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Abstract. This contribution is the proceeding of a presentation in pairs taking different
viewpoints on the robustness of discretizations for poroelastic problems. These presentations are
organised by the Young researcher committee to continue the tradition of fruitful interactions
between applied mathematics and computational engineering. The engineering part of this
contribution highlights key aspects of the theoretical framework and comments on robustness
of common discretizations. Within the mathematical part of this contribution it is shown that
the accurate approximation of the total stress tensor as well as the Darcy velocity are crucial to
obtain reliability and robustness.

1 Introduction

Porous materials are characterized by complex interactions between the deformation of a
solid skeleton and the resulting flow of an interstitial fluid. As applications of such materials
range from soil mechanics up to the description of biological tissue, accurate and robust solution
strategies are highly desirable. Difficulties arise, as model constants vary over wide ranges and
might lead to locking, when nearly incompressible solids are considered, or pressure oscillations
for low permeablilities.

Poroelasticity is commonly described either by the theory of Biot as introduced in [1], Mixture
Theory (MT, see [2]) or the Theory of Porous Media (TPM, see [3, 4]). While Biot derived
a saddle-point problem from a phenomenological viewpoint, MT and TPM are based on the
homogenization of mixtures alongside with a thermodynamically consistent modeling of arising
interaction terms. These formulations usually consider the solid displacement and the fluid
pressure as primal variables. However, the accurate approximation of total stress tensor as well
as Darcy velocity is crucial to obtain reliable and robust approximations, see [5]. Since standard
methods do not lead toH(div)-conforming stresses and fluxes, surface or interface traction forces
resp. fluid fluxes cannot be evaluated. Recovering strategies are outlined in [6, 7, 8].
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Within this contribution we will give a short overview over the description of porous materials
within the framework of the TPM and introduce some common discretization schemes. Based
on the footing problem – a common test-case for consolidation processes – we will discuss
influences of impermeability on different discretization schemes and highlight inaccuracies of
standard schemes when it comes to flux quantities. Thereby motivated, we will outline the
recovery of stress- and flux quantities as well as their relevance in the construction of reliable
error estimators.

2 Governing equations

Porous materials consist of α different constituents, which are statistically distributed over
the complete control space of a continuum. Following De Boer [3] and Ehlers and Bluhm [4]
the real micro-structure can be homogenized such that every material point Xα within reference
placement Ω0 is occupied by all phases. Their spacial distribution is given by the volume factions
nα, describing the relation of the different partial volumes:

nα =
dvα

dv
,

κ∑
α=1

nα = 1 . (1)

Considering κ = 2 immiscible and incompressible phase – α = S denotes a solid, α = F a fluid –
each phase has its own motion. They can described by explicitly capturing the deformation of
the solid and a constitutive assumption for the relative kinematic of both phases wFS = x′

F−x′
S.

As the homogenized porous material is simply the mixture of interacting constituents, its
over all field equations are based on the balance equations of mass, moment and moment of
momentum of each phase α ∈ {F, S}

(nα)′α + nα∇x ·
(
x′
α

)
= 0, ∇x ·Tα + ραb = p̂α, Tα = (Tα)T . (2)

In eq. (2), Tα denotes the Cauchy stress, ρα the partial density and p̂α a source term due to
interactions of fuid and solid. Summation over both phases yields the overall balance laws for
the mixture in current configuration:

∇x ·
[
x′
S

]
+∇x ·

[
nFwFS

]
= 0, ∇x ·T+

(
ρF + ρS

)
b = 0, T = TT . (3)

To close eqs. (3), constitutive relations for the total stress tensor T and seepage velocity nFwFS

are required. Within the following we will assume a hyper-elastic behaviour of the solid matrix
and consider Darcy’s law for the description of the relative velocity between fluid and solid.
Pull-back into reference configuration Ω0 and the assumption of small deformation leads, to

∇X ·
[
x′
S

]
+∇X ·

[
nFwFS|0S

]
= 0, ∇X ·

[
σSE − ph1

]
= 0 , (4)

h1 = (1 +∇X · u) I− 2εS, n
FwFS|0S = −kD∇X ph1,

σSE = 2µSεS + λS∇X · u
(5)

a set of partial differential equations, typically solved for the primal field quantities displacement
and pressure. This linearization of the TPM is hereafter abbreviated as lTPM. Biot’s equations
– assuming a Biot-Willis coefficient a = 1 and vanishing storage Q → ∞ – can be recovered
from eqs. (4, 5), by choosing h1 = I. Subsequently they may be interpreted as a solution to the
balance equations in the actual placement, assuming a linear stress-strain relation.
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3 Weak forms and discretization

