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Abstract  Geosimulation is a form of microsimulation that seeks to understand 
geographical patterns and dynamics as the outcome of micro level geographical 
processes. Geosimulation has been applied to understand such diverse systems as 
lake ecology, traffic congestion and urban growth. A crucial task common to these 
applications is to express the agreement between model and reality and hence the 
confidence one can have in the model results. Such evaluation requires a 
geospatial perspective; it is not sufficient if the micro-level interactions are 
realistic. Importantly the interactions should be such that the meso and macro 
level patterns that emerge from the model are realistic. In recent years, a host of 
map comparison methods have been developed that address different aspects of 
the agreement between model and reality. This paper places such methods in a 
framework to systematically assess the breadth and width of model performance. 
The framework expresses agreement at the continuum of spatial scales ranging 
from local to the whole landscape and separately addresses agreement in structure 
and presence. A common reference level makes different performance metrics 
mutually comparable and guides the interpretation of results. The framework is 
applied for the evaluation of a constrained cellular automata model of the 
Netherlands. The case demonstrates that a performance assessment lacking either 
a multi-criteria and multi-scale perspective or a reference level would result in an 
unbalanced account and ultimately false conclusions. 
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1 Introduction 

Geosimulation is a field of geography that seeks to understand geographical 
patterns and dynamics as the consequence of the interactions between individual 
entities, like tenants, land owners, car drivers, trees, etc. Geosimulation models 
only prescribe the behaviour of these entities and not the resulting large scale 
patterns, such as segregation, urban sprawl, road congestion, forest fire, etc. These 
emerge as a product of the interactions between the entities. The field of 
geosimulation is spurred by advances in computing. As a consequence, the 
average desk computer can function as a virtual laboratory, where researchers can 
grow their own virtual cities, transport systems, rural societies, forests, etc. 
(Benenson and Torrens 2004) 

Geosimulation models are increasingly finding region specific applications. 
Rather than using the models to grow geographical systems from scratch, the 
models are fed with a real initial situation. The models are then not just theoretical 
constructs, but have a more applied nature. A striking illustration is the contrast 
between the Schelling model (Schelling 1971) and the entity-based model of 
urban residential dynamics for the Yaffa area in Tel Aviv (Benenson et al. 2002). 
Both models are concerned with segregation and the underlying microdynamics, 
but the level of detail and the lessons that can be drawn differ considerably. 

The constrained cellular automata land use model that is evaluated as a case in 
this paper is a good example of a model that has developed from a theoretical 
model to a practical tool. The first application of the model concerned an 
imaginary island with characteristics typical for Caribbean islands (Engelen et al. 
1995). Later applications focused on the city of the Cincinnati Metropolitan Area 
on a timescale of more than 100 years (White et al. 1997). Further developments 
have elaborated the use of GIS data, including road network data and the dynamic 
integration with socio-economic land use models at multiple scales (White and 
Engelen 2000). The model became part of Policy Support Systems, such as the 
Environment Explorer (Engelen et al. 2003, de Nijs et al. 2004). Currently the 
model is the cornerstone of several modelling frameworks of urban and regional 
growth, meaning that new regional applications can be setup within hours, 
including the METRONAMICA (van Delden and Engelen 2006) and MOLAND 
(White et al. 2000, Barredo and Demicheli 2003) frameworks. 

The problem that confronts the new generation of geosimulation modellers is to 
assess how well their virtual worlds correspond to reality. ‘Good modelling 
practice’ (Refsgaard and Henriksen 2004) prescribes different analytical steps. Of 
these, calibration and validation require an expression of goodness-of-fit of the 
model. Since the results of the models are typically maps, it makes perfect sense to 
address this question by map comparison; however the nature of geosimulation 
models provides some particular challenges that need to be considered. 

One problem is that the resolution at which the model is defined is not equal to 
the scale at which the results are interpreted. The interest in the models lies in the 
geographical structures that unroll as a consequence of the interactions of the 
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individual entities. The concept of complexity is relevant here. Typically the 
elements in the model are mutually dependent, causing feedback processes and 
self-organization, but also making the models sensitive to small deviations to the 
extent that they are chaotic or unpredictable. The consequence is that even a 
geosimulation model that perfectly captures the dynamics of a geographical 
system cannot be expected to produce result maps that correspond perfectly to 
reality. The models should therefore not be evaluated just at the location-to-
location level, but in terms of the patterns that emerge. On the other hand; when 
applying a model for a particular region, one is not just interested in the global 
patterns, but also how the patterns are distributed in space.  

