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Introduction

The numerical solution of viscous mecompressible flow problems is a hard and
challenging subject, which has received much attention in the last deeades,
The man difficulties 1t poses are of three different kinds: first, the incom-
pressibility condition, and consequently the pressure computation, estab-
lishes a coupling between the unknowns of the problem which, in standard
formulations, restricts the freedom to choose discrete approximating spaces
to those MLia«f}'ing a certain compatibility condition; second, the advective—-
diffusive character of the equations may require of appropriate stabilizing
techniques or extremely fine meshes, specially in convection dominated flow
situations; finally, the nonlinearity of the equations increases the cotmputa-
tional burder of the solution procedures.

Beyond those theoretical and computational challenges, the development
of numerical methods for incompressible flow equations is of an undoubtable
practical importance. These equations find numerous applications in dif-
ferent areas, both scientific and industnial, such as aeronautical sciences,
metereology, ocean dynamics, environmental flows, oil industry, turbulent
flows and many others, Besides, they are the basis for several extentions
to more complex flow situations, such as thermal flows, free—surface flows,
magnetohydradynamics and others.

Many numerical schemes have been developed to approximate the so-
lntion of flow equations, For the space variables, discretizations range from
finite differences, the simplest and most intuitive discretization method, to fi-
nite velume, finite element, boundary element and spectral element methods.
Finite element methods have proved to be the most versatile, since they can
cope with arbitrarily complex peometries and work on unstructured, anto-
matically generated meshes, are based on more rigorous theoretical grounds
and are liable to generalizations of arbitrary order of accuracy. As for the time
integration, all these numerical schemes can be sorted, in a first approach,
into single step, multistep and fractional step methods, These last methods
are also sometimes known as operator splitting or projection methods,

T'he present work is devoted to the study of fractional step, finite element
methods for the numerical solution of incompressible, viscous flow equations,
and in particular of the Navier-Stokes equations. The main advantages of
some of these methods over other time stepping strategies are the decon-
pling of the unknowns of the problem, thus reducing the size of the discrete
problems to be solved, and the possibility of employing space interpolations
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which do not satisly the compatibility condition, such as equal order ones.
T'his last fact has been known for some time but, to our knowledge, not fully
c:xphtincrl up to now; the first abjective of this monograph is to provide a
full explanation for it. On the other hand, projection methods are known
to sufler from certain drawbacks, the main one being the need to mmpose
some houndary conditions in one of the substeps of the method which are
unphysical and may be a source of error; the second objective of this work
is to develop a fractional step method which allows the imposition of the
boundary conditions of the original problem in all substeps of the method.

In order to find the ultimate reason why fractional step projection meth-
ods allow the use of arbitrary space interpolations, a new method is devel-
oped lfor the simpler, linear, steady Stokes problemn. This method retains
the main features of pmjccl,inn methods for the full problem as far as space
discretization is concerned; in particular, it allows the use of equal order in-
terpolations, thus explaiming why projection methods also do so, Optimal
order convergence in the mesh sige is proved for this method under a com-
patibility condition on the approximating spaces which is weaker than the
standard one, and in particular satisfied by equal order interpolations. An
extention of this method to the nonlinear, steady problem is also studied,
and optimal order convergence, under the same compatibility condition as in
the linear case and assuming a unique solution of the problem, is also proved.

As for the treatment of boundary conditions, a fractional step method
is developed in which the viscous term is split into the two substeps of the
scheme, which, nnlike in standard projection methods, allows o enforce the
boundary conditions conditions of the original problem in both substeps,
Convergence in the time step bolh for the intermediate and end-of-step
velocities of this method is proved in the spaces LI(Q) and Hj($2); in this last
space, convergence of the cncl--nf—stup velacities does not hold for the elaszical
projection method, due to the wrong boundary conditions they satisfy. Our
fractional step method was also developed to explain the properties of a well
known predictor multicorrector algorithm, which s here shown to be of a
fractional step kind.

The primitive variable, velocity-pressure formulation of the equations has
been considered throughout this work, and, although possible, no attempt
has been made 1o extend it to other formulations. Moreover, simple bound-
ary conditions have been used i the thearetical developments premmt.:gd here,
usnally homogeneous Dirichlet conditions; in the numerical examples, how-
ever, 'natural’ boundary conditions have also been considered sometimes.
The extention of the theory to other kinds of houndary conditions is, again,
possible, but not pursued here.

Since we have considered only low to maoderate Reynolds' number flows,
leaving aside highly convective flows, we have found no need to stabilize
convection, and standard Galerkin formulations have been employed. In this
sense, we have only dealt with laminar flow regimes.

We have also restricted ourselves to bounded domains and finite time
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problems, since extentions to other cases pose some additional theoretical
difficulties into the formulations. Moreover, the numerical examples we have
actually solved are all two-dimensional, although the theorefical develop-
ments are also valid for three—dimensional problems.

This work is structured into five Chapters. In the first one, a review of
known results, which will be frequently referred (o afterwards, 15 provided,
where the notation and terminology used here is also introduced; in partie-
ular, a description of several fractional step methods is presented, classified
according to different eriteria, The second and third Chapters are devoted
to the study of the new method for the steady Stokes and Navier-Stokes
equalions, respectively, which allow the use of equal order interpolations
and explain why projection methods also do so. The structure of these two
Chapters is similar, with some theoretical Sections first, where stability and
optimal order convergence both in #' and L* norms are proved, followed
by some computational aspects and the presentation of numerical resnlis on
some test problems.

In Chapter 4 the fractional step method that we consider is introduced
and studied, for which first order convergence in the time step 18 proved
both for the intermediate and end-of-step velocities, A convergence theorem
which we originally proved for this method using more classical arguments
and less restrictive assumptions on the solution and domain is also given. A
variant of this method, using pressure correction, is also considered in this
Chapter, and first order convergence for the velocities is also proved for this
new scheme, An implementation of this pressure correction method as well
as some numerical results obtained with it are also provided in this Chapter,
Finally, in Chapter 5 a predictor-multicorrector algorithm is studied, showing
in what sense it can be understood as a fractional step method and how it
behaves in front of different space interpolations, both satisfying and not
satisfying the standard compatibility condition. Numerical results obfained
with this algorithm for two different space interpolations on several problems
are also presented.






Chapter 1

Preliminaries

This first Chapter 1z devoted to the mntroduction of the basie mathematical
concepls required for the development of the present work. In particular,
we first recall the equations of motion of an incompressible fluid; then we
review the basic function spaces, norms and forms needed for the study of
those equations; later on we introduce the basic theory of finite element
approximation and some standard results about mixed problems, and finally
we give a comprehensive presentation of existing fractional step methods for
the unsteady, incompressible Navier-Stokes equations, the study of which is
the ultimate objective of this monograph.

1.1 Flow equations

Let us recall here the basic theory of fluid mechanics, which can be found in
standard references such as [72]. The equations of fluid motion are obtained
from principles of conservation of physical quantities, and simplified under
various hypothesis. Several aspects of this theory are closely related to linear
elasticily theory,

We consider a region & C IR, where d = 2 or 3, filled with fluid material.
The demain § 15 assumed to be open, bounded, connected and Lipschitz
continuous, that is, ils boundary [' is a [:d.' —_ 1)'-dilmel|.siu:ml locally Lipﬁcllitz
manifold. In particular, we will sometimes consider the case of £ a convex
polygon in IR* or a convex polyhedron in IR?.

For a given 7' = 0, let p(x,¢) and u(x, 1) denote the density and velocity
of the flud at a point x & §2 and time ¢ € (0,T'), respectively (boldface char-
acters denote vector quantities), Conservation of mass leads to the continuity
equation:

2]
‘d’: FVe(pu) = 0 infx(0,T) (1.1)
& f L . ;
where V = (o—,.. ., =) I the fluid is subject 1o a volumetric force
(9.1".-] I.’.}'.Z!,g

field f(x,¢) per unit density, conservation of momentum leads to the Cauchy

9
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equations:

Hu | , .

P (e Vu « Ve = f in2x(0,7) (1.2)
o p

where o is the stress tensor, representing the internal forces acting on the
fluid. In the case of a viscous fluid, where internal frictions are taken into
account, which is assumed to be Newtonian and isotropic, a constitutive

equation of the form:

o = —pl 4 2pe(u) + ANV -u)l (1.3)
is obtamed, where p(x,1) is the fluid’s pressure, I is the identity tensor,

!l ; . 1, Qu; Jit.;
¢(n) is the deformation rate tensor with components e;; = 3 _5_{_ -+ Ir‘}u,,),
' #yo oy
ft 18 the dynamie viscosity of the fluid and A is ils second viscosity. We
will assume that these two scalar parameters remain constant if there are no
temperature or density variations. The unsteady Navier-Stokes equations

are then obtained under all these hypothesis:

'3;; F (0 V)u Vp— 29 eu) — 2V(Vou) = £ in Q% (0,7) (14)
P

where v = u/p is the fluid’s kynematic viscosity and p(x,t) stands for the
fuid’s kynematic pressure (pressure divided by densily).

We next consider the incompressibility condition, which establishes the
limits of the scope of ﬂii.'t work., Conservation of flmid volume leads to the
eondition:

Ve = 0 i O x(0,7) (1.5)

which will be frequently referred to in what follows, Equation 1.5 replaces the
continuity equation for an incompressible homogencous fluid (that is, with
constant density in space), since then p is constant at all times. No equation
of stale is then required (o relate p and p. Equation 1.4 reduces in this case
Lo;

‘;‘; + (n-Viu + Vp — 20¥Ve(n) = f in () x (0,7) (1.6)
Under the incompressibility condition, 1.6 can further be rewritten as:
dn '
pT + (u-Viu + Vp — vAu = in = (0,7) (1.7)

where A is the Laplacian operator; equation 1.7 is the best known form
of the unsteady, incompressible Navier-Stokes equations. A third possible
formulation of the viscous term is obtained by making use of the vector
identity Au = V(V . u) ~ ¥V % (V % u) and the incompressibility condition
1.5, resulting in the substitution of Auin 1.7 by ~V x (V x u) (this is usually

10
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refered to as Lthe rot-rofl form of the viscous term, and is also t:n:lpluyu'.t:[ in
some numerical methoda),

Az for the conveetive term, some other formulations can also be consid-
ered, Thus, the j-th component of the conservative form is d(u'”lz, where
the summation convention is assumed on the i~th index. lJnc{e.rl't'}w IColm-
pressibility condition 1.5, this formulation is equivalent to that of 1.7. The
skew-symmetric form (- V)u -+ i(V ti)u, also equivalent Lo that of 1.7 for
an incompressible fluid, will also be frequently used.

Equation 1.7 is formally equivalent to its dimensionless form, provided
v = 1/Re, Re being the fluid's Reynolds number defined as Re = pal/p.
Here, i and [ stand for a characteristic veloaity and length of the fluid’s
motion, respectively, We will make this identification througheut this work.

The equation system 1.6-1.5 (or 1.7-1.5) has to be completed with suit-
able boundary and initial conditions to form a well-posed initial/boundary
value problem, One generally assumes that the boundary I' can be parti-
tioned into two non-overlapping subsets I'p and I'y which accomodate given
Dirichlet and Neumann boundary conditions, that is to say, preseribed ve-
locitites and stresses, respectively:

u(x,t) = u(xt), xel'p, te(0,7)
n-e(x,t) = hixt), xely, te(0,7) (1.8)

In equation 1.8, and throughout this work, n denotes the umit outward
normal to I', ¢ = —pl + Zre(u) is the stress tensor (per unit density), 0
is the prescribed velocity and h the preseribed stress, In the formulation
of equation 1.6 the condition h = 0 in L& comes up as a natural boundary
condition, as is often employed m outflow boundaries, having the physical
meaning of a no stress condition. On the contrary, when the formulation of
equation 1.7 is employed, the natural condition for outflow houndaries does
not have a physical meaning,

Purely Dirichlet type boundary conditions for the velocity, or equivalently
I'n = 0, are also considered sometimes. For consistency with the incompress-
ibility condition 1.5, in that case it is required that the net flux of 6 through
[' be zera:

/1- ned(x t)dl = 0, Vie(0,7) (1.9)

[t the theory to be developed in this work, homogeneous Dirichlet bound-
ary conditions will be frequently assumed:

u(x,t)=0, xcl', te(0,7) (1.10)

which is commonly referred to as the solid wall condition (no shp and no
penetration). However, in some of the numerical examples presented, natural
houndary condifions are also employed,

11
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An initial condition is also rr_*quir:ecl for the velocity:

u(x,0) = ug(x), x¢Q, (1.11)

where ug is assumed to be incompressible (V.u, = 0). Noimitial or boundary
conditions need be specified for the pressure, although this variable is subject
to gome a posteriori conditions (:m-r_' Section 1.4).

The numerical approximation of the equation system 1.7-1.5-1.10-1.11 is
the main concern of this work. This system is an unsteady, nonlinear problem
ﬂnuplad with the incunl'pruuuihilii.y constraint. Related but more simplified
problems are also important to deal with, Thus, at steady siate one gets the
steady, incompressible Navier-Stokes equations:

(u-Vju + Vp — vAu =1 m (1.12)

which retain the nonlinear, convective/diffusive character of the full problem.

Furthermore, under the assnmption of slow motion, and for low Reynolds
number flows, the conveetive (quadratic) term can be neglected in 1.12, re-
sulting in the Stokes problem, which consists of equation 1.5 together with:

vAu 4 Vp = f mQ (1.13)

This is the lineat, steady counterpart of the original problem, still retaining
the coupling with the incompressibility constraint.

1.2 Function spaces, norms and forms

We introduce here the basic mathematical theory of L” and Sebolev spaces,
where weak solutions of the preceeding equations belong, The results stated
herein and the notation intreduced will be of constant use in the following
Chapters, The general theory presented in this Section 15 rather classical,
and can be found in several texts such as “] ar |1, 11|. However, some asgpects
are specific to incompressible flow equations, niainly those related to the
divergence operator. These are treated in [19], [43], [71] and [105].

Let C3#(§1) denote the set of infinitely differentiable real functions with
compact supporl on 2, and [2{{2) the space Cﬁ"(ﬂ) with a topology that
makes derivation continuous (see [83], for instance); the dual space of D(1),
denoted by D'(£2), 15 the set of distributions on §2. Distributions are infinitely
differentiable in the sense of distribuiions.

Given 1 = p < oo, L”(£2) is the space of real functions » such that »” is
absolutely integrable in £ with respeet to the Lebesgue measure in IRE It 13
a Banach space for the norm ||'I:L||m-(nj = Uﬂ |u(m)|"d:ﬂ)””, and il 1s m-:parn.h]t:.
For | < p < co, L?(f2) is reflexive and its dual space is L9(Q), for ¢ such
that 1/p + 1/¢q = 1; since we are assuming that iz bounded, one also has
that for 1 < 4 < r < oo, L’(Q) 4 L"(ﬂ). The set Cg"'(ﬂ) 18 dense LP(Q)

for | < p < oo.

12
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The special case p = 2 is of main importance; L*(£2) is in fact a Hilbert
space for the sealar product:

(u,v) = Lu(m}-n(m)dm. Yu,v € LF(R)

and norm:

|u| = (e, u)'’*

Here, and in what follows, the notation = 18 employed to denote egualities
by definition. The space L*(£2) 15 usually identified with its dual space.

For p = oo, the space L*(2) consists of essentially bounded, real funtions
on 2, which is also a Banach space for the norm ||u||. = esssup, of |u(z)[}.
Again, sinee {} is bounded L™=(02) © L7(£1) ). One has that
(LI(H))’ = L"’"’(ﬂ), but (L”""{ﬂ))" ) Ll(ﬂ) with an striet iclusion.

Any function f ¢ L*(§)) can be understood as a distribution if one iden-
tifies < fou == (f,u), VYu € D(Q) (we use the notalion <, = for duality
'pu‘iringR). The Sobolev space of order |, Hq(ﬂ). consizts of functions in
L*(§2) such that their generalized first order derivatives (that is, denivatives
in distribution sense) are also in LQ(Q). It 15 also a Hilbert space with respect
to the scalar praduct:

g KL (Y
(w0 = (0) + 3 (s )

=1

ATl tl NOTIN:

[elly = (g )i

The inclusion H'(9) € L*(£2) is compact. The closure of Cg*(2) in H*(2)
for the norm |]u||1 is denoted by H[}(ﬂ.}, and if 15 a proper subspace of H! (£2).
To characterize the functions n H,:‘,{'fl), we need to recall a classical trace
theorem (see [43]): if the boundary I' of {2 is Lipschitz continuous, then there
exists a linear, continuous operator o mapping H'(£2) into L*(T') such that
for any u € C*(ﬂ), Tu('"-) 18 the restriction of « ta I'. The subspace H‘}(ﬂ) ean
then be shown to be the kernel of 45, i.e., it consists of functions in F7'(§)
which vanish at the boundary. The image space yo(H'(§2)) is denoted by
HYA(I); its dual space ix called H-V*(T),

In the case £ bounded, the classical Poincaré inequality holds; essentially,
it says that there exists Cp > 0 such that:

[l < Callull, Yue H3(Q) (1.14)

where:

full* = E:(-‘;,;'.-

13
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This shows that |Ju|| is & norm on H}(§2), equivalent to [[wl3; the associ
aled scalar product is:

4 8u P
(('Nn. 'U)) = % (Tc).,r-;‘ ‘;T::—’), Vi, v & Hul'l{ﬂ}
The dual space of Hg(§2) is denoted by H-1(9).

Sobolev spaces of order higher than one are also required sometimes.
Thus, given m = 1, one considers the space H™(§) made up with functions
in L*(Q) whose generalized derivatives up to order m are in LA($2). Tt is also
a Hilbert space with respect to the scalar product;

(2w = > (0", 0"), Yu,vel ™(§2)
lnl = m

where 5 = (n,...,74) € IN and || = 5y 4 -+ 4 d- The norm in H™(() is
denoted by |||,

All the preceeding results have been stated for scalar functions n. The
extentions to d-dimensional vector functions w are made in the usual way,
with the help of product norms, Spaces like D(£2), L*(£2), H'(£1) or H}(§2)
will often be considered.

We now turn to the consideration of the subspaces needed {or the (reat-
ment of the incompressibility condition 1.5, One usually defines the space:

H{div, ) = {u € L'(Q) / V-ue LX0)}

which 13 a Hilbert space with respect to the norm [|Jufldiv.a = [al? + |V ul?,

Yu € H{div,§). It is well known that there exists a normal trace operator

for functions in H(div, Q). if I' is Lipschitz continuous, then there exists a

linear, continuous operator v mapping H(div, 2) into H 'V“(l") such that for

every u € D), 71(u) = n - ujp. The kernel of v, is denoted by Hy(div, §1).
The set of smooth, solenoidal vector fields iz defined as:

V={ueD®)/V u=0}

The closure of ¥ in L*(9) is denoted by i, and plays a key role in theory
of approximation of the Navier-Stokes equations . It can be shown that when
{2 15 bounded and I' i Lipschitz continuous:

H={mneL%$)/V -u=0, yi(u) =0}

that is, H consists of vector fields in L($1) with zero divergence and zero
normal trace at the boundary.

Since [ is a closed subspace of L*(£2), one has the decomposition L*(Q) =
H @ H*: the characterization of ' is a main concern in this context, It
derives from a theorem due to Ladyzenskaya (see [71]), which essentially
states that:
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HY = {u e LYR) / Ip e H'(Q), u=Vp}.

This is related to the classical Helmholtz decomposition of a vector field
into the sum of a solenoidal field and the gradient of o scalar function, and
ultimately to a powerful theotem proved by De Rham within the context
of distributions {ams [FM]) This characterization implies, in particular, that
for every n € L*(Q), (u,v) = 0 ¥v € V if and only if u = Vp for some
pE .H‘(ﬂ) defined up to an additive constant.

The projection of L#(£2) onta I, denoted by Py, is also of main impor-
tance, and actually gives name to a whole category of numerical methods (see
Section 1.5). It is obviously continuous on L?({2), but it also maps H'({2)
into itself and is continuous with respect to the norm of H'(Q) (see [105] or
[71]); that 15 to say, there exists o constant ¢y = 0 such that:

[Py(u)]y = Cy|ully, YueHY(Q)

One also considers the closure of V in H(2). This space is classically
denoted by V| but here we will refer to it as ¥V, keeping the notation V for
other purposes. [t can be shown (see [43]) that when §2 is bounded and T is
Lipschitz continuous:

Y={ueH)2)/ V. u=0}

The decompaosition H},(ﬂ) =Y @Y", analogous Lo the previous one, can
be characterized in this case as follows (see [4..'!])7

Y= {ue HY(Q) /Tp e LHQ), n=(—A)""(Vp)} (1.15)

where | -A)" 15 the mverse of the Riesz representation isomorphism, that
is, ﬁ\:ff&(ﬂ) i H'I(Q) defined by < —«Au,p == ((w,,-u)); 1.15 18 to be
understood in the following sense: for every u € Hy(Q2), ((u,v)) =0Yve ¥
if and only if ((u,v)) =< Vp,v == —(p,V -v), Vv & H}(§1), for a certain
p € L*()) determined up to an additive constant. The indeterminacy of
these functions p, as well as that of the pressure in some incompressible flow
problems, leads to the introduction of the quotient space Lg(ﬂ) = Ln(ﬂ)ﬂ[{.

The strong form of the incompressible Navier-Stokes equations considered
in the previnos Section is usually understood in distribution sense, resulling
in a wenk formulation. For this, we need to introduce some continuous forms,
defined on appropriate function spaces, associated to each term of the equa-
tions, For the viscous term, two different forms will be considered, related
respectively Lo the Laplacian formulation (a.s in equation 1.7) and to the rale
of deformation tensor formulation (as in equation l.ﬁ). For the former case,
one defines:

a(u,v) = v ((n,v)), Yu,veHy(Q) (1.16)
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This is a hilinear, continuons form on H(2) which is coercive with respect
to the norm ||u||, since a(u, u) = vl|ul|. As for the latier case, one defines:

i
i(u,v) = 2re(n) ; elv)= 2 E (eij(m), ei5(v)), Vu,v e HY(Q) (1.17)
l'hi=l
This form is also bilinear, continuous and coercive on H{(§2), due to the
Korn's inequality (see |43], page 82).
On the other hand, both the pressure gradient term and the weak form
of the immcompressibility condition require of the bilinear form:

b(v,q)= —(q,V:v), Vge& L}Q), vv e HA(R) (1.18)

whieh 1z also continuous wath respect to the norms |q| ane |]v|| Finally, the
standard formulation of the convective term gives rise to a trilinear form ¢

defined hy:

e(n, v, w) = ((u-V)v,w), Vue H'(0),ve H(Q),w e H)(Q) (1.19)

This form 1s well defined and continuous on these spaces (see [105]), and is
skew-symmetric in its last two arguments if u € J, that is, if V-u = 0 and
n+u = 0. Moreover, ¢ posseses some other boundedness properties, such as

(see [104]):

Chian ||| [[v]] [}w|
Corz [m] [|v]] ||w][z
Con |0l [|vi]2 |[wl|
Crao [u]] [[v]lz [w]
Cao [|alls [v]] [w]

The skew component of ¢ is also used sometimes. Calling #(n, v, w) =
Me(u, v, w) = e(u,w,v)),Yu e H(Q),v € HY(Q), w € HY(Q), one has that
¢ 1s alsa trilinear continuous on these spaces (see [104]), and is the weak form
of the skew—symmetric formulation of the convective term introduced in the
previous Section. It satisfies é(u, v, v) =0 for all n and v.

To end this Section, let us introduce the spaces requiered for the evo-
lution problems. Given 7' = 0, 1 < p < oo and a Banach space W with
norm ||ul|y, the space LF(0,T; W) consists of functions u: (0,7") —+ W such
that: ||u||gsorw) = Ug‘ ||-u.(t)||l;v)1/ﬂ < eo. It is also a Banach space with
respect to the norm ||u||guorwy. The space of essentially bounded functions
on (ﬂ, T) into W is denoted by L”(U,"P; W), and 15 a Banach space with
respect to the appropriate norm. The spaces LP(0,T; W) possess similar
properties as far as separability and reflexiveness is concerned as L2($) for
1 < p < oo whenever W also has those properties. The case p = 2 is, again,
special: when W is a Hilbert space with scalar product (w,v)w, the space
L2(0,T; W) is likewise with respect to: (w,v) = JT(u(t), v(t))wdt. Spaces
like L2(0, 7 H}(82)), L=(0,T; L*(52)) and others will often be considered.

elu,v,w) <

16
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1.3 Finite element approximation

Thiz Section 15 devoted to the introduction of the basic resulis CONCETNING
the approximation of the previous function spaces in fimte elements, We first
summarize Lhe definitions of finite element function spaces and then state an
approximation theorem and an inverse jnequality i these spaces, under the
usual regularity assnmptions on the meshes. This general theory reviewed
here can be found in standard references such as [25] or [83].
We consider a partition @y, of Q into elements { K}, ST
the number of elements). For each element K| the diameter of A is denoted
by kg, and its sphericity (diameter of the maximum sphere inseribed in
K) by pg. We also call h = maxgea,(hg) and o = mm;;-,.-@,(g;;] We

e (mq 18

assume that each element is tlw image of a reference element K (bounded
and connected) through transformations !*;,.Ii. — K, which are supposed
to be difleomorphisms. Functions @ defined on K are transported to K by
taking v = 00 Fy ‘

A finite tllmulsmlml su}.:'-p.u,l:' Hk(ﬁ) (indexed by k & IN) of approximat-
ing functions is chosen on K; polynomial functions are usually employed.
Lagrange finite elements consider Lhe dcgrcca of freedom on By ( IQ’] as values

of the funetions at a certain setl of points 5= {a, }_'.' =1, .. 0 of R ealled
(reference) nodes (n,, is the number of nodes per clt-munt) These points are
chosen so that the set of linear restrictions {p(a;) }J —1,...,n, o0 f 15 uni-

solvent m R,, J".') that is, their values delermine pin HA,(K); in particular,
dim Hy( K #E

Two claas-?a of 1soparametric finite tflf:md:.uts (that is, those in which the
transformations Fy also belong to Ri(K)) will be considered, For simplicial
finite elements, A is the standard simplex in IR Tn this case, Bu(K) is the
set of polynomials in {&y, . 2y} of degree less than or equal to k, called B,
It 15 easzy to see that dim Py, = ( JI k )

On the other hand, for quadrilateral (d 2) and hexahedral (d = 3) finite
elements, K is the unit cube [0, 1]% R;ﬂ(f‘f) then consists of polynomials in
{ay, ..., zq} of degree less than or equal to & in each variable, space denoted
by Q. One has that dim Qp = (k+ 1)%.

With the help of these definitions, functions defined on §) are approxi-
mated by gi.ht:r functions which, in each element, are the images of polynomi-
als in Ky (K'). In other words, any function space V of those considered in the
previous Section is approximated by a finite dimensional subspace Vj,, whose
degrees of freedom are the point values al the (mesh) nodes £, = {uj}',-ﬂm_lnu
(n, is the number of nodal points); these are the images of the reference nodes
in K. When the elements K have straight sides (or plane faces, for d = 3) for
simplicial elements, or stmight and pn.mllr_'l sides (ur fn-:'c-n) for quadrilaterals
(and homhudru.) the transformations Fy e affine (that is, they belong to
P (K)), in this case, the funetions v = veo by ! belong to !;.( ) and Qy(K),

L7
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respectively, whenever v belongs to Py( K) ot Qk(ﬁ:‘).
Diserete finite element gpaces like:

Vi= {0 € LXQ) /| Ve=1,... 00, v, = b, 0 F i, R} (1.20)

are considered, If, moreover, one requires these finite element functions to
be continuous on £, this approximating space 15 spanned by the functions
{Ne}i = Lo copmg Vi defined through the relations: Ni(a;) = &;; these
functions N; are called the standard shape functions

llor continuous functions v, a classical interpolate can be defined by:

v € CNR) — Mu(v) € Vi [ My(v)(x) = ﬁu(a.,-)Nj(m) Vx el (121)
i=1

A projection operator I, can also be defined on more general spaces of
(not necessarily continuous) functions ento Vi, (see [98], for instance). To
obtain approximaling properties of the operator I1),, some restrictions have
to be enforced on the meshes. A family {®4} o of diserelizations of Q is

called regulur if there exists {; = 0 independent of h such that f_ﬁ' =0 =0,
[ :

for all K € © and for all h > 0. Regularity of {4 }4s0 means geometrically
that the elements do not collapse into segments as h tends to zero, H{On}ho
is regular, if v € H'(Q) for r = 2 and if By = Py, or @, then the following
approximation resull holds (see, for instance, [98]);

Vim=10,....7r |lv—0v)||m = ah*||u|.. (1.22)

where & = min{k + | —m,r —m}. In 1.22, and throughout this work,
€ represents a generic constant independent of the mesh size h, possibly
depending on © and other constants.

Moreover, {®}ys0 18 called uniformly regular, or quasi-uniform, as h
2 (>0
for all & = 0. Under this condition, the following inverse inﬂqunﬁty can be
proved by scaling arguments (see [13]):

tends to zero if there exists (3 > 0 independent of & such that

&
llenl)y < f,;lwl. Vo, €V, (1.23)

Bath the approximation result 122 and the inverse inequality 1.23 will be
uged in what follows.

1.4 Mixed problems and the LBB condition

The understanding of the properties of discrete approximations of incom-
pressible flow problems, as well us some other related mechanical problems

18
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(such as incompressible r_']a.ﬁtinil.y), led to the development of a general theory
of mixed problems. From the variational viewpoint, these are understood as
saddle point problems, the simplest of which 15 the optinmzation of a certain
quadratic functional nnder a linear restriction on the appropriate funciion
space, The main example of a mixed problem within the context of incom-
pressible flow equations is the steady Stokes equations 1.13-1.5 with homo-
geneous boundary conditions 1.10; in this case, the linear restriction 15 the
divergence-free condition 1.5, and the Lagrange multiplier associated with
it is the pressure. This mixed character of the equations implies that the
approximating (in our case, finite element) spaces for velocity and pressure
should satisfy a compatibility condition in order to abiain optimal results,
as will be seen in what follows.

1.4.1 Mixed problems

A complete exposition of the theory of mixed methods, which eame about
with the work of [. Babuika ([4]) and F. Brezzi (|14]), has been recently given
in [19], reference which we mamly follow here, A different approach can also
be found in [15].

It V and @ denote two real Hilbert spaces with norms ||v||y and ||q||g,
respechively, a: V' x V' — IR and b: V = @) — IR are bilinear, continuous forms
with norms ||a|| and ||b||, respectively, and f € V', g & () are given, a general
mixed problem consigts of finding v € V and p € @ such that:

alu,v) + blv,p) = < fov=  VYeeV
blu,q) = <g,9= VYqeQ (1.24)

The study of this problem leads to introduce the forms;

BV = Q') < B(v)g>gug=blv,q) Y9€Q, VweV

BYQ - V'] < B'(q),v >yiey=blv,q) YeeV, YgeQ

Assuming that a 15 coercive on V, that 15, a{w,u) = f,||ully Vu € V| the
conditions for a solution of 1.24 {6 exist are that g € Im B and that there
existe a constant A, such that:

i FJ(*U, q) )

% G T o) > i

in which ease w15 unique and p is determined up to an arbitrary element of

Kerf!. Condition 1.25 is usually refered to as the inf-sup or LBB condition,

after the work of O.A. Ladyzhenskaya ([71]), 1. Babuika ([4]) and F. Brezzi
([14]).

'Il?hr: Stokes problem 15 cast into this framework by taking V' = H(€),

¢ = L), a and b defined hy 1.16 and 1.18, respectively, ¢ = 0 and

19
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f e HHQ) given. In this case, the form a is coercive and symmetric; the
forms B and B' are defined by:

B:HLQ) — L) [/ B(v)=V-.v, VYveHYQ)

B L) - H () / B'lq)=Vyq, Vge L*N)

One then has that KerB' = {q ¢ L*({1) / qis constant on Q}, space
isomorphic Lo IR, Condition 1.25 was first proved for this case by O.A.
Ladyzenskaya (see [71|); existence and uniqueness of the veloaity solution u
and existence of the pressure p defined up fo an additive constant are thus
established (we are considering the Dirichlet case). This indeterminacy in
the pressure is usually surpassed by working on @ = Li(§2), where B' is
injective; however, in the discrete problem other linear restrictions may be
used (such as fixing an arbitrary discrete value of the pressure to zero),

1.4.2 Discrete approximations

We now turn to the consideration of an approximate dizscrete solution of the
mixed problem 1.24, where several difficulties may be encountered, Some of
these were observed in practice in the early stages of Computational Flud
Dynamics, before this theory was even developed. We oulline the basic
results in what follows, inspired again in [19]

Let Vi and @ denote finite dimensional subspaces of V' and @), respee-
tively, where the index h refers to a mesh size. The discrete version of problem

1.24 reads: find uy, € V), and pj, € €2y, such that:

l'.'lu('“-j“ ufl) 'I' b(t’h‘ Pﬁ) == = f\ B :“1 V'Uh < W\
blun,gn) = <g,q0>=, Y€ Qu (1.26)

Let B), and H}t denote the discrete equivalent to the operators 3 and B!
on Vj, and ¢, For a given g € @', let:

Zn(g) = {vn € Vi [ blun,qn) = < 9,90 =, Vg € @)}

Then, if a is coercive on V, if 3}.(9) # U and if the discrete equivalent of
the LBB condition holds with a constant g independent of A

; b(”h: ‘i'h)

inf sUp = =010 1.27

anEQ (w.e‘:Fiﬁ. |[onl|v ||-=Ih||qm=m-) o &y b4l

then there exists a unique wy, € Vy and a p, € @), defined up to an arbi-

trary element of KerB) | solution of 1.26 which satisly the following optimal
approximation property:

20
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lu=unlly + [lp=pullo/men = f«'(u:f;{,h llu—wnlly + inf [lp—pnlla/wers)
(1.28)
with constant ¢! depending on ||al|, ||6]], A, and By, but not on k.
Unfortunately, the diserete LBB condition 1.27 does not held for sim-
ple combinations of finite element spaces for velocity and pressure, such as
equal order ones, Those for which .27 holds are called div-stable i the
terminology of [12]|. Problems may develop in the following circnmstances:

e The constant /), in 1.27 may not be bounded away from zero uniformly
i iy in this case, it is interesting to know the exact dependence of
A, with respect to k, so that weaker error estimates than 1.28 may be
obtained.

o KerB3} ¢ Kerl3'; in this case, the discrete solution p, may be polluted
with unphysical (non constant) modes, called spurions pressure modes.
Moreover, Z,(g) may be empty, in particular for some nonhomeogeneous
Dirichlet houndary conditions, leading to ill-posed discrete problems,

s (dim ), — 1) > dim Vj; this case leads to locking of the solution, since
there are more restrictions on it than (‘IEE’I‘E:E“:H of freedom. The only
diserete divergence free vector field is the null one,

The problem of spurious pressure modes is, in essence, an algebraie prob-
lem. Calling K the matrix associated to the discretization of the form a, &
the digerete gradient matrix and & the diserete divergence matrix, problem
1.26 can be written as:

K G g F
(th u)(,n) = (}.;) (1.29)

where [f and P are the vectors of discrete values of veloeily and pressure,
respectively, and Fy, Fy come from external forces and (nonhomogeneous)
boundary conditions. The system matrix of 1.29 will have a nontrivial kernel
when KerBj ¢ KerB*, since spurious modes satisfy GP =0, P # 0.

Some of the most popular examples of mixed finite elements for incom-
pressible flows are listed next, elassified according to whether the discrete
pressure is confinuous on £ or nol; some of the terminalogy used applies
only to the two-dimensional case:

1. Discontinuous pressure quadrilateral elements,

(n) (21 Fs element: the bilinear-velocity, constant-pressure element
does not satisly the discrete LBB condition. For a regular mesh,
the kernel of the discrete gradient matrix is two-dimensional, con-
taining two independent spurious modes which are constant on the

21



CUHAPTER 1. PRELIMINARIES

red and white cells of the mesh, viewed as a checkboard; they are
cilled checkboard modes. The constant ﬁ;, can be shown to be
((h) in this case (see [78]). A thorough study of the properties of
this element was given in [85].

(22 element: the biguadratic-velocity, linear-pressure element
is a div-stable ¢lement commonly used in practice. The pressure
values on each element can be understood as the pressure and its
first order spatial derivatives at the centroid of the element, in a
hierarchical way. In general, the element Q1 F . is div-stable for

l = 2 (see [43]).

2. Continuous preassure clements,

(a)

(b)

Equal order interpolations: elements where the velocity and pres-
sure are interpolated by continnous functions on the same mesh
points and to the same order of acenracy, such as €46 on quadn-
laterals or Py Py on triangles, are the simplest ones to implement;
hﬂWEVEI’, tllEEH ‘.'-lﬂl'l'll'p.l'ltﬁ -ﬂ].!iﬂ Pi’ﬂﬁt‘lﬂa H:[}uric-us T.}TERH'I.I Ire 'l'l'lﬂd\'_’ﬂ, FI.IN']
yield unstable pressures which need to be filtered to get accurate
resulis, A study of spurious maodes for these elements was given

in [86].