Constructing discretization methods for poroelastic problems, it is generally possible to start
from different sets of primal variables. No matter which, two fundamental aspects has to be
considered: To guaranty existence, uniqueness and stability, each field quantity has to be ap-
proximated in appropriate function spaces. For coupled problems, this typically requires the
fulfillment of appropriate conditions of the Inf-Sub type. Additionally to theses fundamental
requirements, the wide range of possible model constants makes parameter independent con-
vergence properties – what is typically referred to as robustness – favourable. In terms of
convergence theory this would require the Cea’s constant in an a-priory error estimate to be
independent of the spacial discretization parameter h as well as the model parameters.

Within the following, discretizations of eqs. (4, 5) based on different primal variables –
namely displacement-pressure (u − p) and displacement-velocity-pressure (u − vD − p) – will
be introduced. Arising time derivatives are captured by a backward differentiation formula of
order 1 (BDF1). For the sake of simplicity, the weak forms are given for the Biot system but
can be extended to the lTPM.

3.1 The u− p formulation

Find (u, p) ∈ H1 ×H1 such that

a1(u, vu) + b1(p,vu) = l1(vu)

b1(vp,u) + a2(p, vp) = l2(vp)
(6)

holds for all test-function (vu, vp) ∈ H1 ×H1. Let Ω0 be the reference placement and Γ ⊆ ∂Ω0,
then linear and bilinear forms are defined in the following way

a1(u, vu) = ∫ 2µS εS · ∇Xvu + λS∇X · u∇X · vu dΩ0, b1(p,vu) = −∫ p∇X · vu dΩ0

l1(vu) = ∫ T · vu dΓ
(7)

a2(p, vp) = −∫ kD∆t∇Xp · ∇Xvp dΩ0, l2(vp) = ∫ (∇X · un) vp dΩ0 + ∫ vD,bc vpdΓ (8)

while the fluid flux over the boundary is defined by

vD,bc = nFwFS|0S · n . (9)

Displacement and pressure are typically approximated, using Lagrangian elements. While equal
order (EO) approximations are possible, so-called Taylor-Hood (TH) elements, where the ap-
proximation order for the displacement k+ 1 is one order higher than that for the pressure, are
more common. Uniform convergence rates with respect to the permeability can only be achieved
using the latter ones.
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3.2 The u− vD − p formulation

Within this three-field formulation an additional field quantity for the seepage velocity

vD = −kD∇X p (10)

is introduced. The resulting equation system is given in eq. (11). The additional variable
for the fluid flux, allows for discontinuous pressure approximations. Choosing (u, vD, p) ∈
H1 ×H(div)× L2, the weak form eq. (12) has to be fulfilled for all test-functions (vu, w, vp) ∈
H1 ×H(div)× L2.

∇X ·
[
σSE − p I

]
= 0

∆tkD
−1vD +∆t∇X p = 0

∇X ·
[
x′
S

]
+∇X · [vD] = 0

(11)

a1(u, vu)− b(vu, p, ) = l1(vu)

a2(vD, w)−∆t · b(w, p) = l2(w)

−b(u, vp)−∆t · b(vD, vp) = l3(vp)

(12)

Let Ω0 be the reference placement and Γ ⊆ ∂Ω0, then linear and bilinear forms are defined in
the following way:

a1(u, vu) = ∫ 2µS εS · ∇Xvu + λS∇X · u∇X · vu dΩ0, l1(vu) = ∫ T · vu dΓ (13)

a2(vD, w) = ∫ ∆tkD
−1 vD, w dΩ0, l2(w) = −∫ pn ·w dΓ (14)

b(u, vp) = ∫ ∇X · u vp dΩ0, l3(vp) = −∫ (∇X · un) vp dΩ0 (15)

The classical discretization method – combining Lagrangian elements (order k = 2) with an
RT0 × P0 pair – is analysed in Mardal et al. [9]. This method will be used for calculations
presented in section 4.1. Even if it is beyond the scope of this contribution, a point-wise mass-
conserving and fully parameter robust discretization based on this formulation is achievable.
Following the concepts of parameter-independent stability by Lee at al. [10], Kraus et al.
[11, 12] used H(div)-conforming displacement spaces, alongside with an appropriate Raviart-
Thomas pair for the flow-sub-problem. These methods are easily scalable in approximation
order and result in linear equation system comparable in size to those, arising from the u − p
formulation.

