de la rugosidad del 
miembro. 

Otro aspecto digno de mención es la manera de proceder cuando el miembro 
estructural está inclinado con respecto al plano incidente de la onda. La fórmula 
de Morison (29) fue deducida en forma semiempírica mediante ensayos de campo y 
de laboratorio sobre elementos estructurales verticales sometidos a un desplazamiento 
horizontal de la onda incidente. En la literatura pertinente (Wade et al1" Cerrolazal' 
y Ferrante et al") se pueden encontrar al menos cinco técnicas diferentes para 
proceder en estos casos. En este trabajo se ha optado por trabajar con la técnica 
propuesta por Borgman18, la cual considera que sólo producen fuerzas las velocidades 
y aceleraciones normales al elemento estructural, despreciándose las componentes 
tangenciales (Figura 9a). Esta técnica ha demostrado producir unos resultados 
aceptables y que concuerdan razonablemente bien, dentro de la incertidumbre inherente 
a procesos de esta naturaleza, con los experimentos (Chakrabarti et al1', Kim et alz0). 

Así pues, disponiendo de una teoría que describa la cinemática de la partícula 
de fluido y de una formulación capaz de evaluar las fuerzas ejercidas por el movimiento 
del mismo, es posible determinar las acciones sobre un elemento estructural en todos 
aquellos puntos que se precise. Para el presente trabajo dichas fuerzas se calculan en los 
extremos y punto medio de los elementos que modelan los miembros estructurales, con 
lo cual la distribución de fuerzas queda caracterizada por un polinomio de segundo 
orden (Figura 9b). A continuación, las distribuciones de cargas así obtenidas son 
transformadas en fuerzas equivalentes nodales mediante el procedimiento ya descrito 
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Figura 9. Carga hidrodinámica sobre el elemento inclinado. 
F, = fuerza de arrastre 
F, = fuerza de inercia 
u, = velocidad relativa 
U, = aceleración relativa. 

EJEMPLOS NUMERICOS 

Para mostrar la efectividad del modelo de cálculo presentado en los apartados 
anteriores se ha desarrollado un programa de ordenador basado en las ideas expuestas. 
El programa se ha escrito en lenguaje FORTRAN 77 y funciona en un ordenador 
personal compatible con coprocesador matemático. 

De los casos analizados con este programa se han seleccionado tres. El primero 
de ellos es un ejemplo sencillo para el que la solución analítica es conocida; se ha escogido 
este caso con objeto de comprobar la precisión del esquema de cálculo. El segundo 
ejemplo se aproxima a un caso real de puente atravesado por un convoy ferroviario, 
mientras que en el tercer ejemplo se intenta representar una plataforma "offshore" 
sometida a la acción del oleaje. Con estos dos últimos ejemplos se pretende poner de 
manifiesto las posibilidades del método en el análisis de estructuras reales. 

Los tiempos de ejecución del programa no superan la media hora en los dos 
primeros ejemplos, mientras que en el tercer ejemplo se empleó una hora y media 
aproximadamente. 

Ejemplo 1: Vehículo sobre puente de hormigón 

El ejemplo 1 se ha tomado de Inbanathan et al9. Se trata de un puente 
de hormigón simplemente apoyado de 50 metros de luz con sección en cajón. Las 
características del material y de la sección se dan en la Figura 10. No se considera 
amortiguamiento estructural. El puente es atravesado por una carga de 500 kN que se 
desplaza a una velocidad constante de 26.82 m/seg. 

La estructura se ha modelado como una viga biapoyada y se han utilizado para 
ello cuarenta elementos. Para conseguir el efecto de una fuerza constante sobre la viga, 



F. BELTRAN Y M .  CERROLAZA 

al móvil se le ha asignado una masa de 50000 kg y una rigidez baja (5 kN/m), de modo 
que su frecuencia propia de oscilación sea mucho menor que la principal del puente. 

10 
E = 3.34 x 10 ~ r n - ~  1 = 6.0 m' 

4 = '"O OY 
A= 7.5 m* 

Figura 10. Características de la estructura. 