Taylor-Hood elements: il was found experimentally that a PP
continuous pressure approximation on triangles and a Q.0 on
quadrilaterals yielded stable and convergent results, Some analy-
sis of these elements were given in [9] and [109], and an extension
to Pyl and Qp@i-y (for k = 2) in [18],

1.4.3 Some stabilizing techniques

Several alternatives have been proposed to overcome the difficulties mntro-
duced by mixed methods, Efforts have been directed into three main direc-

Lions:

s The development of div-stable finite element combinations, some of
which we have just seen.

e The stabilization of known unstable elements, in particular the @y P
element, through the use of appropriate filtering techniques ([95], [94]),
the use of macroclements {|‘E|T]} or by enriching the velocity space by
bubble functions ([3]).

e Obtaming alternative formulations of the original equations, which eir-
cumvent the LBB restrictions, either by cmploying non primitive vari-
ables (vorticity, streamlunction or others) or by angmented or stabilized
formulations. We summarize this last possibility for its relevance.
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Stabilized formuolations of the Stokes and incompressible Navier-Stokes
equations developed from the original work on SUPG formulation for ad-
vective diffusive problems in [20] (which in turn was an extension of pre-
vious work on upwind finite differences), and the series of papers [57], [58]
and [69]. The consistent Galerkin Least Squares (GLS) formulation then
came about (|ﬁll|, |ﬁl.|]. When applied to incompressible flow problems, it
allows the use of arbitrary Vul()city—prussure elements, Tor a given m":“.'.'-:h
@y = {K.}, — Lo e with element sizes Ay, the GLS method for the
Stokes problem can be nnderstood as a medification of the discrete prob-
lem 1.26 by adding to each equation a multiple of the strong form of the
moementum equation:

ﬂ(“lnvh) h l'l("n.Pl.) + 2; ‘-”'f(_&‘jh =T V}J}. - f, -é.v,-,);(

R(_-'Hh

= < fivy >, Yvi, € Vi (1.30)

b(ll;,,(‘(),) + E ﬂ:{;‘(—Allh - VI!:. = f, vqﬁ)ﬁ' =0, VQh S Q!r
"‘G@ﬂ

where g = 0 VK € 8, (we have neglected the term 7(V - u,V - v) from
1.30, which appears in the definition of the method, since it turns out to be
unnecessary ). These new integrals are evaluated on element interiors, where
the approximating funetions are sufficienily differentiable, Equations 1,30 are
the Euler-Lagrange equations of a saddle point problem with a Lagrangian
augmented by the addition, at element level, of a multiple of the square of
the residual of equation 1.13, residual which is to be minimized; this 15 why
this method 15 called Galerkin Least Squares.

Stability and optimal convergence for this and related methods were
proved in [37] and [17], in mesh dependent norms such as:

() [laes = (il + 3 ki [Volk

K&®,
for any choice of Vi, and @Q4; the coellicients ag (called 7y in the usual ter-
minoclogy) are obtained as the diffusive limit of those of a similar method for
the Navier-Stokes case, yielding, after some simplifications (see [37]):
2
g = &‘,{-}i- (1.31)

For linear elements and small enough Ay, a value of ay = 1/3 is optimal
(see [37]). For quadratic elements, an optimal value of o = 1/9 was obtained
in [27] for a related scheme.

The stabilization of the pressure in these residual methods is mainly due
to the appearance of a nonzero diagonal term on the system matrix of the
direrete problem 1.29 multiplving the pressure, which comes from the term
(Vpn, V) in 1.30.

A great amount of work has been developed recently on stabilized meth-
ods (see [5], [16], [35], [36] and [107], for instance).
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1.5 Description of fractional step methods

In this last Section we present several methods of fractional step type for
the time integration of the unsteady, incompressible Navier-Stokes equations
1.7-1.5, with homogeneous Dirichlet boundary conditions 1.10 (for simphicity
ol exposition) and witial condition 1.11.

The common feature to these methods is the decomposition of each time
advancement step into a sequence of two or more substeps. The way this
decomposition is chosen in each method determines properties such as its
stahility, COnvergence, arder of accuracy in Lhe time slep, steady state reached
(if 20), boundary conditions to be imposed in each substep, stabilization or
not of the pressure and type of fully discrete problems actually solved, as
will be explained in what follows.

We present the methods classified into four categories established accord-
ing to different eriteria, which may well overlap with one another. Given the
great amount af fractional step methods d-t-tvc'lnpm] nowadays, this presenfa-
tion does not pretend to be exhaustive, but rather a wide view of the variety
of existing methods, paying special attention to the most significant ones;
besides, the elassifieation could also respond to other eriteria, bul the ones
chosen here emphasize some ideas to which we will come back laler on.

Some representative methods of each category are explained in more de-
tail. They are presented respecting as much as possible the structure and
notation used in their original references. Some of them dre intraduced di-
rectly in fully discrete form, after some space diseretization (finite differ-
ences, finite elements, finite volumes or spectral methods) has already been
performed. However, we are munly concerned with their semidiscrete for-
mulations, which are more general, not depending on the particular form of
space diseretization used, and more suitable for the study of properties intrin-
sic to the time mmtegration process, such as well-posedness of the intermediate
problems or appropriate bnu.ndnry conditions for them.

In what follows, we assume that a constant time step 81 = 0 is given, and
define the time levels £, = ndt forn = 0,...,[T'/5t].

1.5.1 Classical Projection Methods

We group here the fiest fractional step methods to appear in the literature
that gave rise to this kind of methods, as well as some of their closest variants
and studies.

The original 1deas of fractional step methods for general evolution equa-
tions go back to the work of Yanenko (sce lllﬂ]). The concept of a splitting of
the different operators appearing in the equations in succesive steps was first
introduced there, In the early times, this splitting was usnally associated ta
the different space dimensions. An interpretation of this general splitting in
the case of the incompressible Navier-Stokes equations can be found in the
scheme with (n + 1) intermediate steps of Temam (see 111.7.2 in [105]).
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But the actnal origm of fractional step methods for Navier-Stokes equa-
tions is generally credited to the work of Cliorin (}:f_'r_'. [22]‘ |23} and [M])
and Temam (see [100], [10].]. [102] and [103]). The former is a 3-substep
method, in which the first two substeps can be thought of as an ADI scheme
(Alterning Directions Tmplicit) and the third one is a projection onto the
subspace of solenoidal vector fields (in a sense to be explained in what fol-
lows); for the case of pv.'.tif.'ld'u: boundary conditions in a unit cube and for
a centered finite difference space approximation, it was shown in [24] that
provided &8t = O(h*), the convergence of this method was of first order in 8t
and second order in b, We present Temam's method in more detail, since it
15 the most popular of fractional step methods and one of the best studied.
We name it the classical method, and follow the presentation of 111.7.1 in
|106].

Let us call b = 41, and assume that f ¢ LH(I),T; H) and ug € H. Given
w" & [, approximation of u al time £,,, the first step of the classical method
consists of finding an intermediate velocity u™/? guch that;

u 1z o oyn

- pAu™t? + (!1"“” : 'V)llﬂ'“x:'j 1

ke
é(v : u...|-1f=)uﬂ+lfi = " (1.32)
ui"r:l 1/2 = 0

An implieit backward Euler method 18 employed for the diffusive term,
and the skew-symmetric form adopled for convection is also approximated
implicitly. The force term £ 15 the time average of Fin [4,, 4,1, On u""f'uz1
the full Dirichlet boundary condition 1s imposed. The weak formulation of
1.32 consists of finding u™*/% &€ H}() such that for all v & H(0):

1

E(uw“ﬂ B I.I“,V) } E(“u-nlnlv) I -Ej(ll"'l'l'/a, “-H-t(?‘v) = (im*v) (].33)
Once ™72 is determined, the second step consists of finding an end-af-

step velocity vt and a function p™*' such that:

™t “n-i-lfz

T + Vet = (1.34)
V . ul'a-t-l — ﬂ (I35)
n- ul'}:"l = 0 (1.36)

This is equivalent to saying that u"t! is the projection of u™*/? onte
the space [, so that equations 1.34-1.35-1.36 can also be written as u™! =
Py (u™*1/%). This is the reason why this method, and other related schemes,
15 usually called the projection method.
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As can be seen, the splitting of operators in this case consists of separating
the effects of incmnpmssiljilit}' from those of diffusion and convection, which
are kept together,

This elassical projection method posseses some advantages over standard
single-step methods. From the computational standpoint, the man one is
the decoupling of the computation of the 'pressure’ "t from that of the
velocity; this is achieved with the lu_'lp of a 'pﬂ:ﬂaurﬂ Poigson equation’ (PPE,
from now on), ebtained from equation 1.34. In fact, taking the divergence of
1.34 leads to:

1 .
Apt! =N /2 (1.37)
n- V;fl‘]':‘ - D (1.38)

Once this Neumann problem 15 solved for p™t! the final velocity u™t!
15 obtained explicitly from 1.34. Another advantage of this scheme is that
the space discretization used in combination with it is not restricted by the
compatibility (inf-sup) condition encountered in the Stokes problem; this fact
has been observed by some authors who have used this method together with
different space diseretizations, meluding some equal order finite elements,
But, to the author’s knowledge, the reason for this pressure stabilization has
not yet been fully explained. We provide an explanation for it in Chapter 2,

The classical projection scheme, however, presents some drawbacks too.
As can be seen in .36, the final velocity w™*' does not satisfy the correct
Dirichlet boundary condition, but only the normal component of it. This may
resull in the presence of a numerieal boundary layer in the solution, whose
size has been estimated to be O(v/wbt) (see [45], [79] and [106] ). Another
side of the sume problem is the need to 1impose the unphysical hemogeneous
Nenmann boundary condition on p"* | while the exact pressure satisfies, for
sufliciently smooth solutions (see [48]):

Ap(t) = V- (£() ~ (u(t): V)u(t)) (1.39)
1 - Vp(f.}llﬂ = n- ('l'(t) -|- UAU(L'.) = C:}_:l - (I.l . V)lt)”:h (140)

This has led several authors to believe that p"“ 18 not an approximation
of p(tns1), but a mere anxiliary mathematical variable needed to enforce the
incompressibility condition on u"*! (a Lagrange multiplier), although both
u™ 2 and ™t are legitimate approximations of u(f,.) (see [,],Uﬁ]),

Convergence of this scheme to a continunous solution u was proved hy
Temam (see [101] and [102]). He introduced the following approximating
funetions:

uli [0, 7] = LA(82) [ ui(t) = 2 gk << (m+ 1)k
uj: [0, 7] = LK) / ui(t) =u**!, nk<t<(n+ Lk
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g |:(],T| — L“(ﬂ) / w15 continuous, linear on £ on each interval
[nk,(n + )k] and ny(t,) = o™, forn =0, .., [T/k]

He proved convergence of u}, (that is, of l.‘l“'”m) to nin HY($); but for
uj and uy, the convergence was only in L*(£2), and this was due to the fact
that u™*! does not satisly the correct boundary condition. In fact, he had;

o if d = 2 uj (i =1,2) and uy converge to uin L*(0,7; L*(§2)) strongly
as k tends to 0, and weak-star in L™=(0,7; L3(Q)); u} converges to u

in L0, 7 Hy(§2)) strongly.

o if d = 3, there exists o subsequence & of k such that uj, (i = 1,2)
and up converge to u in L*(0, 7 L*(§2)) strongly as &' tends to 0, and
weal-star in L7(0, 7' L*(2)); uj, converges to u in L*(0, 7' H}(5))
weakly.

Further studies of this method have been performed by other authors.
The most relevant one is the work of J. Shen: in [Q(]] he considered the clas-
sical projection method with a slightly different formulation of the convective
term, namely, (u™ - Vju™! 2 This results in a skew-symmetrc weak form
e(u, u /% ), since u" € H. For this scheme, he proved first order error
estimates in the time step for u™/% and u™*' and order 1/2 error estimates
for p"' and p"*' ~ keAp™!, in the appropriate sense. A mistake in the
nrigilml prqnf ]Juintcd out by J. L. Guermond (:-.:t:e [EU]) was corrected m [92].
The definitions of order of approximation employed in these proofs are as
follows: given a Banach space X with norm || - ||x, a continuous function
£:10,T] — X and a partition {th}, _ 0,..., N of [0,T] whose maximum step
tends to zero as k tends to zero, a Tunction fi: [0, 7] — X 15 a weakly order
o approximation of fin X if there exists ' = 0 independent of &k such that:

N
kY (Ifulth) = fER)]5 = Ok
rawi
On the other hand, fi is a strongly order o approgimation of [ in X if:

I F(tE) = £k < CK*, Vm=0,...,N

It was proved i [90] thal both u™t1/% and u™t! are weakly first order
approximations of uin LE(Q), and that p““ and ;J"'” = kw}p"'“ are wunkly
order 1/2 approximations of p in L3(£2). Once again, the incorrect bound-
ary condition satisfied by u™*' forbids to get satisfactory error estimates in
H1(Q).

In order to get improved error estimates, a modified scheme was also
considered in [90]. I consists of adding the term Vp™ to 1.32 and regarding
the Lagrange multipler of equation 1.34 as a pressure correction, rather than
an end-of-step pressure, that is, qfrV(-p“""‘ — p") for some ¢ = 0. In this case,
both u™/# and u™t! are strongly first order approximations of n in L*(§2),
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whereas p™*t! and p™*! — keAp™? wre weakly first order approxunations of
pin LA(Q)

More recently, a general framework for thesé classical projection meth-
ods has been introduced in 06|, where it 18 shown that the classical method,
ameng others, with Shen's formulation of the convective term, is uncondition-
ally stable (in the appropriate sense). A similar scheme was also considered
in [10], but it was obtained by arguments of approximate matrix factoriza-
tion, and proved to be equivalent to a form of fractional step method, The
classical projection method was alse used in [29] in conjunction with a finite
volume space diseretization on unstructured triangular meshes,

1.5.2 Higher Order Methods

We have seen how gimple SI'-'“HiiIIgE of the incompressible Navier-Stokes equa-
tions generally lead to first order schemes in the time step. Several alterna-
tives have been proposed to achieve higher order methods; we presenl some
of the most outstanding ones.

To the author's knowledge, there are three main ways to develop higher
order fraclional step methods, which are the nuse of improved velocity bound-
ary conditions, improved pressure houndary conditions and pressure correc-
tion, respectively, all of them developed in the mid-eighties.

As a representative of fractional step methods with improved velacity
houndary conditions we consider the work of Kim and Moin (see [65]). Tt
consists of the ft'nll:)wiug fully discrete Ht'.llt’!l'ﬂﬂ. where a centerad finite diﬂ-‘ur-
ende space approximation on a staggered prid 18 assuned (some staggered
grid finite differences are equivalent 1o @, F, finite element discretizations
with mass lumping):

af T g L1 n41/2 bog 1
-t ¥ 6{_ =] EE;L(H‘ -+ I"'i'l) - i(:”-],“ — H,n ) (14 l)
s Iilv-i--‘l/i .

FI-'.._ ’5;'!-(‘ > = C;r(ﬁ"-l-’, D."_;t'+'1 =0 (142)

In 1,41 and 1,42 w; represents the nodal vector containing the i~th compo-
nent of velocity, /1 is a discretization of the conservative form of the convee-
tive operator, which is approximated by an explicit, second order multistep
Adams-Bashforth method, and L is a centered discretization of the Laplacian
operator (a second order, implicit Crank-Nicholson metliod is employed for
diffusion, which enhances stability for low Reynolds number flows). In 142,
(¢ and D are the discrete gradient and divergence operators, respectively;
this equation can be viewed as a projection step, and is actually solved by
a discrete PPE. The main novelty of this scheme, however, is the boundary
conditions imposed on the intermediate velocity: in the homogeneous Dirich-

. e ag"
let case that we are considering, these are u! oL qu—, i, u"/2 = gan
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abtained 1.hmugh i ’l‘el.y]ut expansion of unti/e (sm: [ﬁ.,’l]). An improvement of
this method was presented in [74], where a three-step Runge-Kutta seheme
was congidered in which each step 12 decomposed into two fractional substeps
i a similar manner to Kim and Moin's method. ]mpmmd veloeitly boundary
conditions for fractional-step methods were also studied by M. Fortin and
coworkers in [41].

lmproved pressure houndary condition fractional-step methods stem from
the work of Orzag, lsraclli and Deville (see [79]). For a one dimensional linear
model with no convection, a two-step method is devised in reversed order,
that is, with a projection step first and a diffusion implicil Crank-Nicholson
step second, The navelty, this time, is the second order boundary condition
. Vp“"'l = ) (V 4 (V b4 u")) tzmplnycd (thc rat- rot faorm of the viscous
term is used), which is closer to the continuous boundary condition 1.40 than
the homogeneous Neumann condition 1.38. Several generalizations of this
idea can be found in [63]; in this reference, a three—step method is considered
consisting of an explicit Adams-Bashforth step for convection, followed by
a projection step and an implicit Adams-Moulton step for diffusion. The
projection step 1s solved via a continuous PPE with higher order pressure
boundary conditions obtained from the continnons one. Stiffly stable schemes
are also considered for the time derivative term, which enhance stability.
All these methods are used in combination with a spectral element apace
discretization, and an extension to triangular speciral elements is provided
in [93].

A second order pressure-correction fractional-step method was intro-
duced by van Kan in [62]. It was developed for a system of ordinary dif-
ferential equations with a linear constrain, representing a fimite difference
approximation of the Navier-Stokes equations on a uniform staggered-grid,
Namely, he considered a system of the form 2 = f(z) + Gp, G'a = g(t). In
this context, the pressure correction methods reads:

mn-’,-l{! N i .
g = (") f(=")) + G
n+l Ir_n+1;'.*.‘.‘

At
The second step is actually solved by a discrete PPE:

T

LG~ g, Gl = g

%G'I'G(p" 1 : P“_) - ;_t(gﬂ-l-! = (Jf-mﬂ--l-lﬂ)

It is shown in [62] that the solution (2", p") of this sphit scheme differs
[rom the solution of a coupled Crank-Nicholson method by 0(5!)3, s that
this is also a second order method. A linearization of the convective term is
used for the extension of the method to the Navier-Stokes equations. Van
Kan's method was recently used in [81] with a spectral method for the space
variables, in which the same mesh points were used for velocity and pressure.
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Another second order projection method was introduced by Bell, Calelln
and Glaz in [8], They considered an iferative scheme in each tune step
which converges to the solution of a coupled Crank-Nicholson scheme. Fach
iteration 18 decomposed into two substeps, the first one being a convective-
diffusive step, which s explicit in convection and implicit in difusion; and the
second one an incompressibility step; thus, the k-th iteration of the scheme
is split ag follows (see [8]):

usf —un B e o o LR
5 E.{l(n +u") = [(u- Vil
i/
u” § 1 kel = “'ri v
b1 "” — + vrjn-l'lfi,k-}-'l = ﬁA(“hk _l_ “n) = [(“ : v)ulﬂ FL/2
v L o TS o 0

It 15 assumed that the convective ferm is computable from the velocity at
time ¢, and the current approximation of the pressure p*''/** by an explicit,
second order Godunov procedure (see [8]), and a standard finite difference
approximation ig used for the Laplacian term.

Several fractional step projection methods were studied by P, Gresho in
[45]. They include optimal projection methods, with optimal boundary con-
ditions for velocity and pressure, and simpler projection schemes, of which
there 15 a first order (Projection 1, equivalent lo the classical projection
method), a second order (Projection 2, related to van Kan's, Kim and Moin's
and Bell, Colella and Glaz's mctlmdﬂ) and a third order version (FProjection
3). These are presented in continuous, semidiscrete and fully discrete formns
(in |46]), the latter with a @1 Fy finite element interpolation. Gresho's Pro-
Jection 2 methad alse employs pressure correction,

More recently, error estimates of some of these and other higher order
splitting methods were proved by J. Shen in [91], in a similar way to [90]
and with the modifications of [92|. Roughly speaking, he showed that, under
several hypothesis;

& A pressure correction method similar to van Kan's provided weakly
order (2 - ¢) and strongly order (3/2—¢) approximations to the velocity
in L*(2) and weakly order (3/2 — ¢) in H'(Q) for any ¢ = 0, both for
the mtermediate and the end-of-step velocities; he also proved weakly
order (3/2 ~ t:) error estimates for the pressure in Lﬂ(ﬂ)h

e A method similar to Kim and Moin’s (for the linear unsteady Stokes
problem) provided weakly order 3/2 approximations to the velocity in
L*(2) both for the intermediate and the end-of-step velocities, and
weakly order 1 estimates for a modified pressure m Lj(82).

s A penalty-projection scheme with pressure correction provided weakly
order 2 approximations to the velocity in La(Q) for the infermediate
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velocity, strongly order 3/2 in L*(£2) for the end-of-step velocity and
weakly order 3/2 in H'(Q) for both; the pressure was found to be
weakly order 3/2 acenrate,

To end this subsection, let us mention the work of Dukoviez and Dvin-
sky (see [32]), where some higher order sphitting methods are developed by
arguments of approximate matnx factorizations,

1.5.3 Viscosity splitting methods

We have seen that most fractional step methods employ a projection step
at some point of the caleulations, thus uncoupling the effects of incompress-
ihility from all the other terms in the equations. Some other fractional step
methods, however, do not fully uncouple incompressibility from diffusion,
still sphitting it from convection, We call them viscosity splitting methods.
As a clear example of this kind of methods, we consider the work of R.
Natarajan (sece |77]) Developed from a general splitting of operators for
linear evolution equations, il consists of the following three-step procedure:

- ,\_.35:‘ —pAu” + Vp" = 4 (1-8dpAu" - (u".V)u"
1 a
Vo' = 0
u'. = u- am T =a &
3 :S-f_ - (l = ﬁ)yAu of (u . V)u = f+4 A - Vyp’
2 H
uﬁ, = 0
u"'”] — u*- gl 1 ; 5% % %
—aE fpAu"" | Vp = f4(1-fpwAun™ —(u™ -V
Vou™ = )
urf\"l = 0

The parameters 8, Ay and Az can be chosen to yield first and second arder
accurate methods. As can be seen, in the first and third substeps an implicit
approximation of the viscous term is used together with the incompressibility
condition, with the help of a Lagrange multiplier related to the pressure, and
an explicit approximation of the convective term 15 considered. The second
substep is a nonlinear problem, which is fully implicit both in convection and
diffusion, This algorithm 13 discretized in space with a Q4P finite element
interpolation.

31



CHAPTER 1. PRELIMINARIES

The method just explained 1s similar to the well known O-method of
R. Glowinsky and others (see [44]). The convergence of two fully discrete
fi—scheres 1o a continuons solution was first proved by E. Fernindez—Cara
and M. Marin (see |3$]), where stability restrictions on the time step were
also provided. Other stability and convergence results were proved in |67,
assutmng a div-stable mixed finite element interpolation. The f-scheme was
alse considered in [108], named as 7% method; a 76 method was developed
there, in which each substep of 73 was split into two, so as to apply efficient
SUPG techmaues to all convective terms appearing in the equations.

The three-step Runge-Kutla scheme of [T4] mentioned in the previnos
subsection can also be considered a viscosity splitting method. In it, each
atep ig decomposed into two substeps: the first one is implicit in viseosity
and explicit in convection; the second one 12 also implicit in viscosity and
coupled with incompressibility. The implicitness parameters and boundary
conditions are chosen so as fo achieve second order accuracy.

Other viscosity splitting schemes were studied by L-a Ying in a series of
papers in a continuous formulation (Etc: ['Tﬁ] and Lhe references thnrcrin). For
one of them, and in the 2-dimensional case, he proved O(44) error estimates
for both the intermediate and the end-of-step velocities in .’.;""(U. T H;l,(ﬂn

Finally, a lineanized stability analysis for a lully discrete, staggered-—grid
finite difference two-step scheme was given in [70]; in this case, the second
step is also implicit in viscosity and coupled with incompressibility.

1.5.4 Other methods

We briefly review here other fractional step methods also present in the
literature.

A two-step projection scheme was considered by J. Donea et al, in [30],
where the first step was explicit both in convection and diffusion, and the
second was a projection step, solved by a discrete PPE; the method was ap-
proximated in space with a @, Fy finite element interpolation. This scheme
ig related to the velocity-correction method, developed and extensively used
by M. Kawahara and coworkers (see, for instance, [68]), employing a contin-
uous PPE for the projection step and equal order Q62 finite element space
interpolation,

The velocity correction method was also studied in [113], among other
schemes (such as a simple predictor-corrector method, Taylor-Galerkin and
Runge-Kutta type schemes) for the linear, unsteady Stokes flow of a slightly
compressible luid, A fractional step method for both compressible and in-
compressible flow in a characteristic-Galerkin formulation was developed in
[112]; in both references, the inf-sup restrictions on the discrete approximat-
ing spaces are shown to he bypassed by the appearance, in the steady state
solution, of a nongero diagonal term for the pressure in the system matrix,

A three-step explicit scheme was developed in [73], and more recently
a two-step, fully implicit, pressure correction method was presented in [51],
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An exphot and an mmpheat Taylor-Galerkin hased t.hr:ec:—m.c-p algmith ms were
introduced in [53]. Other studies on splitting methods can be found in [33],
|99], [Hﬂ] and |:52|, among several others.

1.5.5 Further comments and conclusions

We have now seen the great variety of fractional slep methods for the un-
steady, incompressible Navier-Stokes equations existing nowadays, The main
advantages of many of these schemes, specially of projection methods using o
PPE, are the uncoupling of the computation of the pressure from that of the
velocity, thus reducing the order of the diserete systems of equations to be
solved, and the possibility of using discrete approximations not restricted by
the LBB compatibility conditions. The reasons for this latter fact appear not
to be fully understood up to now; the ultimate objective of the next Chaptler
is to provide a full explanation of why these conditions de not apply to this
kind of methods,

Moreover, the problem of which boundary conditions for velocity and
pressure should be used in fractional step methods and the numerieal hound-
ary layer and tangential slip velocities introduced by some of them have also
been met. Chapter 4 is mainly devoted fo the study of a fractional step vis:
cosity splitting method allowing the imposition of correct velocity boundary
conditions in all substeps, while needing no boundary conditions at all for
the pressure,
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Chapter 2

A reformulated Stokes
problem

As has already been said, understanding the properties of approximations of
the Stokes prnhiam 1.13-1.5 15 crucial when trying to study the full unsteady
Navier-Stokes equations, since il serves as a linear, steady model embracing
the difficulties involved in the treatment of the mcompressibility condition.
Appart from some cases of steady creeping flow with large viscosity values,
this problemn is used as a physical model in mecompressible elasticily problems.

The aim of this Chapter is to provide a stabilized pressure relormulated
finite element method to solve the steady Stokes problem 1,13-1.5 numeri-
cally, which works with 'mest’ element pair velocity-pressure combinations.
These are only restricted by a compatibility condition which is weaker than
the standard inf SUp condition. In pa.rt.ir:ula_r, the satisfaction of this weak
condition i proved for most equal-order interpolations. Under this restric-
tion, stability and optimal convergence both in H' and L*-norms and both
for the velocity and pressure variables are proved. The main idea behind
the method consists of introducing & new variable which at the contmuum
level is the gracdhent of the pressure; a multiple of the residual of the equation
defining this varable is then added to the continuity equation, yielding a
consistent scheme,

But moreover, this method was oltimately studied to inherit the proper-
ties of classical fractional-step projection methods with a continuous PPE
with respect to the stabilization of the pressure, so as Lo explain in particular
why the compatibility conditions on the approximating spaces do not apply
to these methods.

In Section 2.1 we study the stabilizing properties of projection methods
for the unsteady, incompressible Navier-Stokes equations with respect to the
pressure solution; in Section 2.2 we inlroduce the reformulated Stokes prob-
lem, which we armlyst_‘ in Section 2.3, In 2.4 we study the weak compatibility
condition required for the stability and convergence of this method, with the
use of a macroelement technigque. The next Section deals with the computa-
tional aspects of the method and the study of different iterative techniques
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of the block Gauss—Serdel type for the solution of the algebraic system of
equations. Finally, we present some numerical results in Seetion 2.6,

2.1 Stabilizing properties of projection me-

thods

We make here some considerations concerning the discretization of classical
fractional step projection methods such as these of [22] and [101]. The basic
idea for this analysis stems from previous work of [112] and [28], and for the
incompressible case it can also be found in [26].

Since the analysis iz linear in essence, we consider, for simplicily, the
unsteady Stokes equations with homogeneons boundary conditions:

%‘: -~ vAu + Vp = § mQ=(0,7)
Veu = 0 mQx=(01) (2.1)
u = 0 onl=(0,7)

The classical projection method for this problem reads:

“n+1/2 —u” .

g pAu™E uﬂf”i-{) (2.2)

-l o a1 f2

= 6.;1 bV = 0, neut =0 (2.3)
v.out o= 0 (2.4)

The projection step iz usually solved via a PPE, which is deduced at the
continunous level by taking the divergence of equation 2.3 and using 2.4:
1
Apt = HV-H"“M, ll*Vpﬁﬁ' =0 (2.5)
A finite element discretization of each of these equations, not taking into
acconnt boundary conditions (sce Remark 2.']), yields:

Byt (2.6)

yp ;;U"'m- LGP = g (2.7)
| Gttt = g (2.8)

L pr }! Qrynri (2.9)

from 2,2, 2.3, 2.4, and 2.5, respectively, wl\erﬁuﬂ = M+ 8K, M is the
ks matrix, K is the viscous stiffness matnx, £ = 8F™ 4 MU", I comes
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rom the force term 1™, [, 18 the sealar Laplacian malrix and the rest of the
notation was mtroduced in Clhapter 1,

At this point, two alternatives are possible in order to deduce a fractional
step projection method, onee a split-step time discretization as that of 2.2-
2.3-2.4 has taken place, which lead to entirely different schemes, On the one
hand, if a space discretization is infrodnced into the semidiserete problem
2,2-2.3-2.4, it turns out that the linear equations to he finally solved are
2.6, 2.7 and 2.8, These two last equations have the form of the discretization
of a mixed 1:rl'n}.'.~lr.'.m1 and restrictions in the choice of discrete velocity and
pressure spaces still apply. By isolating U™ from 2.7 and substituting it
into 2.8, one finds:

(MG P = G MUt (2.10)

which, followed by 2.7, is the uaual way to solve the projection step i this
type of methods (see [3[]] and [4;(5]}. However, the consistent mags malrix
which appears in 2.10 is too expensive {o be inverted, and mass lumping is
usually employed here, the effects of which are extensively discussed in [46].

On the other hand, if the segregation of the pressure from the velocily 1s
done al a continuouns level, by using equation 2.5, and then a space discretiza-
tion is introduced, the reaulting system of linear equations to be solved is, in
this order, 2.6, 2.9 and 2.7, In this case, by eliminating U™V? from 2.7 and
substitnting 1t into 2.6 and 2.9, one gets:

BU™ 4 StGP™ = [ 0(5H)PP (2.11)
—GHU 4 StL-CMTG) P = 0 (2:13)

It is thus seen that although at the continuous level it is equivalent to use
2.3-2.4 or 2.3-2.5, at the discrete level it is quite different to use 2.7-2.8 than
2.7-2.9. In the latter case, the matrix A = (L ~ G*M () is wtroduced as
a nonzero diagonal term which stabilizes the pressure, in a way that will be
explained in what follows. This matrix, which appeared first in [87| and |I€34],
¢an be understood as a difference between two discrete Laplacian operators.

The matrix A was recently proved to be positive semidefinite in [28], thus
partially explaining its stabilizing properties, in a way which we outline nexi.
The technique employed for this purpose sets the basic grounds of the theory
to be developed in this Chapter. We are still considering no fixed boundary
conditions:

Propesition 2.1:  for any combination of fimile element spaces V), and @y
approzimating the velocily and pressure variables with continuous functions,
respectively, the matrz A is pesitive semadefinite,

PROOF: one defines the space
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VQJI s {'W. € LH(“) {f Vi = VWH iqn € Qh}

which 15 a finite dimensional subspace of LE(Q). One defines, also:

By = W+ VQy,

another finite dimensional subspace of L*({2). Given a busis set {v;,... v, }
of Vi, lel us complete it with {v'y, .., \-",14} C V!, orthogonal subspace of
Vi in By with respect o the L*—product, to form a basis set of £, = Vi A
(Lhr_' wdeces ne and nd refer to the continuous and discontinuous parts of
Vpn, respectively). Given a vector P, let p, € Q4 be the finite element
function with nodal values given hy the components of P, and let us express
Vi as:

1 L nd
Von =%+ %" =3 uvit Yy
i=1 {ul
We want to show that P*AP = 0; one has:

PULP = (Von, Von) = (2,2) + (5*,2°) = o] + |22
On the other hand, calling M~' = (M'), one has:

Fidl

PAMTIGP = S (Vo vi) MG (Vou,v;)

f,,;":'l-
ne  ne
=] k_‘ L ﬂm(vm.V.‘)M,';:lyl(vh"';')
1,321 m i=1
= }: ylnyI(Mnu'Mi;])ﬂd-ﬁ
g l=1
m,'! n‘i.:'"‘ l"lE‘h
- L yr:«UI(L(L Mrm'M.';l)Mlj)
m,f‘:'l 7] i=i]
= 3 YnliMp = |2*
m =1
One gets, thus, PPAP = fZ‘lP = (). ]

The camponents of Vpy, belonging to V', which we call essentially dis-
continuous pressure gradients, are stabilized by the matrix A; we will see
in the next Sections how the other components are stabilized, We ob-
serve that for a given p, © @) with associated nodal vector P, one has;
PAP =0 <= Vp, € V), ie., when Vpy, is continunous. Defining the
space Qf = {q, € Qn [ Vqu € Vi}, we can determine the null space of A
by studying @5, since dim ()5 = dim (KerA). We present some results con-
cerning the determination of this dimension for some common equal order
interpolations,
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We hegin by the simplest one—dimensional case. For i mesh of hinear
elements, let g, © @ have a continnous derivative. Sinee Vi, 15 constant on
each element, it must be constant on §2, and ¢, globally linear. We find, this
way, that dim Qf = 2. If we now consider a mesh of N quadratic elements,
we have 2N | 1 degrees of freedom in @y and N — 1 continuity conditions at
element houndary nodes, yielding dim Qf, = N 4+ 2. A mesh of N elements
with polynomials of arbitrary degree k has dim Qj = (k — 1)V + 2,

In the two-dimensional case the sifuation is different. We consider each
case separately:

s P element: for a triangular mesh with linear polynomials, Vg, will he
constant on each element; if it is continuous, it must be constant on §1,
and g globally linear. This gives dim @, =

e () c“lmnont@ for a mesh of quadrilaterals with bilinear polynomials, we
qh . ..
have that o is constanl on each element with respeetl to z; if il is
i
: ; ik
continuous, it will be constant on # on all the domain, —?—”-" = mly)
(e

Ay,
plobally. By the same argument, -G- = q;(.t:} on §). Since g5 15 a
C*~function on element mt:;mnn I;lu:: H«:hwr%\m theorem implies that
m(y) = 'J)f_',(il!) = (7, that is, ﬂ?:‘. s+ D, E;M = Uy + £ Ths leads

to g, = Cey + Da + Evy + F, so that g, 18 ;,lcjbul.ly a €2y polynomial.
Thus, dim 25, = 4.

In higher d-dimensional cases, it is easy to see that dim Qf = d + 1 for
the F element and dim Q5 = 2 for the Q, element (functions of 5 are
globally linear and multilinear, respectively).

This study of the kernel of the matrix A will be useful in the theory to
be developed in the next Sections,

REMARK 2.1: up to now we have deliverately omitted the imposition
of boundary conditions in the discrefe systems ol equations. If we take them
into account in the projection method 2.6-2.7-2.9, the matrix A should be
modified to A = L — GR{M'G")", where the subscript 0 indicates that the
columns corresponding to all boundary components have been omitted, the
superseript 0 likewise for rows, and the subseript and superseript 7 refer to
normal components on the boundary omitted but free tangential components.
A similar analysis to the one performed for the matrix A, and in particular
an appropriate decomposition of the space Fy, would explaim the stahilizing
properties of fractional step projection methods.
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2.2 Development of the method

2.2.1 'T'he continuous problem

We pretend to develop a finite element method for the steady Stokes equa-
tions with the same stabilizing properties as the fractional step methods just
considered. In 'pu:t:iculiu, we want the matrix A = L—G'M 1 to be present
in this method. We will restrict our attention to a class of Stokes problems
with some additional regularity of the solution: we require the pressure gra-
dient to be in L*({}). Following [43] (page 126), we first define a regular

Stokes pro blem as:

Dsﬂniﬂ@,u_?,l; let §8 © IR be an apin, bounded, connected set; then the
homogeneous Stokes problem:

~vAn + Vp = f inf)
Viu = 0 inf (2.13)
u = (0 onl

is called regular if u € HH(Q)NY and p € H'(Q) whenever £ € LA(0), and
there exisls a constanl C, = 0 such thal:

lulle + el = €5 1f

According to P. Grisvard (see 149]). the Stokes problem is regular when {2
15 of class % 1n any dimension of space. Moreover, when d = 2 it is suflicient
that © be a bounded, convex polygon.

This definition, however, 13 rather restrictive; for our purposes, it is sul-
ficient that p € H'(£2). We will call this case p-regalar:

Definition 2.2:  let 2 ¢ R? be an open, bounded, connected sel; then the
homaogeneous Stokes problem 2,13 is called p-reqular of p ¢ H*(2) whenever
f € L¥Q).

In any of these situations, we consider the spaces: Vy = HA({2), V =
L*(52) and @ = H'(Q2)/IR; this quotient space is isomorphic to the subspace
{ge A () [ [ qdl = 0} We then define:

Definition 2.3; given £ € L*(12), the reformulated Stokes problem consists of
finding (u.p,w) € Vo x Q x V such that:
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~vAu 4+ Vp = f inf}
Vp - w = 0 mnfl
Veou + af Ap FVow) = 0 inf2 (2.14)
n = 0 enl
nVp - m-w = 0 onl

where o = 0 13 a constandt.