A balance is sought between finding realistic patterns and finding them at the 
right location; the geosimulation model should create spatial configurations that 
are similar to reality and place them in approximately the right locations. Existing 
comparison methods do not strike such a balance. With few exceptions, they are 
either local and based on cell-by-cell overlap, or global and based on metrics 
summarizing the whole landscape in a single value. Despite the lack of formal 
methods, an expert can make this kind of balanced comparison by just looking at 
the map. It is therefore not surprising that in practice geosimulation models are 
often evaluated on the basis of such face validation. (Batty and Torrens 2005) 

There are several problems associated to face validation, most pressingly the 
lack of objective reproducibility. A practical concern of face validation is that for 
some tasks, such as calibration, large numbers of consistent assessments are 
required. Depending on a human judge of map similarity may be too time-
consuming, costly and prone to inconsistencies.  

Another challenge is posed by the dynamical nature of the simulation models 
and the relatively small number of changes that may occur over a simulation 
period. It is for instance not uncommon for land use models to attain percentages 
of agreement between reality and model above 95%. This ‘good performance’ is 
then invariably due to the fact that land use patterns at the beginning of the 
simulation period are highly similar to those at the end (Pontius Jr. et al. 2008). 
This causes a real risk of misinterpretation and false confidence in the results of 
geosimulation models.  

This paper introduces a framework to evaluate model performance. It applies a 
number of statistics that can be categorized according to two axes. The first axis is 
typically recognized in geographical information science and is based on the 
spatial unit of the analysis; it ranges from local, via focal to global. The second 
axis is more commonly applied in landscape ecological applications and discerns 
whether the presence of certain classes is considered or their spatial structure. The 
interpretation of the results is guided by a neutral model of landscape change that 
provides a common reference for all metrics (Hagen-Zanker and Lajoie 2008). 
This reference model is subject to the same initial situation and constraints but 
does not represent the processes that characterize the evaluated model. The 
difference in performance between the two models can thus be attributed to those 
processes.  
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The purpose of this framework is in first instance to provide an order in the 
large variety of performance metrics. Secondly, the framework can be a guide 
towards a comprehensive approach of performance assessment in the calibration 
and validation process of geosimulation models.  

2 Method 

2.1 The axis: Local, Global, Focal 

Geographical Information Systems (GIS) operations can be classified as being 
local, focal or global in nature (Takeyama and Couclelis 1997). Local statistics 
relate a particular location on the map, in the case of raster maps: a cell. Analysis 
based on local operations is often called overlay analysis. Focal statistics have the 
focus on one location, but also take the neighbourhood of the location into 
account. Typical focal operations are spatial smoothing functions and density 
estimation. Focal operations are also called moving window, filter (typically for 
small neighbourhoods) or kernel operations (typically for large neighbourhoods). 
Global operations are based on aggregates over the whole map.  

In the past, map comparison methods that are used as performance criteria for 
spatial models have been either local e.g. (Monserud and Leemans 1992, Pontius 
Jr. 2000) or global. Global analysis includes fractal dimension (Batty and Longley 
1994, White 2006), cluster size distributions (Dungan 2006) and landscape metrics 
(Turner et al. 1989, Barredo and Demicheli 2003). The disadvantage of the 
methods is that either spatial structure (local) or spatial specificity (global) is 
ignored. The continuum from local to global has been investigated by multi-scale 
analysis on the basis of step-wise aggregations of model results and data 
(Costanza 1989, Kok et al. 2001, Pontius Jr. 2002) and wavelet decomposition 
(Briggs and Levine 1997). Both aggregation and wavelet based approaches 
however, suffer under the rather arbitrary positioning of the coarse scale grid 
relative to the original grid. 

The methods in this paper consider the whole spectrum of local to global 
operations. The emphasis, however, is on focal operations. Not just because these 
have received little attention in the past, but primarily because focal operations are 
the ideal means to simultaneously investigate similarity in structure and location-
to-location correspondence.  

The use of local or focal statistics does not imply that map comparison results 
are only presented at the local level, i.e. as a comparison map. Local agreement 
can be aggregated to global statistics. The crucial distinction is whether a metric 
compares local, focal or global attributes.  
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2.2 The axis: presence and structure 

The field of landscape ecology (Turner 2005) studies the relationship between 
landscape structure and ecological processes. One of the major considerations is 
that inference about spatial structure is only possible if it is objectively quantified. 
Consequently many metrics of landscape structure have been introduced and 
analyzed.  