En la Figura 11 se muestran los resultados obtenidos para la flecha en el centro 
del vano. Si se compara esta solución con la obtenida analíticamente por Timoshenkol0 
utilizando los tres primeros modos de vibración de la viga, se encuentra que son 
indistinguibles a la escala del dibujo. 

SOLUCION 4 0  ELEM. 

--- cOLL1CION ESTATICA 

. O0 .30 .60 .90 1.20 1 .SO 1 .E0 

T i e m p o  ( seg )  

Figura 11. Ejemplo 1. Historia de la flecha en el centro del vano. 
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Ejemplo 2: Convoy ferroviario sobre puente de  celosía 

En este ejemplo se analiza la estructura representada en la Figura 12. Se trata 
de una de las vigas principales de un puente metálico con tres vanos de 35, 21 y 35 m. 
Las propiedades del material y las características de las barras se dan en la Tabla 1. Se 
considera u n  amortiguamiento estructural mínimo del 2% del crítico a 5 Hz. 

Figura 12. Ejemplo 2. Geometría de la estructura. 

E = 210 GPa 
p = 7500 kg m-3 

Area ( l ~ - ~ r n ~ )  Inercia ( 1 0 - ~ r n ~ )  

Cordón inferior 385.4 11.6484 

Cordón superior 
y diagonales en 156.6 2.0568 
apoyos extremos 

Diagonales en 
apoyos interiores 193.9 0.8563 

Resto diagonales 149.1 0.8563 

Tabla 1. Ejemplo 2. Características de las barras. 

Sobre el cordón inferior de la estructura se hace pasar el tren de cargas 
representado en la Figura 13, que corresponde a un convoy formado por una locomotora 
y cuatro vagones que se desplazan a una velocidad de 16.67 m/seg. 

En la Figura 14 se puede ver la mitad del modelo empleado para la estructura. 
Se han utilizado 53 nodos y 77 elementos barra. En los nodos del cordón inferior se ha 
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1.6 7.4 1.6 2.76 1.6 7 .4  1.6 2 3 6  1.6 7.6 1.6 2.76 1.6 7.k 1.6 3 . 6 8  2.20 5.0 2.20 m 
* r  Y ! .  L .  " 

1 .  R . (  

P = 150 KN 

C = 16.67 mlseg 

Figura 13. Ejemplo 2. Tren de cargas. 

Figura 14. Ejeiiiplo 2. Vista del iiiodelo. 

colocado, además de la masa correspondiente a las barras, una masa muerta de 4200 
kg por nodo para tener en cuenta la presencia del tablero, balasto y vía. 

Las cargas móviles se suponen de idénticas características con una masa de 
15000 kg y una rigidez de 270 kN m-'. 

En las Figuras 15 y 16 se presentan los resultados obtenidos para la flecha de los 
nodos 8 y 20, que corresponden a nodos aproximadamente centrados en el primer vano 
y en el vano central respectivamente. Se observa el efecto de la deformación general de 
la estructura superpuesto al de la deformación local del cordón inferior. Esta Última 
cambia de sentido según esté recibiendo las cargas un módulo de 7 m o sus módulos 
contiguos. 

Las Figuras 17 y 18 muestran los resultados obtenidos para los esfuerzos axiles 
en las barras 8 (centro primer vano) y 40 (primer apoyo). Puede verse fácilmente que 
el esfuerzo crece cuando el tren se adentra en el primer vano, se alcanza luego un valor 
más o menos estable al igualarse las cargas que entran y salen del vano y finalmente 
decrece el esfuerzo al salir el tren del vano. 

Por último, el momento flector en el extremo izquierdo de la barra 8, que está 
situada en el centro del primer vano, se representa en la Figura 19. Se observan aquí 
los cambios de signo en el esfuerzo debidos de nuevo a la modulación introducida tanto 
por el cordón inferior de la estructura como por el tren de cargas. 
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Tiempo ( s e g )  

Figura 15. Ejemplo 2. Historia de la flecha en el centro del primer vano. 

I lempo ( s e g )  

Figura 16. Ejemplo 2. Historia de la flecha en el centro del vano intermedio. 
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- ~ E + ~ ~ ~ ~ ~ ~ ~ I I I ~ I I I I I ~ I ~ I ~ I ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

0.00 2 O0 4.00 6.00 8.00 10.00 
Tiempo ( s e g )  

Figura 17. Ejemplo 2. Historia del axil en la barra 8. 