This problem is, at the continuous level, equivalent to the p-regular Stokes
problem: its weak form is:

p(Vu, Vv) + (Vp,v) = (f,v), Yvely (215)

(V-u,q) + «(Vp,Vq) alw,Vgq) = 0, VYqeQ (2.18)
(Vey) — (w,y) 0, VyeV  (217)

where the consistent boundary condition n-Vp—n-w = 0 lias been enforced

weakly (see Subsection 2.6.3). For a p-regular Stokes problem, 2.14 has a
unigue solution:

Propesition 2.2: if the Stokes problem 2.13 is p-reqular and £ € L*(Q), then
the reformulated Stokes problem 2,14 has a unique solution (w, p, w), where
(w,p) s the solution of 2.13 and w = Vp i 2. Moreover:

Calf|
74

|ul| =

(2.18)

where Cy was introduced m 1.14.

PROOF;: existence 1 obtained from the properties of the solution (u, p) of the
p-regular Stokes problem; as for uniqueness, let us define the hilinear form

Don (Vo = Q % V) by:

Diu,powiv,qy) = #(Vu,Vv) + (Vp,v) + (Vu,q) 4 a(Vp,Vq)
a(w,Vq) ~ a(Vp,y) + a(w,y) (2.19)

and the linear form:

E(V.q,y) = {f,\-’)
Problem 2,15-2.16-2.17 can then be written as:

D(u,p,wivig,y) = L(viq,¥), Vvigy)e(Vox@xV)  (2.20)
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The bilinear form 1) has the following coercivity property: for any (u, p, w),
one has;

.:’.:)(u.p.w;u.p.w]=Jx||u|[2 + a|Vp w|”

Therefore, if (1, p, w) 1s a solution of 2.20:

vlul* < (Ffu) < [f|[u] < Ca |£] ||n]],

so that the stability condition 2,18 holds. If now (llj,p;,Wl) and (ug, pa, wa)
are two solutions, the difference (wy —wy, pp — pa, Wy — 1) safisfies the homo-
geneous problem, that i, 2.20 with £ = 0, Therefore, by 218, n; = u,, and,
by 215, (Vip1 — p2),v) = 0; Vv & H{,(ﬂ). The continuous LBBE condition
1.25 ensures that V{(py — pz) = 0, so that p; and p, differ by a constant.
Finally, equation 2.17 implies that w, = w,. [

We have obtained, therefore, an equivalent formulation of the Stokes prob-
lem, Although at the continuous level not much is gained, we will see that
this formulation allows 'almost’ any combination of approximating spaces
for the velocity and pressure, mcluding equal order ones, at the expense
of introducing a new variable which at the continuous level is the pressure
gradient,

2.2.2 The discrete problem

We now consider a finite element dispmﬂ&mtimt of the reformulated problem
2.15-2,16-2.17. With the notation of Section 1.3, the approximating spices
for each variable are;

Wv.[! - {Vh = c(‘l(ﬂ) (' Hé(ﬂ) X YK € E".’i-r (VJ;)[N - {r.l"f o ‘F,EJI {’H S Rk.,,}
Qn = {an €C°(R) /YK € O, ()i = qx 0 Fg's qie € f'i'.kp}
Vi = {ynel’(Q) /YK @, (ya)x =¥xoFg, ¥k € qu}

Here, the indeces k,, k, and k, refer to (possibly different) orders of
approximation to the velocily, pressure and pressure gradient, respectively.

The discrete equivalent to 2.15-2.16-2.17 is, then:

H(V“hl vv’i) -I' (VPJ” le) == (f| vh)] Vv.“ & WHD (2.2])

(V- qn) + a(Von, Vau) — a(wy,, V) = 0, Vg, € @y, (2.22)
[vp.l‘nyh] = (wh!yh) = U Vyh i Vh (223}

Existence and uniqueness of a solution of 2,21-2.22-2.23 is established

next, under a mild restriction on the approximaling spaces. Let us first
imtroduce the matrix form of this problem:
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KU + GoP = F (2.24)
- Goll 4+ alP — aG'W = 0 (2.25)
GP — MW = 0 (2.26)

where (7, P and W represent the nodal vectors of ny, py, and wy,, res pectively.
By eliminating W from 2.26 and substituting it into 2.25 we get:

-G + afl-G'MTA)P = 0 (2.27)

The similarity with 2.12 15 now clear; once again, the matrix A = (L
S M) s introduced in the diserete continuity equation, and stabilizes
the pressure.

Equation 2.23 essentially says that the discrete pressure gradient w, is
the L*-projection of the gradient of the discrete pressure, Vpy,, onto the
space Vi Recalling the space Fy, = V), + V@, introduced in Section 2.1, and
the decomposition £, = V), ® V,Il of this space in the form Vg, = 2z 4 2zt
for any g, € Q), equation 2,23 is also equivalent to wy, = 2. We know by
Subsection 2.1.1 that the component 2" of Vg, is stabilized by the matrix A.
We now decompose z into a component vanishing on the boundary, that is,
belonging to Vh,n, and an orthogonal component in V. The first one will he
stabilized by equation 2.21; for the second one, we need to require a stability
condition on the approximating spaces. Namely, we define:

Epy = Vo
Eh.'! = .V;"f.n ﬂ I"’h
Iﬂ‘;._;; = V;,l M Eh

so that By, = By @ B2 @ Epa. Fori= 1,23, we call P ; the L*projection
of By, onto £),;, and for 1 £ 3, Py = Pui+ By and By = By @ By
In this notation, wy, = F)12(Vpy,). We require the interpolaling spaces to
be such that the following stability condifion holds: there exists k] = 0 such
that for all ¢, € @,

Vau| = K |Puis(Van)l (2.28)

This ineguality says, basically, that the second component of Vg, can be
bounded in terms of the other two. As will be seen, condition 2,28 is weaker
than the standard inf-sup condition 1.27, and in particular satisfied by equal
order iterpolations; it is a sufficient condition for existence, stability and
convergence of the diserete solution of 2.15-2.16-2.17;

Proposition 2.3:  if (Vio, @n, Vi) salesfy 2.28, then there exsts a solution
(p, iy W) of 2.21-2.22-2.23; wy, and wy, are unique, py is determined up lo
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an addilive constant on £

PROOF: we will use both the matrix and function notation. Since the problem
is finite dimensional, it suffices to consider the homogeneous case f = 0. By

multiplying 2.24 by /%, 2.25 by P! and adding them up, we get, using 2.26:

U'KU + aP'AP = 0
This implies I/ = 0 and P € Ker A, that is, Vp, = wy + wy € Ej 43, By

H%meMw%P—mﬁwmhM_(%’$
i}
the decomposition Ej 13 = Ejy @ By 2, this implies, by 2.26, that MW, =0,
that is, wy = 0. The mequality 2.28 then establishes that ws = 0, so that

wi, = 0 and Vpy, =0, ]

)I associated to

2.3 Stability and convergence of the method

We present a numerical analysis ol the reformulated method, from which we
obtain optimal error estimates for the approximate solution, based on the
satisfaction of condition 2.28. Most of these results can be found in [26],

2.3.1 Stability
We begin by the following stability resuli:

Proposition 2.4:  assumne that the family of partitions @y, of {1 i3 such that
the inverse ineguality 1.23 heolds, and tha! condition 2.28 also holds, Assume
also that o salisfies:

a bt < «a (2.29)
for some «. = 0 andependent of h. Then, the solution of 2.21-2.22-2.23

satisfies the stability esiimate:

| Canypn, win) ||| < CIf], (2.30)

where we have used the mesh-dependent norm:

1 Cvaan i) Il = wllvall + &IVl + hlyal, (2.31)
_fﬂf' all (vhlq}HYh} = 'l"h.l'-' x cz?h x Vh'

PROOF: the solution (uy, py, wy) satishies:

D(“h!}}fnwh;“’n p’“wh) = y““h”g + “'vph = wfl < = (f1 “"I} (232)
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where [ is the bilinear form introduced in 2,19, The stability estimate {or
1y, is, therefore, the same as for the continuous problem:

C'qlf
||| ---i'-)—-' (2.33)
Sinee wy, = Py (Vg ), 2.32 also says that:
n"lpﬁ.li(vph)lg = ﬂlv}#. = whlq < Oy |r| ||uh|||
go that, from 2.33:
; Calf|
- N i & il 34
|’h.d(vpfl)l - \m (2. 31)
On the other hand, since P;,‘](Vp,«,) = lf';,'u, we have, from 1.23;
1Pua¥en)l* = (Vou Pra(Ven) (2.35)
= (£, Pia(Vpr)) = aluy, Puy(Vpn))
< F B (Vpa)l A+ lall a1 P (Vpn)l
| '
< (i + flall 2Ly (o)
Estimate 2. “{D now follows from 2.28, 2.33, 2.34, 2.35 and 2.29, noticing
that |wh|= |1{VPJ|}|= |th(v7?h)| . I—'

2.3.2 Convergence in natural norms

We now provide a convergence analysis of the method in the natural norms
for this problem, which are the Hﬂ—nnnn for the velocity and the L*-norm
for the pressure geadient, as given by the stabilily estimate 2.30.

Theorem 2.1:  assume the same hypothesis as in Proposition 2.4 hold, but
now suppose that o salisfies:

a h® < a < ah’ (2.36)
with o and o wndependent of h. Then, the solution of 2.21-2.22-2.23
satisfies the error estimate:

[ (0 =, p—pn, Vo —wy) ||| = CE(h) (2.37)
with €' = 0 independent of h and:

5 l ;
E(h) = vm‘i-i’ [la —wil| + = 1:11 (11— vyl q:2£n|p—qh|

REVhi Vo

b inf - + h - 2.
+ kb VeVl 4 y:l‘:ﬁ,h|vp ¥l (2.38)
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PROOF: the discrete problem 2.21-2.22-2.23 can be writlen as:

D(wi, pey Wi Vagno¥n) = L0vhygna¥a)s Y(vaan vi) € (Vip x Qi x Vi)

(2.30)

Substracting 2.39 from 2.20 and laking as test functions (vy, — uy, qn —
Phao¥Yh — WJ.) 13 Vh.ﬂ = (), » V), we oblain:

D(u —uy,p—pn, Vp = wizu — w,p—pi, Vp— wy) (2.40)
= D(u -y, p—p,Vp—wpua—vyp—aq., Vp -y

for all (vi, gy ya) € Vi % @5 x Vi Using the definition of the form D, it is
found from 2.40 that:

alu = up,u—uy) +alwy — Vo, wi, — Vpr) = alu -y u —vy)
HVp = Vpn,u —vi) + b(p —quyu — wp) + a(wy, — Vi, yu = V).

Using the coercivity of a, the continuity of a and b and Schwarz inequality,
we got:

(&5

A |wi V;ﬂh|3 < Ol = a1 ]ju = vy (2.41)

b |Vp = V! |Ju — v
+olp— ] [fa— gy
+ alw, = Vol lys — Vaull

[ = [ +

Let us denote by F,.(-) the error in the H™ norm of either u, p or Vp
and Ly (u) = [|u = Vi, To(p) = |p = anl. Jo(Vp) = [Vp— Vau| and To(w) =
[Vp = yul. Also, let & = |wy, — Vp,|. We can thus write 2.41 as:

Ef(u)-+§'(}'° < C[E(n)ly(w) + Eo(Vp)lo(u) + lo(p)Ey(u) 4 aGly, — V] .
(2.42)

Since:

lvi = Vaul = |lyn— Vol + Ve = Vaul = lo(w) + L(Vp), (2.43)
from 2.42 we obtan!

Bi() + ;% ¢ < O [Ey(n) + hEa(Vp) + o'*C] (2.44)
d

X { fila dule); %]a(u). a‘f’*‘fn(w).ﬂ”“.zn(vp]} |
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The problem now 1s 1o bound Eg(Vp). We have that:

Eo(Vp) = [Vp— Poaa(Vau)l + [Paaa(Van) - Vin (2.45)
= Ve Bapa(Va)| + [Fsa(Van) — Fua(Vpn)|
T | Fa(Van) = Prua(Veu)| + 1Pua(Vpi)l:

Using now the stability condition 2.28, we obtain:

| Pra(Vian) — Paa(Vp)l = ClPa(Van) — Praa(Ven)l (‘2.45)
= CP (V) - 53.,1{Vp;.)1
+ ClPs(Van)| + € Pha( V)l

On the other hand:

|Pha(Van)| = |V — Puga(Vi)l
= |V = Vpl + [Vp = Bhia(Va)l.

Using this in 2.46 it 18 found that:

1P02(Van) = Pua(Ven)| = ClIPa(Van) = Pos(Vpn)l
+ |V = V[ 4+ [Ve = Pia(Van)|
+ [ Pa(Ven)ll

Using this inequality in the estimate 2.45, we get:

Eo(Vp) = (14+C)|Vp— Puaa(Vay)l (2.47)
+ (14 C)Pua(Van) — Lua (V)|
t (14 C)|FralVen)| + C|Vp— Val

Let us bound now the different terms in 2.47. If we still denote by P12
the extension of the projection onto Ey, 1, = Vj, from the whole space L*(£1),
we have that:

Ve = Braa(Van)l = Ve = Puaa(Ve)| + | Praa(Ve) = Praa(Van)l:  (2.48)

Sinee:

(Vp = Puipz(Vp),ys) =0 Vyn € Wy, (2.49)
and Fj12(Vp) — yy € V) for y), € V), we have that
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Ve~ Fras(Vp)l*

(Vp = Pupz(Vp) Ve — Praa(Vp) + Puaa(Vp) — vi)
(Vp = Pa(Vp), Vo —yu)
[Vp— Pya2(Ve)| Ve — yal,

|

that is:

|V~ Pi2(Vp)| = In(w). (2.50)

If “P}.‘u” i& the norm of .P;.I;; a3 & linear operator from L‘(ﬂ) Lo E;,',z.
since this norm is less than or equal to 1, we have that:

|Phaa(Ve) = Poa(Va)l = [Pzl [V — Vau (2.51)
< Io(Vp).

t'faing i:wqualitiﬂs 2.50 and 2.51 in 2.48 we obtain:

IVp = Praz(Van)| < To(w)+ L(Vp), (2.52)

The second term in 2,47 can be bounded using the first equation of the
problem, that 15, 2.21, and making use of the inverse estimate 1,23

1Paa(Van) = Pua(Veu) = (Van = Vo, Pua(Van) — Pua(Vew))

(Ve — Vpr, Pra(Van) — Pua(Vin))
(Van — Vp, Ba(Van) — Bua(Vin)
—afu —up, P 1 (Vagn) — Pua(Vipn))
(Van — Vp, Pa(Van) — Fra(Vin))

(f-' Ui” By (u) + Iy( Vp))
* IPFL.‘I(V‘Q?I) - H;.i(vph)l,

+ 0+ N

Therefore:

|Pua(Van) = Pra(Vpw)| < UU,‘:—”EI(u) + Is(Vp), (2.53)

The third term in 2.47 i (1 4 C')G and the last one is €' 1(Vp). Thus,
using bounds 2.52 and 2.53 in 2.47 we obtain:

Eo(Vp) < C |lo(w) + Io( V) + @E,(u) +al, (2.54)

and using this in 2,44, we get:
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72(u) + ;; Gt < ¢ {ﬁ';(l,x)-f-hz'n(VpH hlo(w) + (h + wle’”)c;] (2.55)

X max { (), o), I u),ﬁ”'*fu(W),.ﬂ”’fu(WJ} :

From the behaviour assumed for the parameter &, 2.55 implies that there
exist constants € and € such that:

Bi(u) < f.'fnu&x{f';(u),:"l_'.fu(ll).hfn(Vp),fu(;p)‘hfn(w)}, (2.56)

¥

&

M

S;;—s max {Il{u]_ :—IIU(u),th(Vp), fu(p), h}'g(w)} . (2.57)

Equation 2.56 15 the error estimate for the velocity, Using 2.56 and 2.57
in 2.54, we obtain the error estimale for the pressure:

; 1
hEy(Vp) < Uy max {11(“)1 ',;fu(“l hIo(Vp), fs(p), Mu(W)}- (2.58)
On the other hand:

(Wi~ Vp| = |V — Vp = Pua(Vpn)| < Ea(Vp) + G. (2:69)

The theorem follows combining inequalities 2.56 to 2.59. [

We have obtained, therefore, 'optimal’ error estimates for the velocity
and pressure solutions, From the approximatmg properties 1.22 and the
definitions of Vi, @ and Vi, it follows that:

Corolary 2.1:  of the selution (u,p) of 2.13 satisfies u € H'(Q) NY and
p€ H'(82) wath » = 2, 8 = 1, then:

[ (0 = wp,p = pp, Vp = wy) ||| = K (2.60)
with | = min{r — 1,5, k,, k, + 1, k; + 2}

It is thus possible to use discrete approximations in which the pressure is
interpolated with polynomials of one degree less than the velocity, and the
pressure gradient with two degrees less. Nevertheless, we will coneentrate on
the case of equal order interpolation,

We have seen that for stability it was necessary that a_h? < «, whereas
for convergence we needed o W < a < t1.|..i11'-=. The behaviour of the coefhi-
cient o 18 mandated by this numerical analysis, and, as in the GLS method,
we take it of the form:
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h? S
a = tip— (2.61)
dr
An E:xtn'nﬂifm of this theory to the case where o is defined elementwise
It ‘ . , e
by ag = ay -—‘-{-, VK © €y, and the integrals it multiplies on 2.22 evalu-
41
ated on each %. could be performed, which would allow the use of less uni-
form meshes, thus opening the door o selective mesh refinement. This local
method would not admit a continuous interpretation, and n it local inverse

inequalities like

G
[onllie = J'-—-]-u;,h; should be used. We have considered
LK

this possibility in some of the numerical examples.

2.3.3 Convergence in L’-norms

We use now the classical Aubin-Nitsehe argument to oblain improved error
estimiates for the velocity and pressure in the space L*(), in a similar way (o
[17] for the GLS method. The shift used in these duality arguments requires
of more regularity of the problem than was needed up to now.

Theorem 2.2:  Assume that 1.23, 2.28 and 2.36 hold, and that the Stokes
problem 2.13 is reqular. Then, the solulion (u;“p;,,wh) of 2.21-2.22-2.23
salisfies;

[ —wy| + hlp- Phloay = C'h E(h) (2.62)
where B(h) was defined in 2.38

PROOF: we begin by the estimate for the velodity Let y € H*(£2) N Y and
vy £ @ be the solution of the regular Stokes problem:

~Ay + V¥ = u-u, mmfl (2.63)
Vy = 0 mfl
y = 0 enl
g0 that:
lyll: = € lu—wy (2.64)

Ixlh < Crfu—

Let yi € Vi o and xy € @y be optimal order approximations to y and x,
respectively, satislying:

R |yl (2.65)
W[l

“}’ = Wl”m <
“x o 1

LR

50
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for m = 0,1. We then have:

o= (u—wpu—mu) = (Vy,V(n-uy)) — (x,V(u—uy)
= ((Y(y = yn) V(u = wp)) = (x = 30, V- (u—us)))

+ (Vyn V(u—up)) = (v, Vo(u—w)) = 7 + Ty + Ty

We bound each term s::pu.r:l.tely:

[ — uy

Ty (V{y =yn), V(n —up)) — (x = xn, V- (u—muy))
Iy =yl [10a = wi)ll + € |x = xal [[(n = up)]|
Clla = w)l| (Bllyllz + & llxll)

Ch [l — )| (= )|

(Rl e T |

by 2.65, 2.63 and the cuntinuit',y of the operator V- on H)(). Moreover:

T, = (Vy}n V(ﬂ = uh})

_'i'(V(P_Ph}:Yh) = "]‘;(V(P- PR)Y = Yi)

1M

] L A
7 Vip—ea)lly —yal = CH |yl I¥(p - pa)l
C b (= w)| (B [9(p — )

by 2.21, 2.63 and 2.65. Finally;

1M

Iy = ~(xnV-(u-uw,))
= :t(V(p i) Vxn) — a(Vp—wy, V)
= (Ve p), Yo = x)) + (V(p=p), Vx)

-t (Vp— W;,,,V()l:h —XJ) = (Vp—w;.,v,)(,)]

< a1V -l 4 V2= wil) (190 - x)] + V)
< al |V (Ve —pu)| + V2~ W)
< Ch|(u—w)| (|V{p=p)| + [Vp—wa|)

by 2,23, 2,63, 2.65 and 2.36. We obtain thr_ error estimate for the velocity
combining the above ineqnalities for Ty, 7% and T4, As for the pressure, we
call z € H1(Q) and £ ¢ L3(Q) the solution q)f the Stokes problem:

-~ Az 4+ VE = 0 inf2 (2.66)
Vez = (p—py) mi)
2z = 0 onl
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Standard results for this problem yield (scn Remark 2.5, page 32 on [].f]5| ):

lzl| = Clp— (2.67)
€l = Clp—pnl

If z), € V)0 now satisfies:

2 —znllm < ChH=™ |[a]y (2.68)

for m = 0,1, wo have:

lp—ml* = (p—pp—m) = (V-2,p—p)

= (V i (z - zh)mP ~Ppn) — (“Jn v(l” B Pl..))
= —(z—2, V(p—p1) + »(V(n-n),Vz,)
= —(z—-2,V(p—p) + v (V(u~u), V(zs — 2))
+ »(V(u—mny),Vz)
< Jz-zlVe—p)l + Cllo— | (|2 = 2a]| + [lz]])
< Chlla]|[V(p=pa)| + €|zl [0 = usl|
< C(h|¥(p—p)| + |[n—ws])[p - pal

and the estimate 2,62 is finally established, (]

2.4 A weakened inf-sup condition

The stability and convergence results just proved rely on the satisfaction of
condition 2,28, The very existence of a diserete solution is affected by this
condition, We will see that this can be expressed in the lorm of an inf-sup
condiﬁml, and then we present an analysis of sufficient conditions for 2.28 to
hold, based on a macroalement technique. This will let us show that ours 1s
weaker than the standard LBB condition 1.27, and prove that equal order,
sinplicial finite element interpolations of arbitrary order in two and three
dimensions and first order quadrilateral interpolations satisfy condition 2.28,
thus providing stable and convergent results of 2.15-2.16-2.17.
We first have the following previous result:

Lemma 2.1: condition 2.28 ts equivalent to the existence of a constant k, = ()
such that:
b (Van vi)
inf sup ———=] =k, >0, 2.69
nean ("h Elﬂ!n.m [va [v?hl) -~ (2:59)
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PROOF: assume thal 2.28 s satisfied; then, for all g, € Q)
(V'-T)n',:lh.m{vqhn = (Ph,m(an).F’J.,m(V:_n.)) =] [’jjlila(vq’i)I!
N 1
> LE' |Praa(V ) |V aul,

and 2.69 holds with &, = 1/k,. On the other hand, if 2,69 15 assumed, for all
a € Qn:

ki =  sup (Van va) _ - (.F’.'.-,”(.V..g!".JLV"J < Jﬁ"‘:_“’(vq" )_l

A a = T 3
vi€By s |V anl [val VGl in |V an] [va)| [V

so that 2.28 holds with &) = 1/k,. L]

We will nuse this equivalence hetween our stability condition 2.28 and 2.69
in what follows to obtain suflicient conditions for it to held, which are simpler
to check in practice than 2,28, Moreover, we will show that this condition iz
weaker than the standard LBB condition 1.27.

2.4.1 Macroelement technique

The ideas used here to obtain simple conditions for 2.69 to hold are an
extension to our case of the theory of macroelement techniques, developed
mainly by R, Stemberg (sm‘ [97”. We take part af our notlation from this
reference. A macroelenment M is the union of one or more elements in @,. For
each b = 0, let M), be a collection of macroelements covering . One of these
macroelements M & My, is said to be equivalent to another macroelement
M, € My, if there exists an homeomorphism Gy, | My — M such that:

(i) Gul(Mo) = M,

(ii) U M, = U;“l Ko, then M = U;’_I Gul(Koy), where Ko; € 94,7 =
A

T,

¥FITT

(1i1) G, = Fre o F;.:, where K = Gyu(Ky) and Fg and Fg, are the
mappings from the reference element KtoK e 6y, and to Ky € Oy,
respechively, introduced earlier.

Notice that equivalent macroelements can be associated with the same or
with a different finite element partition. Thus, with this definition, { M }j=0
is split into a finite number of equivalence classes Fey, ..., Fe, .

Let us consider the spaces Vigo, Qury Vg, Ey and By 1= 1,23, defined
as their analognes Vi, o, Qn, Vi, By and By, 4= 1,28, but replacing the
partition ®), by the partition of a macroelement M € M, (the zero mean
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restriction is nol imposed on Q). Also, Py ; are the orthogonal projections
from [y to By, 0= 1,23

We first show that il a condition like 2.28 holds in a macroelement, then
it also holds m 2

Lemma 2.2:  of there exisls a constant ' = 0 such thal

IV an|p = ClPraa(Van) s Vg, € Qy, (2.70)
Jor all M € M,,, then ondition 2.28 holds for a constant k' independent of h.

PROOF: let gy € Q) and let va; be the extension by zero of Pui(Van) 1 =
1,3, to the whole domain §2. Consider alsa the vector field:

Vi =2 Vi =3 (Vara + Vara), (2.71)
Fl

A

GIUETI}/, Vg € EM,'[ L Eh.]_ VM and thus EM Vi € Ehll- Liet Vjiz ©
Epaze Sinee vpazlae € Earaz = El&:,a (orthogonality 1n Ey) we have that:

[ Vhiz® (Z Vm.a) dft = }_-: f Viiz|pr - Vara 482 = 0, (2.72)
vh M ar M

that is, 3o Viaia € f‘}'jf‘lu = En,a. Therefore, vy, in 2.71 belongs to E;,_w.

Let Ny be the maximum number of macroelements to which an ele-
menl domamn belongs, and Ny the maximum number of element domains
per miacroelement, Let us bound first vy, |:

va]? = L(%vm)a d{2

f (Z(Vm)a + 2 Vi * VM') df
Ay M Mt AN )
< 2: [1.(,,,,]"I + 2 E Ve | [Vpet|
M

MEM AOMTED
< SvalP+ 3 (val + vaof)
A M;"M'.Ml"‘lM'#l'ﬁ
.{ (l'| NMNH)Elvmrﬁ
M
=

(L4 NulVie) 3 [Vauli
M
< (L4 NylNg) Nu| V|,

that 1s, there exists a constant Oy = 0 such that:

[val < Col Ve, (2.73)
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On the other hand, from 2.90 it follows Lhat:
A Van- v d = 2,;[“ Van - var dS2 (2.74)
~ 2: | Paraa( Van) [

= = }_, |v‘ﬂ||m

E-.;;lVfM!-

L%

I

But, using inequality 2.73:

[ Vauvi 40 = [ Puaa(Van) - vi 42 £ Gl Puaa(Van)| (Vanl.  (2.75)
The lemma follows combining inequalities 2.74 and 2,75 with k' = Co0? [

The next step is lo give sufficient conditions for property 2,70 1o hold.
First we give a rather technieal lemma;

Lemma 2.3; Let M be a metric space with distance dist, X and Y two subsets
of M and {Y.u}n:-u i fumﬂy r.nf subsels ofM such that:

lim [mp inf dnt(m. )] = ]"'35 [wp inf dist(y,,y)| =0, (2.76)

Ll i C‘J}I H Y HI‘E]

Let Z be another subsel of M such thal ¥ C Z and Y, C Z [or all
p = 0. Consider a family of funclions {[f, bisa from M < M to IR thal
converge uniformly m X x Zloa ﬁmction f um.'fumnfy conbinuous wn ils
second argument. Then:

lim [mf sup |f.(a w)l] = iﬂm:?]ﬂm-yﬂ- (2.77)

A0 mEX LUEY,

PROOF: Let € = 0 be given. Simce {f,} converges unifornily to f as g — 0
in X x Z:

I = pale) - Yp< o [fulz,y) = flzy)| < % V(z,y) € X % Z

Thus, if g < 1



CHAPTER 2. A REFORMULATED STOKES PROBLEM

il su i < il |su #,y)— [z, 9)| + s .
aEX ”Er};r U}‘( J)l oEX yE }i"-: |f“( N ” J( U)l ::'J}'l': |f(z y)|
5 +inf sup |f(z, v (2.78)

q:: 2
3 wEX yEY,iIJY

Given ¢ € X, let:

Sa(x) = sup_|f(z,y)| = Su(z) = ﬁl}g|f(m.y)l
WE

[}E?,;UY

Since f is uniformly confinuous in its second argument in X' % Z and
Y. Y. €2

b = 8(e) o dist(y,v') < & = |f(z,y) — flz,y') < ;, VeeX, wy'eZ

(2.79)
Condition 2.76 imphes that:

g = pa(dle)) « Yy < pg, Yy, € YUY, dyeY [ dist(y, y) <4 (2.80)

On the other hand, we have that:

Tyu = vule) € VuUY [ [f(eym)] = Sule) — 5 (2.81)
VyeY, —|f(zy)l = —Sole) (2.82)

and therefore:

FERMES f(‘t'rlf)l = Su(=) = So(z) — ';:;'. Vyel

If = !11in{;.f.|,,j£.g} and we lake y such that condition 2.80 holds for the
y, that verifies condition 2.81, from condition 2.79 we have that:

€ £ €
§ = S‘,(.‘Z:) = S,)(:I'.l]— 5

that is:
sup |f(z,y)| < Ef: - sup | fz, y)|
VEY, LY 3 ey
Using this in inequality 2.78 it follows that:
inf sup [fulzyy)| < ind ap | y)] + ¢ (2.83)

One can similarly show that if # is small enough:

H6
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inf sup |f(e, )] < inf sup g |oe 2.84
WEX ,,r_:)lf (2w pEX H.;J',. [z w)l 4 (284)
The lemma follows from inequalities 2.83 and 2.84. [

‘This result is used now o prove the following:

Lemma 2.4;  Lel Eei be one of the equwalence elasses antroduced above, 1 €
11,2, ....,n.}, and suppese thal the following condition holds:

AMy € Eey such that Vg€ Qu,
fM’ Vg-vdM = 0, YWeEy.s = Vg=0. (2-35)

Then, there exisls a constant O = 0 such thal, for all M € Ee;;

|V{(]M = Ui”’m.l:l(VtI”M Vg € Q. (2.86)

PROOF: Lel us consider the following function defined on the class Ee;:

V= (Va, V)ae
AM) vé%f;f veﬂgj:u |Vr}|M|VlM'

Inequality 2.86 15 equivalent to saying that A(M) = 1/C; for all M € Ee;
(this can be proved as Lemma 2.1).

From assumption 2.85 it is easy to see that (M) > 0 for all M ¢ e
Since M 15 defined by the coordinates of its nodes, # can be considered as
a funection of these coordinates. Due to the quasi-uniformity of the fam-
ily {@}y=o (or simply due o ils non-degeneracy), all the nodes are isolated
points of IRY, and therefare they form a compact sel. Thus, A can be con-
sidered as a function defined on A compact set. To prove that it 15 bounded
below by a positive constant it 18 enough to prove that it is continuons.

Let M, M' € Ec;. We want to show that S(M') — A(M) as M' — M.
Let G - M —s M’ be the homeomorphism that relates M and M/, We denote
its Jacobian matrix (piecewise continuous) by DG, Let also:

(2.87)

i =] i LS r -1 !
J = max DG |(x), J' = min, DG (x), (2.88)
where | | stands now for the determinant of & matrix. Here and below, we
use the symbol * to refer to quantities associated with M'. The two functions
in 2.88 depend on the macroelement M and tend to 1 as M’ — M, that is,
as G — L

Let us write the function 3 as:

5%
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S = (vq o
P = a0 ORI g

where Qyo = {9 € Qy | Vg # 0} and 8 is the the unit sphere of Eira-
Let v/ € Eyins, q' € Quep and v, g the pull-backs of v' and q' (that is,
veGWV = vioG, g=Gq¢ = ¢oG). I can be readily checked that:

fM, Vig -vidM' = /;, Vq:DG ' v|DG|dM,
/v’vv’c{.M’

] M'

fyo V' VA = /M (Vg-DG™). (Vg- DG [DG|dM.

/Mv v|DG|IM,

If we introduce the abbreviation Vg = Vg-DG " and denote by (-, -) .4
the L* scalar product in M with weight [DG|, we have that:

(Ve V)it (Fo V)

e = 7l v V), 2.89
Ve Vedlontvion 2V eY) (289

F(V'g ') =

where | - |50 i5 the norm associated with (+,)g

Since DG i8 1 mnmngnlm if Vg q ;-5 0 thr*n Vg #0, tl-m,{, 15,1 ¢’ € QM*U
then G*¢' € Quo. v € 8§ let us see where does v = G*v' helong. Let
vl = vi v, with vi € By and vi € Fyes Since V' is continuous and
vanishes on dM' and G is continuous, G*v| € Eyy. In general, GV, €
Lpgaz for all viy € Fyeqs. However, Gvi ¥ Eyaif vl € Era. This is due
to the fact thal:

Vs € Byas, _[M iz G VLM = --/M’ (vizo G™1) - vi[DGlIM, (2.90)

which is in general not zero since vi;0 G DG| ¢ By s if [DG| is not
continuous. Therefore, if 5, = G*S' then S, # S.

Using the previous results, the function 3 evaluated at M’ can be written
[t

AM') = inf sup fo(Vq,v). (2.91)

qEq AT i) vE‘_r

Now we use Lemma 2.3 to prove the continuity of 4. Let:

F =

. 1
3 = {V i EM = K |VIM E 2} " (2192)
We have that:

G V2, = er v VDG A, (2.93)
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and thus /77 = |G vy = V', with j' and J' defined in 2.88, If we take A’
sufficiently close to M, i’ = 1/d and J' < 4, so0 that § € Z and 5, C Z.

It is now easy to prove that f(Vg, v)is uniformly confinuous in the second
argument in Qu0 % Z and that f.(Vg,v) converges uniformly to f(Vg, v)
in Quo % Z. To apply Lemma 2.3 it remains to check condition 2.76 with
Y =8and ¥, = 5, the parameter g being now replaced by the function G
and p —=0by G » L

Let ¥. € 8. C By and v/ = v + v§ € 8 such that v, = G*v/, with
vl € Eyy and v € Eyry Then v, = G*v] + G vy, with Gvi € Ly but
G vh & Eys (in general). Let:

G, e = 9C
DG TG T Wi (20}

It is casily verified that the second component in w helongs to £y s, and
therefore ¥ € 8. A simple calculation shows that dist(ve, ¥) = 0 as G — I,
that is, as 3/, J' — 1. Henee:

w=Gv +

sup inf dist(vg,v) — 0 as G — L (2.95)

va€3a Ve

Also, given ¥ = vy + vs € 8, with v; € E, . and vy € Eya, let:
vio G - G'w'
L —arrremeermru S gt
IDGlo G |w!| e
It turns out that v, € S, and that dist(V4, ¥) — 0 as G — 1, thus
proving that:

w =vloG™ - (2.96)

sup inf dist(ve,v) <0 as G L (2.97)

ves voele
From 2.95 and 2.97 it may be concluded that hypothesis 2,76 holds in
the present. situation and ultimately that the function # defined in 2.87 is
continuons, which is what had to be proved, (]

Combining Lemmas 2.2 and 2.4 we obtain the following result:

Theorem 2.3:  Suppose thatl for all the equivalence classes Fej, @ = 1.0,
of macroelements of {@) }pmo condition 2.85 holds. Then, there exists a con-
stant k, = 0, independent of h, for which the inf-sup condition 2,69 is verified.

PROOF: let € = min{(y, ..., C,, }, where €} is the constant for the equivalence
class Fe; established by Lemma 2.4, Since for all A = 0 functions g, € ¢,
restricled o a macroelement M & M, belong to (4, we are in the hypothesis
of Lemma 2.2. The theorem follows from Lemma 2.1. (]

We remark that condition 2.85 is the key to prove thal a finite element
interpolation is stable for our method; it is similar to the condition obtained
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in [97] for the standard LBB condition, but weaker than it: the space where
v runs here ( Ky, 13) 18 larger than in 1]1:‘ standard case (Fy, 1 ).

2.4.2 Equal order interpolations

We prove now that condition 2,28 is fulfilled by simplicial equal order finite
element interpolations with pelynomials of arbitrary degree k on the sin-
plex, both in two and three dimensions. They are only restricted by a weak
condition on the meshes at the houndary that will be specified next. This
result is achieved by applying the macroelement technique just considered,
whieh ean also be extended to the case of equal order interpolations with
Im[ymjpmisds of QJp on qua.cl rilaterals and hexahedra,

Proposition 2.5:  lel ky, = k, = k, = k in the defimition of Via, @) and
Vi, and K be the standard simplex in IR%. l:t:!. Ee; be a class of equivalend
macroelements with reference macroelement M such that there is al least one
interior vertex, and, ford = 3 and k = 2, no element K M has three faces
on OM. Then, condition 2.85 1s sahaﬁed on M.

PROOF: we prove condition 2,85 by impoesing continuity of Vg, on M rather
than orthogonality to £, 3, due to the diffienlty of characterizing this space.
Orthogonality to K ; is enforced directly.