In particular two types of spatial structure are recognized: composition and 
configuration. Metrics of composition are based on the fraction of occurrence of 
land use / land cover classes at the global level. Examples of composition metrics 
are diversity indicators. Metrics of configuration relate to the spatial positioning of 
land use classes relative to each other. Configuration metrics are often calculated 
at the level of patches. Patches are contiguous areas of a class. In a geographical 
context patches are often called clusters. Examples of patch level structure metrics 
are size, perimeter, shape index and fractal dimension. Other configuration metrics 
that are not based on patches include the edge and contagion index. Configuration 
metrics are common in landscape ecology (McGarigal et al. 2002) and they are 
sporadically used as performance criteria for geosimulation models of urban 
dynamics (Turner et al. 1989, Barredo and Demicheli 2003). 

In landscape ecological studies, metrics are typically applied and analyzed at 
the landscape scale, i.e. global. When landscape metrics are applied at the focal 
level, the distinction between composition and configuration blurs, since the focal 
composition is dependent of the global configuration. For example, focal 
assessments of patch size will, depending on the size of the focal window, 
correlate strongly with focal assessments of entropy, since large patches lead to 
homogenous areas. Therefore, this paper re-emphasizes the distinction between 
configuration and composition to that between structure and presence. Similarity 
in structure is achieved when structure metrics (either of configuration or 
composition) describing two maps, focal windows or locations, are similar. 
Similarity in presence is location specific and achieved when the composition of 
two locations or focal windows are similar.  

2.3 Comparison methods 

Considering the two axes, six classes of map comparison methods could possibly 
be identified. Locally, at the level of a single cell, it is not possible to recognize 
spatial structure however. Otherwise, at the global level all notion of location is 
lost and therefore the notion of presence is obsolete. Thus, four classes of map 
comparison methods remain. Table 1 presents the comparison methods of this 
paper and places them in the framework of the two axes.  
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Table 1. Overview of comparison methods applied in this paper 

 Local Focal Global 
Presence Kappa Moving Window Euclidean - 
Structure - Moving Window Patch size Cluster size distribution 

2.3.1. Local presence: Kappa statistics 

Cell-by-cell map comparison methods consider two compared maps as a number 
of paired observations. Each paired observation consists of the classes found at 
one cell in the compared maps. Apart from direct overlap, spatial structure is not 
considered and the full information available to cell-by-cell methods can therefore 
be tabulated in the contingency table. This matrix tabulates for each pair of classes 
how often it occurs. Table 2 gives the generic form. It is well established as a 
cornerstone of accuracy assessment (Foody 2002). 

An obvious metric of map correspondence is the fraction of agreement, which 
is the fraction of all observed pairs where the first and second class are identical. 
The cell-by-cell metric that is more often used however is Kappa. This statistic 
corrects the fraction of agreement for the fraction of agreement that can be 
expected given the number of cells of each class. For instance, consider two maps 
that are both 80% forest and 20% desert. A random spatial distribution of these 
quantities over the map would be at least 60% identical and the expected 
agreement of these maps is 0.82 + 0.22 = 0.68.  

Table 2. Contingency table 

Map A \ Map B 1 2  c Sum 
1 t11 t12  t1c t1+ 
2 t21 t22  t2c t2+ 

      
c tc1 tc2  tcc tc+ 
Sum t+1 t+2  t+c t++ 

tij is the number of cells of class i in map A and class j in map B. ti+ is the number of cells of class 
i in map A. t+i is the number of cells of class j in map B. t++ is the total number of cells. 

 
The following equations express how Kappa is calculated from the contingency 

table: 
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where K is Kappa, P(A) is fraction of agreement and P(E) is the expected 
fraction of agreement. A K of 0 corresponds to the expected level of agreement, 
identical maps get value 1 and the lowest possible score is -1. The Kappa statistic 
as originally introduced (Cohen 1960) is not intended as a map comparison metric, 
but as a general method of evaluating agreement of paired observations. 
Interestingly the same method was already introduced decades earlier for the 
purpose of comparing weather forecast maps (Heidke 1926). The metric is 
therefore also known as the Heidke Skill Score.  