0.00 2.00 4.00 6.00 8.00 10.00 

Tiempo (seg)  

Figura 18. Ejemplo 2. Historia del axil en la barra 40. 
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- ~ E + ~ O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I I ~ I I I I ~ I I ~ I I I I I I ~ I I I I I I I I I ~ I I I I ~ I I I I ~  

0.00 2.00 4.00 6.00 8 O0 10.00 

Tiempo ( s e g )  

Figura 19. Historia del momento flector en el centro del primer vano. 

Ejemplo 3: Plataforma "offshore" sometida a cargas de  oleaje. 

Se analiza el comportamiento dinámico de un modelo bidimensional simplificado 
de una estructura offshore realle. La Figura 20 ilustra el modelo adoptado con sus 
respectivas dimensiones. Sobre él actúan las mismas cargas que se esperan sobre una 
plataforma real. La estructura se discretiza con 37 elementos barra y 22 nodos. Las 
barras empleadas son de sección tubular y sus características geométricas se especifican 
en la Tabla 11. 

Sección Num. Diámetro (mts) Espesor (mts) Barras 

1 0.85 0.0250 3,6,9,12,15,18,21,24,26,27 
2 0.60 0.0125 Todas las demás 

Tabla 11. Características geométricas de las secciones. 

El material empleado es acero: módulo de Young = 210 GPa; coeficiente de 
Poisson = 0.3 y densidad = 7500 kg/m3. El amortiguamiento estructural mínimo se 
ha definido como el correspondiente a una fracción del amortiguamiento crítico igual 
al 3% a 5 Hz. Se ha supuesto que los equipos operacionales sobre la parte superior de 
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Figura 20. Ejemplo 3. Vista del modelo: discretización y geometría. 

Tabla 111. Masas concentradas en la plataforma. 

Nodo 

19 
20 
21 
22 

la plataforma pueden ser representados por sendas masas traslacionales concentradas, 
cuyos valores se dan en la Tabla 111. 

Por otro lado, en este análisis, se ha supuesto que la estructura está fija al fondo 
del mar. La inclusión, no obstante, de los pilotes de fundación en el modelo así como su 
interacción no lineal con el terreno, no representa ningún problema adicional mediante 
el procedimiento general descrito en anteriores apartados. 

Los parámetros que caracterizan el estado del mar son los siguientes: 

Masa (kg) 

30000.0 
60000.0 
60000.0 
30000.0 

Altura de la lámina de agua ( d ) = 35.0 mts. 
Amplitud de la ola de diseño ( A ) = 3.0 mts. 
Periodo de la ola de diseño ( T ) = 9.0 seg. 
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Los coeficientes hidrodinámicos se han tomado como CM = 1.5 y CD = 1.0. 
En cuanto a las condiciones iniciales, a falta de información más confiable, 

se ha adoptado la hipótesis de velocidades y movimientos nulos en el instante inicial 
t = O, es decir, I ,  = x, = O. Esta hipótesis, aunque estrictamente hablando no refleja 
fielmente la realidad física, se basa en la suposición de que el estado del mar previo a la 
tormenta de diseño es relativamente calmo. Así, cuando ésta sobreviene, las velocidades 
y movimientos estructurales serán pequeños en comparación con los introducidos por 
la tormenta en los iastantes iniciales pudiendo, por tanto, asumirse como nulos. 

Con la finalidad de evaluar los resultados proporcionados por la técnica aquí 
empleada, se ha analizado el mismo modelo con el programa comercial ABAQUS2'. 
Este programa permite la definición de cargas de oleaje mediante varias teorías y 
efectúa el análisis a través de métodos implícitos de integración en el tiempo. En las 
Figuras que siguen la respuesta proporcionada por ABAQUS se representa con línea, 
de trazos, mientras que los resultados obtenidos con el programa desarrollado en e: 
presente estudio quedan recogidos con línea contínua. 

La Figura 21 muestra la historia de desplazamientos horizontales del nodo 19, 
correspondiente a la parte superior de la plataforma, mientras que la Figura 22 hace lo 
propio con la velocidad horizontal del mismo nodo. 