4 Numerical example: The footing test

As outlined within the previous sections, the fluid flux is one of the most important quantities
within the description of poroelastic materials. Following eq. (4), it can be directly calculated
from the pressure gradient and the permeability kD. Accurate pressure approximations are
therefore indispensable for accurate fluid fluxes. Introducing a time discretization based on the
BDF1, the numerical time step ∆t is an additional influence factor on the flow sub-problem.
Subsequently impermeability has to be seen in relation of either small time steps or small possi-
bilities. Based on the footing problem we will discuss the influence of small effective possibilities
k̃D = ∆tkD on pressure. Furthermore the fluid fluxes, post-processed from the pressure gradient
at the integration points, will be compared with the directly approximated dual quantity. The
observed inaccuracies are one part of the motivation for recovery technique’s of flux quantities.
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4.1 Case setup

The footing test describes the consolidation of a rectangular domain, which is partially loaded
on the top surface. Geometry as well as the naming convention of the boundary surfaces are
given in figure 1. For all subsequent calculations the domain is fixed (u = 0) on surface Γ3 while
a traction boundary condition

σ = σSE − ph1, σ · n = −10× 104Nm−2

is applied on Γ1. Furthermore outflow boundary conditions (p = 0) are applied on Γ2,3, while
the outflow is prevented on Γ1. Material parameters used within the presented calculation are
given in table 1.

ES νS kD nS0S

3× 104Nm−2 0.4995 1× 10−12m3 s2 kg−1 0.5

Table 1: Material parameters of the footing problem

γ

σ · n

Γ1

Γ2 Γ2

Γ3

16
m

14
m

8 m 8m 8m

Figure 1: Footing problem: Undeformed domain and definition of the boundary surfaces.

4.2 Influence of impermeability

Based on the work of Favino et al. [13], a minimum time step ∆tmin, above which pressure
oscillations are prevented, can be calculated based on the assumption of a 2D domain, TH
elements of order k = 1, and µS ≪ λS:

∆tmin =
h2ref

3kD λS
. (16)

No further assumption on. e.g. boundary conditions are necessary. If the assumption on the
Lamé parameters does not hold, significantly larger time steps are possible before pressure
oscillation occur. Based on the material parameters in table 1 and a mesh size of href = 0.5m,
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oscillation-free solutions can be achieved if ∆t > 8339 s. For a systematic comparison, a time
factor

ft =
∆tmin

∆t
(17)

is defined. For ft > 1 pressure oscillations occur. As depicted within figure 2, these are (at
first) located near the outflow boundaries, as they induce steep pressure gradients. Using a
discretization based on the u− p formulation and TH elements, these pressure oscillations stay
confined near the boundary and are nearly constant in magnitude, even if the time step is
significantly reduced (compare figure 2 (a)).
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Figure 2: Pressure distribution (t = ∆t) over γ for the u−p formulation using (a) TH elements
of order k = 2 and (b) EO elements of order k = 2.

A quite different behaviour can be observed when EO discretizations are applied. Chessboard-
like pressure distribution occur (compare figure 2 (b)) while the magnitudes of the spurious
pressure modes are amplified for increasing ft. Increasing the approximation order k decreases
the oscillations but can not fully prevent them, if the effective permeability k̃D is further reduced.
EO discretizations are therefore clearly more prone to pressure oscillations than discretizations
based on TH elements.