Further developments have extended the use of Kappa metrics; Monserud and 
Leemans (1992) calculate Kappa values for individual classes by temporary 
reclassifying the maps to binary maps. Fig. 1 shows two maps; the corresponding 
contingency table and Kappa statistics are given in tables 3 and 4. The Kappa 
results indicate that the two maps are most similar in terms of the class city and 
least similar for the class park, despite the fact that the contribution to the fraction 
of agreement of that class is very small. The fact that all cells of the class park are 
contained within the same (bottom right) region of the map is not recognized by 
the Kappa statistic, but will be by the focal statistics discussed in the following 
sections. 

Table 3. Example contingency table 

Map 1 \Map 2 Open River City Park Total  Map 1 
Open 1767 61 119 48 1995 
City 32 92 18 8 150 
River 154 1 96 0 251 
Park 74 11 0 19 104 
Total Map 2 2027 165 233 75 2500 

Table 4. Example Kappa statistics 

 Overall Open City River Park 
P(A) 0.79 0.71 0.037 0.038 0.0076 
P(E)  0.66 0.65 0.0040 0.0094 0.0012 
Kappa 0.94 0.94 0.97 0.96 0.72 
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Fig. 1. Example pair of land use maps 

2.3.2 Focal presence: Moving window Euclidean distance 

As the previous section explains, cell-by-cell comparison methods do not consider 
spatial structure except for direct overlap. Many geosimulation models however, 
including the model evaluated in this paper, are not expected to achieve such 
precision in their predictions. If the model achieves to place land use classes 
approximately in the right location, it can already be considered to perform well. 
With the purpose of considering such near agreement a moving window approach 
is followed that compares the composition of the window in both maps.  

The idea of this method is count differences that are mitigated in the close 
neighbourhood only as small errors. In other words, an over-prediction of a class 
at one location can partially compensate the under-prediction of that same class at 
a close-by location. A larger window to detect such mitigating errors will lead to 
smaller errors. Fig. 2 shows two pairs of maps that in a cell-by-cell approach 
would be considered fully distinct (Kappa = -1), but with increasing window sizes 
more of the similarity between the two maps is recognized. When the moving 
window covers the whole map, the two maps are considered identical. The crucial 
point is that with increasing window size, the similarity of the first map is 
recognized earlier (or is stronger) than that of the second map. It is apparent that 
focal statistics provide an insight in the nature of the agreement of both pairs that 
neither local nor global statistics can provide. 

The moving window Euclidean distance metric is calculated as the mean 
Euclidean distance on the basis of the proportions of each land use class over all 
cells in the map, as follows:  

 ( )
n n c 2A B

i i, j
i 1 i 1 j 1

1 1E E p p
n n= = =

= = −∑ ∑ ∑ i, j  (4) 

where i iterates over all n cells on the map and j iterates over all c classes in the 
legend. Ei is the Euclidean distance of a moving window centered on cell i. Ē is 
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the mean Euclidean distance. pAi,j is the fraction of cells within a circular window 
around cell i that is in class j in map A (likewise for map B).  

 

 
Fig. 2. Two pairs of maps that are both considered fully distinct from the local perspective of and 
identical from the global. Balanced analysis should find that the first pair has stronger 
correspondence (source: Hagen-Zanker 2006) 

 
Fig. 3. Visualization of the Euclidean distance metric for the example maps. With increasing 
radius, Euclidean distance decreases and images blur more. 
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The values Ei can be visualized as a map, and like the Kappa metrics presented 
in the previous section these metrics can be calculated for individual classes as 
well as for all classes combined. Fig. 3 and table 5 present the results for the 
example introduced in fig. 1. The results illustrate how with increasing window 
sizes the errors reduce. Note that for the class park the error reduces most strongly 
with increasing radius, because that class is dominated by small errors.  

Table 5. Example Euclidean distance statistics 

Radius Overall Open City River Park 
0 0.30 0.28 0.074 0.16 0.080 
1  0.21 0.19 0.065 0.12 0.049 
3 0.13 0.12 0.050 0.074 0.028 
6 0.081 0.072 0.035 0.044 0.020 

2.3.3 Focal structure: Moving window patch size 

Land use models are not only expected to place land use classes at 
(approximately) the right location, but also to arrange the classes in the right 
structure. As the strength of these models is to capture the processes underlying 
spatial morphology, they may even be expected to perform better in terms of 
structure than presence. There are many indicators of spatial structure. A 
commonly used metric, because of its straightforward interpretation, is patch size. 
A patch is also called a cluster and consists of all contiguous raster cells of one 
and the same class.  