Let us consider the case of linear elements (k = 1) first, both for d = 2
and 3. For a given g, € Q), Vg 15 constant on :.u.ch element K © M if we
assume Vg, is continuous, it must be constant on M. Since we have assumed
the existence of at least one node P interior to M orthogonality of Vg, with
respect to velocity fields which take a value of one on P in each of the space
dimensions and zero elsewhere, implies the vanishing of Vg,

Let’s now turn to th? case of higher order elements (& = 1). Given
an € Q), for each K C M the components of (V) belong to P (K).
Thus, if these components are continuous, they can be determined by their
nodal values on a discretization of M with the same elements K but with
nodes corresponding fo an interpolation with polynomials of degree & ~ 1.
Let nyy be the numhber of nodes in the interior of M, denoted by |Ht(M] and
nj—1 the number of nodes associated lo an mi.l:rpulu.tmn with polynomials
ol P_y. Since the orthogonality conditions with respect to all continuous
vector functions that take arbitrary values at the nodes of Int( A7) are linearly
independent restrictions on Vg, it 15 enough to prove thal wy, = npeoy. .

Let's consider the two-dimensional case first; for any triangle K © M,
there are (k— 1)(k — 2)/2 nodes associated to P, on Int(K) and (k4 1) on
each edge of K (including the vertices). Thus, there are (k—2)(h—3)/2 nodes
associated to P y on Int(K) and k on each edge of K. If an element K lies
on Int(M), its contribution o . is clearly greater than to ny ;. Thus, we
restrict the analysis to the boundary, Suppose first that all the elements have

6l



CHAPTER 2. A REFORMULATED STOKES PROBLEM

al most one edge on the boundary. Let n,, denote the number of elements
i M with one edge on the boundary, and n.q, the number of edges with one
node on the boundary; we study the various contributions to the difference

Higp — Mgy

o From element interiors: na. x [(k—1)(k —2)/2 - (k- 2)(k - 3)/2] =
Tigle % (k — 2)

e lrom edges with one boundary vertex (including it): neg, < [k—k| = 0

¢ From boundary t:dp;r;a; of which there are n,, due to the assnmption

on M- Tele % [0 — (&: - 2)1 = —Mele X (K — 2)

This proves that nygy — ne-1 = 0 in this ease, If we now include triangles
with two edges on the boundary, the contribution to ny is (k—1)(k—2)/2+
(k — 1), whereas the contribution to ny_y is (k- 2)(k — 3)/2 + 2(k - 2) + 1.
These two quantities are equal, so that we still have ngy — 0y = 0,

Finally, in the three dimensional case each tetrahedron K © M has (h—
1)(!0 2)(!.*. 3)fﬁ nodes of F&(K) omn lnt(K’), and (k — 2)(.’:7 = 3)(&‘. = 4)}6
of Pp_i(K). As before, we first consider the case in which the elements have
al most one face on M. If n.. is the number Di: clements with one face on
dM, ng. the numher ‘nf fnces with one edge on aM, Pedy the number of edges
with one node on M and nyae the number of edges on t‘}ﬂ:f. contributions
to nye = ng—-y are:

e From element interiors: nge = [(k — 1)(k = 2)(k - 3)/6 — (k- 2)(k ~
3k —4)/6] = na. x [(k—2)(k —3)/2]

# From the interiors of faces with one edge on the boundary: ng. % |(k -
)k —2)/2 = (k—2)(k—3)/2] = nge x (k—=2)

e Irom edges with one boundary vertex (including it): neae = [k~ k] = 0

s From the interiuﬂr of boundary faces, of which there are ng, due to the
agsumption on M: g, % [0 (k=2)(k—3)/2] = —ngex(k-2)(k—3)/2

s From boundary edges: nyg % [0~ (k — 2)] = —npgr ¥ (k —2)

consider elements with two faces on OM , for each of them g, increases by
(k= 1)(k = 2)(k = 3)/6 + (k— 1)(k — 2) 4 (k ~ 1), whereas the increase of
ny—y 18 only (k — 2)(k = 3)(k = 4)/6 4 (k - 2)(k — 3) + (k- 2). ]

SINCE Mifge = Npdy In general, we find again that niy —nyy = 0. If we now

We have proved, in summary, that simplicial equal order interpolations
of arbitrary order salisly condition 2.28, thus yielding optimally convergent
results, We now prove that this holds for equal order bilinear quadrilateral
mterpolations, under a mild nondegeneracy restriction on the mesh, to he
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specified next. The proof does not requiere of the macroelement technique,
since it 18 given in the whole of the domiain:

Proposition 2.6:  assume that the discrelization @y of the dormam §0 18 such
that there are at least two nodes in the interior c::f!‘l, t'f d = 2, ar three nodes
if d = 3. Consider a finite element interpolation such that k, = k, = k; = |
in the definition of Vio, @y and Vi, and K is the unil square (d = 2) or cube
(d=3) Then, condilion 2.28 holds.

PROOF: let us start by the two dimensional case first; we will show that
condition 2.85 holds on all the domain 2. We know by the study of the
kernel of the matrix A = L — G'M'G of Section 2.1 that gradients of
diserete pressures p, which are orthogonal to Ej 4 are conlinuous, and that
[or the @@y element this can only hold if py, is globally a 2y function, thus
determined by 4 arbitrary constants. Orthogonality of Vpj,, which depends
on 3 arbitrary constants, with respect to velocity fields which vanish at the
boundary of 2 and take arbitrary values at the two interior nodes of the
mesh implies the vanishing of Vpy, since there are 4 of such fields that are
linearly independent.

In the three dimensional case, discrete pressures with a continuous gra-
dient are determined by 2* = 8 conslanis, so that 7 linearly independent
restrictions are enough to ensure the vanishing of Vp),. Since we are assnm-
ing that there are at least 3 interior nodes, orthogonality to velocity vectors
defined from these nodes amounts to 9 independent restrictions, which imply
that Vg = 0. [

We conjecture this result to be true also for equal order quadrilateral
(and hexahedral) finite elements of higher order, but have not come up with
a definite proof of this fact yel.

2.5 Computational aspects

We have studied several possibilities for the solution of the linear equa-
tion system 2.24-2.25-2.26, guided by some of the experience on the nu-
merical solution of algebraic systems existing nowadays. Direet Gaussian—
decomposition-based methods did not look appealing for snlving 2.24-2.25~
2.26, due to the large bandwidth of the system matrix for this problem,
which is neither symmetric (al“mugh it can he symnmtrizmcl) nor positive
definite, We propose iterative schemes which take advantage of the structure
of problem 2.24-2.25-2.26, rather than standard Gauss-Seidel methods, we
considered ganﬂrnlimer.l block Gauss—Seidel schemes, in which each iteration
is decomposed into a number of smaller linear problems with a symmetrie,
positive definite matrix, if possible.

We first present in 2.5.1 a simple scheme which we call uncoupled block

G2



(CHAPTER 2. A REFORMULATED STOKES PROBLEM

Gauss-Seide] method. In i, each equation from 2.24-2.25-2.26 s used lo
oblain updated values of one of the three variables, velacily, pressure and
pressure gradient, from the others, This way, each of the smaller uncoupled
subsystems has a symmetric, positive definite matrix, K, L and M respec-
tively

The slow convergence rates showed by this method led us to consider
another scheme, which we call conpled block Gaunss-Seidel method. In it,
the velocity and pressure are solved together with an old pressure gradient,
which is then updated using the new values just computed. In this case, the
matrix for the velocity-pressure subsystem 15 either symmetnic or positive
definite, but not hoth at a time. The matrix for the pressure gradient is
again the mass matrix. For it, the well known lumping technique was also
considered in both the coupled and the uncoupled schemes, and comparison
results with Lhe consistent mass malrix case are provided,

Convergence results for the coupled block Ganss—Seidel scheme are much
better than for the uncoupled one, but still net competitive. In 2,53, we
present some technigues to accelerate this convergence, such as successive-
aver-relaxation methods or equation rescaling.

As mentioned earlier, 4 possible variant of the reformulated method 2.21-
2.22-2.23 is the use of a local parameter ag on each element K, specially
suited for nonuniform meshes, We present some numerical experience con-
cerning this possibility in 2.5.4.

In the implementation of the method we have studied 2-dimensional prob-
lems with interpolating polynomials of ) and P on triangles and @, and
()s on quadrilaterals. Where possible, the same mesh nodes have been used
to define the elements for all four interpolations. In confined flow problems,
where the velocity 18 prescribed on all the boundary, a pressure datum of 0
is enforced an the last node in the global numbering.

For a homogeneous external force £ = 0 and a nonhomogeneous boundary
condition, the Stokes problem scales with the viscosity, in the sense that if
(u,,p.) is the solution associated to a value of & = 0, one has that n, = u,
and p, = p;. We have therefore considered nnit viscosity throughont.,

2.5.1 Uncoupled block-Gauss—Seidel method

We consider the following ilerative scheme for the solution of 2.24-2,25-2.26,
where P? = 0, W° = 0 and (7% contains the prescribed velocity boundary
conditions and is zero elsewhere:

KU' = F — GyP"! (2.98)
alP' = aG'W' 4+ G (2.99)
MW' = @GP (2.100)

Fach subsystem has a symmetric, positive definite matrix; they are solved
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by the conjugate gradient method, fo a given tolerance .. In the lumped
mags matrix cage, 2.100 is replaced by:

MEWY = apP (2.101)

where MF is the diagonal lnmped matrix of M. In the Py element case,
rather than by the standard row—sum technigue, M* is computed by a nodal
quadrature rule obtained by splitting each P element into 4 Py elements, in
order to avoid null entries,

The scheme 2.98-2.99-2.100 was iterated to convergence at a given tol-
BEANCE Eupe. LDE ntluwing convergence criterion was chosen:

Bre(0F, P, W U2, 2550, Wird), & (2.102)
Ut = U PP, W-WE,
U [P ’ (Wl oo

max (

where [Xlg iz the Enclidean norm of a vecior X

Other permutations of the order in which the variables are updated in
2.24-2 25-2.96 were also considered. Two sets of three different permuta-
tions, even and odd respectively, are possible. Let us call 1 to 2,24, 11 to
2.25 and 11 to 2.26, equations which are used to update the velocity, pres.
sure and pressure gradient, respectively, from the last updated values of the
other variables; the initialization of the pressure as zero and the absence of
boundary conditions for the pressure gradient imply that T1I-1-T s equivalent
to I-II-IIT, and 11111 equivalent to T1-1-1I1. Four possibilities are therefore
left, We performed some tests with them which showed that they all pro-
vide prm'.tinally identical resulis, and chose I-11-111 (llmt is, 2.98-2.99-2,100)
throughout,

As a tesi pmblen'q, the standard cavity flow case was solved, which has
hecome a compulsory benchmark problem for incompressible flow codes. We
took the ramp case, in which the velocity is zero at the two upper corners
and one in the horizontal direction at the rest of the upper lid. A uniform
Jr;cs]‘ of 21 x 21 nodes was nsed to discretize the unit suare; it 18 shown 1n
Figure 2.1 for the Py element. The pressure was set Lo zero at the lop nght
corner.

We put off [or the next Section the analysis of the resulls obtained for this
problem, and concentrate here on the performance of the numerical scheme
to reach a solution. We allowed a tolerance of ey = 1077, A study of the
influence of the tolerance for the conjugate gradient method to solve each
subsystem of equations on the convergence of the whole ilerative scheme
showed that a minimum number of iterations was needed for ¢, in the order
of 107*, which is the value that we selected.

We tried to use values of the coefficient a of the order given by equation
2.61, with a value of ag near unity, Butl we found that larger values of ay,
were needed for the iterative scheme to be stable; when a low value of this
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Figure 2.1: Cavity llow, uniform 21 = 21 mesl.

parameter was used, the scheme diverged. We will see in the next Section
how this affects the accuracy of the solution. We Hun.“}' selected wg = 40 [or
the 7 and @y elements and g = 5 Tor the Py and Js.

The results obtained for this problem, in the form of nnmber of iterations
needed for convergence and CPU time spent, relative Lo the Py elenmient case
with a consistent miias malrix ('m percantage of that caze), are gi\fﬂn i Table
2.1 for the four elements considered, botl with consistent (C) and himped
(L) mass matrix. As can be seen, this scheme is too costly, due to the
large numbers of iterations needed for convergence, specially in higher order
elements. The Py oleément case with a lumped mass matrix did not converge
atoall

Flement P Pl Q-C | QL PC Pl | QO | Oyl |

Aman o

lterations W 516 |26 50 212 : 571 L L)"J |
Relaiive cost || 100 65 6l 30 |22 . 316 0o |

Table 2.4: Convergence of the uncoupled block-Ganss-Seidel method,

-
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2.5.2 Coupled block-Gauss—Seidel method.

We now infroduce another iterative scheme for the solution of 2.24-2.25-2.26
with better convergence rates than the one just eonsidered, The veloeity and
pressure are now coupled in a unique hnear subsystem, in which the value of
the pressure gradient al the previous iteration s nsed; this variable 1s then
updated with the new pressure. With the same initializations as before, the
scheme reads:

KU + GP' = F (2.103)
-G 4 alP' = aG'W' (2.104)
MWt =GP (2.105)

Notice that the equation system 2.103-2.104 for (U",F‘:) infroduces a
Laplacian term in the diagonal of the system matrix, in a similar way to
stabilized methods of the GLS type. In fact, for linear elements the system
matrix of this problem ig the same as that of the GLS method 1.30; 1t is
positive definite but non-symmetric, The solution (Ui, P'-) can be oblained
in several different ways, such as a direet LU decomposition or the GMRES
method, We tried these two possibilities and decided to use the first one,
since the size of the problems that we deal with is small enough as to allow
a direct method of solution.

Mass lumping was also considered for the solution of 2.105; when a con-
sistent mass matrix was used, we tried solving 2.1056 by a direct method and
by the conjugate gradient algorithm. In the latter case, and for a tolerance of
€eg = 107 it took about 10 iterations to find the solution in the first global
iherations, but this reduced monotonically to 5 in the last iterations, as the
initial approximation was closer to Lhe solution, Nevertheless, we chose to
use a direct method for 2.106.

Once again, due to the mmitialization of the pressure az gero and the ab-
sence of boundary conditions for the pressure gradient, it 15 inconsequencial
to start the iterations by the pressure gradient equation 2.105 or by the
velocity-pressure system 2.103-2.104.

The same convergence criterion 2.102 was used, and also the same test
case and mesh. We took a as in 2,61, with ag = 1/3 for P and @, and
g = 1/9 for P and Q3. We present the convergence results for this case
in Table 2.2, This time we show the number of iterations for convergence
with a tolerance of e, = 107%, together with the CPU time spent in the
firat iteration (as a percentage of the total time i each case) and the total
CPU fime relative to the P-C case (in percentage of that case). We split
the time of the first iteration to emphasize that when using direct methods
to solve the linear subsystems of equations 2,103-2.104 and 2.105, 1t is the
first iteration that requires maost of the cumputing time, since it 15 then that
the system matrices are assembled and factorized. The remaining iterations
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Element P-C | P-L | ¢4-C | Q-L | F-C | B-L _C;J_?_'G, Q?.‘l‘

|tt'ru.t.igns 16 12 35 13 41 45 _lilﬂ | 42

15t. llu‘qht)_lu 76 74 66 71 67 54_ _59 i Ej_fl

s

i‘”’“‘l CPU time || 100 7 106 61 110 B8 | 179 109

Table 2.2: Convergence of the conpled block-Gauss—Seidel method.

consisl of the computation of the RHS vector and a backward and forward
substitulion only.

It can be seen, again, that linear and bilinear elements show better conver-
gence properties than quadralic and biquadratic ones, and that mass lnmping
also accelerates the convergence. For the reference P-C case, the computing
timne for this coupled scheme was 34% that of the uncoupled scheme for the
SHIe Case,

Finally, we present in Figures 2.2 and 2.3 the convergence history of each
variable for all four interpolations, from which it can be deduced that it is
the pressure and pressure gradient that dominate the convergence. It can
also be observed that in the first two iterations there is a drastic reduction
of the error,

2.5.3 Acceleration of convergence

The convergence results of the coupled block-Gauss-Seidel method are still
notl satisfactory. We employed simple techniques Lo accelerate this conver-
gence, which yielded better resulis.

We first tried rescaling the different subsystems of linear equations in
2.24-2.25-2.26, to achieve a better conditioning of the global system matrix,
hoping this way to accelerate the convergence of our block-Gauss-Seidel type
schemes, Since the parameter o multiplying the Laplacian matrix in the
pressure equations is of order £*, too small for a diagonal term, we multiplied
this equations by a parameter 3, and replaced the pressure varable P by

R = %F‘, so Lhat 2.24-2.26-2.26 becomes:

KU + BG.R = F
—BCU + pflalR — PaG'W = 0 (2.106)
AGR — MW = 0

A dimensional analysis (by comparison with the diagonal term of the first
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t.‘qlmhibn) suggested taking Ao = v, where 7 is a free (dimensionless)
parameter of order 1, The definition of & then pives:

B 2
- T Jaah

[ can be shown that this scaling of equations is equivalent to o diagonal
preconditioning strategy.

We performed several tests with the conpled-block—Gauss-Seidel scheme
2.103-2.104-2.105 applied to the rescaled equation system 2.106 and, after
varying the value of 4 by several arders of magnitude, we needed exactly the
same number of iterations m each case as for the original problem 2.24-2.25-
2.26, that is, those of Table 2.2, Nevertheless, sealing of equations iniproved
the performance of the iferative GMRES method when it was used to solve
the velocity-pressure system of equations,

We then considered standard successive-over-relaxation methods applied
to 2,103-2.104-2.105, with the same relaxation parameter w = 0 for all three
variables. Thus, this scheme was replaced by:

A (2.107)

KUY + Ggff = F
~@ir 4+ abPt = ag'wt!
MW = QP

where the variables are updated by:

U= wl' 4 (1=w) U
Plo= WPy (1—w) P (2.108)
W o= wW 4 (=)W

Different optimal relaxation parameters were found numerically for each
element, all of them in the range (1,2); they all lowered substantially the
number of iterations needed for convergence, The results are summarized
in Table 2.3, where we give the optimal relaxation values for each element
together with the number of iterations needed for convergence and the total
computing time, once again as a percentage of the reference Fi-C case of
Table 2.2.

We then allowed the puaﬁibi].ity of USITE & different relaxation parameter
for each variable, w,, w, and w,, respectively, so that 2.108 was replaced by:

U = w, U 4 (1= w,) U
P'o= w, P4 (1l —w,) P
Wl' . UJE W‘!' _l_ (1 - wy)wi_i

7
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_ El{.‘lll‘mlﬂ._ . _P_1G Pv l:_ Q'rc Ql'Ll Fg“c | F-,;_-L C?g-ml ICB).;.)_-L

W 1.3 | 18 | i

L=
—

A L he | LY L %12

Iterations || 7 | 7 | 12 | 12 | 10 | 10 | 30 | 30

CPU time || 90 | 76 | 00 | 76 | 93 | 8 | 122 | 100

[terations T 7 10 10 9 9 25 25
witl_l Wy = 1

Table 2.3: Convergence of the relaxed coupled block-Gianss-Seidel method.

We found slightly improved canvergence results only when we set w,, = 1,
i.e., no relaxation for the velocity, and w, and w, equal to the optimal value
for each element. We expected this (o be the 'hest' choice according to the
convergence histories shown in Figures 2.2 and 2.3, where il 15 observed that
it is the pressure and pressure gradient that slow the convergence. We also
show in Table 2.3 the number of iterations for convergence in this case, where
it can be observed that there is an improvement in some cases.

2.5.4 Local stability parameter

The unmform mesh used up to now is impractical in many situations, such as
when convection 13 present. We salved the same test case on a non-uniform
39 = 39 noded mesh, with increasing density of elements near the boundary,
made up with triangular linear elements (it is shown in Figure 2.4).

A question arizes in this ease about what value of the coefficient « 15 to be
taken when the mesh size is not constant for all elements, We first considered
the simple possibility of taking a unique value of a for all elements, as defined
in 261 for a value of A equal to the maximum element diameter (just as it
is defined), Then we adopted the idea of using a different value of a on each
element, evaluating the integrals it multiplies on 2.22 elementwise. The local
discrele reformulated problem reads:

III""I("?'I'I'MI V'\fh) + (Vph) Vh) = (f| Uh).VVh E Vh,u
(V * Uy, fﬂl) " E “ﬂ'((vp?n vqh)k - (Wh:v%)ﬁ) D1 an = Qh

KE@JI

(VPJHIWL) =, (WJH'.Yh) = {} V;Yh e Vi

. . hie !
The local coeflicients are, again, defined as ag = o2 with ag = 1/3 far

v
the P; ¢lement. Although it 15 nol computationally practical, the third equa-

7l
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Figure 2.4: Cavity How, nonuniform 39 = 39 mesh,

tion should actually be veplaced by I Kew), K ((Vp;.,x;, Vi — (Wi X };\-) = ik
50 as o be consistent with the second eeguiation,

A COITPATISON ol the two methods shows that the local one ]JI'U\.’i{]Q’.H faster
convergence rates (as cai b ohservaed in Table 2.4) and more acourale results
(see the next Section). In Table 2.4 we present the number of iterations for
convergonce in each case, the CPU time spent in the first iteration (as a per-
contage of the total time in each case) and the total computing time relative
ta the g]uhal method with a consistent mass matrix, A e e relaxalion
parameter w = 1.3 was used i this pml.;lm-n for all the variables.

Method Glohal-€' | Global-L | Local-C* | Local-L.
[terations 13 5 7 7
Ist, Heration 80 82 8 82
CPLU time h 100 T4 03 76

Table 2.4: Comparizson of global and local parameters,
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2.5.6 Summary of computational aspects

We have considered several possibilities for the selution of the linear equas
tion system 2.24-2.25-2.26, resulting from a finite element discretization of
the reformulated Stokes problem 2.14. They include two iterative schemes of
the block-Gauss-Seadel type, which we call nneoupled and coupled, respec-
tively, and some other ideas such as rescaling or diagonally preconditioning
the equations and the use of successive-over relaxation methods, For the
pressire gradient mass matrix, we alse considered lumping methods,

After several tests on a uniform mesh for the lid—driven cavity flow probh-
lem with the Py, @, /4 and @; elements, we have found that the most
efficient method is the coupled block-Gauss-Seidel scheme applied to the
original equation system (wit]mnt rmr‘.:ﬂing) with selective successive-over
relaxation, which acls on the pressure and pressure gradient variables with
an optimal relaxation parameter wapy, but leaves the velocity unrelaxed. Dif-
ferent optimal relaxation parameters were found experimentally for each #l-
ement: 1.3 for the Py, 1.5 for the @, 1.4 for the Py and 1.79 for the Q.

For the P element, the system matrix of the velocity-pressure subsystem
to be solved at each iteration of that method is the same as that of the GLS
method; this s alse the case for the @y element, if the Laplacian term s
omitted on the GLS method from element interiors (for a mesh of parallel-
ograms, the transformations from the reference element are affine, and this
term vanishes identically for this element). The GLS formulation is one of the
most widely nsed methods nowadays for incompressible flow problems; like
onr method, it is formulated in terms of primitive velocity-pressure variables,
and it also allows the use of equal order interpolations. When direct solution
methods are used to solve the velocity-pressure subsystems, the extra cost
of our scheme with respect to the GLS method 15 that of computing and
factorizing the mass matnix for the pressure gradient (if it 15 not lumped),
forming the right-hand-side vectors and performing forward and backward
substitutions at a few extra iterations, since the systemn matrices are comi-
puted and factorized only once. This represents, in average, about 25% of
extra cost,

When nonuniform meghes are used, it seems more efficient to use local
stability parameters ap defined elementwise, rather than a unique global
parameter e,

Finally, mass lumping alse accelerales the convergence of the unrelaxed
coupled block-Ganss-Seidel scheme, at the expense of a loss of accuracy
(RM the next Secticn). However, it does not affect the CONVETEence of the
[aster over-relaxed coupled block-Gauss-Seidel schemes, It is, therefore, not
recommended for gem-_'ru.l use with this method.

T3
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2.6 Numerical results

We now present the numerical results obtained with the reformulated methaod
2.21-2.22-2.23 for three {est cases: the cavity flow problem considered in the
previous Section, a problem with an analytical solution and a channel flow
problem problem on a trapezoidal domain. These problems highlight other
features of the method than those pruvcd up lo now, and confirm some of
these,

2.6.1 Cavity flow problem

We present some selected numerical solutions obtained for the cavity flow
problem in the convergence studies of the previous Section. The main flow
features which we looked al in this problem are flow symmetry aboul the
vertical centerline of the cavity and the pressure singularity at the two top
corners. We will show that the method provides an excellent capturing of
this singularity. Since the zero prescription for the pressure is enforced at the
top right corner (the 'last node’), the minimum pressure value corresponds
to the top left corner, and stablishes the (negative) pressure singularity.

We first present results obtained with the uniform 21 »x 21 mesh, both
with and without mass lumping, Pressure singularity capturimg degrades
with mass lumping. These results can be observed in Figure 2.5 for triangular
clements and Figure 2.6 for quadrilateral elements.

Better results were obtained with the finer 39 »x 39 nonuniform mesh of
Figure 2.4, We compare the results obtained with a global stability parameter
a and with local parameters ey, both with and without mass lnmping. The
golution was symmetric in all cases. We present the pressure results in Figure
2.7, where it is observed that the best results are achieved with local stability
parameters and a consistent mass matrix,

We conclude that the best results obtained for this pmb]c:m with the
nonuniform 39 x 39 mesh were for local stability parameters and a consistent
mass matrix, iterating the scheme 2.103-2.104-2.105 to convergence: a pres-
sure minimum of —1070 was achieved in this case. For the uniform 21 x 21
mesh, the best results cbrresptmd to the (24 element with a consistent mass
matrix: the pressure minimum was of —1160 in that case.

2.6.2 A test with an analytical solution

We next consider a test problem with an analytical polynomial selution on
the unit square, with homogeneous Dirichlet boundary conditions, which
was introduced by 1.T. Oden and coworkers (sm_- [78]). We siudy this case
in order to check numerically the optimal error estimates proved in Section
2.3. Setting v = 1, a polynomial force is selected so that the solution of 1.13
18 u = ('”'muu) with:
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uy = @l w“)(ﬂy ~ Gy* + 4y") (2.109)
u, = (2o 62" +427) (1 - ")

for 0 < 2,y = 1, and the pressure salution iz then:

. (2.110)

(so that p vanishes at the top right corner), With this test case, we first
performed a study of the influence of the parameter ag on the exact errors

of velocily, pressure and pressure gradient solutions in the L* and H} norms

on a uniform mesh; we will see, in parficular, that there are mmimum values
of these errors at critical values of the parameter, which we select. Uniform
meshes are used here so that a study of the order of error with respect to
a characteristic mesh sige h can be provided, using the optimal values of
the parameter ap just obtained. The expected orders of accuracy for all the
variables, norms and elements have been found.

The first results we present were obtained with a uniform 21 x 21 mesh,
using the coupled block Gauss-Seidel method with a consistent mass matnx
and a tolerance of ¢, = 107", In Figure 2.8 we show the variation of the
exact error of the velocity in L*(§2) and H(£2), the pressure in L*(§) and the
pressure gradient in L*(§2), bolth with respect to Vpy, and wy,, as a function
of the coeflicient g, for the elements Py, @y, P, and (2. It ean be zeen

that minimum values for the pressure error are attained for values of ag in a

range close to the optimal values of the GLS method for cach element type:
1/3 for linear and bilinear elements and 1/9 for quadratic and biguadratic
ones: these are the valiues that we have used up to now, and that we adopl
in what follows. Nevertheless, minimum errors for the pressure gradient are
achieved at a larger value of ap than the eritical one. The veloeity errors
are less sensitive to vanations of ag, bul tend to be minimized close to the
optimal values of the GLS method.

The variation of oy does not only affect the precision of the method but
also the convergence rates of the iterative scheme, It is seen in Figure 2.9
that the number of iterations rcquircd for convergence ETOWE drastically with
an increase of «p beyond the critical values, while small values of &y yield
rapidly convergent schemes, at the expense of a loss of precision.

Having found optimal values of the parameter ag, we then checked numer-
wcally the theoretical orders of accuracy of the velocity, pressure and pressure
gradient solutions as a function of the mesh size h, as given by Theorems
2.1 and 2.2; we summarize these orders of error in Table 2.5 for reference.
To this end, we solved the reformulated Stokes problem 2.21-2,22-2.23 for
this test case on three uniform meshes with 11 x 11, 21 % 21 and 41 x 41

nodes, respectively, and with the four elements considered up to now, The
2

valie of a was always computed as o = “IDJ,;‘ and oy was taken as the
1
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optimal valies just established. The results were ohtained with the coupled
block Canss Seidel scheme 2,103 -2.104-2,105 with a consistent mass matrix
and a toleranee of e, = 107 we algo tried higher and lower values of the
tolerance: in the lirst case, larger errors were found, whereas in the second
the precision did not improve (but rather degraded die to ronnd-ofl errors),
We present these results in Figures 2.10 to 2,14, where we have included the
crrorvs [ov a PPy mixed interpolation of the Stokes prablem for comparison.
The linear regression coellicients computed for these lines are given in Table
2.0,

It can be observed that the optimal orders of acenracy predicted in Table
2.5, and even higher arders for the pressure solution, are achieved with our

Element || fu =yl | |p=pul [ [[u=wl] | [V(p=p)] | [Vp—wil

P, Q) 2 ! 1 0 0

Pi. Qs 3 2 2 L

Table 2.5: Theoretical orders of error i the mesh size h.
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Figure 2.14: Pressure gradient error i L2 4 P Element; e 0y Elemnent;

(.01

o Py Element; = 5 Element,

l

0.10
Mesh size (h)

.00

Blement || Jw—wg| | [p=pal | [0 =il | I¥p=¥pul | [Vp— wal
P 2.0 [.9 1.0 0.7 0.7
0 .z_u 14 1.0 0.6 | {Hi—
noo | 33 2.3 2.0 14 |1_ :
Qs 3.2 ! 2.3 2.0) | 1.5

Table 2.G: Oden’s flow: lnear regression coeflicients for dilferent errors,
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Figure 2.15: Velocity ervor in L*: e Qy Element: = @ Element: 0 = GLS
method, () Element: ¢ GLS method, (2 Element.

method Tor all variables and norms. Moreoaver, both the discrete pressure
gradient and the gradient of the discrete pressure seem to converge lor the
P oand Qg elements to Vp, a fact which is not predicted by the theory.

We then compared the accuracy results obtained with our method to
those af the GLS lormulation: We show in Figures 2.15 to 2.18 the errors
compnted for the solutions on quadrilateral clements, both the ¢y and fthe
(24, for the GLS method and ours, The vielseity solution 15 the same for the
two methods with botl elements; the pressurve solhition, however, 15 slightly
more aceurate for the GLS methad than ours when nsing bilinear elements,
al least for the present value of the parameter ag; for biguadratie elements,
however, our method seems Lo e ahhympl.ulir.ellly rmore acoiralbe,

2.6.3 Behaviour of the pressure near the boundary

This lasi umnnplr 1 ntended to discisg s omisheliavionr of the pressure Heal
the boundary which appears when using the GLS method, as deseribed by
Jub Dronx and T.LR. Hughes in [31]. Although this method is optimal both
in H' and L* norms, the pressure may be poorly approximated near the
houndary for linear elements, This is so hecanse i this case the term rAu,
vanighes identically on element interiors, so that a wrong houndary condition
ne (Vi — 1) = 0is heing imposed weakly (seo the maodification of the GLS
inelliod in li'lll Lo overcome Lhis ditheulty).

ln o reformulated method the bonndary condition n  Vp - n-w =10
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Figure 2.18: Pressure ervor in [ e 0y Element; x @ Element: 0O =
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enforced weakly is consistent with the original Stokes problem: so that correct
hehaviour of the pressire near the boundary was expected. The same test
case as in [31] was considered, consisting of [ully developed Paoiseuille low on
a 2-dimensional trapezoidal domain. We solved Lhis problem on two meshes
of I elements, with 13 x 13 and 25 x 25 nodes uniformly distributed along
the sides. The first mesh is shown in Figure 2,19, For this problem, there is
na external foree, a parabolie velovity profile is preseribed both at the inlet
and outlet and a solid wall condition is imposed on the top and bottom edges,

The pressure gradient in this case is constant and horzonfal.

The pressure contours ohtained for the GLS method and the reformulated
method on both meshes arve shown in Figire 22200 Although they improve
with mesh refinement, the pressure results for the GLS method are not correct

neir Lhe bonndary, whereas the resulls lor our method are exact on both
ineslies,

Hi
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Figure 2.19: Trapezoidal domain, coarse mesh.
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Al

Figure 2.20; Trapezoidal domain, pressure contonrs: a) GLS method, coarse
mesh: b GLS methad, fine mesh: ) Present method, coarse mesh; d) Present
method, line mesh,
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Chapter 3

Reformulated Navier—Stokes
equations

The object of this Chapter is to extend the reformulated method studied in
Chapter 2 to the steady, incompressible Navier-Stokes equations 1.12. The
difference of this equations with the Stokes problem 1.13 is the appearance of
a nonlinear term embracing convective effects, which was neglected in 1.13.

The incompressible Navier-Stokes equations model a large number of flow
situations, and are used in many practical applications, Moreover, they are
the 'next stage’ towards the study of the unsteady Navier-Stokes equations:
they are still affected by the incompressibility condition and they introduce
the difliculties relative to the nonlinearity, but not the time evolution yet.

The development and study of numerical methods to approximate the
solution of these equations has received much attention in the last decades.
Besides incompressibility, they have to deal with the treatment of the nonlin-
earity of the problem and the advective-diffusive character of the equations,
which is specilly hard for high Reynalds number flows. Thus, nonlinear
solvers and, in some cases, techniques to stabilize the convection, are re-
quired to approximate these equations, as well as adequate treatment of
incompressibility.

We review a few basic facts aboul the steady, incompressible Navier—
Stokes equations in Section 3.1, concerning the existence, unigqueness and
approximation of solutions. In Section 3.2, we present the extention of the
reformulated method to this problem, while in 3.3 we prove stability and op-
timal convergence of the method to the solution of the equations, assuming
uniqueness of such a solution and the stability condition 2.28 of the linear,
reformulated Stokes problem. We then consider several possibilities for the it-
erative solution of the resulting nonlinear system of diserete equations, which
we present in Section 3.4, Finally, we show some numerical results obtained
with this method on three test cases, including a nunmierical convergence study
which confirms the optimal error estimates proved theoretically.
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CHAPTER 3 REFORMULATED NAVIER-STOKES EQUATIONS

3.1 The steady, incompressible Navier Sto-
kes equations

We recall here the steady, incompressible Navier-Stokes equations for refer-
ence, with homogeneous Dirichlet boundary conditions:

(u-Viju — vAu + Vp = f in{2
Viu = 0 @ (3.1)
u = 0 onl

c_:un'jplt:tn' stuidies of this equation syslem can be found, among others,
in [71], [105] and [43], We mainly follow these last two references here.
With the definitions of the operators b and ¢ given in Section 1.2, and given
f € H (), the weak form of these equations consists of finding u & HE(2)
and p € Lj(§2) such that:

eluu,v) + o(Vu,Vv) 4 bvip) = <fiv= Vve Hi(Q)
blu,q) = 0, voe L) (32)

Since we are assuming §2 bounded and Lipschitz continuons, problem 3.2
has at least one solntion (see [43]), which satisfies 3.1 in distribution sense.
Uniqueness does not hold in general, buf it liolds for sufficiently small data
or sufficiently large viscosity. The precise form of these stalements may he
written in different ways: following [105], we take it as the following condition,

where from now onwards we assume that £ € L*(9);

Lo i’g‘ oy (3.3)
The constant Cp was introduced in 1.14 and 'y1; is the constanl appearing
in the standard continuity condition of the trilinear form e.

Under the assumption 3.3, the solution (u,p) of 3.1 15 unique. If the ho-
mogeneois boundary eondition 1= replaced by a nonhomogeneous condition:

T

un=ma onl

where 1 satisfies the null flux condition 1.9, similar existence and uniqueness
results can be obtained, the latter under a condition similar to 3.3,

Standard Galerkin finite element approximation of the Navier-Stokes
problem 3.2 is subject to the same compatibility restrictions as the Stokes
problem: the inf-sup condition 1.27 should hold for standard optimal con-
vergence results, This is the case for the (), P element; for the popular ¢, Fy
element, however, macroelement technigques may be used again.

We introduce here the matrix form of a discretization of the Navier-Stokes
equations 3.2 by the Galerkin finite element method. In the notation used
up to now, the discrete version of 3.2 can be written as;

a0
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AW + KU + GoP = F
Gy = 0 (3.4)

where A(L) is the convective malrix with a given (nodal) velocity field [/
Some iterative method should be used to find a solution of the nonlinear
problem 3.4; standard schemes for this problem are Picard's iteration and
Newton-Raphson’s method, which are first and second order schemes re-
spectively, apart {rom methods of gradient type (see M:i]). One drawback
of Newton-Raphson's method is that the initial approximation used in i
should belong to the attraction basin of the solution for the scheme to con-
verge, These two schemes take the following form in this context:

e Picard’s method:

AU+ KU 4 GoP' =
G‘f,ﬂ‘ = i

o Newton-Raphson's method:

AN AU+ KU + GoP' = F o4 Ao
Rt = 0
o

We will use these two approximations in Section 3.4

3.2 Development of the method

3.2.1 The continuous problem

We present our extension of the reformulated method for the Stokes problem
2.14 to the Navier-Stokes problem 3.1 with homogeneous boundary condi-
tions, Our analysis is valid for any trilinear form & defined on (H{(Q2))*
which is skew-symmetric in its last two arguments and continuous; it iz also
restricted to a class of Navier-Stokes problems with some additional regnlar-
ity conditions, which we define next in a similar way to the Stokes case.