- - -  ABAQUS 

0°03 i 
Presente estudio 

- 9 . 0 0 3 ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~  . ,  
0.00 5.00 i0.0'0""" 15.00 ' " " " '  lo.bo 

Tiempo ( seg)  

Figura 21. Ejemplo 3. Historia del desplazqmiento horizontal del nodo 19. 

La Figura 23 recoge la historia de desplazamientos de un nodo sumergido (nodo 
8), mientras que la Figura 24 ilustra los esfuerzos axiles obtenidos en la base de la 
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- - - ABAQUS 

Presente estudio 

-0.010 : 

O 00 5.0~""""'""""""""'"' 10.00 15.00 20.00 

Tiempo (seg) 

Figura 22. Ejemplo 3. Historia de la velocidad horizontal del nodo 19. 

- - - ABAQUS 

Presente estudio 

-0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.CO 5.00 10.00 15.00 20.00 

Tiempo (seg) 
Figura 23. Ejemplo 3. Historia del desplazamiento horizontal del nodo 8. 
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estructura (nodo l), cuyas magnitudes resultan esenciales para el posterior análisis y 
diseño de los pilotes de fundación. 

- ~ E + O $ V ~ ~ , ~ ~ ~ ~  r l l t  L . ~ ! r a ~  

0.00 5.30 10.00 15.00 ; o . ~ o  
Tiempo ( seg)  

Figura 24. Ejemplo 3. Historia del esfuerzo axil en el nodo 1 barra 3. 

En las Figuras descritas puede notarse la excelente coincidencia entre los 
resultados aquí obtenidos y los proporcionados por el programa ABAQUS. Los valores 
pico de los regímenes transitorios calculados con ambos programas no difieren en más 
del 5%, mientras que las diferencias son menores aún en los respectivos regímenes 
permanentes. Como era de esperar, las figuras reproducen cualit ativamente la forma 
cuasi-sinusoidal de la señal de exitación una vez alcanzado el régimen permanente. 
Asimismo, en la Figura 21 pueden observarse unos ligeros puntos de inflexión en el 
régimen estable de la respuesta estructural, debidos, fundamentalmente, a los efectos 
no lineales de la componente de arrastre en la fórmula de Morison. 

CONCLUSIONES 

Se ha presentado un modelo sencillo de cálculo que aplica esquemas de 
integración explícita al estudio de cargas móviles y no lineales sobre estructuras de 
barras. 

La integración explícita produce el desacoplamiento a nivel local de las 
ecuaciones del movimiento y genera por tanto algoritmos sencillos que permiten 



F. BELTRAN Y M. CERROLAZA 

implementar con facilidad y con escasas simplificaciones cualquier tipo de formulación 
de las acciones que actúan sobre la estructura. 

Por otro lado, los esquemas explícitos aplicados a estructuras de barras, al no 
tener necesidad de ensamblar las matrices globales de la estructura (rigidez, masa,. . . ), 
ni de resolver sistemas de ecuaciones, generan programas que precisan relativamente 
de poca memoria. Esto los hace especialmente aptos para su uso en ordenadores 
personales. La limitación del paso de integración, necesaria para la estabilidad 
numérica, no debe dar tiempos de ejecución excesivamente largos, a menos que se 
empleen barras muy cortas o con una relación healinercia muy pequeña. 

Se ha presentado la aplicación del modelo a dos problemas típicos en Ingeniería 
Civil: el tráfico de vehículos sobre puentes y las oscilaciones de plataformas "offshore" 
producidas por el oleaje. En el primer caso el modelo permite estudiar con facilidad 
el movimiento acoplado de la estructura y de la suspensión de los vehículos, así como 
introducir las irregularidades del pavimento. En el segundo caso el modelo no exige 
la linealización previa de las fuerzas de arrastre. Los resultados obtenidos en los casos 
analizados han sido satisfactorios, lo que indica que programas basados en el modelo 
numérico presentado, o en otros análogos, pueden utilizarse con confianza para analizar 
el comportamiento real de estructuras sometidas a cargas no lineales. 
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