So far we have only considered the initial time step of the test-case. Within the subsequent
time steps, pressure oscillations decay, as it was proven by Murad and Loula [14, 15] for
Biot’s equations. This also holds for finite element spaces, which are not Stokes stable (e.g. EO
discretizations for displacement and pressure). Even tough Inf-Sub stable finite element pairs
can not fully prevent pressure oscillations, they typically hinder their increase with decreasing
effective permeability. This is of practical interest, particularly when the short-term behaviour
in presence of transient boundary conditions shall be studied (see e.g. Stokes et al. [16]).
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4.3 Flux accuracy

In the last section pressure oscillations within the standard u− p formulations in the nearly
impermeable limit were discussed. It seems obvious, that fluid fluxes calculated from pressure
fields containing spurious pressure modes can not yield acceptable results. Alternatives are
provided by formulations, which directly approximate the fluid flux. As it was shown in section
3.2, such formulations are typically based on discontinuous pressure approximations and a weak
consideration of Dirichlet boundary conditions on the pressure field.

For a comparison of fluid fluxes, gained from a post-processing of the pressure field with the
direct approximation of the dual quantity, a footing test with ft = 0.5 is considered. Subse-
quently no spurious pressure oscillations occur, which could distort the comparison. Figure 3
shows the pressure profile over γ as well as the fluid flux over the right vertical boundary. While
the accuracy of the directly approximated fluid fluxes is even on course meshes (h = 0.5m) quite
satisfactory (compare figure 3 (b)), the pressure field does not match the prescribed boundary
condition p = 0 (compare figure 3 (a)). With decreasing mesh size, the boundary conditions can
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Figure 3: (a) Pressure distribution (t = ∆t) over γ for the u − vD − p formulation and (b)
comparison of reconstructed fluid fluxes (t = ∆t) based on the u−p formulation (proj) and the
primal calculated flux (prim) using ft = 0.5

be fulfilled. Focusing now on the fluid fluxes calculated based on the u− p formulation, by pro-
jection between integration points and the element nodes, the initial fluid flux over the boundary
is significantly underestimated. As it can be seen from figure 3 (b), that an 8 times finer mesh
is required to gain projected fluxes, that are comparable to their direct approximation.

5 Reconstruction of the H(div)-quantities

Let us state again that the motivation to recover H(div)-quantities from discontinuous ap-
proximation is two-fold. One one hand, accurate representation are crucial in many application,
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in particular to evaluate surface tension forces. On the other hand, the difference between the
recovered H(div)-quantity to the corresponding discontinuous approximation provides a reliable
error estimator.

Reconstruction of the H(div)-quantities

Accurate computation of the
dual variable in H(div,Ω)

A posteriori error estimation
Adaptive strategy

Figure 4: Motivation for Reconstruction of the H(div)-quantities

For the porous media discretisations introduced in the previous sections 2, recall that the
pressure p is sought in H1

ΓD
(Ω) but for the purpose of the exposition, assume that it is smooth

enough to define div ∇p. However, while the discrete pressure ph ∈ H1
ΓD

(Ω) is continuous over
the edge of the triangulation T but its gradient is discontinuous with respect to the triangulation
T . The key idea of the equilibration strategy is the following identity dating back to [17]: for
any w ∈ HΓN

(div,Ω) with div w = div ∇p,

∥∇p−∇ph∥2 + ∥∇p−w∥2 = ∥∇ph −w∥2 , (18)

holds. Expanding the terms on the right side, the proof relies on the fact that the mixed term
(∇p−∇ph,∇p−w) vanishes. Indeed,

(∇(p− ph),∇p−w) = −(p− ph, div ∇p− div w) + ⟨p− ph,∇p−w⟩ = 0 .

Note that the integration by parts also leads to (∇p,w) = −(div w, p) = (∇p,∇p), i.e

(∇p,∇p−w) = 0 .

Similarly (∇p,∇ph) = −(div∇p, v) and (w,∇ph) = −(div w, ph) and thus

(∇p−w,∇ph) = 0 . (19)

With the foot ŵ of ∇ph on the hyperplane defined by (19) it holds

(∇p− ŵ,∇p−w) = 0 .

The segment connecting w to ŵ is therefore the diameter of the hypercircle Γ, whose center is
denoted by C in Figure 5. To visualise the effect of the reconstruction in H(div,Ω), an example
is given in Figure 6.

It remains to construct such a w locally. A possible construction is given in [18], where the
authors construct the difference w∆ = w − ∇ph in the discontinuous Raviart thomas spaces,
such that

div w∆ = div∇p− div∇ph (20)

Jw∆ · nKE = −J∇ph · nKE (21)
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Figure 5: Hypercircle notations

holds. Exploiting some basic properties of the Raviart–Thomas finite element spaces, these
conditions can be realised with a local post-processing. Note that this is also a particular
application of the analysis provided in [19], where extensions of piecewise polynomial data
prescribed on faces of a patch of simplices sharing a vertex are studied (see also [19, 20]. It leads
directly to an error estimator and the optimal convergence rates of the adaptive algorithm is
proved in [21].