Definition 3.1:  the steady, incompressible Navier—Slokes equation 3.1 1s ca-
led regular if its solutions satisfy w € H* () and p € H'({1) whenever
f e L), and there emsis a constant €, = 0 such that:

lallz + llplls = C-1f
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As in the linear case, this is too restrictive for our purposes. We only
need the pressure gradient to be in L*{§1); we call this case agam a p-regular
Navier-Stokes problem:

Definition 3,2;  the steady, incompressible Navier-Stokes equation 3.1 is called
p-regular if its solutions satisfy p € H'(Q) whenever f € L*(2)

The reformulation of problem 3.1 that we propose is the following, wlere
we adopt the skew-symmetric form of the convective operator:

J(V-u)u + n¥Vn ~ vAu 4 Vp = f in{d

2
Vp-w = 0 infl
V-u+ al-Ap+Vw) = 0 inQ (3.5)
n = 0 onl
n:Vp - n-w = 0 onl

where, again, o = (0, Calling again Vo = H}(Q), @ = H'(2)/IR and V =
L*($2), and assuming € L*(f2), the weak form of this problem consists of
finding u € Vg, p € Q and w € 1 such that:

du,u,v) + (Vo Vv) 4 (Vpov) = (f,v), Vvelh
(V:u,q) + a(Vp,Vg) — aoflw.Vqg) = 0, Vge@ (3.6)
(Vpy) = (wy) = 0, VyeV

We prove that in case the Navier-5tokes problem is p-regular and under
the unigneness condition T < 1, problem 3.6 has a umque solution, which is
the solution of the original problem:

Proposition 3.1:  assume that the Navier-Stokes problem is p-regular and
thal condition 3.3 holds; then, there emsts a unigue solution (u,p,w) €
Vi Q% V of 3.6, where (u,p) 13 the unique solution of 3.1 and w = Vp in

LA(Q),

PROOF: existence is a consequence of the properties of the solution (u, p)
assumed. To prove uniqueness, we define a form D on (Vg x @ % V)* as:

,f)'(u,p,w;v,q,y) = v(Vu,Vv)+ (Vp,v) + &u,u,v) +(V-u,q)

+a(Vp, Va) — alw, Vg) — a(Vp,y) +a(w,y)
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which is quadratic in its first argument and linear in its second. Problem 3.6
can then be writlen as;

D(u'}:,w;v,q,y) = (¥, ¥}, Y(v.qy) € (Vo x Q@ xV)

The coercivity of the linear pmhlul'n 15 prm;e.rww] due to the skew-sym-
metry of the operator ¢

ﬁ)(u.;n.w: u,pw) = w¢||u|* + a|Vp—wl, V(upw)e(loxQ=xV)
so that the stability estimate:

Calf|
Ty
holds for any solution. Let now (u.,p., w.) and (u.., p.., w..) be two such
solutions. We call (ii, i, w) their difference, so that for all (v, q,y) & (Vo =

Q% V)

lall =

(8.7)

D(a,p, wWiv,q.y) = &, i, v) — &i,n.,v) + & a,v)  (3.8)
Thus:

ulal|* 4 |r34:|'V";|':|'—W[z = b{ii,ﬁ.w;ﬂ.ﬁ,W) = ~—g(a,u., 1)

Therefore:

i = el (:‘I f .
wllall* = Callu|Pllu.] £ Cin 1L[||u||3.

so that condition 3.3 implies fi = 0, that is, u. = u... The continuous LBRE
condition ensures that there exists v € V5 such that:

_ (Vp,v)
plaP < R =
|| vl
according to 3.8 with = 0; this implies p. = p.. in Q. Finally, w = Vp =0
yi(ﬂdﬂ w. = w.., so that the solution is indeed nnigque. L]

3.2.2 The discrete problem

Let niow Vo C Vo, @) © @ and Vj, € V be finite dimensional subspaces
agsociated to a discretization of {2 into finite elements, indexed by & = 0.
The discrete version of 3.6 reads:

f:‘(u.’u“hpvh) + ”{v“hivvh) + (VP!,,V}.) = (fiv‘l)lvvh € Vh,ﬂ
(V- unagn) + a(Ve Vo) — alwn, Vo) = 0, Vg €@y (3.9)
(Ven,yn) (Whoyn) = 0, Vyn€ Vi
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We prove existence of a solution of 3.9 as the limit of an iterative Pieard's
method, Given u® © Vo arbitrary, we generale a sequence (uj, g, wj) €
Vi % Qn % V), such that:

Fu " mp,vi) 4 w(Val, Vva) o+ (Vi) (f,vi),Yvi € Vi
(Voupq) + oV, Va) — olwi, V) = 0, Vau€ @y (310)
(pr:n}"h) (W},,Yh) = Ol V}',ILE M:

This linear problem has a umque solution if the interpolation satisfies
condition 2.28:

Proposition 3.2:  assume thal Vio, Qi and Vy salisfy 2.28. Then, given

o i

u, '€ Vig, 3.10 has a unique solution (uj, ph, w}) € Vio x Q) % V).

proor: problem 3.10 can be seen as a reformulated Stokes problem; the
bilinear forin associated to it is defined on (Vio % Q4 % Vi)* by:

(v, puy Wiy Vi @ Y) = #(Vg, Vovg) + (Von, ve) + (gt w, va)

(Vs qn) + (Vo V) — alwy, V) — o(Vpn, v) + alwi, ya)

This form satisfies the same coercivity condition as the linear problem,
since, for all (wy,, ph, wi) € (Vi % @y % Vi)

Di(an, pr, Wi ws e wi) = wl|w|* 4+ oV, — wil’,

Problem 3.10 then reads:

fjn'(“n'n Pz.,Wn;Vm%..‘Vh) . (flvh)- V(Vh-. muyh) = (Wt.ﬂ X QJ- X HI)

o thal any solution satisfies the stability estimate:

(9
o < 21 (3.11)
Moreover!
. . i Qe
alPs(VAI = olVp,—wal! < (fuf) < ol

so that:
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1Paa(Vp)l < 2 (3.12)

Since problem 3.10 is linear and finite dimensional, it is sufficient to show
that the homogeneous problem has a unique solution, Setting £ = 01in 3,11
and 3.12, we gel uj, = 0 and P 3(Vp)) = 0. Taking v, = Pi(Vp},) in 3.10,
given that |-Fl-.l(VPL)|! = (V"P},, PJ,J(V}J};‘)), we obtain £ (Vp)) = 0, and,

by 2.28, Vi, = 0, Finally wi = Pi12(Vpi) = 0. [

We next prove that the sequence of iterates converges to a solution of
3.9, In particular, this establishes the existence of such a solution. For this
purpose, we require condition 2,28 and the inverse inequality 1.23 to hold;
we will also assume the uniqueness condition T < 1, which will be shown
later to be a sufficient condition for uniqueness here too,

Propeosition 3.3: assume that the discretization @), af {1 15 uniformly requ-
lar, so thal the inverse inequality 1.23 holds, that lthe inlerpolation salisfies
condition 2,28 and that 3.3 also holds. Then, for arbitrary v} ¢ Vi, the
sequence of Preard iterates (ujl,p'f,,wflj converges to a solulion (uh,p;,,wh)
af 3.9.

PROOY: substracting 3.10 for ¢ and i — 1, we get:

w(V(u) =), Vv (V- e, i) (3.13)
+ E(“:’:l = u;—i' u;'l-- : i Vh) 3 é(“‘jlll l'u:.' - ujl " i vh) = 0, b4 Vi € Hu.i}
(V £ (ujn = ‘lji_lJ:qu) + &(V(p:‘ = P;. 1)1 V‘Hl)’ (3-14)
3 CE(WL - Wilfl-VQn) = b, th = Qh
(Ve —py ' hwn) — (wi—wily) =0, Vyae Vi (3.15)
Taking vj, = uj, — u;"t in 3,13, g = ) _?’}u_t in 3.4, y, = —rx(wjl,—w;‘”)

in 3.15 and adding them up, we find:

vl =i+ @V i)~ (wh—wi ) (3.16)
+ E(u}," - u},‘“. u;,“,u;l - u},") — 0
Thus:
el — i E S G JJug b g R gt (g - w7
Co Ci If] | oo _ i
S =l B e (NP T

or equivalently:

05
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(i, — i M| = Y - w7
and, by mduction:
[E (VR e e

The hypothesis T < 1 ensures the convergence of uj, in the finite di-
mensional space Vi I we now take vy, = By (Vip, — 'p:.,"z:)) in 3,13, we
get:

Paa (Ve = 2 DI = (V0 — ") Pua(V(ph — i 1))

= = (V) — ) Pa(VipL e '))
&yt = w7 g P (Vi) - e ')
é(wy "t up = wy ™ P (Vi - 2 )

< il =7 G g = a7

£ Co i I, = w1 12 (9@ = 2 )
¢ . N

E }l- (‘Tl " Tl 1) |P'l’(v(ph - P‘h 1))'

so that:

s ; O ggs
|Bia (Vi = o NI = 7 (3.17)

From 3.16 we also get:

PV (ph = i NI o [V, — ") = (wj, = wy )P

< Gy o] gt = w72 (g = w7
< ¢ TH—I
which imphes:
|Poa(V(ph = 27| < €Y (3.18)

From 3.17, 3.18, 2.28 and 3.3, convergence of pfl to some py, in Q) 15
established. Finally, w), = FP12(Vp}) also converges to some wy, £ V.
Taking the limit of 3.10 when ¢ tends to infinity, we prove that (v, py, wy)
15 a solution of 3.9 =

The proof of Proposition 3.3 shows in particular that Picard's method is
a first order scheme for this problem.

We have proved, in particular, that under the inverse inequality 1.23,
the compatibility condition on the interpolation 2.28 also required for the
linear problem and the uniqueness condition 3.3 of the standard continuous

4a
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problem, a solution of the discrete reformulated problem 3.9 exists, which
can he obtained as the limit of the Picard iteration 3.10 starting from an
arbitrary uﬂ. To end this Section, we establish the uniqueness of such a

solution under the same conditions:

Propesition 3.4;:  assume that 1.23, 2.28 and 3.3 hold. Then, the solulion of

3.9 18 unaque,

PROOT: the proof is essentially the same as in Proposition 3.1, Any sclution
aatisfies:

-D("-.'u}r'h‘wh: Vi iy YhI =, Vh)- V(vln%‘ny‘h) - “"’U * Q x VJ

and therefore:

|Jun|| =

I (Wpey Phoey Wiio) and (W) ony Piyesy Wiioo) are two solutions, and we call
again (i, pp, W),) their difference, we find again that for all (v, qu.¥0) €
(Vi..in ®x @Qn x Vi)

Calf|
14

D0, phy Wi Vi @i Yh) = —e(Wp ey, va) = (g, wpe, vi) 4 E(0g, s, viy)
(3.19)
This implies:

el|up]* + «|Vin — Wt = f)(ﬁmﬁh,Wh;ﬂmﬁmWﬂ = —e(iy, ., 0y)
H...ndi

1)
Ciuabialfl b,
7
g0 that 3.3 impl.'ims iy, = 0, Taking now v, = H;J(Vﬁh), gy =0 and yr=10
in 3.19, we find P 1(Vj),) = 0, whereas vy, = 0, g, = pj, and yj, = w;, yields
Pua(Vipn) = Vi, — Wy, = 0. Condition 2,28 then ensures that Vg, = 0, and
ﬁnn]ly Wh = F},',;(Vﬁh) - U [_1

ellaall* =

In summary, we have proved existence and uniqueness of a discrete solu-
tion of the reformulated Navier-Stokes problem 3.9, assuming the weak com-
patibility condition 2.28 the 'classical’ umqueness condition 3.3 and some
regularity of the mesh: the discrete LBB condition 1s not required at all.
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3.3 Stability and convergence of the method

We extend now the stability and convergence analysis performed in Section
2.3 for the reformulated Stokes problem to the Navier-Sfokes case The
conditions needed for this purpose are, again, the stabilily condition 2.28,
the inverse ineguality 1.23, some regulanty of the solution of the original
problem and a certain behaviour if the coefficient e in terms of the mesh size
I for this nonhnear problem, however, we will also require the uniqueness
condition 3.3,

3.3.1 Stability

Let us first establish a stability estimate, which is essentially underlying the
existence results already proved:

Propns_itipn 3.5:  assume that 1.23, 2.28 and 3.3 hold; assume also thal o

satisfies 2.29. Then, the solulion (vy, pn, wr) of 3.9 salisfies the stabilily
estamate:

Il (s pny wa) [I| = €8], (3.20)
for some constant C independent of h, where ||| . ||| is the mesh dependent
nerm defined im 2.31.

PROOF: we proof that the Picard iterates (u},,pfi,wj‘l) gatisfly 3.20, so that
this will also hold for (wuy,py,wy) by passing to the limit, According to
.

311, we have that ||uy]| < %, and by 3.12 and the assumplion on o,
CI
| By (V)| < N If|. Moteover:
L
|Pra(VoP = (VPh Pua(VD})) (3.21)

= (0 Paa(V83)) — WV, Vi (V43)
E(“L_lg “:u Ph;l (Vpi.])

< P (TR v b P (V)|
£ G [hg 1] P (921
Cplf] € .. ChlIEE ¢ ;
< [|f| + v—-‘:—}l—I 7t C*m%"g | Bnt (V)|
i £l i
< ¢ ip(va)

according to 3.10, 1.233_'““1 continuity of ¢ and the Schwarz inequality. E!.‘hi“
yields | P, (Vpy)| = f|i‘|. londition 2,28 then ensures that |Vpi| < fi|1-'|
!

and since |wi| = |Pui2(VE)| = [V |, we prove 3.20 for (i, p}, wj,), and,
by taking the limit when i tends to infinity, for (uy, p,, wy). N

b
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3.3.2 Convergence in natural norms

To prove optimal convergence of the discrete solition of 3.9 to the continuous
solution in natural norms, we repeat the analysis of the linear problem, anly
modified to wecount for the elfects of the convective term. We will therefore
foenus only on these effects here.

Thearem 3.1:  assume that the Navier-Stokes problem 3.1 s p-reqular, and
that condutions 1.23, 2.28 and 3.3 hold; assume also that o salisfies 2.36.
Then, the solution (u;“p;.,wh) of 3.9 salisfies;

[ (w —wn.p~pn. Vp —wi) ||| < CE(h) (3.22)
Jor some sonstant ! > 0 independent of h, where (w,p) iz the solution of 3.1
and the interpolation error function E(h) was defined in 2.38.

PROOF: for any (Va, qn, ¥n) € Vo % Q % V|, we have:
D(w — v, p— i, Vo~ Wi Vi @iy ¥o)
= w(Vu,Vvy)+ (Vp,vp) + é(u,u,vy) (3.23)
v(Vuy, Vvy) — (Vi vi) + &uy, uy, vi)
clu g, vy) — &(uy,n,vy)
= 28wy, wy,vy,) — &(u, 1y, v)
~ Huy,u, v;,)
= #uy —u, u;,,v;,} o+ &y, vy — u,vi)
This implies, by the linearity of [ in its second argument, that:
f’(ll — W, P Py, VP = Wi 0 =y, p — pr, Vi — Wi)
= D(u—upp—p, Vp—wiu—=vip-aq.Vp—-yy) (3.24)
| E(u,-, — o, Uy, Y, — lu.) foe(up,uy —u, vy — m.)

for any (w.,q;.,m.) & (W.,u % Qn % V). Coercivity of D implies that:
LHS of 3.24 = w|lu—w,||* + a|Vp, = w|?

whereas:

ROAS of .24 = w(V(u=u), Viu—v.)) +(V(p - pn)u—v,) (3.25)
b (Vg = p)loa— ) +alwi ~ Y, v, — V)
+ood(u - u - vy) b Euy - ug g, vy, - i)
+ E(up,uy — o, vy -0y
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Far the linear part, the same argument as in Section 2.3 is valid here, so
that 1t will not be repeated. As for the quadratic terins, we have:

QI = &u—uu—uu-—v,) (3.26)
+ o elupy -, v o uy) b e(wg, up - ug vy - ay)
= fu—wy,u—upu—vy) o &u oy, - vy
+ @(n -y up oy, - u) b e(ug,u - a,n - vy
P T PR T TR 1)
= f(u = u,u - vy A éu = uy, w0, - )
fo B{uy,w e uy,m - vy,
20 Calf]
< 7 [l — uy|] ||Ju — vl
Ci11Colf|
Sz r.w ||t‘_
7
according to the stability estimates derived above for the continnous and
diserete solutions. The first term of 3.26 15 the prndunt of an error of the
method and an interpolation error, and 1t can be included in the convergence

analysis of the linear problem. The second term can be passed to the left-
CanCalf]

4 - uh”2

hand-side, yielding (» — ) [|n — u||’. Condition 3.3 ensures that
this coefficient 1z positive, n.nd the* analysis of the linear problem can then be

repeated, [

3.3.3 Convergence in L*-norm

We finally prove that the error estimates derived for the discrete solution of
the reformulated Navier-Stokes problem can be improved by an order in £ in
the norm of L*((1), in a similar way to the Stokes problem. For the velocity
error estimates, we will need an auxiliary problem which we study first. In
a similar way to [21], we call y € Hg(£2) and x & L{(§2) the solution of the
following linear problem:

u((y,v)) = &(l"liy-!‘r) s E(vl“l-}')
— (,\Vev) = (u—w,v), YveHy() (3.27)
(Vey.q) = 0, Vg€ L)
Existence and uniqueness of a solution to this pmblcm 15 gnaranteed by

the stability estimate of Lhe continuous solution u, the uniqueness condition
4.3 and the continuous LBB condition:

Lemma 3.1: assume thal 3.3 holds; then, problem 3,27 has a wnaque solution
(¥, x).
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PROOF: taking v € Y, the first equation of 3.3 can be written as;

I.lI.IH(

v, v) = v((y,v)) — &lup,y,v) + &v,u,y) = (n —uy,v) (3.28)

iq

The bilinear form «™7* is continuous i ¥ x Y, due to the continuity of the
trilinear form ¢ on (HA(§2))* and the stability properties 3.7 and 3.11 of the
continunous and discrete solutions n and uy, respectively. Skew-symmetry of
¢ implies that, for all v € ¥

a(v,v) = vl = #v,vu) = eV~ Cu VI

quCalf :
(v — C“_1_“|li) l|v|[*

1

and the unigueness condition 3.3 ensures that this coefficient is possitive, so
that a™* is coercive on Y. The Lax-Milgram theorem establishes existence
and unigueness of & solution of 3.28 in Y, and the continuous LBB condition
1.25 that of x in LA(£). [

This result is now used to obtain improved error estimates for the velocity
and pressure in the space L*($2), assuming more regularity on the domain:

Theorem 3.2;  assume that the domain § is such that the Stokes problem
2.13 is regular, that conditions 1.23, 2.28 and 3.3 hold, and that a satisfies
2.36. Then, the solution (u;,,-p;.,wn) of 3.9 salisfies:

I —wi| + hlp—pulizim < ChB(h) (3.29)

where (u,p) s the solution of 3.1,

PROOF: the proof is essentially the same as in that of Theorem 2.2 in Section
2.4 s0 that only the modifications related to the convective ferm will be
gpecified, The regularity now assumed on {2 implies that the estimates 2.64
hold for the solution (y, x) of the auxiliary problem 3.27. Let now y, and x5
be optimal order approximations satisfying 2.65 and T, (i=1,2,3) the three
terms into which [u - u,|* can be split (see the proofl of Theorem 2.2); we
only need to account for T, which is now:

Ty = v(Vyw, Vin—my)) = &w,y,u-w) + &u—u0y)
= _(V(F— Pr)i¥n) A+ Eap u,yh) — E(u,u,yh)
— &up,you - uy) o En =y, y)
= (Vip—pu)y —yr) + elup up —wu,y,) — é(up,u, —u,y)
4+ &y~ u,u,yn) = &(uy —uu,y)
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== |

M

A ."l'-\.

(V(p~pu)iy — yu) + &y, up —n, 3, —y)

fluy —wu,y; —y)

V(= pu)l ly —yul + Cuan |fwn = wl[ (|Jwall + [[ull) [ly = yall
C R yllz [V (e = pn)| + C b Jfun = ul| ly]]:
Ch(h|V(p—pa)l + [[(n = ug)]]) |(x =)l

and the error estimate for the velocity s established. As for the pressure,
we call again z and & the solution of the Stokes problem 2.68 and %, an
approximation of z satislying 2.68; we now have:

I = pn

]2

= |

m += += += |

1A A

(p—pnip—pn) = (V- 2,0~ )

(V '(ﬂ a zh)lp e Fh) - (’”nvt}] = Ph))
~(z— 2z, V(p—pu)) + #(V(u—=uy), Vay)

Elu,n,z,) — el uy,2))

- (2 = 25, V(p — ) + v (V{v—uy),V(z, —2))

(V(u =), Vz) + é(u,u—uy,z,)

el — up, uy, 2)

(7 =2, V(p— ) + v (V(u—u,),V(zx — =)
(V(u -~ ), Vz) + é(u,u— w2z, —2)

dlu,m = uy,2) + é(u -,z — %)

é(u —uy, 0y, %)

|2 — 2| [V(p = pa)| + » [Ju—wl| ([[z = 2]l + [|=]])
. Calf]

Fag == [ = (2 ]z =l +2]|sl])

[Ch19= )l + € llu = uill] |[2]
(RN =p)] + (=) p—pal

and the estimate for the pressure is established. L]

3.4 Computational aspects

The discrete nonlinear equation system 3.9 can be solved numerically in
different ways, We studied and compared several possibihities for 1ts solution,
all of which take the form of iterative methods.

With the notation introduced up to now, the equation system 3.9 relative
to a finite element diseretization of the domain §2 can be writlen as:

AU + KU + GoP = F
-G+ alP — aG'W 0 (3.30)
GPr - MW = 0
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This equation system is a nonlinear problem for the variables (U/, P, W),
standard nonlinear solvers may be applied to i, but, ance more, it seemed
appropriate to take advantage of the particular structure of the system, so as
to reduce it size and storage requirements. We decided to develop iterative
solvers based on the coupled block-Gauss—Seidel method for the linear prob-
lem introduced m 2.5.2 ( the uncoupled block-Ganss—Seidel scheme of 2.5.1
WAE impmc:t.iml aven lor the linear c'.a-.w). We will first present the different
alternatives considered, which employ either a Picard or a Newton-Raphson
method for the nonlinearity, and then show their performance on a standard
test problem. We concentrate here again on the performance of each of the
different schemes, putting off to the next Section the analysis of the results
actually achieved, which, nnyway, were almost the same for all the methods.

All the schemes are presented in the form of an iterative process for the
variables {7, P and W. The same initializations as in the linear case are
agsumed,

[ the implementation on the computer, we have adopted the standard
formulation of the convective term (u - V)u, as in equation 3.1, although
the analysis of the reformulated method for the Navier- Stokes problem was
based on a skew-symmetric formulation. Nevertheless, the discrete velocity
field in this method is 'nearly’ incompressible, since, according to 3.9, we
have that ¥ wy, = O(a|Vp, — wy|). This quantity will be small, given that
e ()[h") and that both ¥p, and w), approximate Vp to optimal order in
h. The difference between the two formulations of the convective term in
this method 15 negligible,

3.4.1 Nonlinear iterative solvers

We considered several possibilities for the numerical solution of the nonlinear
system of equations 3,30, which we explain in what follows.

s Coupled formulation-nonlinearity scheme,

We considered the possibility of coupling the iterations required to solve
the linear pmhlmn with the coupled block-Gauss-Seidel scheme, which
we say are due to the formulation, with those of a nonlinear solver,
either by an explicit, Picard’s or Newton—-Raphson's method.

The first and simplest alternative consists of evaluating the nonlinear
term A(L){7 at the previous iteration values, in an explicit way, Thus,
i “tmightfmwud extension of the coupled block—Clauss-Seidel scheme
to the nonlinear case reads:

KU' + GoP' = F— AU
—GLUY 4 alPt = aGW!
MW = Gr
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The obvious advantage of this scheme is that the system matrix of
the linear problems to be solved at each iteration is the same for all
the iterations; it can thus be computed and factorized only once at
the beginuing of the caleulations, if direct methods are to be used for
these linear problems. The compntational cost of this method 15, in
principle, similar to that of the linear problem, but for the evaluation
of the convective residue A(L 1)1 at each iteration and if a similar
number of iterations were required for convergence.

The explicit approximation of the convective term is a zero—th order
method. s main disadvantage, however, is that it is highly unstable,
even for relatively low Reynolds number flows; in our computations, we
could not go beyond a value of Re = 10 with this scheme, This makes
this alternative not usable in practical situations.

If & Picard's approximation is used for the nonlinear term, the scheme
reads:

AN 4 KUY+ GoPt = F
G 4 aLPt = agtwt!
MWS = o

whereas for Newton—-Raphson, il is:

AW+ A 4 KUY 4 Go P! F 4 AU HU!
~GL 4 aLP' = aG'W™!
MW = GF

We expected this coupled schemes to combine the stability properties
of the nonlinear solvers with the convergence properties of the method
for the hnear problem, maybe at the expense of a lew extra iterations
with respect to the linear problem. However, the matrix for the linear
systems for velocity and pressure to be solved al each iteration is not
constant any more, and needs being computed and factorized at each
iteration. The mass matrix for the pressure gradient equations may,
again, be considered consistent or lumped. The convergence criterion
for this method 18 the same as for the hnear problem, that is, 2,102

This method produced acceptable convergence results, but still not
comparable to standard nonlinear solvers (m:.u 3.4.2). Other sources
of trouble were that the method was unstable for large values of the
Reynolds number and that succesive over (or under) relaxation proved
madequate in this case.
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e Nested formulation-nonlinearity scheme.

We considered a second possibility consisting of a pair of nested loops,
an onter iterative process for the formulation; similar to the coupled
block-Ganss—Seidel scheme of the linear pmhlr_‘m but with a fully 1m-
plicit approximation of the nonlinear term, and an inner iteration loop
to solve this nonlinearity al each of the outer iterations. That 1s, at
the i—th iteration level of the oufer scheme, and with the following
initiahizations for the nonlinear solver: U%° = 7=, pio = p=t ynd
W = W the nested formulation-nonlinearity scheme with a Pi-
card’s method for the nonlinearity is:

A(U;‘,J—l‘)Ul,f i K + Gnlf”"'i _
_6:1 Y 4 alP' = a'Wil
This scheme is iterated in 7 until the convergence eriterion:

e TR ST
"mx[ [Ui,j IB t |pi..i|3

) < ta (3.31)

holds. In that case, we set U/ and P* equal to the last iteration values,
and update W' as MW' = GP'. For Newton-Raphson's case,

thiz sclieme hecomes:

AN 4 AU 4 KUY 4 GobP™ = F
+  A(Ure et
GAUM 4 aLPY = oGtW'

In either case, the outer iteration loop stops when condition 2,102 15
satisfied,

These methods have the disadvantage that at each of the outer itera-
tions, a number of linear systems has to be solved with different system
matrices, which have to be compited and factorized every time. Nev-
ertheless, we hoped that as the outer iteration scheme proceeds, the
number of inner erations needed to solve the nonlinearity would de-
crease, since the initial values for the nonlinear solver progressively ap-
proach the solution. This fact could, in principle, make these methods
competitive with the previous ones, but that was not the case.

e Nested nonlinearity-formulation scheme.

Finally, we developed a method in which the inner and outer iterations
loops of the previous schemes are performed in reversed order. That
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15, an ouber iterative method 18 considered to solve the nonhnearity of
the full problem, within which an inner iteration schenie of the coupled
block- Gauss-Seidel type is used for the formulation of the method. In
Picard's case, setting U™ = [/7-1, P% = Pi~l and W% = Wil at
the 7-th outer iteration level, this means:

AU + KU 4 (GoPY = F
~GLUY + alLP% = aG'Wl
MW = gp

This scheme 15 terated in ¢ until;

.T!‘-'[’I’(Ui"j, Fi..il Wi.j; )u'—l.d"‘ Pi—l..ﬁ‘ Wl’—h.i) < Eeom

where the error function Err was defined in 2.102; the final values of
(i pid and WY are then taken as 77, P? and U?, respectively, The
outer iteration (in 7) proceeds until:

]Ehkl.(u'.:'1I p.-i‘ W U.:—‘l' ‘m—i‘ W.f—1] <t

Convergence of this Picard’s iteration in j was pruved thearetically in
Section 3.2.

In Newton-Raphson's case, this becomes:

AN o AU 4 KUY 4 GoPY = F+ A7)
G 4 aLPY = a@tWitld
MW = Gph

These methods proved to be superior to any of the schemes previously
considered. At each of the ouler ilerations, a single system matrix
11.14:1!'!.'!5 being nnln].ml.ﬂd, which 15 the same {or all the mner ilerations
(since it does not depend on (2 — 1)). Moreover, the number of mner
iterations required to solve the linear formulation decreases as the outer
iteration scheme advances, becoming very small in the last stages, as
the nitial approximation approaches the solution.

In the next Subsection we present a study of the computational perfor-
mance of all these different iterative schemes on a test problem, In particular,
we compare the convergence rates of these methods for the solution of the
reformulated Navier-Stokes equations 3.30 among themselves and with the
GLS method, which is again one of the most widely used methods for the
Navier-Stokes equations existing nowadays; besides, this scheme, like ours,
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is also formulated in terms of primitive variables and allows the use of equal
order interpolations,

The extension of the GLS formulation of the Stokes problem to advective-
diffusive equations first and then to a linearized form of the incompressible
Navier-Stokes equations was studied by L.P. Franea et al. in [35[ and [36],
and convergence analysis for these methods were also given in |.37]. For ihe
full nonlinear, incompressible Navier-Stokes equations, the GLS method can
be writlen as:

((up - Vup, vp) + (Vuy,, V) + (Vpr,v)
+ Z g (up s Vg, = vlAuy + Vp, = £ (uy - V)vy, — vQv, )

—

& K
- (fi Vi) Vi € Vio
(V-wn,q) + > u;(((u,.-V)u,.- vAwy, + Vpy, - f.‘?-'n.)
Kedy
= 0, v‘?h S Qh

(once again, we have omitted term 2V -1y, V - vy, ) present in the original
formulation of the method, see [36]). The local parameters ag are taken here
2

: h
Again as oy = m;—’%, where ag = 1/3 for the Py and Qy elements.

Notice that this schemne introduces additional nonlinearitics ini thie prob-
lem, such as a cubic one or the dependence of the coefficients ayp on wuy,
Quadratic convergence rates of Newton-Raphson's scheme are not preserved
for this problem, so that a Picard approximation is used for all convective
terms in these equations. The proof of convergence of this method to the
continuous solution is still an open problem.

3.4.2 Performance of the iterative schemes

As a test problem to evaluate the convergence rates of the different schemes
just presented, we considered again the cavity flow problem, this time for the
Navier-Stokes equations 3.1, This flow problem was solved al two different
Rﬁ!ynnlds numbers, Re= 400 and Re= 1000,

We used the nonuniform 39 x 39 mesh of Figure 2.4, with a P1 element
interpolation. We employed local values of the parameter a. A consistent
mass matrix was taken for the pressure gradient in all cases (mass lnmping
did not affect the convergence of the nonlinearity). These data were selected
hecause they displayed the best results in the linear case, so as to concentrate
here on the performance of the nonlinear solvers,

We present the convergence results for the different schemes in Table 3.1
for Re= 400 and in Table 3.2 for Re= 1000 (the explicit scheme diverged in
both cases). The methods are coded according to the following notation:

e CFNP: coupled formulation-nonlinearity Picard method
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e CIFNNR: coupled formulation-nonlinearity Newton-Raphson method
o NFNP: nested formulation-nonlinearity Picard method

e NFNNR: nested formulation-nonhnearity Newton—Raphson method
e NNFP: nested nonlineanty formulation Picard method

® NNIFNR: nested nonlinearity-formulation Newton-Raphson method

We include the performance rates for the GLS method for comparigon.
We show the number of outer and, when applicable, inner iterations needed
for convergence in each case for the following values of the different tolerances:

o CFN: 6y = 1073

o NFN: €n = 1077, 64 = 1072,

o NNF: 6., = 107%, ¢, = 107%, for Re= 400,
o NNF: ¢ = 1077, 6y = 107%, for Re= 1000
o GLS: ¢ = 107,

which were chosen so that the precision of the solution of the inner iteration
loop did not influence the convergence of the outer loop, which was always of
0.1%, and so as to converge fastest in each case (in this sense, in the NNFP
case for Re=1000 a relaxation value of 1.3 was used), We also show the total
computing time, as a percentage of that of the NNFP scheme. The cases
that are not indicated in this Tables diverged,

It can be observed that both in CFN and NFN based schemes the conver-
gence is dominated by the formulation, and rather slow; NFN schemes are
specially costly because of the need to form and factorize the system matrix
at each of the inner ilerations. On the contrary, in NNF schemes the averall
convergence is dominated by the nonlinearity, and the convergence of the
iner iteration loops hecomes faster as the outer loop proceeds; in particu-
lar, Newton-Raphson'’s scheme requires a few iterations less than Picard’s,
but it is globally more expensive due to the evaluation of some extra terms,
and becomes unstable at Re=1000 (we tried starting it after as many as 5
Picard’s iterations and it still diverged). Finally, onr NNFFP scheme proved
to be a little more costly than the GLS method, given that it needed one
more ileration in both cases and that it has to deal with the inner iteration
loop for the coupling with the pressure gradient variable.
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Scheme || Outer Iterations | Inner lerations | Total CPU fime
CPNP 17 200
CFNNR 1T - 285
NFNP 17 14,14,13,10,10,10 1461
0,6,6,6,6,6
5,5.2.2,2 -
NNFP 8 16,11,7,5,4,2,2,1 100
NNFNR 6 ~16,11,5,10,10,1 108
GLS 7 - 85

Table 3.1: Convergence of the nonlinear solvers, Re=400,

Scheme || Outer Iterations | Inner lerations | Total CPU time
CFNP 67 hG3
NNFP 11 9,16,17,17,13,12 100
10,8,7,6,5
GLS 10 82

Table 3.2: Convergence of the nonlinear solvers, Re=1000.
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3.4.3 Summary of computational aspects

We have developed geveral methads [or the solution of the nonlinear discrete
problem 3.30, all of which take the form of iterative schemes with either
a Picard or a Newton-Raphson approximation of the nonlinearnty. After
seversd tests on a benchmark pmhle‘.m for two different values of the Reynolds
nimber, it turns ont that the most efficient scheme is a system of two nested
loops, the outer one being a Picard iteration for the nonlinearity and the
imner one a variant of the coupled block-Gauss-Seidel scheme of the linear
problem with an additional advecfive term. This method remained stable and
convergent even for moderately conveetive problems, when Newton-Raphson
based schemes diverged due to poor initializations,

A comparizon of the performance of this scheme with the GLS method for
the same test case indicates that the latter needs about 20% less computa-
tional time than the former, in average. However, the reformulated method
retains the quadratic convergence of Newton-Raphson’s iteration, which, al-
though unstable {or high Reynolds numbers, ean be very efficient in transient
problems. Moreover, we will show in the examples of the next Section that
our scheme produces more accurale results than the GLS method on the
same mesh. Besides, in one of Lhe numerical examples of the next Section
we present n more detailed comparison of the numerical performance of our
Nested Nonlinearity-Formulation Picard method with the GLS method.

3.5 Numerical results

We present heve some of the results obtained with the reformulated method
for the Navier-Stokes equations on three test problems: the cavity flow prob-
lem considered in the convergence analysis of the previous Section, a problem
with an analytical solution and a problem of Poisenille flow through a junc-
tion of pipes. The second case was intended again to achieving the optimal
orders of accuracy in the mesh size [.thnw-.cl theoretically for the different van-
ables, norms and element types, while in the third one we give a detailed
comparison of the performance of our method with the GLS methad.

3.5.1 Cavity flow problem

The results obtained in the convergence analysis of the previous Section
for the hid-driven cavity flow problem were identical for the different solu-
tion methods. We present the results of the nested nonlimearity-formulation
scheme with a Picard approximation of the nonlinearity, for Re=400 (in
Figures 3.1 and 3.2) and Re=1000 (in Figures 3.3 and 3.4), in the form of
streamlines and pressure contours. Su-:'.unt.lary bottom left and right suh-
vortices, commonly found for these values of the Reynolds number, can be
ohserved, whereas no top left vortex is present, These results compare well
with benchmark solutions for this problem, such as those of |'4!3| and [88;,
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Figure 3.1: Cavity How, Re=400, streamlines,

and otlier published solutions such as those of [6], [ﬂﬁ] ar [S}H|, for Re=400,
and 1301,[651, [ﬂ(i] or [99], for Re=1000. The pressure results also compare
woll with those present in these references,

3.5.2 Kovasznay flow

In order to check numerically the optimal orders of aceuracy proved theoret-
ically for the different variables and norms in Section 3.3, we considered u
problem introduced by Kovasznay (see [69]), modelling laminar low behind
a twa dimensional grid, in which an analytical solution of the steady in-
compressible Navier-Stokes equations with no forcing term is available. The
veloeity solution = (u, 1) is given hy:

ule,y) = 1 — e cos(2ry) (3.32)

A e
nla,y) = Er.'\"mu('.!wyl)
far (w,y) € [K?, whereas the pressure 1s:

| it i fl
playy) = py — ':;f."\' (3.43)

whaore I i oan arhitrary constant and the parameter A s given in terms of
the Revnolds Re muonmber by:
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Figure 3.2: Cavity flow, Re=400, pressure contonrs.