The focal comparison of spatial structure that is applied in this paper is based 
on two additional spatial (raster) layers that are derived from the original 
categorical maps. The value of a cell in the first layer is the size of the cluster that 
the cell belongs to. The second layer contains the weight for each cell, the weights 
are chosen such that only one category is considered at a time (i.e. cells of other 
categories have a weight of zero) and the total weight of all cells in a cluster is 1. 
The focal comparison of spatial structure is made by comparing the weighted 
average cluster size of the focal window of both maps, according to the following 
equations:  

 
( ) ( )

n n 22 A B
i i

i 1 i 1
D S S

D
n n

= =

−
= =
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 (5) 
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 where i iterates over all cells in the map and j iterates over all cells in the 
window. sAi,j is the size of the cluster that includes the j-th cell in the window 
centred around cell i in map A. wAi,j is the weight associated to that cell, which is 
the inverse of the cluster size or zero if the cell is not taken in by the class for 
which the comparison is performed. Di is the difference in cluster sizes at location 
i and D  is the root mean squared difference over the whole map. Di can be used 
to visualize the spatial distribution of differences over the map.  

2.3.4 Global structure: Cluster size frequency distribution 

At the global level many characteristics can describe spatial structure. For urban 
systems fractal metrics have been considered adequate (Batty and Longley 1994, 
de Keersmaecker et al. 2003). One particular aspect of spatial structure in which a 
fractal ordering becomes clear is the cluster size frequency distribution. In many 
urban systems a power law can be observed between the size of clusters and 
frequency of occurrence of clusters that size or smaller. This regularity has been 
utilized to describe urban patterns (Benguigui et al. 2006), simulate urban change 
patterns (Schweitzer and Steinbink 1997) and compare maps (Dungan 2006, 
White 2006). The global structure comparison applied in this paper compares 
cluster size frequency distributions of both the simulated and the real map. Fig. 4 
illustrates the occurrence of a power law distribution for the case of urban clusters 
in the Netherlands. 

Notwithstanding this example, cluster sizes of land use classes do not always 
adhere to power law distributions. The Kolmogorov-Smirnov (KS) distance which 
can be used to express the similarity between series of sampled data without 
assuming any distribution is therefore of great practical use. The KS-distance is 
the maximum difference in cumulative frequency between two sampled 
distributions:  

 ( ) ( )A,B A B
x

D sup F X F X= −  (7) 

where DA,B is the KS distance of the two sampled distibutions A and B of 
variable x. In other words, the KS distance is the maximal vertical distance 
between two cumulative frequency distributions. 
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Fig. 4. Cluster size frequency distribution of urban clusters in the Netherlands. The straight line 
in the log-log plot indicates a power law distribution. 

2.4 Reference levels 

The methods described in the previous sections present a comprehensive overview 
of similarity between model and reality. It is not sufficient however to identify 
strengths and weaknesses of the model on the basis of these results, since the 
metrics are expressed at various scales. Moreover, not all of the registered 
similarity is a consequence of the performance of the model. In practice it appears 
that much of the similarity must be attributed to boundary conditions and 
constraints that are exogenously imposed on the model (Hagen 2003, Pontius Jr. et 
al. 2004, Hagen-Zanker and Lajoie 2008), most strikingly this is the case for 
models with an exogenously determined initial situation. 

These two problems of interpretation are mitigated by introducing a reference 
model. This model is subject to the same constraints and boundary conditions as 
the tested model, but otherwise represents as little process as possible. The 
difference in performance between the tested model and the reference model, can 
then be attributed to the processes that are present in the tested, but not in the 
reference model. The reference model provides a common standard and individual 
results become mutually comparable.  

The boundary conditions and constraints in the current case are formed by the 
initial situation and the total area constraints, i.e. the total area of each land use 
class is an input to the model. The reference model to observe these conditions 
and meet the constraints is the ‘random constraint match’ model.  

The random constraint match model compares the number cells on the initial 
map to the area required by the constraints. Of those classes that are over-
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presented in the initial map, the surplus cells are selected randomly to change to 
another class. The classes that are under-represented are distributed randomly over 
the cells selected in the previous step. 