6 Reconstruction of symmetric H(div) stress tensors

For the description of the porous media, the theory introduced in the previous section needs
to be extended to problems involving symmetric gradients, such that linear elasticity [8], or
hyperelasticity [7, 22]. One possibility is to reconstruct the stresses in the symmetric Arnold-
Winter space. This type of reconstruction allows for an immediate application of the theory
of the previous section but the finite element space is significantly more complicated than the
Raviart-Thomas space. Another possibility therefore consists in a weakly symmetric reconstruc-
tion. However, the fact that the reconstructed stress is not pointwise symmetric implies that a
measure for its asymetry has to enter the error estimator. Indeed, rewriting equation (18) leads
to

∥ε(v)−Aσ∥2 = ∥ε(u− v)∥2 + ∥ε(u)−Aσ∥2 + 2 (ε(u− v), ε(u)−Aσ) (22)

9



Fleurianne Bertrand, Maximilian Brodbeck

Reconstruction:
Recover

∇pRh ∈ Hdiv(Ω)

and

∇pRh ≈ ∇ph

Figure 6: Example of reconstruction

for any u, v ∈ (H1
ΓD

(Ω))d and σ ∈ (HΓN
(div,Ω))d. The presence of the symmetric gradient in

the mixed term prevents the integration by parts to cancel the mixed term. On possibility is to
split the symmetric gradient ε(u− v) of the mixed term into it full-gradient and its assymetric
part, i.e.

∥ε(v)−Aσ∥2 = ∥ε(u− v)∥2 + ∥ε(u)−Aσ∥2 + 2 (∇(u− v), ε(u)−Aσ − as(ε(u)−Aσ)) (23)

= ∥ε(u− v)∥2 + ∥ε(u)−Aσ∥2 + 2 (∇(u− v), ε(u)−Aσ + as(Aσ)) (24)

With the appropriate equilibration condition, the first part of the mixed term vanishes after the
integration by parts, i.e. (∇(u− v), ε(u)−Aσ+) = 0, and it remains

∥ε(v)−Aσ∥2 = ∥ε(u− v)∥2 + ∥ε(u)−Aσ∥2 + 2 (∇(u− v), ε(u)−Aσ − as(ε(u)−Aσ)) (25)

= ∥ε(u− v)∥2 + ∥ε(u)−Aσ∥2 + 2 (∇(u− v),as(Aσ)) . (26)

With the Korn constant CK , we obtain

2(as σ,∇(u− v)) ≤ 2CK∥as σ∥ ∥ε(u− v)∥ ≤ C2
K

δ
∥as σ∥2 + δ∥ε(u− v)∥2 , (27)
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for any δ > 0. Of course, in order to use these estimates in an a posteriori setting, a global Korn
constant should be avoided. In fact, it is possible to derive these estimates locally, using a local
Korn constant, if σ is weakly symmetric, see [8].

This combination of the reconstruction for flux and stresses is crucial for adaptive computa-
tions in porous media, see [6].

7 Conclusion and Outlook

Within this contribution we discussed robustness and accuracy of gradient dependent quan-
tities, based on standard discretizations. We showed that solution of the lTPM, based on the
u−p formulation in combination with Stokes-unstable finite element spaces, exhibit strong pres-
sure oscillations in early time-steps which amplifies, for deceasing permeability. Even if pressure
oscillations are prevented by sufficient time steps, flux quantities projected from interpolation
to nodal points were shown to be of insufficient accuracy.

This is one part of the motivation for H(div)-conforming reconstructions of fluid flux and
total stress. Based on the outlined strategy, this can be done locally, avoiding the expensive
solution of large linear equation systems. Beside their increased accuracy, these flux quantities
can serve as basis for robust a posteriori error estimators and adaptive solution strategies.

At the current point, robust disctretization strategies as well as reconstructions were mainly
derived for Biot’s theory. Within our future work we intent to transfer these techniques to
the TPM, a theoretical framework who’s advantage is the capturing of the non-linear nature of
realistic applications.
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