Figure 3.3: Cavity flow, Re=1000. streamlines.
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AN/
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Figure 3.4: Cavity llow, Re=1000, pressure conlours.

Re “%J T
A= = () <0

This Now problem was golved numerically in (93] and [63] for a value of

Rr.*= 1. We solved |I i the domain 2 = l—z l.] = |—

ol the Reynolds number (that is. for v = 0.025), with the four elements
considered and on Tour different uniform meshes, made np with 19 = |3,
3121, 43 % 29 and 61 = 41 nodes, respectively, In all cases, tlie sohition
was ohtained by the nested nonlinearity-formulation scheme with a Newton

Raphson approximation of the conveetive ferm and a congistent mass matrix
for the pressare gradient system, starting from the fuid at rest, but for
the prescribed houndary conditions (which were given by the value of the
atalytical solution al the boundary). The tolerance lor convergonce in the
iteration for nonlincarity was e,y = 107", and the same value was taken for the
tolerance of the tuner formulation iteration. 11 took 5 iterations of Newton

Raphson’s method in all cases 1o find the solution. The only execeplion was
the £ element case with the finer G1 < 41 mesh: Newton-Raphson’s method
diverged in that case; we nsed Pieard's iteration instead, which required 9
iterations to find the solution for the same values of the tolerances. The
number of inner ilerations decreased with the onter iteration scheme in all
cases, from about a hundred in the first iteration, in the worst cases, Lo one
in the ffth iteration in all cases. No relaxation was used for this problem,

=] for that value

i

|13
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Figure 3.9 Kovasznay flow, pressure gradient error in L 4 B Elemem;
s ()1 Element; o Py Element; = O, Element.

We then compnted the exact errors [u—1y|, ||ll.—1l;, |y L= |y IV =N pul
and |\'7'-p — wy| for each mesh and element, Sinee this s a confined How
;”‘uhlc-m, we fixed the valie of the pressure at the last node to zero, which
always corresponded to the top vight corner (1..0.5). We then had 1o take
o= ,i-f-" in .33 =0 that the analytical solution also satislied this linear
restriction.

The results obtained can be seen in Figures 3.5 1o 3.9 as a function of the
mesh size, where we have included the ervors obtained for the GLS method
with a €€} element interpolation for comparison. The linear regression
coelficients compubed for these lines are shown in Table 3.3, Az cau he ol
served, the theorvetical orders of accuracy are found in all cases (they are
again those of Table 2.5): those of the velocity solution are specially sharp,
whereas for the pressure there seems to be a gain of one order of accuracy
both in £* and H'. ln particular, the convergence of the pressure gradiont
wis nol ensured by the theary Tor Lnear and bilinear eléements, hul neyver
theless they display st least fivst order convergence for Lhis variable. We
conjecture that this improvements in the aceuracy of the pressure solution
are i consequence of some superconvergence phenomenon. which is probahly
due to the extreme vegularity of the meshes used (they are all made up of
niform square elements).

Morveover, it 1g clearly seen that the GLS method. although optimal in
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Element || [o—ny| |Pj‘P; ([ Uu||_ Vp V;w.l— Vi — wi
P 2.0 2.0 1.0 [ 1.3
0y I_ﬂ.n 2.1 1.0 1.2 1.8
P 3.0 2_.9_ : 2.0 2.0 2.0
Q: 3.0 3.4 :,.0 1.6 1T

Table 3.3: Kovasznay flow: linear regression coefficients for different errors,

ull cases, produces less accurate results than our method, specially for the
pressure, Once again, the @, element provides the most accurate results.

We present the numerical solution obtained with the Py element on the
31 % 21 mesh in Figures 3,10 and 3.11 for the velocity and the pressure,
respectively, All the solutions we computed were alimost indistinguishable
from one another from a graphic point of view,

3.5.3 Poiseuille flow through a junction of pipes

We finally considered a test problem introduced by J.G. Heywood et al. in
[.'36], which consists of a fully developed channel flow in a pipe which bifur-
cates into fwo. This problem was considered in [56] {o study the eflect of the
truncation of an unbounded domain and the introduction of artificial bound-
aries; they were specially concerned about the effeet of 'natural’ boundary
conditions in outflow boundanes, associaled to different formulations of the
Navier-Stokes equations. Beside this issue of artificial boundary conditions,
here we use this problem as a numerical check of the performance of our
method with respect to the GLS formulation.

The geometry and mesh used for this problem can be seen in Figure 3.12;
we used bilinear quadrilateral elements. The mesh consisls of 2076 nodes
and 1950 elements. A Poiseuille inflow was prescribed upsiream, the no-
slip condition was enforced on the channel walls and natural conditions were
applied weakly at the two outlets. We also set [ = 0 for this problem.

We iterated our NNFP scheme to convergence at a tolerance of ¢ = 10,
starting from the fluid at rest, but lor the inflow boundary condition, with
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Figure 3.10; Kovasznay flow, streamlines.

Figure 3.11: Kovasznay flow, pressire gontonrs.



CHAPTER 3. REFORMULATED NAVIER-STOKES EQUATIONS

Figure 312 Flow throngh a junetion, mesh.

]
local parameters oy = r.ruvi: with ag = 1/3, and for a Reynolds number
ol 50 (as in [56]). 1t took & iterations of our scheme to reach convergence,
each of which needed 15, 10,86, 4, 2,2 and | terations, respectively, for the
inner loop Lo converge al a tolerance of ¢, = 1077, We also considered the
GLS method with a Picard ileration amd the same initial values, 16 took 7
iterations of this scheme to reach a canvergec .
i Table 34 we present the results of o study of computing times (in
seconds) Tor dilferent phases of the two methods. The hrst row displays
the average CPU time spent per iteration in the two eases, which is then
spht into the following four rows. The first one of these shows the average
cost of the computation and assembly ol the system matrix for the velocity
pressure equation; we have included here the times requived for the common
terms of the two methods, that s, the Lﬂ.|.1|m"|ff||| for veloeitios and pressire,
the gz-:ujium and divergenee matrices and the advective terni .fI(H' Y. The
next row shows the thine needed for the additional terms with vespeet 1o the
pr(:\'imm anes: i the GLS rmri.hml. these {.'Ul'['i.!.‘-i]“@lltl to the extra terms i the
!'n|‘m|,liaa.li¢,:||, wherens i olirs I.|'wy are due 1o the nt-;ml to evaluate the pressiire
residue aGW = a0 each of the inneriterations (of which there are 6 in each
of Lhe outer ones mn ;mfre.l.,e.',':'). The average time for the matrix I‘alu".mri?,a.Lil,}ll
in each eration and the system solution (once per iteration in the GLS
method and 6 times, in average, in t)lll‘ﬂl) 15 shown in the fonrth row: i can
be dedneed from it that 11 takes about 0.1 seconds, in average, Lo perform a

ylate.

19
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_(_.‘-_P!J t.li.lf!l.f.‘jl . _ﬂ_LS _nu*.thml_ _I’rﬁ.'eent method

Average per 18.2 18.4
iteration =
Matrix 14.7 15.2
computation
Additional 1.7 0.6
terms
Muatrix fact. 1.7 Il

and solution

Pres. grad. - 0.3
solution )
Total time 24 100

Table 3.4: Flow in a junction of pipes: comparison of performance of the two
methods.

forward and a backward substitution in this case (the unknowns are reordered
al the beginning of the program following a certain renumbering strategy
which minimizes the storage requirements of the system). Finally, we show
the average time (in the ouler ilerations) required in our method for the
pressure pradient residue formation and solution for all the inner iterations
(this gives about 0,04 seconds per forward and backward substitution for this
variable in this case). The total computing time, as a percentage of that of
our method, s given in the last row.

It can be concluded from these computations that the evaluation of the
extra terms in the GLS formulation makes it more costly to form the system
malrix for that case in each iteration; but the need to perform the inner
iteration loops for the coupling with the pressure gradient makes the average
cost per iteration comparable for the two methods. Once again, our scheme
needs one more iteration for the overall convergence, and this makes it about
19% more costly than the GLS method, in this example,

We show the results obtained for this problem in Figure 3.13, for both
the GLS method and ours. The pressure contours and streamlines are quite
satisfactory in both cases. To check the effect of the shorter outflow region
introduced in the computational demain, we computed the flux through the
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Tuable 3.5: Flow in a junction of pipes; flux through outflow regions.

upper and lower outflow sections for the two methods. Knowing that the
inflow flux was 0.61148, ideally one wonld like to find half of that flux flowing
through each outlet region, that is, 0.30574. The actual results obtained,
which can be seen in Table 3.5, are very similar for the two methods; in both
cases there is a greater flow through the upper section, but the total flux was

conserved very accurately.

Method || Upper outflow | Lower outflow 'iT"uth oultflow
GLS 0.36779 (1.24360 .61148
Present ).36804 0.2&_344 IJ_EI.M:_B
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Figure 3.13: Flow through a junction: a) GLS method, streamlines; b)
GLS method, pressure contours; ¢) Present method. streamlines; d) Present
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Chapter 4

Viscosity splitting fractional
step method

In this Chapter we develop and study a fractional-step method for the solu-
tion of the unsteady, incompressible Navier-5tokes equations, These equa-
tions constitute the full nonlinear, time evolution problem of incompressible
viscous flow motion, whose numerical solution s of an undoublable practi-
cal importance. Numerical methods for this problem have to deal with the
diseretization of both space and time,

The fractional-step method that we consider 15 mainly intended to over-
come the difficulties encountered in projection methods regarding the impo-
sition of I'mundar}' conditions. In our method, each time step ia ('lm:umpnaud
into two substeps, and in cach of these the velocity boundary conditions of
the continuous problem are enforced. Moreover, incompressibility 1s split
from the nonlinearity, which are the two main difficulties met when solving
the Navier-5tokes equations,

Farthermore, this method was introduced during the study of a known
predictor-multicorrector algorithm applied to the solution of the unsteady,
incompressible Navier-Stokes equations, which was this way shown to helong
tor the category of fractional-step methods. The study of this algorithm is
the object of Chapter 5.

We review some known facts about the unsteady, incompressible Navier—
Stokes equations in Section 4.1 In 4.2 we mtroduce the fractional step
method that we consider, and prove the convergence of this method to the
continuous solution, Moreover, under some stronger regularity assumptions
on the continuous solulion, we prove some error estimales for the velocily
solution in the case of homogeneous Dirichlet boundary conditions; these es-
timates show that in this method hoth the intermediate and the end-of-step
velocities are weakly order 1 accurate in the time step in the space L2(),
and weakly order 1/2 in H,_},(ﬂ.); this last fact is possible due to the satisfac-
tion of the correct boundary eonditions at the two steps of the scheme, The
pressure solution is also shown to be at least order 1/2 accurate, In Section
4.4 we consider a similar fractional step method, this time with pressure cor-
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rection; similar error estimates are proved for this method for the velocity
and pressure solutions, We then make some Turther remarks on fractional
step methods, concerning the dependence of the steady state solution reached
with these methods with respect to the time step. Furthermore, in 4.4 we
present the fully discrete version of our viscosity splitting, pressure correc-
tion method with two different finite element space inmrpnlﬂ.tians, and an
efficient implementation of this method, while in 4.5 we shiow some numerical
results obtained with it

4.1 The unsteady, incompressible Navier Sto-
kes equations

We recall here the standard formaulation of the unsteady, incompressible
Navier-Stokes equations in primitive velocify—pressure variables, assuming
homogeneons Dirichlel boundary conditions for simplicity of exposition:

%‘.\‘E +(u-Viut+Vp—wau = £ infx(07T)
Veon = 0 inf2x(0,7)
1 = 0 an :I.-I X (”171)

wx0) = ) n 0

Complete studies of this equation system can be found in [105], which we
mainly follow here, and [71].

With the notation introduced in Chapter 1, the weak form of this problem
consists of finding two functions u € L*(0,T; Hy(2)) and p € L*(0, T, L*(2))
such that, given f ¢ L*(0,7'; H"(ﬂ.)) and ug € H:

dt
bu(t),q) = 0, Yqe LX)

u(l) = uy (4.1)

If the dimension of space 15 d < 4 and the domain 18 bounded and
Lipschitz continuous, problem 4.1 has at least one solution (wu,p), which
satisfies u € L™(0,7; H) (see |105]). Uniqueness holds in the 2-dimensional
case; in fact, if d = 2 the solution (u,p) 15 umque, u 15 ae. equal to a
continuous function from [0, 7] inte H and lim;.p+ u(t) = ug in H. We
assume Lhat thig continuity result also holds in the three dimensional case.

Uniqueness and more regularity of the solution can be proved by assuming,
more regularity on the data f and ug and the domain 2. In fact, according
to Heywood and Rannacher (see [54]), if d < 3 and §2 is such that the Stokes
problem is regular, and if one assumes:

.E‘;(u(;,),v) Fa(u(t),v) +e(u(t),u(l),v) + b(v,p(t)) = <f,v=, VveH(%)
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A1) ug € HY(Q)NY and f,f € L=(0, T, L)),
A2) if d =3, sup,cpop (In(0I]) < M,

{
(the subindex ¢ is employed hereafter for CH) then the solution u of 4.1 is
unique and satisfies u © C.'“(l]. T:Y), [|lu(t) = ug||lz — 0 as { — 0 and:

R1) :n.tp,mlrr.,{||u[r.)||2 + fug(t)] + IVML)l} <0

R2) [ |[ude)|[Fdt = C
R'S) -fu?"-l“nn(f-)lz dil < 84

Condition A2 15 automatically satisfied in the 2-dimensional case. Under
the agsumptions A1-A2, it is also shown in [90] thal, according o the
modifications introduced in [92]:

R4) S |lun(®)||2 dt < C

These regularity results will be used in the following Sections. As is
common practice in thig context, we will use repeatedly i our proofs a
discrete version of the Gronwall inequality. For the sake of completeness we
recall the result here, but we refer to Heywood and Rannacher ([55]) for a
proof. The version of this inequality that we shall use is the following:

Lemma 4.1: let a;, b, ¢, v (1 € IN), k and B be positive real numbers such
that, forn = 0:

n41 n+1 a1
dngr + BRI b < kY e+ kY e+ B (4.2)
i=0 i=0 10
Suppose that ky; < 1 for all 1, and set oy = (1 — kyi)~'. Then:
ui_{ [1_‘ n\vlv_':
gy + kDb < exp(RY o) (kY e + B) (4.3)
i=0 =0 i=0

Moreover, as it is deduced from a Remark in page 370 of [556], when the
first snm on the right-hand-side of 4.2 extends only to n, then 4.3 holds for
all k with a; = 1. In both cases, when all the coeflicients 4; are bounded from
above, k = 8t and n < [T'/k|, the exponential term in the right-hand-side
of 4.3 can be bounded by a constant C' independent of £ This is the result
that we will actually nse.

In some of our proofs we will also make use of the operator A ", defined
ag the inverse of the Stokes operator A = —PyA. The latter 15 defined for
ue DA)=¥n Hi(ﬂ), and 15 an unbounded, positive, self-adjoint closed
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operator onto H. Gliven u € H, by definition of A, v = A~"u s the solution
of the following Stokes problem:

~Av + ¥Vr = u
Vv = 0 (4.4)
V[r = 0

When § ig such that this problem 1s regular, there exists a constant
7y = 0 such that:

1A ||, = Cilluflss for & =1,2 (4.5)

Some im:qlmlitius were giw:u by J. Shen in [!-J'“] for (A'lu, u), with u & 1,
in terms of ||u||_ 1, and used there to dednce error estimates for Lhe standard
projection method. Namely, he had:

Chllulty £ (A7wym) < CFfjullZ, (4.6)

where (/; is the constant appearing in 4.5, But, as pointed out by J.L.
Chaermond in lfsﬂ] and corrected 1m [9'2], the first inequality in not correct
and has to be maodified to;

Calfull}: < (A~'n,u) (4.1)

With this modification, it is claimed in [92] that the results obtained in
[QIJ] (and [ﬂ}l]) gtill hold if the norm ||ul|_| iz replaced by ||ul|y+ throughout
the proofs, This is not quite true, since he 15 still using the incqua.lit.y 4.5 for
s = 1. We now show that in 4.5 with s = 1 the norm ||u||-; can be replaced
by |||y, which is what we actually use in our proofs, Thus, given n € H
let us call v = A 'u; we have:

AT [ = ((A7'w, A7) = ((v,v))
= (0,v) + (nV:v) = (n,v) =<uv=
< iy (vl = [ully [[A™ ]|

Thus, we have proved that:
A uf| < lufly

We will use this result in what follows,

4.2 Viscosity splitting method

4.2.1 Development of the method

We present here a fractional-step method for the approximation in time of
4.1, in a semidiscrete form. The main purpose of introducing this scheme
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is to be able to enforce the houndary conditions of the original problem in
the two substeps of the method, thus overcoming the difficulties of standard
ptojection methods in this sense, which were explained in Section 1.5, This
is achieved by splitting the viscous term into the two substeps. Some of
the results presented here can be found in [11]. The method 18 presented
depending on a free parameter # = 0, which we subsequently fix to |

First step: The first step of the method consists of finding, given u™ € ¥,
an intermediate velacity u™'/? such that;

url-l-'.l.f? un

% BrAn™? (1 — A" (u"-V)'t.l'”'lKI = f(tas1)

w2 L = 0 (4.8)

where 0 < # < 1. The approximation of the convective term may take other
forms; the semi-implicit approximation adopted here is taken from [90], The
weak form of 4.8 can be written as:

af(u? vy = Liv),  VYve Hy\Q) (4.9)

where the bilinear form ay is defined hy:

aj(u,v) = (u,v) + 88w ((n,v)) + 6t((u"Viu,v),

and the linear form /4 includes the known terms of 4.8, namely j(v) =
(u",v) — (1= 8)dtp((u”,v)) 4 8t (£(£,41),v). One has that aj is continu-
ous and coercive with respect to ||u|| in Hy(R2), due to the skew-symmetric
character of the approximation of the convective term (which is in turn a
consequence of the solenoidal character of u” and the vanishing of u" at the
boundary) and the presence of the Laplacian term. The form [; is continuous
on HL(82) because of the Schwarz and Poincaré inequalities, so that existence
and uniqueness of u" /% is established by the Lax-Milgram theorem.

The fully implicit case § = | ean be found in the original projection
method of R Temam (see [100]) and in the method of J. Shen ([90]), among
others. The Crank-Nicholson case # = 1/2 is of main importance, since it
provides a second order approximation of the viscous term. It 15 present
higher order methods such as [8], [45], [62] and [65]. The basic difference
among these methods is the treatment of the nonlinearity, which is normally
second order in time and explicit. The explicit case § = ) has also been
considered before (see [30] or [73], for instance); we exclude it from the
present study because in that case the bihnear form afj 15 not coercive on

H(9).

Second step: For the second step of the method, we avoid using the stan-
dard projection idea; instead, we include a diffusion term together with in-
compressibility, which allows the imposition of the full boundary conditions
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for the velocity. That is, given w"*'/? from equation 4.9, we look for an
end-of-step velocity u'*! and an end-of-step pressure p™*! such that:

eS| ni1/2
- obiiter., - A"t —u"“‘u) fovpttt =0 (4.10)
Y ¢ u"'H = ) ('1.]1)
utpy = 0 (4.12)

Similar ideas to this scheme can be found in some of the viscosity splitting
methods of subsgection 1.5.3. The weak form of 4.10-4,11-4.12 consists of
finding n™*' € HY(Q) and ™ = &L p"*! € L3(§2) such that:

ao(u"t V) 4 blv,s"T) = L(v), Vve Hi(Q)
Bt g) = 0, Vge Li(Q) (4.13)

W’h Cre Now!

ag(u,v) = (u,v) + B8tw((n,v)) (4.14)

15 a bilinear, symmetric, continuous form on Hﬁ(ﬂ.), which iz also coercive
with respect to ||u|[, and l3(v) = as(u"*"/? v) is a known linear continuous
map. Problem 4.13 is a mixed problem, in which ag is coercive and b satisfies
the continuons LBB condition 1.25, so that existence and uniqueness of a
solution (u™* 5"t ig guaranteed.

REMARK 4.1: By adding 4.8 and 4.10 one gets:

uﬂ'f':l = “:I'I-

g BuAu"™t! — (1 - O)pAu® 4 (0 V)" 4 T = £(t4)

(4.15)
where the implicit treatment of the viscous term in u” and v and not
in the intermediate velocity u”t U?' can be obaerved. Moreover, it 18 clear
from 4.15 that, at least for the linear problem, p"™*' keeps its meaning as an
end-of-step pressure (this is notl the case for some fractional step projection
methods), The advantage of using a split scheme like 4.8-4.10 rather than a
single (n, p) step is the decoupling of the convective effects from incompress-
ihility, which allows the use of suitable approximations for each term.

REMARK 4.2: Asin standard projection methods, a Poisson equation
can be derived for the pressure to solve 4.10-4.11-4.12. In fact, taking the
divergence of 4.10 and using 4.11 yields:

St AP = (I-86LpA)V - u™M? € HN(Q) (4.16)

sufficient smoothness of the functions involved been assumed. Bui in order
that 4.16 and 4.10 imply 4.11, the incompressibility condition V- u™"' =0
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must also be enforced on the boundary (see |66]), as in the original method
af A, Chorn (:mee '32[) Besides, houndary conditions forr P H cannot be
directly derived, and p™*! is subject to integral conditions (see [82]). There-
fore, the original grad—div formulation 4.10-4.11 is adopted, which has the
advantage of allowing discontinuous pressure approximations and requires of
no boundary conditions al all for this varnable, One drawback of solving
A4.10-4 11 is the need for the r-.pati:l.l approximalion chosen to satisfy the dis-
erete LBRB condition, a problem that will be encountered in the fully discrete
version of the method, and that the velocity and pressure unknowns have to
be dealt with at the same time,

REMARK 4.3: This method can also be understood as a projection
method in a different sense than the classical one. In the space H{’,(ﬂ.‘), let us
define the norm Hu]] induced by the scalar product ag, which s an uquivalunt
norm to ||u||. Recalling the decomposition Hi(2) = ¥ & Y of Section 1.2
and the characterization of ¥, and calling Py the orthogonal projection from
H)(£2) onto ¥ in the norm |[u)], one has that for any v € HJ(£2) there exist
ne Y and s € L3(2) such that u = Py(v) and (- &)"I(V.ﬂ = (1 t'-"y)(v),
or equivalently, v = a + ( A)"(Vﬂ). That 15 Lo say, one has that:

ap(v,w) = ag(u,w)— (V. w, "), VYwe Hy(2)
(V-u*t' q) = 0, Vg e Ly(§)

Equation 4.13 amounts to saying that utl = Pr(u"*'”*), s0 that unt!
i5 Lhe projection of "t anto Y with respect to the norm [[u||

For the case 8 = 1, we first proved convergence of the intermediate and
end-of-step velocities to a continnous solution in the spaces HE,(S'Z) and
L*(§2), in the appropiate sense, in a similar way to the proof of the con-
vergence of Lthe classical projection method given by R. Temam in [lOﬂ]. The
convergence of u™ in HL(§2) could not be obtained for the standard projec-
tion method, since in that case u™t ¢ HL(§) (it does not satisfy the proper
houndary condition).

We then obtained weakly order 1 error estimates in the time step for
u" 2 and u™ in L*(Q) and weakly order 1/2 in H(R), following the
ideas of J. Shen in [90] and under some more regularity conditions on the
continuous solution; the estimates for u"* can be irnprnw_'rl to ﬁtrungly or-
der 1 in L) and weakly order | in Hi(§2), under some rather restrictive
assumptlions; we give ihe pmof of this inprovement 110 afn Appcndix. We also
obtained order 1/2 error estimates for the pressure.

4.2.2 Convergence of the method

We include here our first proof of convergence of the viscosity sphitting, frac-
tional step method just considered, which is based on the proof of convergenee
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of the original projection method given by R, Temam in [101] and included
in [105!. The proof for our scheme can also be found in [11].

Let us assume that £ € L3(0,7; L*(52)), and consider the weak form of
the unsteady, incompressible Navier-Stokes equations 4.1, Its solutions are
characterized by satisfying (see [105]) u € L*(0,7;Y) and:

L) v) 4 (w0 Ol v) + (V) = (Khv), ey
(4.17)
We consider the fractional step method 4.8 and 4.10-4.11-4 .12 with 8 = 1,
but with an approximation of the force term £ which is the time average of
fin [t bnst] (a8 15 taken in [105]). For this method, and calling k = &1 to
follow the standard notation in this contexi, we have:

Lemma 4.2: for al N = {],...,[TM'.J 1, the following a priort estimale
haolds:

N
|“N-1-1|2 s }:“u"ﬂ = un-r-I/HI'.t | |“n+1/2 -5 “nlﬂ)
rii=D
N N .
ke D0 [P ke 3 (et - w2 O (4.18)
=0 n=ill

+  Cf
where Oy = |[u®|* 4 = [T|£(s)|? ds and C was introduced in 1.14.
v

PROOF: the proof is similar to that of Lemma 7.1.2 in [105]. Taking the
product of 4.8 with 2 k u"**/? and using the identity (a —b,2a) = |a|* — |b|* +
|a — bf*, we get:

|"..+;/313 = |“|u.|'.i 1S .un-H('E =r unlz Il 21-"!11”11“-,-”3“2
zk(‘fln’"md/z) £ zklfrnl [urH-l/'.'.l

i 2 -
< 2k(|E Co (™3| < wk|u2R 4 J’a'(:—“lf"l’
1#
so Lhat:
|“n-|-1f2|1 — |urt|3' | |“n-p1)‘2_“n|3 + yk““n-H(:“E
3
= ff7|f*'|z (‘IH:))

Taking now the product of 4.10 with 2ku™"!, we get:
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|un+1}2 . Iun-t-llﬂlﬂ + |un|-1 N “ful-.ljzli* (42{”
+ ku(|lu"'“||‘" ([t 22 g ”‘1"-4‘0_“"-“/?”9):{)

Adding up 4.19 and 4.20 for n = 0, ... N, we ohtain 4,18 using the fact
that (see [105]):

N ; 7
kS |Er < f I£(s)[* ds
riecifl i
]
Notice the last term appeaning in the left-hand side of 4.18, which is not
present in [105]

Lemma 4.3; for every m, N =0, [T/k] —1:

l) |urn--l-f/5l|2 :E_ Gh zl _ 1*2
2) Kl < /e

N
3) E Iun'l'l = u!lll-\lf2.|2| E: C"I

=0
N
‘1) Z |“"'”'!:z = “"[3 <G
=0
AL
5) k }_‘" I[uﬂ+1 - “1|+1,:’2”2 E— C'Tlf”
n=0

N
6) k3 [P = O/
n={

PROOF: the proof is, again, similar to that of [105]. Parts 3) through 6)
follow from 4.18. Parf 1) with ¢ = 1 and part 2) follow {rom the addition of
419 forn = 0,...,m and 4.20 for n = 0,...,m — 1. Finally, part 1) with
1 = 2 is obtained by adding up 4.19 and 4.20 for n = 0,...,m. L]

Notice that the bound 5) was ot obtained in [105]. We now define some
approximating functions uj‘ and ny in a similar way to [105], which were
mentioned in Section 1.5. We introduce a new function uj, which we need for
the treatment of the convective term:

up: (0,7 = L3() / ul() =u"3, phk<t<(n4 1)k
ui: [0, 7] = LA(Q) / ui(®) =u"t, nk<t<(n+ 1)k
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up: [0, 7] — LA(8) / uﬁ(l.) =u", nh<t<(n+ 1)k

ug: [0, 7] — L*(2) / wy is continuous, linear on £ on each interval

|nak, (n+ l)kJ and ug(t,) =nu" forn =20, .., [Tﬁc]-

These approximating functions u}, and v satisfy, for decreasing k:
Lemma 4.4; as k lends lo zero,

1) uL and w, are bounded in L¥(0, 7, L*(Q)), +=1,2,3
2) ul and ng are bounded in L0, 7, HY()), i=1,2,3
3) (uj — ) and (nf — uy) are bounded in L*(0, 7 Hy(2))

PROOY: these results are a consequence of Lemma 4.3 and the definitions of
the functions. L]

The main novelty with respect to [105] iz now the boundedness of uﬁ and
up i LA(0, T, HE(82)), together with that of the differences (uj — u;) and
(u} —u}). Moreover:

Lemma 4.5;

1) g — willzsornzoy < \/;'4'.(?1
2) ”“2_ = “:I!u’[nﬂ':h*{ﬂ}) = v/ dk(_;‘l

4k
3 |y~ “:“Ll'{ﬂ,#‘;bi{ﬂ]] < V “,f-l"

PROOF: part 1) follows from Lemma 4.3, part 3); 2) results from Lemma 4.3,
parts 3) and 4) and the triangle inequality, Finally, 3) 15 a consequence of
the definition of wy and Lemma 4.3, parts 3) and 4). (]

Following [105], let us now define f € L2(0, 7, L*(2)) as fi(t) = " for
by <t < tnsy and n=0,,..,[T/k] = L. Then:

Lemma 4.6:

= w((ui(t),v)) — e(ui(t),wilt),v) + (fu(t),v)
< aul(t),v >, Vv eY, Vie(0,T) (4.21)

(1), v)
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with g, bounded in L*(0, T, Y"). In particular, ny, is a.c. equal to a continu-
ous function from [0, inte Y

PROOTF: the weak form of 4.8 and 4.10-4,11-4.12 can also be written as:

u” F1/2 u”

(T )+ () e ) (4.22)
= (", v), Vv ¢ H;(02)

and:

el e 1/2
(u ku V) p((™ = a2 vy e b, ) (4.23)
= 0, VYveHyn)

blu".q) = 0, Vge L3(Q)

respectively. By adding 4.22 and 4.23 for v € Y, one gets:

nid-1 n
(= i 5 ov) 4 e((u" M v) + e(u” w2 v
— (T“IV> VV (= Y

so that 4.21 follows from the above definitions. Besides:

las(t)|ly = w|fug(e)] + Coay | Jug(e)]| g ()] + |f(2)]
where Cyyp = 013 a constant related to the continuity of the trilinear form e

(see Section 1.2); the remaining statements are a consequence of Lemma 4.4
and Lemma ITL.1.1 of [105]. ]

The proof of a convergence theorem is now ru&dy:

Theorem 4.1: let £ € L*(0,7,H) and n® € Y. Then, there epists a sub-
sequence k' of k and a solution v of the Navier-Stokes equations 4.17 such
that:
1) l.l};, and Wy converge to W n Lz(l],'f'; Lg(ﬂ)) strongly, +=1,2,3.
2) u},; and Uy converge lo non L'“((),T;L""(ﬂ)) weak-star, 1= 1,2,3.
3} uL, and vy converge o u in LE(D,T; H},(EZ)) weakly, =123,
For any other subsequence k" such that these convergence resulls hold, u
musl be a solution of 4.17.

PROOF: since uj, (7 = 1,2,3) and uy are bounded in L=(0, T; L}(Q)), there
exists a subsequence &' (which can be taken the same for all 4 sequences)
and u' (1 = 1,2,3), u” e L=(0,7; L)) such that;
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u, — u'in L=(0,7;L*()) weak —star ( =1,2,3)
we — " oan L0, 7T LA()) weak — star

Since ul, (i = 1,2,3) and ug are bounded in L*(0, 7', Hi(§2)), there exists
a subsequence of &' (which 15 also denoted by ') such that:

up — o L0, T;Hy(9) weakly (1=1,2,3)
we — uin L3(0, T, Hy(9) weakly

This convergence also holds in L*(0,T; L*(2)). Since, by Lenumu 4.5
(uj, =), (ui —ub), (uj —wp) — 0in L0, T;LA(S2))  strongly,

it must hen! = = =u" L=(0,TH)nN L’{[),T;Y).

Since uj, € L=(0,7; )N L0, 7;Y), one has that n'(f) € ¥ ae. in
(0,7, and w* € L=(0, T, H)yn L*(0.T;Y).

The proof of strong convergence in L*(0, 7', L*(£2)) is the same as in [105],
and is therefore omitied. It only remaing fo show that u® is a selution of
4.17. The same argument as in [I.DE| is used, so that the convergence results
already proved imply, by taking 4.21 to the limit when k' tends to 0, that:

;};(u-‘v) bou((ut,v)) + e(utun,v) = (£,v) Yvey

in distribution sense in (0,7), i.e., u
d -

(see [105]) that % e L)0, T: "), u*(0) = n" weakly in ¥ and u” is a.e.
i

equal to a continuous function from (0,7") inte Y. These results ensure that
u” is a weak solution of 4.17, and the theorem is thus proved. ]

gatisfies 4.17. This, in turn, implies

In the two dimensional case, one has:

Curullz_tr! 4.1: let d = 2. Then, the convergence given in Theorem 4.1 15 of
the sequence as a whole.

PROOF: this result 15 a consequence of the nniqueness of the solution u in
the two-dimensionnl case. ]

In summary, both the intermediate u"*'/? and the end-of-step velocities
u™t have been shown to converge to u(t, ) in Hy(£2), through the functions
uy and HE respectively. This 1s an improvement with respect to [105], where
u™t only converges in L*(£2).
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4.2.3 FError estimates

We now present an error analysis of our viscosity splitting, fractional step
method with parameter @ = 1, which follows mainly the ideas of [90] with
the modifications introduced in l'.-}B|

Let us define the vclm‘ity error functions for this miethod as:

ant! “(f-nnl l) — ¥

en-f-lﬁ

W(lggy) — n" 72
We give an estimate for ™ and le"""”; in parficular, we show that both
™t and ut? are strongly order 1/2 approximations to u(t,;;) in L*(€)

H-I'I.d Wﬂlﬂ(l:v ﬂIdi‘;’I‘ ]/2 hl H‘L(ﬂ‘].

Lemma 4.7, if Al and A2 hold, and if the Stokes problem is reqular, then
for N =0,..., [T/k] - 1:

N
|EN4-|.|2 + i“N |-1}5|2 f E{lcnﬂ_ En+1f3|2 4 lun+1/3 B ﬂulﬂ} (434)

=l

N
+ kuz{||en+1”2 4 ”En-l-lf2”2 } ”uwli En-ll!!”!} E e ke

AR

PROOF; the first part of the proof is similar to that of [90], We call R" the
truncation error defined by:

i(“(tﬂ-ll) =u(ty)) = vAMm()) + () V)ultagn) + Vplta)
= f(tia) + R (4.25)
so that:
R = | e 1) (1) dt

ke i
Subtracting 4.8 from 4.25, we get:

}E'(“"“” —e") — wA(E?) = (V) = (u(tga) - V)u(tug)
+ R" — Vp(ta) (4.26)

We split the nonlinear terma on the right hand side of 4.26 into three
ferms as in [IBUIII:
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(u" V)“"H” ~ (u(tyia) - V)u(te) (4.27)
= = (e"-V)utE 4 ((u(é.-,) u(tnii)) -V)u" +1/3
(u(tusn) - V)e" 1/

and then take the imner pmduct ol 4.26 with 2ke™ /% to obiain:

[ F 22— a4 2k ||en R 4 et e (4.28)
= 2k < R"e"™VE 5> —2k(Vp(tun), e
2k c(e”, uti2 ™Y L 2k e(ulte) — u(tasr ), w2, a"t1/2)
2k o(titng ), €m0/

We bound each term in the RHS of 4.28 independently:

s Taylor residual term:

2k <RV < 2k[[RY | [Jem)
kew ,
< Tl'enl.l‘r’!“! + (‘:"“”R““Bl
fers 3 { tinkl
- By E“L (€~ ty)ug dt]|®
< ‘('_‘l:”unnl-lj!”i'
& n t
N fidl il
b L e e [ g de
Je .
< f”ﬁ"“”ll‘ 4 f‘kf B[ dt

s Pressure gradient term:

~2k (Vp(tyy), e"'/?— e")
2k | Vp(taia)| [e"H/? = "

1 :
Elnnﬂfﬂ‘ N (‘:”lz " 9 k? [Vﬁ{tn.;-l)la

—2k (Vp(tasr), e t?)

P

I,

since ¥V - e = (),

s Nonlinear terms:
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o {'(E"‘ “u-j-ljﬂ'enfllz) — 2k l.'?('.'!“, o" H/HI “u-+1/2)

2k e(e”, at ""i, (t, 1))

T

= Ckle”| ”E"Hm” [[a(ta)lls = Ckle”| ||¢-_"'*"f3||
kis ; f
< Sl + akjenf

Ty 2k e(u(t,) — n(lps ), n" H/z E,..pm)
= —2ke(u(t,) — u(tu), e"HI/2 n/g)
= —2kec{u(t,) - W(tn), @2 utn i)
< ChJu(tn) = ultup)| e flutuga)ll
< Chlu(ty) = ultag)] [le"7]

; *’E n1/2))2 . thirta 2
< e +6k|/ﬂu u dt|

k bk
< et ek [

Ty 2k e(u(tugg), ™2 V) =

]

where we have used R1 and the boundedness and skew-symmetry prop-
erties of the trilinear form e,

From all these mequalities we deduce:

|Eu+1f:|2 = |(_nli i kp”ﬂrm-l,!!“'s i %|¢r|+1fﬂ_¢ﬂ|3

£y

{ I
< m,-f |2, 4+ c:'k‘f Pdt (4.29)
ta Ly
b2k (Vpltap )t + Ckle"?
The pm.clf is now different from that of I'!-JDJ. From 4.10 we have:

nkl __an $1/2

: = — pAe™ — ™ gyt = 0 (4.30)

Taking the inner product of 4.30 with 2ke™!, given that V. e™! = 0
and that u“;“ = 0, we get:

e+ [? [ent/22 4 | I,_u+i!2i! (4.31)
Fokw ((lem2 = (jem P2 4 flemtt — e ¥|R) =

13
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Adding up 4.29 and 4.31 for n = 0,.. ., N, we find:

N .
. =4 1
N bl w1242 Liantl/2  onild
g | i |e € + e e
' Z "+ gl }
N '
+ kv L{“e"-{-llla b ”L."'“ - urlll[d”ﬁ}

Qg

i "
< m-(fu |2 dt kﬁ |2t +

N
+ Gk E:Iuﬂ'i

pr=el)

sup |Vp(t)|*)

te[0,T]

Applying the discrete Gronwall lemma to the last inequality and using

the regularity properties of the solution (u, p), we oblain:

N
IeN+-1|z 4 2{|En+1 e En-;—t/;zla @ Iuﬂ.uz - e“[‘}

N
b ke E{”‘EH‘HHH + llerﬁ-l o en+1/$|[3}
n=0

< Ck

(4,32)

We still have to prove the bounds for u™*/?, From 4.31 and the triangle

inequality, we get:

N
MR ke 3 [l

¥l

= |E.N-|-!|'J i kU”EN-I-l“ﬂ = leN-I-i _ENIII-I/’BI!