Consider the earlier example whereby map A is now used as the initial situation 
and map B for the total area constraints. In map A there are 2027 cells of class 
open, in map B there are 1995. Therefore the class is over-represented in the initial 
situation by 2027 – 1995 = 32 cells. Likewise the class city is over-represented by 
15 cells. The classes river and park are under-represented by respectively 18 and 
29 cells. The random constraint match model initializes with map A. It then 
randomly selects 32 cells of class open and 15 cells of class city. These 47 
selected cells are then, in random order, replaced by 18 cells of class river and 29 
of class park. Fig. 5 shows the two maps and the derived results of the random 
constraint match. 

 

 
Fig. 5. Application of the random constraint match model where the total area constraints are 
posed by map 2 and the initial situation is that of map 1.   

3. Application and results 

The evaluated model is the Constrained Cellular Automata (CCA) land use model 
(White et al. 1997) as it is applied in the Environment Explorer spatial planning 



14  

support system (Engelen et al. 2003). The system incorporates several other 
models besides the CCA, but the spatial distribution of land use classes is the 
responsibility of the CCA and that aspect is evaluated here.  

The CCA model simulates land use change by year-by-year allocating land use 
classes to those cells for which they have the highest potential. The allocation 
process is constrained such that the exogenous area demand for each land use 
class is met. The potential of each location for different land use types is dynamic 
and changes over time as a function of the land use classes that are found in the 
neighbourhood of each location. Hereby a reciprocal relation comes about, where 
the potential layers are determined by the spatial distribution of land use classes 
and at the same time the spatial distribution of land use classes is determined by 
the potential layers. This mutual relation causes the complex and self-organizing 
behaviour of cellular automata models and is hypothesised to underlie the 
formation of urban morphology.  

The potential layers are not only a function of the dynamic neighbourhood 
effect but are a composite measure of several layers. Besides the neighbourhood 
effect, these are the accessibility of the road network, the zoning status of cells, 
and the physical suitability of the land. Finally, a stochastic perturbation is 
included.   

 

 

Fig. 6. Land use maps of the Netherlands; model and real. 

For the calibration and validation tasks only limited land use data was 
available. Land use maps were available for 1989, 1993, 1996 and 2000. In an 
early stage it was decided that the period of calibration is 1989-1996 and 
validation 1996-2000. The consideration was that the calibration influences the 
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performance of the model, whereas the validation only measures the performance. 
Better results can therefore be expected if the longer period is used for calibration. 
The intended period of application is 2000-2030, therefore a considerable gap 
remains between the duration over which the model is calibrated / validated and is 
applied.  

The model distinguishes 15 land use classes. For the sake of model evaluation 
these are reduced to 5 main classes: agricultural, residential, business, water and 
nature. The model runs in steps of 1 year and the cell size is 500m. Fig. 6 shows 
the initial land use map and the final model result. 

At the local level, cell-by-cell agreement is expressed by the Kappa statistics 
for the whole map and for individual land use classes (Table 6). Over the 
calibration period the agreement of the CCA model is better than that of the 
reference model for the classes agriculture, residential, urban and nature. Note that 
the remaining two classes, water and foreign, are assumed constant in time by the 
model. Therefore the distribution of these classes is identical in both the CCA land 
use model and the RCM model. Over the validation period the CCA model does 
not outperform the reference model, except for the class nature, where the 
difference is minimal. 

The results of the focal presence comparison display (fig. 7) the same pattern as 
the Kappa results; over the calibration period the CCA land use model 
outperforms the RCM reference model, but over the calibration period it does not. 
With increasing radius of the moving window the errors of both the CCA and the 
RCM model decrease, but the relative position remains the same. Again the 
difference in performance of both models is small. 

The results for focal structure, measured on the basis of patch size are more 
diverse (fig. 8). Like the earlier results, the CCA outperforms the reference model 
over the calibration period, but now also for the larger focal windows over the 
validation period. 

Table 6. Local presence comparison: Kappa statistics  

 CCA: 1996 RCM: 1996 CCA: 2000 RCM: 2000

Overall 0.896 0.884 0.867 0.890 
Agricultural 0.907 0.894 0.881 0.906 
Residential 0.867 0.854 0.827 0.864 
Business 0.769 0.766 0.731 0.809 
Nature 0.924 0.908 0.907 0.904 
Water 0.915 0.915 0.874 0.875 
Foreign 0.960 0.960 0.949 0.949 

CCA: Comparison between Constrained Cellular Automata model results and real data 
RCM: Comparison between Random Constraint Match model results and real data 

 
From the perspective of global structure, the CCA model proves to be more 

similar to reality than the reference model (fig. 9). The difference in cluster size 
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distribution between the CCA model results and reality are substantially smaller 
than those of the RCM model. This is not only the case for all classes over the 
calibration period, but also for the classes residential and nature over the 
validation period. The class business shows little difference between the two 
models over the validation period. Agriculture is not included in these graphs 
because the patches of agriculture are so large that there are only a few of them on 
the map.   