N-1

+ kw|leMt — MR 4 2kw Z{“““M“z | ||a?t? - r“‘*'mHI}

n=f
N

[

n=il

N
o Z [ellhll . cn+l/2’2
n=0

=< Uk

according to 4.32, so that 4.24 follows.

]ﬂN-II-'llz + 2ku E{Ht-t“"'ll[z b [|e™t? _En.ruz”c:}

[

REMARK 4.4: Lemma 4.7 shows, in particular, that the method pro-
vides uniformly stable velocities in Hg({1), that is to say, that there ex-
ists a constant ' > 0 independent of the time step k such that for all

n=0,...,[T/k] -1
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| < © (4.33)
2| € ¢ (4.34)

We will use this bounds later on.

We are now in a position to obtam an impm\!ctl error estimate for the
velocity, We will show fhat /2 and u"*' are actually weakly order 1
approximalions of the solution in L”(n).

Theorem 4,2;  if Al and A2 hold, and if the Stokes problem is regular, then

for N =0,....|T/k|—1 and small enough k:
A ; ,
’i‘-H E(lew-l-llﬂ 1_ lt!'“ I'If&la) f Crki (‘135)
n=0

PROOF; lel us call g™t = p(f."“) — p"!, From 4.15 (with # = 1) and 4.25,
it turns out that:

i_(cn-l-l —E"} = y,ﬁ(e"”) af fo"":l (4..3(5)
= (u" WM o (a(lgy) V(b)) + RT

We could take the inner product of 4.36 with 2ke™*! which isin ¥ (and in
particular satisfies the proper boundary condition); but then we would need
some extra regularity of ™!, which we cannot prove (see the Appendix),
Instead, we take the inner product of 4.36 with 2kA'e™ as in [90], and
use the self-adjointness of A! to get:

(Eﬂ-H,A 'I.EH"M) = (l“",.ﬂ‘-‘ll_]ﬂ"J i (E‘-"H _ﬂrﬁ1A—1(en+1 —E"))
- Zkf-f(Au"'+'1,A':l:"H)

= 2he(u" w2 AT < 2k o(u(tnga), u(tuga) AN
+ 2k < R* A7 ™ (4.87)

The treatment of the term 2k (Ae™!, A7) 1s simpler in our case
than in the standard projection method. In fact, if we take u = "™ in 4.4,
we have:

“2ku(Ae™, A7) = 2ku (e, ~A(Ae"YY)
= 2hku(e™ " —Vr) = 2kp (e e
= gku |Eﬂ+1|z
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since V- e™! = 0, The night-hand-side terms are bounded as follows. Tor
the Taylor residual terim we have:

2k < R", A 'e™ =

: .ll-ll. | |'Il'\.

b

1M

<

9k ”Rﬂ”‘” ||A—1nn+1”
2 ey (Rl

klle™ 5 + k[R5
L!i‘"ll“"fl 1 R_I “j f—t" L8 ¥ l.'“.ll}u

wid i
Elle™ 12, 4 k! f (t —ta) d.AI/;" lvaael (21t

k(™15 + C.’k:“j: et 2

For the noulinear terms, we use the splitting 4.27 to express them as:

2k (C(“" u™t2 A7) < e(u(tai ) utai), A_in"'”))
= 21‘&( E(“( HH) Lﬂl]/z A_I{"R-H) e ﬂ(“(trr)—ll(frr.-ri),llﬂ'4l]/E,A !(:nH)
— (e, utE AT 'e"‘”))

which we eall I, IT and I1I, respectively. Then:

—
1l

FAS PR |

I

—2 kﬂ(l-I(tn.i.-[). Er""uarﬂ' 113"'“)
2k e(u(tng), A"’E"‘M‘un'llllfl]

C k| [utye)|]z [|A Tnt || [enti/2)
Gl

Cklle™ | + S jem

c’rknﬂn-Hiﬁ" 4 T{{ienﬂlz A |“n-l-:| _en+-1/2|‘.'l

4 kHHﬂnH“: (X A:l-’“l’."“ ) c-.+1/z”z o kulleud—‘lﬁ'lli}

where we have used 4.31.

1

AR |

)

I

1N

2k G(U(tn) - “(iﬂ-l-l)J “"'Hfz: A —1Eu+'[)
C-'k|u(1‘,,,) “(tn-i-:H “un+'l,‘n” HA_II"-M‘“z

bod i
C'ks|f " ugdt] ||
_— { ST 7 iy EE h!’k'[‘l »
(-Al./:" u dt|* ] le" |

lil il
ok [ wefdt + %mw*-'l*
i
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where we have used the bound 4.34. Finally:

11

-2k c(e", unHife, g=1gn+l)
2kcle", A Lanht gy 1;2)
2k (.‘(e"" A Vet “(t"“))
2k (e, A TemH E;;.;.‘/'x}
[, + I,

2 ke(e™, A e u(tni1))
Ckle"] |[u(tusa)lla [|4 " e

'k (Icnkll + |l3"+1 = ﬂﬂ-"".fle + le-n-l-‘l/i r= (‘5“') ”C‘-"H-I“fi

fl_pl‘:ﬂ-d-llk + Ok (iEﬂ+l r En+l/2|2 % Ien-l-lfﬂ'. —ah 2)

sa that:
I, =
=
_E; G k |Eu| Huu-l-i Il}"
=
=
+ Gr L “ﬁn+l |l¥N
and:

[,

PR R AR

1

—-zkE(EH‘A_ll:“'-l Eir{-l/ﬁ)

C e [|A1e™ [, [le™17)
'k |L""1 Iur|-|-1| H“-unlu I./S!,”

r-;r kﬂ/! |E"+l| ||Eﬁ-l-1)‘z||

g g it e

since, according to Lemma 4.7, |e"| < Chk/2, All these mequalities yield:

(EH'II,AFIG'H'I)

(&",A_:Eﬂ) + (eﬂ+1 o EH1A—I(EH+I | B J;‘-“})
ki Ien+‘l|2

LA f-".
Gk‘f " el b+ m-“f M e[ at
t!l

Cklle™|[3, + Okl
'k |L‘“"'1 B E,H.;/glz + Gk]und-lli _ l’.'“IE
O R [e™ — PR 4 ORI (4.38)

Adding up 4.38 for n = 0,..., N, we get:
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N
(EN"'I,A 1._.”'“) I z:(en-l.l - (’,‘“,n"l —'.I(ﬂuH- —E’"))
=1

A
+ kv L |ta""”|:l
h=0

7 S
CR [ Nuallfdt + €K [ uf e

N N
+ GrkEHen-Hlﬁn 1 Gik'.l E”ﬂn+1||2

1

n=0 i)
y / e / 2
+ CkY e o2 gk 3 [V e
ﬁl:ra n=f{)
X N
+ CR Y || —e™ P o Ck? 3 [l
n=0 e

Using now 4.7, the regularity properties R1 and R4 of the continuous
solution and the estimates of Lemma 4.7, we get:

N N
||E.N-I-.'I||§” 1 }:HE“-H . l:,nn”';“” + kv E |en+l|‘d
n=(} n=l
N
< CF 4 CkY[je")3
=0

For sufliciently small k, we can apply the diserete Gronwall lemima to the
last inequality, and we get:

N N
e ™5+ 30 Il — e[} + kw7 [e™?
monll =iy
< OF

and the estimate for u™t? is proved. For u"t'/? we have:

S N
k]f E:: |¢¥I+In;(3l:l 5 Tk z (leu-l ll? + |EII Bl Hr:-lnllez)
n=0 en
< Ok
due to Lemma 4.7 and the estimate for u™, so that 4.35 is proved. -

REMARK 4.5: Shen's proof of 4.35 for the standard projection method
in [90] is not quite correct. Apart from the corrections pointed out in [50],
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he uses the equivalence between |[n||-y and (A", w)"* as norms on / in
an improper way. Apparently, he bounds:

”“nl-l.“.?_1 . “e"ll‘-{l + Hen-ﬂ _ﬂn[]'e_l
by:
C—:(En-{l - 'E‘.'".?...d 1“'1IPI).

which cannot be deduced from 4.6.

REMARK 4.6: since we are assuming that the domain §2 18 smooth
enough for the Stokes problem to be regular, we can assure that our semidis.
crete velocities 1?2 and u™?, which are solutions of elliptic problems on
2, actually helong to Hn(ﬂ), We can improve our error estimates for unt
to strongly first order in L*(£2) and weakly first order in H{(§2) by assuming
that w2 is uniformly bounded in H*({1), that is, bounded by a constant
independent of k. But we cannot prove this assumption, so we keep onr weak
arder | error estimates (which are the same as those obtained in [90] for the
standard projection method) and give this improvement in an Appendix.

REMARK 4.7: in Theorem 4.2 we have proved that, in particulas:

N

2 ™t — ety < CK

wi=ll

But to get some pressure error estimates we would need this inequality

in terms of the norm |[:]|.1- This is the reason why the proofl presenfed in
[90] of weakly order 1/2 pressure error estimates for the classical projection
method is not correct, as explained in [92]; in this last reference this proof
is modified for the linear Stokes problem, dropping the nonlinear terms. We
could also do so very easily here, but prefer to put off thig question to the
Appendix, when, using the improved error estimates proved there, we can
deal with the full nonlinear prql:)lﬂm and still obtain weakly order 1/2 error
estimales for the pressure in Lg(ﬂ).

4.3 A pressure—correction method

4.3.1 Development of the method

We now modify the viscosity splitting method of the previous Section fo
account for pressure correction, This modified scheme will let us study the
predictor-multicorrector algorithm in Chapter 5. Another advantage of using
a pressure correction method will be explained in Subsection 4.3.3.

Az was seen in some of the methods presented in Section 1.5, such as those
of (90}, [62] or [81], the basic idea of pressure correction consists of including
4 pressure pradient term in the first step of the method evaluated al the
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previons time step, and mgarrling the Lagrange multiplit‘r of the second step
as a pressure increment, rather than an end-of-step pressure in itself. The
acheme is started by an arbitrary pressure p°, which we assume belongs to
H'(§2); then, the scheme reads:

First step: Givenu" ¢ Y and 7" ¢ L;‘;(Q), we seek a2 quch that:
i/ Ry . _ o i /1
T___ — duAn™t fa (1 . H)!!Aﬁ" | (“u 3 v)'llxr / b Vﬁ"

' = f(tnsi) (4.39)

atie = 0

The weak form of this problem consists of finding n™*1/* & H}(R2) such
that:

ag(W™ M v) = (v, Vv € H(Q) (4.40)

where now [I'(v) = Li(v) — b(v,p"). Since this linear form is also continuous
in Hé(ﬂ), once more we have existence and umiqueness of a selution i/
due to the Lax-Milgram theorem.

Second step:  Given now @™/? ¢ HY(Q2), we look for """ and "+ such
that:

ﬁl1l+ | " fifa

B ot

- frA(a"t — 1”1"'““) + gV Et — i) = 0 (4.41)
v.aatt = 0 (4.42)
l..ln+‘l|r - U (443)

where ¢ = 0 is an arbitrary patameter. The weak form of this problem
consists of finding 0"*? and &1 = 8t 4 (p"*! — p") such that:

a1, v) + bv,i") = lL(v), YveHYO)
Bttt g) = 0,  Vge Li(Q) (4.44)

which is again a mixed problem,
By adding 4.39 and 4.41 we find:

ﬁnnhl —u" e . - - -Hﬂl sy
— — A"t — (1 - 8)phAd” 4 (" -V)i" + ¢V

ot
b (1 =d)p" = f(tasa) (4.45)

where the implicit, but not necessarily [ully implicit, character of the ap-
proximation of the pressure gradient term can be observed. This allows to
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choose ¢ = 8 to keep the same order of approximation in all the terms of
the equation, which s specially relevant if one takes 6 = 1/2 to get a second
order method (we will see how to oblain second order aceuracy in a different
way in the next Chapter).

A pressure Poisson equation similar to 4.16 can also he developed in this
case, this time for the pressure increment (p™ — §"); bul again it seems
impractical to use it,

The second step of the scheme can still be written as a generalized pro-
jection: u™!' = Py(ant'/?); the Lagrange multiplier associated with if is
S (p"t! — §7) this time, rather than 82 5" alone,

For this modified scheme we can prove the same first order error estimates
for the end-of-slep and intermediate velocities as for the original one, Under
the assumption of uniformly bounded velocities in H?*(£2), we can improve
the estimates for the end-of-step velocities (see the Appendix).

4.3.2 Error estimates

We present an error analysis of our viscosity splitting, pressure correction
fractional step method with parameters 6 = 1 and arbitrary ¢, which is
similar to that of the previous Section. However, we will need some extra
regularity assumption on the semidiscrete pressure solution, which will be
stated in what follows.

We define the velocity error functions for this method as:

Eﬂ-i—l — Il(t" 4.1) =3 I-rln--H
antifz “(5n+1} /e

We give a first estimate for e**! and &"+1/2 which shows that both a™!
and u™/? are gtrongly order 1/2 approximations to u(f,41) in L*(£2) and
weakly order 1/2 in H(2), in a similar way to Lemma 4.7, Since the domain
is regular, the solution of the mixed problem 4.41 actually satisfies 0"4! €
H*(Q) and (" — p") € H'(Q); since we are assuming that ' € H'(),
this implies by induction that p"*! € H'(£2). We will assume that the norm
of Vp™*! is bounded uniformly in L*(€2), that is, that there exists a constant
¢! = 0 independent of k such that!

V™ < €, Vaz=0 (4.46)

We then have:

Lemma 4.8: assume thal A1 and A2 hold, that the Stokes problem is regular
and that 446 also holds; then for N =0, .., [T/H — 1z
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N
|LN+1|E 1 léﬂ-’-u‘zﬁ + }:{
n=0

N '
| ki E{] E"H[" i H u"”f?”'-' ! ||*-n-|l B an-tlﬂ“!} < Ok

n==101

*—‘.n-{.! _Enalu}flli - FE“““ -l'&'-’l"’} ("‘.‘1.?)

PROOF: the proof is similar to that of Lemma 4.7. Subtracting 4.39 [rom
4.25, we get:

Lt @) — wAE ) = (@ V) < (b ) - V)u(tan)

k
+ R"™ 4+ V(" - p(t,.+1)) (4.48)

Taking the inner product of 4.48 with 2ke" M1/ and using the splitting
4.27 of the nonlinear terms, we obtain!

[EHAE @ o 2k @R 4 [P (4.49)
= 2k <R &> 4 2R(VE - plta)), &)
2k (&7, 0" &Y L 2k e(u(tn) = W(tagy) 0T )
— 2k e(ultpg ), @ @A

We hound each term in the RHS of 4.49 as in Lemma 4.7:

2}: < Rtll.—!rl-llulfl - E & “"H+1fﬂ'|].&' + Gk f i”uull'_] [R
_zk C‘( n+1f2 n+1/2) - -E'HEH-H[:”: |- ik lénl.#
k bt "
2h(u(ty) = u(taps), WTEEHR) < SZRIAR 4 gkt [T ol
—2&”5( ( “H-) Lnl'.lf! *n-|-1/3) o 'U

As for the pressure gradient term, we use 4.46 to get:

2k (V" = plta), &) = 28 (V" = pltnin)) & ")

< DR[|V — pltia)] [ — &)

& - : - ]
< ;j|u"""”3 @t Ok (Wp"'l* + | Vp(ta)[*)
< %|é“+|/3 = En|2 Ok

since V- e™ = ().
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From all these inequalities we deduce:

|é"+l.ﬁ|? |éu]¥ + kwléﬂ-*}-l{'.l”! £ ih"—"“’m—i‘-"l:

Biiga "'"-H
< c.v,z;]‘” "ty dt + OR f' lwPdt (4.50)
boCR y CkfE

From 4.41 we now have:

511“ _omnklf2

é
ke

— Hﬂ(é"“ _émf-l(’:k) . (‘bv(ﬁnﬂ —f‘“} = 1 (45])

Taking the inner product of 4.51 with 2ke" ! given that V&t =0
and that éii-.'“ =), we get an equality sunilar to 4.31, namely:

|én+ll'ﬂ o |E-!n+.1{2|2 + |E_n~l-'l _ E-"“”P (452)

+ hp (“én-!-l”'l - ”én+lf?||! ; lléh“ GH-HHH&) = {)

Adding up 4.50 and 452 for n =0, . | N, we find:

N
l.—:Nillll + X"‘{iéﬂﬁ-i - "'_'!n-l-'l-”ZIE + %lan-l-lfl : E!_'rll.'l}

=l

N
b ke E{”éﬂ-l-illi + ”ﬁﬂ-i-r _EHHHHZ}

n={

LFat

Gk(f:t““l!”?ldt + f\‘-‘/jludtdt o jk)

LA
4 ke L |6u|#

n=0

Applying the discrete Gronwall lemma to the last inequality and using
the regularity properties of the solution u, we obtain;

N

[a4E E{]én+! _ én+1/i[2 4 |ant/a_ g -;}
=l
A
+ kp L{l én+:1|1 e [éu.m . En.p.u:“k} (4'53)
o0
< (Ck

We still have to prove the bounds for a"/?. Once again, from 4.52 and
the triangle inequality, we get:
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léN-}-'I/ﬂ[Z NI Z | |-'1{J

Fil

< l Nn'.z o k”“ENH“a 4 Ié.N-i-l B -N-l--lh!r

N-=
bk e —@TRAR + Yk Z{He-"“n F[[@mt — a2y
L]

i)
< (VU 2kw 3O{(1E P A (et - @
n=0

N
+ E |§n 1 &ﬂ'l"l/ﬂ{?

n=il
< Ck
according to 4.53, so that 4,47 follows ]

Onee again we have, in particular, uniformly stable velocities in Hg(€2),
which will be nsed later on. We now improve these estimates o weakly first
ordet, in a similar way to Theorem 4.2,

Theorem 4.3;  f Al and A2 hold, if the Stokes problem 13 reqular and of
4.46 also holds, then for N = 0,... |T/k| — 1 and small enough k:

N
kui’:(‘lérﬂ-ll‘.’l N Iéfﬁiﬁ.?) = c}kl (454)

n=il

proOF; the proof is similar to that of Theorem 4.2, Let us call zi“""l
pltogr) = ¢p™t — (1 — ¢)p". From 4.45 (with 8 = 1) and 4.25, we get:

::(l'_‘r“” = i!") —1 PA( n-l-l.) s v‘i'ﬂ'!'l (4_55)
= (u"-V)u"™? — (u(tuii) - Vultns) + R

Onee again, we could take the inner pmduct of 4.55 with 2ké™ ! which is
m Y (and satisfies the proper boundary condition); but then we would need
some extra regularity of e™' which we cannot prove (see the Appendix).
Instead, we take the inner product of 4,565 with 2kA-'e""! 1o get:

(8™t ATlemthy — (&" A7) 4 (&P - n AT (e — )
— 2ku(A&™t ATleM)
= 2he(@™, 0", A& — 2k c(u(lng), W(tnsa ), A7HEM)
+ 2k < R“ Ale "+‘ = (4.56)
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The same treatment as in Theorem 4.2 is given to all the terms in 4.56,

yielding:

Bkaa(Ap"“ A '-:r-H) 2.‘”-’1&”“'2
'n-p-! v
9 ) {R" AF! 1 5 < k”F—?n-l-l“f" 4 C-”‘sﬂ/ ““”||¢Hrﬂ
ki an
“2hc{u(tag), € AR = ORJE O, (e
_+_ 'Grlfill - ij""'””‘ 4_ klﬂ'”En“H:
L ;w“l-,_mt-i . E"""”||“ k”llun-lllﬂll‘.&}
~ad1/2. a-1=n+l . 2 [hw 3 kv i e
Zk‘:(“(f'n)_“(r"ll-i-l)vu .A e ) = Ck j: |u;| d[ | Tl(" |
-—Bkr:.(é",l'l“""l"a,A"’E“'H) < la.,ulg
+ Gk (l-'u+| - é'rl-llf‘lli* b |¢n|1/.ﬁ — énl‘k)
b O k|e™)2,
ul. »’ﬂ: ahi-'ll.ll 1_ (\ikIH u{-'lf!“!
These inequalities yield:
{&#I-h]' A—léﬂﬂ-l) (E‘.",A“IE") } i""'H = én,A—'I.(én-}j — E‘n))
+ l!n‘-"ll_!mHl!
< mﬁf (el dt + Uk‘*f g dt
+ C«'klié"“ll + Ok |||

b COklat — &

ik [Grt-l-'lfz I3

é"l!

+ ;! kz ||é"+1‘ - éﬂ+1ﬁ-”3 J} C\'kﬁ “&nd-]ﬂ.nz (4.57)
Adding up 4.57 for n = 0,., ., N, we get:
N
(EN-H A~ 1= N+‘l) 4 E(éﬂ-ll'l » 6“,,4'1(&"'” - ﬁ-“))
n=0
+ ki L |-nH
T 1)
< oW f eellf e + C R / g dt
bR Y [E R Ok S e
s n=0
N
b Ok Z |éﬂ'l] . l‘_n+l}2|2 4+ Ck L 1En|1,’.‘t = \_n!s

nad
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Iy N
+ CII k? E “éu-l-l = éu-l-l/?”i i C(r k! Z ||E’i-+-1/ﬂnﬂ
. n=0

Using again 4.7, the regularity properties of the continuous solution and
the estimates of Lemma 4.8, we get:

N N
“éN-Il“';"_' i Z “{_ll-H . E'.-““'f,., + ki E |én.-l-l|2
n=0 i

N
< Ok + Ok D185

For sufficiently small &, we can apply the discrete Gronwall lemma to the
last inequality, and we get:

i 4
B+ Xl =@ + ke 3 [
=0 sie=0
. c_‘fk:t

and the estimate for a"*! is proved. For 0"/ we have, once again:

0 N
hu 3 [@RR < 2ke 30 (J&H) 4 EH — AR
Fie =}

E Gl kB

due to Lemma 4.8 and the estimate for 17+ so that 4.54 is proved. cl

REMARK 4.8: once again, since we are assuming that the domain {2
15 smooth, we ¢an assure that our semidiscrete velocities u™1/? and ant?,
actually belong to H*(§}). We can also improve our error estimates for anr
to strongly first order in L*(£2) and weakly first order in Hg(£2), by assuming
that a™*'/# is uniformly bounded in H*(2); we give this improvement mn the
Appendix.

REMARK 4.9: these error estimates are valid for any value of the
parameter ¢, but are restricted by condition 4.46. However, this condition
is lesg restrictive than the uniform bound for the intermediate velocity in
H2(02).

BREMAREK 4.10: we also prmrc-:d gome error estimates for the pressure,
but again these depend on the improved estimates for the velocity; we present
them in the Appendix.

1!

[

0
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4.3.3 Dependence of the steady state on the time step

In this subsection we address the issue of whether o steady solution obtained
by a fractional-step transient algorithm, when neither the forcing term nor
the boundary conditions depend on time, depends on the time step size used
to find that solution. We will show that, in general, when pressure correction
is used the steady solution is independent of the time step, while if 1t is not
uged the final solution may depend on the time step if implicit approximations
of the viscous and/or the convective term are employed. This is so becanse
with pressure correction methods the intermediate and end-of-step veloaities
turn out to be the same at steady state, while in the other methods they do
not. We will justify this idea on two methods: the classical projection method
and our viscositty splitting method. We drop the boundary conditions for
simplicity.

Classical projection method: let us recall here Shen's version of the
projection method:

n41f3 n
“—M N paut g (b 2 = f (468)

! /2

5 + Vpttt = 0 (4.59)

A steady state is reached when u™! = w" w2 = 41/ gpd pttt =
p", which we call u, u'/# and p, respectively. Adding up 4.58 and 4.59 at
steady state yields:

—pAu o (w VI S Vp = f

If we now isolate u'/? from 4.59 and substitute 1t (formally) into this
equation, we get:

—pAu + (u-Vu + Vp + 8t (—vAVp+ (u:V)Vp) = (4.60)

It is thus apparent that (u, p) is not a solution of the steady Navier-Stokes
equations 1,12, but of the modified equation 4.60, which depends on 8. The
solution (u, p) will therefore also depend on the time step,

Classical projection method with pressure-correction: let us now
consider the pressure-correction projection scheme studied in [90]:

un+l}? — 1"

5

] | JJAI]"'I'UE i (l.l" ‘V)“ﬂﬂ;‘k + pr = § (4.(’51)
uﬂ-l-] cm “rlvﬁr'l‘lﬂ
- =

byt —p") = 0 (4.62)
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At steady state, we first obtain u'/? = u from 4.62 and then, from 4.61:

—pAn (u-V)u ,|. V;u = f

so that (u,p) 15 actually a solution of 1.12, and thus independent of 61

Viscosity splitting method: for the method presented in Section 4.2 with

=1
R P — ]
: it M A2 T v T L L (1.63)
pel o gan /2
: b‘-t“ — pAla™! ") "t = 0 (4.64)

We add 4.63 and 4.64 at steady state, and get:

~vAu { (n -Vt Up =

By isoluting (formally) u'/? from 4.64 and retaining only first order terms
in the time step, we obtan:

u'lﬁ

u | (1 - Ay Vp
= u + O) Vp

so that at steady state:

~uAu + (u-V)u + Vp f 080) ((u-V)Vp) = f

The steady solution does not satisfy 1,12 but this modified equation,
which depends on 8%; it is therelore dependent on the fime step,

Vigcosity splitting method with pressure—correction: finally, we con-
sider the method of this Section, with @ = | and arbitrary

un-l-.lfﬂ = .“!r

= pAW? 4 (" T 4 Tt = f (4:65)
uu+1 ) uu+lf2
b1

B yA(u"“ _“n--l-'lﬂ) n fﬁV(p"'H- T-’n) — (" (‘i.ﬁﬁ)

At steady state, we find again that u'/? = u from 4.66, and then from

4.65:

~wAu + (u-Viu + Vp = f

The steady solution satisfies 1.12 and 1s independent of the time step.

r

2
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4.4 Computational aspects

We nexi consider the implemeniation of our viscosity splitfing, pressure cor-
rection method with a finite element interpolation of the space variables,

4.4.1 Finite element discretization

We consider space discretizations of our viscosity splitting, pressure correc.
tion method 4.30-4.41 with parameters = 1 and ¢ = L.
Given two finite dimensional spaces Vi, © H(Q2) and @), C LA(§Y), the

diﬂcr;:tr. equivalent to the weak problems 4,40 and 4.44 consists of finding
ntl/2

1", € Vp, such that, given u}l € Vj, and p}l € Qu:

1 L ! n Tk

5-,4_(“:““/2 wy, Vi) "'((“RHH‘VH)) + “(“mu;.”{zlvh)
+ob(vi,py) = (B(taga), va), Vv € Vi, (4.67)

ikl rpd

and u)*' € ¥, and p;"" € @) such that:

1 4
S =t ) et - v)) b - )
= 0, Vv, € V) (4.68)

Bup ™ an) 0, Ygn € Qn

re-.spt:!c.tiw.ly. We are mainly interested in the case when V), and @, are defined
through a diseretization of  into finite elements. In particular, we consider
two kinds of quadrilateral elements (in the terminology of two dimensions):
the bilinear velocity, constant pressure element (¢4 /), which does not satisfy
the discrete LBB condition and may develop spurious pressure modes, and
the biquadratic velocity, linear pressure element (22 /), which is div-stable.

4.4.2 Numerical scheme

The matrix form of equations 4.67 and 4.68 is, in the notation used up to
now, the following:

”'n-l-'l./i = I n . )
— + KU 4 AR 4GP = FMYY(4.69)

Fi i R I e VS
T

+ K(Un-}-l — UnH/‘JJ + Gﬂ({;rn-l-l 3 Pn)

0 (4.70)
Giu™t = o (4.71)

The numerical solution of these equations presents some problems. On
the one hand, the system matrix for the intermediate velocity equation 4.69
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has to be computed and factorized once every time step, due to the implicit
approximation of the convective term; moreaver, that matrix is not symmel-
ric, since the convective term is skew—-symmetrie. On the other hand, the
coupled system 4.70-4.71 has the strueture of a mixed problem, with a zero
diagonal term in the incompressibility equation 4.71. Equation 4.70 can be

rewritlen ns:

B(UmH = Uty 4 sigg(PMH =P = 0 (4.72)

where B = M + &K was defined in Section 2.1. One can then isolate ™%
from 4.72 and substitute it inte 4.71, thus segregating the computation of
the pressure from that of the velocity; this yields:

(GeB~1G) (P — P") = %(}EU'"""” (4.73)

But the computation of the system matrix for this pressure equation
requires of the inversion of a full matrix B, which is prohibitive in most cases,
We present an alternative way to solve 4.69-4.70-4.71, which bypasses the
problem of inverting the matnx .

We propose an ilerative solution of the discrete equations 4.69-4.70-4.71;
in it, each iteration consists of the solution of two diagonal systems and
another system with a symmetric, positive (semi)definite matrix, which 1s
simple to compute. This matrix need only be computed and factorized once
at the beginning of the ealeulation; the computational cost of each iteration
is, then, only due to the formation of three residual vectors, the solution
of two diagonal systems and a backward and forward substitution, if direct
methods of solution are used for the pressure system. If few iterations of
the proposed scheme are needed, it will be more efficient than solving the
original equations 4.69-4.70-4.71, which require of the inversion of the full
matrix B once and the computation and factorization of a non-symmetric
matrix for the intermediate velocity system, the formation of three right—
hand-side vectors and two backward and forward subtitutions every time
step. Most of the techniques employed here are adopted from similar ideas
within the context of the predictor-multicorrector algorithm to be studied
in the next Chapter,

Given the n-th step values U™ and P" of velocities and pressures, respec-
tively, the iterative procedure starts with the mitializations U,;”"W5 = Um,
(24t = U and PP = P* for the values at time £,4,. Then, if U] 2 and
UM are the i-th iteration approximations to U™ /% and U™, respectively,
we consider the scheme:

1 1/2 1/2
MJ.L_'&} LS .KU:InI- I A(Url)U:H + GUP" = F'M'](d-.?fl)
s

U.'Hll — i 1 n1/8 1
M --('-”—'-'—— + KU - U; ) 4 Gu{f"f;,i - P™)
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= 0 (4.75)
Gl = 0 (4.76)

At convergence, that is, when U2 = UpH2 gt = ppdt and PR =
P these values satisfy 4.69-4.70-4.71. The actual stopping criterion that
we use 18

1f:"i41.1 Jm--l-] |3 IUHHH U“Hﬁ]z Ipinulr'l jv:url-l-1|2
max (— = - ' Ft

[UE s ‘ |U:T1m!: 1 P 2

Y <=

where |X|; is again the Enclidean norm of a vector X.
We can also isolate /Y from 4.75 and substitute it into 4.76, so as to
segregate the computation of the pressure from that of the velocity. By doing

this, we obtain:

(GoM ™' Go) (PR = P") = Gy Ae’ S(URGE — S B — o)
(4.77)
To tmake the scheme computationally efficient, we consgider the approxi-
mation of the matrix M by its lumped diagonal M* in all its appearances,
which is common practice in similar contexts (see [46], for instance). The
computation of the system matrix for 4.77 then becomes feasible, since the
inversion it involves is then trivial,
The actual implementation of the scheme, however, is somewhat different.
It is given in terms of nodal accelerations A rmcl time derivatives of elemental
s _ Uk = O P . s

pressures, . Calling Ay Ea' AR = = “1 and
I il o
P‘“ = _Lﬁi —, equations 4,74, 477 and 4.75 can be written, with the

approximation of M by M%, as:

MLA?-:]”E = Ry

with:
R = F™ — RUTTVY — Amurti? = gypn
(‘%)H(G (Mb) G'D) :I:II-IT'1 = Rp
with:
R, = GH(UIR'" — 68(M") KAL)
ﬂ.]'l[‘:

UT;J“ N A 55“4::!1]

T
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Finally:
MEAN = R,
with:
Ry = —6t (GoPl%Y + KATH)

The end-of-step values are then corrected as:

Uptl = U 4 SLANY st ATH
= UpEt ¥ s AT
4"’,-'.',."]1 = P" 4 6t «’\..'_‘I_';'

In the next Section we present some numerical results obiained with this
scheme.

In the implementation of this method we have adopted the rate-of-
deformation tensor formulation of the viscous term ¢(u), as that of equation
1.6, This formulation does not assume incompressibility, which is in general
not satisfied by the discrete velocity field, and, in outflow houndares, the
natural boundary condition associated with it has the physical meaning of a
e stress condition. For the convective term we have employed the standard
formulation (u - V)u.

4.5 Numerical results

We present the results obtained with our viscosity sphtfing, pressure correc-
tion method with parameters # = ¢ = 1 on three test problems, The first one
is a lest case introduced by van Kan (see [62]), intended to study numerically
the order of approximation of the scheme i the time step; the second one
is the classical problem of steady flow over a backward facing step, and the
third one is the problem of flow around a eylinder.

4.5.1 Numerical accuracy study

As a numerical check for the acouracy properties of the method, we considered
a test case introduced by van Kan (see [62]). It consists of the Navier-Stokes
flow on a unit square cavity in which an inflow velocity profile is prescribed
at the top wall defined by u((, 1),1) = (0, — sin(m(2® —3z? + 3z))el1 =1/1) for
0 <2< 1andt >0, the bottom and left walls are solid walls and natural
boundary conditions are enforced on the right, outlet wall. As in [62], a
Reynolds number of 10 was selected, and the fluid was al rest at the start,
A uniform mesh consisting of 6 % 6 elements was used for the @, Fy case; in
order Lo compare the results from hoth interpolations, the same mesh points
were used to define o 3 x 3 mesh for the Q3 F; element.
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6t || ma(88) | ma(6t) | k(1)

L/60 (| 2.1 3.5 2.3
L/6d || 2.0 34 2.4
{/80 || 2.0 3.0 2.2
1/85 || 2.0 29 | 21

Table 4.1: Van Kan's flow, @, Fs element,

st || ki(6t) | ma(62) | w,(68)

15| 22 | 35 | 25
1/80 || 21 | 33 | 25
1/85 || 2.1 | a1 | 24

Tahle 4.2: Van Kan's flow, (2, element,

Let's denote by m;(é't) the guotient:

1
Ui(5t) ~ Uil =60
S = | '[l ) 21 )21
|Uil(588) = Ui(36¢)a

where U; (¢ = 1,2) contains the i-th component of the nodal velocities ob-
tained at ¢ = 1 with the indicated time-step. Euclidean norms are used for
these vectors, Similarly, Hp(ﬁt) denotes the same quotient for the elemental
pressure (and eventually, pressure spatial derivative) values,

We show in Tables 4.1 and 4.2 the most accurate results obtained with our
vigcosity splitting, pressure correction method with parameters 8 = ¢ = 1
for the two different space interpolations. We fixed the value of the tolerance
to 1074 convergence of the iterative scheme was reached i 7 ierations in
average for the largest time steps Lo 4 for the smallest, It can be observed
that the acheme is, al least assymplotically, first order accurate in the time
step both in velocities and in pressures,
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Fimure 4.1: Backward facing step. mesh.

4.5.2 Backward facing step

We Lhen studied the well-known ]n'uhh'n.l of the flow over a backward facing
step, This problem was ex tensively studied by B.F, Arimaly e al. i [2], hoth
experimentally and numerically. and other numerical results have heen given
by many authors (see [29], [36] or [65], for instance). Here we considered a
peometry similar to that of [2], that i, an inflow channel of length 2 and
height |, an expansion ratio of 1: 190 and a total channel length of 40. A
Poisenille parabolic profile was prescribed at the inflow, with a maximum
velocity of 1: the top and bortom sides are solid walls, and natural houndary
conditions are enforced at the ontlet, The mesh used for this problem, which
is finer near the step, can be seen in Figure 4.1, where the y-axes las been
magnified thiree times; it consists of 1305 mesh points, which were used (o
define hoth the Q41 and the t2a clements. There arve 1220 and 305 of such
elements, respectively.