For the intended application period no data is available. The historical trend, 
however, is that the cluster size distribution is relatively stable in time.  The CCA 
is better able to maintain a stable cluster size distribution. 

 

 

Fig. 7. Focal presence comparison: Euclidean distance  

 

Fig. 8. Focal structure comparison: Patch size 
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Fig. 9. Cluster size frequency distribution, compared by Kolmogorov-Smirnov distance.  

4. Discussion and conclusions 

The data available for the model calibration and validation is less than ideal. 
Although the model is to be used for explorations of approximately 30 years into 
the future, data is available for a period that spans only over 11 years. Moreover, 
this short period is split into separate calibration and validation periods, leaving 7 
years for calibration and 4 years of validation. This is of particular significance 
since the land use model (like most geosimulation models) is a dynamic model, 
and rather than simulating land use patterns it simulates land use change patterns. 
The short calibration period means that relatively little change takes place and thus 
that the calibration routine has little information to pick up on. As a result, the risk 
of over-calibration is very real. By over-calibration is meant that too many 
parameters are fitted to too little observations and rather than fitting to the general 
trend, the parameters are fitted to eccentricities in the data. Over the period 1989-
2000 about 6% of all cells change state, it is unknown how many of these 
transitions are real changes and how many are data errors.  
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The comparison of the results between the calibration and validation period 
shows a decrease of performance over the validation period. This can always be 
expected and does not necessarily indicate over-calibration. At the local level 
results are better than the reference model over the calibration period, but not over 
the validation period. This is the strongest indication that over-calibration took 
place and the recommendation is made that future development of the model 
should aim to reduce the number of parameters and increase the amount of data by 
employing data available over longer time periods. There is a synergy between 
these two recommendations because the number of parameters can be reduced by 
considering less land use classes and if less land use classes are considered more 
data is available, also over longer periods. These recommendations have already 
been followed in a later project with good results (van Vliet 2006). 

The verdict of ‘over-calibrated’ must not be too rashly made however. This 
conclusion is indeed suggested by the results at the local level and also at the focal 
level when presence is concerned.  The results focal results of spatial structure, as 
well as the global results offer a more positive interpretation. For these results too, 
the performance (relative to the reference model) over the validation period is less 
than that of the calibration period, but over both periods the land use model 
outperforms the reference model. Therefore we can conclude that the strength of 
the model is in simulating urban structure at coarser scales rather than the precise 
(or approximate) land use class at particular locations. In summary, table 7 
describes model performance according the two axes along which the performance 
metrics have been organized.  

Table 7. Overview of model performance according to the two axes of performance criteria 

 Local Focal Global 
Presence -- -  
Structure  + ++ 

-- poor performance, - mediocre performance, + acceptable performance, ++ good performance 
 
Within the framework of the two axes many individual performance metrics 

can be applied. During this research we have applied more metrics than those 
reported here. In particular the Fuzzy Kappa metric (Hagen 2003) has been used to 
measure presence at the focal level. Structure at the focal level has also been 
measured in terms of edge density and fractal dimension (McGarigal et al. 2002). 
These results are not reported here, but do offer support for the summary 
presented in table 7.  

All results, but most clearly, the focal metrics show a strong correlation 
between the performance of the evaluated model and the reference model. 
Apparently, a large proportion of model performance must be attributed to factors 
exogenous to the model. This demonstrates the need of the reference model, since 
without this reference any analysis of the performance criteria will be clouded by 
the impact of exogenous factors. 
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The contradiction in the results between the various performance metrics 
underlines the need for a multi-criteria analysis as applied in this paper. Focus on 
a single metric bears the risk of over-confidence in the results (in the current case 
if only structure metrics would be considered) or under-valuation of the model (in 
the current cast if only presence metrics would be considered).  

We generally recommend this approach for all studies involving calibration and 
validation of geosimulation models. Also exciting recent developments towards 
rigorous sensitivity analysis of large numbers of simulations (Jantz and Goetz 
2005, Kocabas and Dragicevic 2006) can gain in scope and relevance if these 
recommendations are followed.  
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