We solved Lhis problem for three different values of the Reynolds numbey:
40, 200 and 100, This was defined upon the average inflow veloeity (which
i= 4/3 lor our data), and the inflow chiannel height. 1t was obtained experi-
mentally in [2] that in this range of Reynolds numbers the flow is virtually
iwo- dimensional, so that planar numerical models become meaningful, With
a tune step size of o = 0,01, we terated the scheme 170475076 1o cons
vergenee in each time step with a tolerance of ¢, = 1077 this was obtained
i a very Tew iterations: 3 or 1 in the first steps, decreasing to | in the last
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steps. A steady state was considered when the accelerations were in the order
of 10°°,

We show the results obtained for the different Rtynnlda numbers in Fig-
ures 4.2, for the 0y Fy element, and 4.3, for the (22 Py, in the form of steady
atreamlines, where (he r-axes has been limited to the range if], m]. It can
be cleatly observed in these Figures how the reatachment length of the main
vortex increases with increasing Reynolds numbers, a characteristic of the
flow which is well known for this prablem, since we are working within the
laminar Reynolds number range (see [2]). Moreover, the appearance of a
secondary separation bubble on the no—step wall at Re = 400 can also be
observed, which is in good agreement with the experimental results of [2].

4.5.3 Flow past a circular cylinder

We finally considered the challenging problem of the flow past a circular
cylinder, which has attracted the attention of several authors (see 7], [34],
|20], 93], [96], [99] or [108], for instance), This has become a compulsory
bechmark test for transient algorithms for Navier-Stokes equations.

It is well known that for low values of the Reynolds number, the solition
i steady and symmetric about a line parallel to the free-stream flow through
a cylinder diameter; a pair of symmetrical eddies develops downstream of
the cylinder. But beyond a critical value of Re (which is larger than 40),
the steady solution becomes unstable and a periodic solution develops, so
that vortex shedding sets in: vortices begin to generate periodically and
alternately from each side of the cylinder, and are 'fransported’ by the flow
away from it. This scenartio 18 known in the literature as a von Karman
vortex street,

We considered a cylinder of unit diameter and took a computational do-
main congisting of the rectangle [0, 21| x [0, 9], the center of the cylinder being
situated at the peint (4.5,4.5). These data, however, may not be sufficient
to prevent any effect of the introduction of artificial boundaries on the com-
puted solution, as was recently studied in [7], who discussed the influence of
the location of the lateral boundaries on the computed flow ficld; we will see
how this may affect our cuml.;ul.ati(ms. A unit free-stream horizontal veloc-
ity was prescribed on the left boundary, a vertical zero velocity on the upper
and lower boundaries and natural conditions are enforced on the right, outlet
wall. The mesh used in this case can be seen in Fignre 4.4, which consists of
2000 nodes and 2880 of the @ F elements,

We first solved the problem for a Reynolds number of 40, which 15 based
upon the free-stream velocity and the eylinder diameter, starting from the
fluid at rest but for the prescribed boundary condition. We iterated the
scheme 4.74-4.75-4.76 to convergence in each time step with a tolerance of
¢ = 1072, which took an average of 2 iterations. After 1000 steps of size
81 = 0,005, the steady, symmetric solution had been reached, with accelera-
tions in the order of 1074, It can be seen in Figures 4.5, 4.6 and 4.7, where we
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Figure 1.4: Flow past a eylinder, mesh.
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Figure 4.8: Flow past a cylinder, He = 100, nodal velocity history.

streamlines oblained ;|_l.':-:mni||g that it s the t"vlillilt.'[' that moves with a coti-
stant veloeity of (—1,0)) and the nodal pressure contours obtained from the
elemental pressures alter a least-squares interpolation process, Symimetry is
very acciirately achieved.

We then raised the value of the Reynolds number 1o 100, which is the
one commonly nsed for this problem. We started the computation [rom
the ateady solution obtained for fe = 40, and performed 19000 steps of
size 60 = 0.025; in each of them, | or 2 iterations were enough to reach
conversence at the same value of the folerance as belore. We found that the
solution started vseillating freely at a time near £ = 110; the final penodicity
of the solution was reached by £ = 170, In Figure 4.8 we show the history
of the horizontal velocity at a node situated at the point (9.0,5.25), that is.
downstream of the evlinder and shehtly higher. The 1||Ii|1i|i|l.it‘:-' change in
the solution regime can be elearly observed, Tn this case, no artificial trick
wag needed 1o start up the periodic solution.

The streaimlines obtained al the end of the computation (1 = 475) are
shown in Figure 1.9, In Figure 4,10 we plot the stationary streamlines: the
wakes behind the evlinder can be clearly seen there. Finally, we show the
pressure contours in Fignre 401 All these results compare very well with
other published solutions (see [34], [20], [96G] or [108]).

Some ow featires are k\"pm-;'hl]_\- uaed Lo coypare tlil.‘l]l|.|I|H I.i\-‘tr|_\-‘ fhie solu-
tions obtained for this problem, Thus, the Strouhal ninber or adimensional
frequency of the solution is one of the most studied quantities; it is defined

[ 63l
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D : : ; i . y
as St = —_ whore 12 18 the eylinder diameter, 1 is the free-stream velocity
T
(in onr case, both m;uu.[ to 1) and 7 s the shedding period of the solution.

We performed a Fourier analysis of the nadal velocity signal within the time
range [IT,":: .IT."-}] (that 1%, for most of | hes lit‘\-‘t-:h‘llrm.| pt'riu(.lir. solution) in ar
der 1o find the dominant requency of our solution. In Figure 4.12 we show
the Fourier spectrum obtained. from which we found a Strouhal number of
Sto= 018667 (smaller peaks can also be seen at twice and three fimes that
frequency ), or equivalently, a period of 53571 This period is somewhat
smaller than the one generally admitted for this value of the Reynelds nim:
her, which i= 6, that iz, a Strouhal numiber of 5t = 016667 (sec [‘_.?[J]I). We
attibute this discrepancy to the fact that we are nsing a standard Galerkin
finite element interpolation, which s less dissipative than stabilized formula-
tions of the SUPG or GLS type nsually l'nl|ﬁ;:_\,”mzl for this problem. However,
discrepaneces in the value of the Stroubal number depending o the formulas
tion emploved were also found by other authors (see [96] or [105]). Moreover,
the location of the lateral boundagies in our computational domain may not
he Tar enough from the eylinder to avoid any influence on the solition of the
artificial boundary conditions introdueed by the formulation: in fact. it was
obtained in [7] that at least 12 cylinder diameters on each side of the eylinder
are needed to avoid that inlluence: otherwize, larger Strouhal nunbers were
obtained. This may he another eause of increase of our computed Strouhal
nunber.

[ 66
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Frequency Analysis

Frequency

Figure 4,12 Flow past o evlinder, Be = 100, Fourier spectrum of the nodal

velocity solntion,






Chapter 5

A predictor—multicorrector
algorithm

In this Chapter we study a form of a predictor-multicorrector algorithm
eustomized to the unsteady, incompressible Navier-Stokes equations. This
algorithm, developed originally for general evolution equations in a discrete
setting, was applied succesfully to several unsteady incompressible flow prob-
lems in the eighties, such as fluid-structure interaction problems. Here, and
in the light of the viscositty sphtting methods developed in the previous
Chapter, we redevelop the algurithm i a semidisorete formulation, thus pro-
viding an interpretation of it within the context of fractional step methods,
This gives a theoretical explanation for some properties of the algorithm
such the nead for the apntinl interpolation used to satisfy the discreie LBB
condition, the order of aceuracy of the discrete solutions with respect to the
time step or the reason behind the imposition of boundary conditions in each
phase of the algorithm. We will see, in particular, that our viscosity splitting
method can in some cases be understood as a predictor-corrector form of
this algorithm. Most of these ideas can be found in [26].

The predictor-multicorrector a.lg,urithm 15 usually implemented tt.lgq'.thf.*r
with u bilinear velocity, constant pressure (£, Fy ) finite element interpolation;
we implemented also the biguadratic velocity, linear pressure (@2 /) element,
which satisfies the LBB condition, to compare the properties of the two
diseretizations.

The ontline of the Chapter is the following: in Section 5.1 we present
our semidiscrete formulation of the scheme, proving that it corresponds to
the predictor-multicorrector algorithm and showing in what sense it can be
understood as a fractional step method. In 5.2 we introduce the two finite
element interpolations considered, the resulting fully discrete equations and
some considerations relative to the actnal implementation of the scheme,
Finally, in 5.3 we present some numerical results obtained with the algorithm
on several test pmhlurmi.
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5.1 Semidiscrete form of the algorithm

Let us consider the predictor-multicorrector algorithm developed hy T.J R,
Hughes and coworkers, which was applied to the incompressible Navier-
Stokes equations in [20]; it can also be found in [75] in a similar context.
We give here an alternative derivation of the algorithm, within the context
of fractional step methods,

Given a time step 81 = 0 and a parameter 5 such that 0 < v = 1, and
assuming that the velocity u" and pressure p" are known al time 1, = n b,
an implicit method of the form:

gl _ oon
o ? Tya™ o (l—yat = 0
V") = 0 (5.1)
urlllllrl :

iz considerad for the solution of 1.7-1.5 with hu:uugu!wuus Dirichlet boundary
conditions 1.10, where we define:

ﬂ_"‘ = f(&"‘) o V?)m = (“m_v}urn 'I‘ PA“"I (5.2)

An iterative scheme is introduced for the solution of the nonlinear, cou-

pled problem 5.1. If starts with some predictions uj™ and ot for unt
and p"*!, respectively, which will be speafied next. Then, each iteration is

split into two steps, The first one accounts for viscous and convective effects,
but not for the incompressibility condition; this is dealt with in the second
step, in a similar way to the fractional step methods of Chapter 4. Pressure
correction is used, and the convective term iz approximated explicitly for
simplicity. Given the i-th iteration approximations u?*! and pi*! to unt
and p"*! the first step of the (Z 4 1)-th iteration then consisis of finding an
intermediate iteration va[nnit.y u:.'_;_hlln such that:

“r,*'!'l _uﬂ
B A, = Ata) + (1)
= AtV - vt (5.3)
altle = 0

The notation “?-:-1‘ " liaz been chiosen delivemtely Lo em‘phzu;isr_' that the

solution of 5.3 iz an intermediate iteration aproximation of the velocity at
time £,41. In the second step of each iteration, a pressure increment is used
to enforce incompressibility, in a similar way to the method of Section 4.5.
Thus, one lacks for an end-of-iteration velocity ul!! and pressure piy' such

that;

170



CHAPTER 5 A PREDICTOR-MULTICORRECTOR ALGORITHM

n] ]

Wy = i, ST " " '
TH/ el i)+ Ve -t = 0
V F “:‘1':'1" == {] (54)
Wil = 0

The multicorrector scheme 5.3-5.4 is performed, in principle, to conver-

gence in i, that is, until n? = u™ and pfYf' = I, at which time one
gets u™ =l and ptt = pitY and goes back to the predictor phase.

We can show that this method 18 another version, independent of any
particular spatinl discretization, of the predictor-multicorrector algorithm
of [20], which was given in a discrete setling after a ¢y Fp finite element
interpolation of the Navier-Stokes equations, which results in the {ollowing
constrained system of ODFa:

MU + KU + A{U)U 4 GoP = F
Gt = 0

~In terms of accelerations (A) and time derivatives of elemental pressures
(), the algorithm then reads:

Predictor phase:

Umt = pgr 4 (1—9) 8t A
Ayt =0
Yt o= P o4 (L—) 6t P
PMY = 0
Selution phase:
B 6A, = R (5.5)
v (8t) (GLB7'Ga) (6P) = GE (UFH +48t(6 A1) (5.6)
BbA; = —vB8LGy (6P) (5.7)

where all the matrices have been defined before and the residual vector Ay
is given by:

Ry = F™ = MAM < KUM — A(UPTYUME — Go P
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Corrector p hase:

At = A 4 BA + dA,

URRY = UM + (1=9) 6t A" + yat ARY

P"II = .f:,'uin-i-l + 6;‘}

it
pril = Pt (L) 8t P 4y &P

i+1
The value of 1 18 then ineremented in | and the scheme goes back to the
solution Pl‘lE'I.EL‘ agaln. We now have!

Lemma 5.1; the scheme 5.3-5.4 is equivalent lo the predictor—multicorrector
algorithm of [20].

PROOY: assume the veloeily u”, acceleration a", pressure p” and pressure
temporal variation p* are known at time t, = ndt, satisfying 5.2 and the
incompressibility condition 1.5, The iterative predictor-multicorrector pro-
cedure starts with the fcrllnwing predictions:;

up® = " + (1—y)fta" (5.8)
alt’ = 0 (5.9)
pott = P 4 (1 —9) &t g (5.10)
ot = g (5.11)

Assume, further that after each correction phase the approximation of
velocity and pressure may be writlen as:

uftt = u" 4 (1—q)éta” | qéta’ (5.12)
pitt = Pt 4 (L-y)dtpt 4 oyt (5.13)

where n"'“ and pi't! are the corrected values at the end of the t-th iteration.

Note that equations 5.12-5.13 are alzo valid for the initial prediction (i = 0).
The objective of cach iteration is to compute new approximations uf};

and pf! by computing corrected values of al} | and g}, Since each iteration

1
is split into two steps, an intermediate velocity u'fﬂn and acceleration a 4*1;:

are first calculated. If the intermediate velocity is expressed as:

“:TII}! = u" (l ; ",f) it a" Téf- “:‘_ll':l/z (5'14)

and the intermediate acceleration is defined as:

i1 = A+l
e = A + by

1

then the following relation is deduced from 5.12:
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Wi, = w8t bay

The intermediate velocity and acceleration are computed from the first
spht step, namely equations 5.3, which can thus be rewnitten as:

6“! . T!fﬁt(.ﬁﬁﬂl_) =i fn-l-l N H:]I--{-l . vp;t-{l i UAUF-!.-] o (“:| 1 i v)“.-:.l-}-l
baglp = O (5.15)

The end-of-step velocity ufll) is expressed, using 5.12, as:

nifl o= w4+ (- btat + qétally (5.16)

and can be further simplified in terms of the intermediate velocity, using
equation 5,14, and the end-of-step acceleration, which is defined as;

4l = -] :
Mg = Ay 8,
Thus:

Wit = i, + oy 8t ba, (8.47)

Likewise, from 5.13, the end-of-step pressure p?' 15 expressed as:
1 141

= 0 (L) St 4 b (5.18)
where Llie new pressure variation is determined by:

il “hid1

Pivs1 = Di + ép

and consequently one gets:

i = AT+ vt (5:19)

With the previous expressions of the end-of-step velacity and pressure,
equations 5.17 and 5.19 respectively, the second split step defined by the
equation system 5.4 can be written as:

day — ywdt(Aday) + 8tV(ép) = 0

V - (4a,) _TI’V (it bt Say) (5.20)
7
5&;{_1[' = 0

Gaiven the time discretization scheme defined hy §,12-5.13, equations 5.15
and 5.20 are another version of the two split-step equations 5.3 and 5.4 de.
fined previously. After they have been solved, the corresponding corrections
are performed, namely equations 516 and 5.18. The weak for of the split
equations 5.3-5.4 is the following:
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First stoep: find “"::l/';! i H},(H) such thal:

i .
M(“;‘lkl'/t “ﬂ!v) + T“((“:I-;.'j]/'.uv)) = 7("'("'!--1-!) V) + “ - 7)(?1"."\!)
— ye(uft ult v) — Ab(v,prt!), Vv e HY(Q) (5.21)

Fif-1 w1 fitl

Second step: find ul}) € H(Q) and oI = y ot i € LE({1) such that:

ay (Uit v) 4 bv,s") = a i v) Vv e Hy(f2)
buil q) = 0, Vg e LAY (5.22)

where the bilinear form o, was defined in 4,14 Existence and uniqueness of
solutions to these problems are established the same way as for the fractional
step methods of Chapter 4. In terms of accelerations and Inmsurcﬂ time
derivatives, the corresponding weak forms of equations 5.15 and 5.20 are:

First step: find da; € HJ(Q) such that:

a(,v) = (F%,%) — (@) — by,
(V) = e alt v), Vv € HY(Q) (5.23)

Second step: find da; & HY(R2) and §p € Li(92) such that:

ay(bag,v) + y8tb(v,6p) = 0, Vv € Hy(Q)
bléag, q) = —;Fb(u? oy volday, q), Vg & Lg(ﬂ)(ﬁ.?tl)
v bt
A finite element diseretization of this scheme 13 the same u.lgﬁrithm as the
one considered in [20]. L]

There is a clear formal relationship between the structure of the split
equations 5.3-54 and the viscosity-splitfing pressure-correction method of
Section 4.3, In fact, the latter method with parameters 8 = ¢ = 1 s equiv-

alent 'nn a single correction of the former with ¥ = |, since in that case
upt! = u" and pit' = p" (see 5.8 and 5.10); the only difference, though, is

the t.rc-atment of the nonlinear term, which is then explicit in the predictor-
multicorrector algorithm, One then has that I.l;"x"; = pi/L yit = gt

and pit! = p"'' The paralelism between these two methods implies that
discrete interpolations of the predictor-multicorrector algorithm are subject
to the satisfaction of the LBB condition, so that in confined flow problems
the Q1 Fy element will develop checkboard pressure modes; that, at least for
v = 1, one correction is enough to achieve first order accuracy in the {ime
step, and that when a steady state 15 reached with this algorithm, it will be
independent of the time step.
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5.2 Finite element discretization

We now introduce a finite element space digseretization into the multicorrector
scheme 5.23-5.24. If V, © H}(9) and @), C Lg(ﬂ'} denote fimte dimensional
subspaces defined through a finite element discretization of §2, the discrele
version of 523 consists of finding day . € Vi, such that:

“'Fr(ﬁa‘l,!n vhJ — (f"+li|vji] = (H?’}tll‘”}.) =3 !‘(VJHPEZ;‘:H

v((uftt va)) — e(ultt udt vy, Yy € VG (5.25)

whereas in the discrete version of 5.24 we look for das j, € V), and bpy € @
such that:

ay(day,,vy) -+ yotb(vy, ép,) = 0, Vv, € Vy (5.26)
1 2 .
bz n, qn) = _-”,;Eb('ll,-‘f‘ + b bay p qu), Van € Q
Calling again A and P the veetors of nodal accelerations and pressure
time derivatives representing the functions a), and py,, respectively, the weak
form of equations 5.25-5.26 can be written in matrix form, with the notation
introduced up to now, as:

BéA, = R (5.27)

B8A; + y8tGe(6P) = 0 (5.28)
1 w ,

G Ay = _T—(“_t-;:,(r_r;m f oyt A  (5.29)

By isolating 8.4, [rom 5.28 and substituting it inte 5.29, one gets equa-
tion 5.6, that is, the pressure update equation of the solution phase of the
predictor multicorrector H,lgnrit}un.. This equation, however, 12 not aftord-
able in practice, since it involves the inversion of a full matrix 8 to form the
system matrix Gf By, which is prohibitive in general. Some approxima-
tions are introduced in [20] in this scheme, which make it computationally
feasible. The matrix B is approximated by M in all its appearances (the
difference between the two, 8tw L, is dropped). This approximation is first
order accurate in the time step, so that the errors it introduces are of the
same order of magnitude as those of the methad itsell. Moreover, the matrx
M iz then lumped, which allows the pressure system 5.6 to be a pusaiblc Wiy
to computle the pressure varation in each iteration. Thus, the final scheme
reads;

M% 84, = R,
Y (807 (GHM™) ' C) (6P) = G (U™ 4 481(541))
ME A, = — 6t Go (BP)
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[nversion of the diagonal matrix M* iz now trivial. This is the algorithm
actnally implemented in practice. [t has to be said that the introduction of
these simplifications (which are due to T.J.R. Hughes and coworkers) has a
double theoretical impheation: on the one hand, the approximation of B hy
M in 5.5 leads to an exphcit treatment of diffusion in cach iteration (although
not in each time step, if the algorithm is ilerated al least twice per step); on
the other hand, the approximation of B by M in 5.6 and 5.7 implies that
the algorithm actually used admits an interpretation within the context of
fractional step methods relative to the standard projection method, that is,
without a viscous term in the incompressibility phase, A single iteration
of this simplified predictor-multicorrector algorithm is actually equivalent to
the standard projection method. Ifit is understood this way, o question arises
about which boundary conditions are to be imposed in the incompressibility
phase, whether the full Dirichlet condition or only the normal component of
it.

If two or more iterations of this scheme are performed, all terms in the
Navier-Stokes equations are treated implicitly. Thus, no 6 limitations are
expected for the stability of the algorithm over a wide range of Reynolds
numbers. However, the iterative nalure of the scheme and the simplifica-
tions introduced in it (such as the explicit treatment of the convective term)
impose restrictions on &4 for the stability of the iterative process, specially
for quadratic elements, as will be seen in the next Section.

5.3 Numerical results

We now present some results obtained with the predictor-multicorrector al-
gorithm just considered, both with a €4 Fp and a Q4P finite element interpo-
lation, on five test problems. First, van Kan's problem is used again to stady
numerically the order of accuracy in the time step of this algorithm with dif
ferent values of the parameter 5 and diflerent numbers of iterations per time
step: then, we consider again the Kovasznay flow problem, this time fo prove
numerically the mdependence of the steady state reached with a pressure
correction algorithm from the time step used, and to study the dependence
of the error with respect to the analytical solution on the mesh size for each
of the two elements; we then solve the standard cavity flow pmhlem with
both interpolations, and the so called 'no flow test’, and finally, we consider
a plane jel simulation as another example of a purely unsteady problem.

5.3.1 Numerical accuracy study

We considered again the test problem introduced by van Kan in [62], this
time to study numerically the order of accuracy with respect to the time
step of the predictor-multicorrector algorithm with different values of the
parameter v and different number of iterations in each time step, The same
mesh, boundary conditions and Reynolds number as in Subsection 4.5.1 were
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Bt || Ky(82) | ma(88) | mu(62)

1/16 2.04 2.02 2.03
1/32 || 202 | 201 | 202
1/64 || 201 | 201 | 201
1/128 1.98 1.949 2.00

Tahle 5.1: Ql.f'-"n element, v = 1, 1 tleration per step.

considered, and also the same definitions of the quotients w;(58) (1 = 1,2)
and r,(8¢).

In Tables 5.1 to 5,10, we present the results obtained with 4 = 1 both for
1 and 2 iterations of the mullicorrector scheme per time step and ilerating
it to convergence in each time step, and for v = 1/2 with 2 iterations and
iterating to convergence, both for the @ Fy and the Q3 P elements (the latter
was unstahle for large values of the time step).

The backward Euler scheme 4 = 1 is clearly first order accurate, both for
the 1 Fy and the Q4P elements and both for | and 2 iterations per step and
iterating to convergence in each fime step. In this last case, it took an average
of 10 ierations per time-sgtep to reduce the initial residuals by 7 orders of
magnitude, For this value of 5, anyway, it is unnecessary to converge in each
time step in order {o oblan first order accuracy, since either 1 or 2 ilerations
are sufficient for that purpose. In all these cases, the pressure solution was
also first order accurate,

For the Crank-Nicholson case ¥ = 1/2, however, iterating to convergence
is compulsory to achieve second order accuracy in the velocity solution. If a
fixed number of 2 iterations per tiine step 15 chosen, second order accuracy
15 lost, but the quotients obtained are still larger than 2 (indicating a higher
order than 1).

5.3.2 Kovasznay flow

We then solved the Kovasznay flow problem considered in Section 3.5, this
time with the predictor-multicorrector algorithm of the previous Section,
with 4 = 1 and | iteration per step, until a steady state was reached. Our
main interest here was proving numerically that the steady state obtained
with this pressure—correction method is independent of the time step used,
in agreement with the theoretical results of Section 4.6, as well as performing
a numerical study of the order of accuracy of the solution with respect to the
mesh size, for each of the two finite elements employed.
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ot ri(6) | Kal61) | K,(62)

1/16
1/32
1/64
/128

2158
1.99
1.98
1.98

3.73
2.23
2.06
1.99

2kt
2.03
2.01
2.00

Table 5.2: €4 F, element, v = 1, 2 iterations per step,

8t || #a(8t) | kal8E) | #,(52)
1/16 || 200 | 189 | 2.02
1/32 1.97 2.02 2.00
1/64 1.97 1.95 2.00
1/128 || 2.01 1.83 2.01

Table 5,3: Q, Fy element, 4 = |, iterating to convergence,

St || K (88) | wa(61)
1/7 || 441 | 5.90
1/8 || 247 | 4.08
1/10 || 1.69 2.91
1/12 1.66 2.51
1/14 || L70 | 2.33

Table 5.4: @ Fy element, 4 = 1/2, 2 iterations per step.
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of ry(b) wq(b)
/7 4.06 4.08
/&8 || 4.04 | 4.04
1710 || 4.08 4.01
/12 || 3.758 3.99
1/14 4.00 3.79

Table 5.5: QP element, ¥ = 1/2, iterating to convergence.

#a (6t) mg(ét) riplt)

ot
1/16 || 2.24
1/32 || 2.01
1/64 | 2.00
1/128 || 1.97

2.27
1.99
1.99
1.99

2.04
2.02
2.01
2.01

Table 5,6: Q4 F element, v = |, 1 iteration per step.

bt | () | ma(8t) | ()
1/32 3.87 5.62 2.57
1/64 2.20 | 2.60 2.09
1/128 || 2.05 | 2.5 | 2.03
.1/2}';6 2.01 2.05 2.9.3‘

Tuble 5.7 Q2 element, v = 1, 2 iterations per step,
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Bt || ma(8t) | 63(5t) | mp(6F)

1/32 | 198 | 198 | 2.01
1/64 || 199 | 2.00 | 2.01
1/128 [ 2.00 | 1.95 | 1.99

—l

Table 5.8: Q. P element, v = 1, iterating lo convergence.

6t {l ma(88) | ma(6t)

1/16 || 5.80 | 6.07
1/20 || 3.38 | 4.05
1/24 || 2.57 | 3.30

Table 5.9: Q27 element, v = 1/2, 2 iterations per step,

8t || Ki(88) | ma(82)

1/16 || 3.83 | 4.15
1/20 || 3.96 | 4.04
1/24 || 3.86 | 3.92

Table 5.10: Q3P element, v = 1/2, iterating to convergence.
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. 1 1 ;
We took again 2 = [~ 1] x [~ =] and a uniform mesh consisting of

31 % 21 nodes, which 15 used to define the elements for hoth the () Py and
(2P cases. The Reynold's number was 10 this time. Since the flow is
confined, 1.e., the velocity is prescribed on all the boundary (and equal to
the analytical solution 3.32), a linear restriction should he imposed on the
pressure to remove the hydrostatic (constant) pressure mode. In our code
we set the value of the pressure in the last element in the element nuimbering
strategy equal to zero (this corresponds to the degree of freedom number
(3 < ne — 2) for the Q3P element, where n, is the number of elements),

In order {0 compare the steady state obtained with two different time
steps 81y and 815, starting from the fluid at rest in the interior of § and the
analytical solution on the boundary, we define the difference beiween these
two solutions as the Euclidean norm of the difference of the nodal velocity
vectors, namely:

Dift(82;, 8t5) = |U(88;) — U(6L;)[»

where |.[3 15 again the Euclidean norm of a vector and U/(6¢) is the nodal
velocity vector obtained at steady state with time step 8¢, In this problem
we can also compare the mimerical solutions with the analytical solution 3.32:
for that purpose we considered the relative maximum difference between the
exact and computed nadal velocity vector:

it o Vodl8t) = Vilh (UosB8) UG} o
maxic, my {JUSSL 1U531} h

Errr(8t) =

where the subindex ¢ refers (o node a; (i = 1,...,n,, n, being the number of
nodal points), the subindeces 2 and y refer to the two components of velocily
and U is the vector of exact nodal velocities.

For the 2,/ element and the present mesh, we tried with time steps
6ty = 0.01, 8t; = 0.005 and 6t5 = 0.001. In each case, a steady state was
reached when |77 (8t) — U™ (62)]; was less than 1072, The three differences
Diff(0t;,0t;) computed were smaller than 107" thus confirming indepen-
dence of the steady state with respect to the time step.

For the 2, Py element we took 62y = 0.0025, §t; = 0.001 and &4 = 0.0005,
and a steady state was reached again at a tolerance of 1072, The differences
were also smaller than 1079 this time.

The velocity solutions obtained can be seen in Figures 5.1 and 5.2, where
we show the streamlines for the two elements. As for the pressures, the
(J1.Fy developed an obvious eheckhoard mode, as could be anticipated by the
structure of the second step of the method 5.22. The elemental pressures foy
this element can be seen in Figure 5.3; we also show, in Figure 5.4, the nodal
pressure contours obtained with the @, Py element after a least-squares nodal
interpolation process.
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Figure 5.6: Kovasznay flow, Qi F, element with checkboard made filiered.
element pressure valties,

Since in this problem we know the exact pressure solntion, we ean de
termine the actual value of the spurious pressure mode present in the (1 P
element solution. We can then filter this mode by subtracting it from the
elements that it affects, given that on a uniform mesh the value of the check-
board mode is the same on all the ‘ved® cells of the mesl:. asstiming that the
last element s "black” (the value of the spurious mode on black® cell is this
0). We did so, and recovered the exact analytical solution, which we show
in Figtires 5.5, in the form of elemental pressures, and 5.6, as nodal pressure
conbanrs,

Finally, we solved this problem on three different uniform meshes with
cach of the two clements, and computed the errors Frvr (as defined in 5.30)

with respect to the exact solution: we plot them in Figure 5.7 as a function of

the mesli size. 1t can e seen that the steady states reached with this method
provide optimal order aceuracy in the mesh size for the veloeity solution in
the norm of L#($2) for these two elements, that is, quacdratic lor the 1
atiel enbic for the Q4. These steady states are the solutions of a staticlurd
Galerkin mixed approximation of (he steady, incompressible Navier-Stokes
eualions.
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5.3.3 Cavity flow problem

The third case we considered was again the lid-driven cavity flow problem,
this time solved with the predictor-multicorrector algorithm starting {rom
the fluid atl rest (but for the velocity boundary condition) until a steady
state was reached. We took the leaky lid cage (that is, with unit horizontal
velocity on the two top corners of the cavity) and a Reynolds number of 1000.
A regular, nonuniform mesh, which is finer near the boundaries, was used: it
i6 made up with 31 x 31 nodes. Two iterations of the multicorrector scheme
were performed per time step, and the value of 5 was set equal Lo 1 50 as to
get a converged solution fastest.

Figure 5.8 shows the steady streamlines obtained with both the ¢y F;
and the @3/ elements. Secondary bottom left and right vortices can hbe
observed, but no top left vortex was found. Again, this is in good agreement
with benchmark solutions for this problem, ([42] or [88]) and other published
numerical solutions ([30], [65], [96] or [99])

The element pressures computed with the @, F; element are shown in
Figure 5.9, A checkerboarding phenomenon becomes apparent, which inval-
idates the pressure approximation without affecting the velocities. On the
other hand, the Q4P element gave satisfactory pressure results; the pressure
contours obtained can be seen in Figure 5.10, and compare well with those
of the above mentioned references,

Finally, Figures 5.11 and 5.12 show the velocity profiles through the cavity
centerlines # = 0.5 (horizontal velocily) and y = 0.5 (vertical velocity),
respectively. As can be seen, these results compare well with the reference
data of U, Ghia et al. ([42]), specially for biquadratic elements.

5.3.4 Noflow problem

The fourth example we present is the noflow test, introduced by P. Gresho
et al. in [47] and studied in [39] and [40], The geometry and mesh for
this problem can be seen in Figure 513, Homogeneous Dirichlet boundary
conditions are imposed on all the boundary, and an external gravitational
force £ = (0, ~1) is applied. The exact analytical solution of this problem 1s
u==0and p=—y+ p

This simple case highlights another misbehaviour of the @ Fy element
(and some other related constant pressure elements). Although it is a con-
fined flow problem, this time it is not the presence of checkbonrd pressure
modes, since the distorted character of the mesh filters them out, or the lack
of satisfaction of the LBB condition. The pressure space does nol contain
the analytical solution, and a wrong pressure field induces the appearance of
n vortex of (J(h..l),

In this problem, we started from the fluid at rest and zero pressure until
a steady state was reached, with a time step of 0,01, two iterations per step
and a value of 4 equal to 1. The same results as in [39] and [40] were obtained
for the @1 Fy element after 300 steps, which can be seen in Figures 5.14 and
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Figure 5.11: Cavity flow, horizontal velocity profile through cavity centerline
&= 0.5 — QLP0 element; - Q2P1 element; o Reference [43).

Figure 5.12: Cavity flow, vertical velocity prolile thirovgh cavity conterlipe
=05 — QLPO element; - - - Q2P] element: o Reference [43].
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Figure 5.13: Noflow problem, mesh.

5,16 in the form of nodal velocity vectors and pressure contours, respectively,
The Q2 F, element, on the contrary. yielded the exacl analytical solution in
2 steps (see Figures 5,15 and 5.17).

5.3.5 Plane jet simulation

The fifth example considerad is a purely nnsteady case, consisting of a plane
jet simulation, The same conditions sud mesh as in [73] were taken, which
arer a uniform 32 % 32 mesh of the 1 noded elements in the square [0, 1] =
[=0.5,0.5]: a viscosity of » =5 x 107" unit horizontal velocity at the centeal
node ol the left wall, with natural boundary conditions on the other walls
and the Huid at vest at 4 = 00 A fime step of 88 = 0,01 was taken. Once
again, 2 iterations per time step of the algorithm were performed, and 5
was seb equal to Lo The streamlines at different times are shown in Figures
508 and 5.19 for the ¢ Fo and Q2P elements, respectively: the pressire
contours for the same times can be lound in Figures 5.20 and 5.21. Thev
are all i good agreement with the resilts of |73]. The presence of ontlet
I'mlllli}nl‘_\’ conditions on part of the houndary prevents i he appearance of
spurions checkboard modes Tor the QyFy element. This example shows the
capability ol the algorithm 1o reproduce purely unsteady situations.
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Figure 0.14: Noflow problem, Q4 Fy element, velocity vectors.

Figure 5.15: Nollow problem, 62, P element, velocity vectors,
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Conclusions

In this work we have studied fractional step, finite element methods for the
numerical solution of imcompressible Navier-Stokes equations in primitive
variables. Two main objectives have been achieved! on the one hand, the
reason why some projection methods (the most popular among {ractional
step methods) are not restricted by the standard inf-sup condition, which is
present in most incompressible flow formulations, has been unveiled; space
diseretizations of such methods are only restricted hy a weaker condition,
which has been proved to be satisfied by most equal order finite element
interpolations of velocities and pressures. On the other hand, a fractional
step method has been developed which bypasses the problem of enforcing
unphysical boundary conditions encountered in projection methods: this is
achieved by introducing a viscous term in the incompressibility phase of the
method.

It ean be concluded from the present work that projection methods which
employ a continuons Pressure Poisson Equation in their formulation are not
restricted by the discrete LBB (:(m.l'“f;iﬂll; pressure segregation, however, has
to be effected before space diseretization takes place. Otherwise, a mixed
type discrete problem resulis, and a compatibility condition between the ap-
proximating spaces of velocity and pressure still applies. The reason why the
LBRB restriction is so cirewmvented in standard projection methods has been
traced back to the appearance of a matrix A = L = G'M '@ in the discrele
continuity equation; this matrix, which can be understood as the difference
hetween two discrete Laplacian operators, has been proved o be positive
semidefinite.  This has led to the conclusion that space discretizations of
prejection methods are only restricted by a certain inf-sup condition which
is weaker than the standard one; we have then applied the macroelement
technique to showing that it is satisfied by equul order sumplicial finite ele-
ments of arbitrary order in 2 and & dimensions, and equal order quadrnilateral
(d = 2) and hexahedral (d = 3) finite elements of first order.

During the course of this study, we have also developed a numerical
method for the solution of the Stokes problem which allows the use of equal
order finite element interpolations. The Stokes problem is employed here as
a linear, steady model to study projection methods. Optimal order conver-
gence in the mesh size has been proved for this method, both in the natural
norm of the problem and in the L*-norm, for 'sufficiently smooth’ domains
and meshes and under the weak compatibility condition just found. We have
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also studied different iterative schemes for the numerieal solution of the re-
sulting system of discrete linear equations. A comparison between the most
efficient scheme obtained and the well-known GLS method for the Stokes
problem has been given; the present scheme seems ta be a little more costly,
but, in some aspects, it 15 more aceurate,

An extension of the previous method to the steady, incompressible Navier-
Stokes equation has algo been provided. Optimal order convergence both in
natural and in L*-norm has been proved, in the cage of a unique solution of
the original problem, under the same weak compatibility condition as in the
hnear problem and again for 'sufficiently smooth’ domains and meshes. A
study of different iterative schemes for the numerical solution of the result-
ing system of diserete nonlinear equations has also been given, as well as a
comparison belween the most efficient scheme found and the GLS methad ap-
plied to the incompressible Navier-Stokes equations; once again, the present
scheme is a little more costly, but it proved to he more accurate in all the
cases we solved,

In the second part of this work, we developed an implicit fractional step
method which, unlike standard projection methods, allows the mmposition of
the original boundary conditions of the problem in all phases of the method,
Space discretizations of this method, however, are restricted by the standard
LBB condition. We first proved convergence of this method in the time
step to a continuous solution, following the classical ideas of R. Temam for
the standard projection method; the convergence results for the end-of-step
velocities are improved with our method, due to the fact that they satisly the
correct boundary conditions. We then oblained some error estimates for both
the intermediate and end-of-step velocities and the pressure as a function
of the time step, under stronger regularity assumptions on the solution and
mesh, and following the recent ideas of J. Shen for the standard projection
method, among others. Furthermore, we developed a similar method to the
previous one, but this time with pressure correction; we also oblained some
error estimates for this alternative method. We then proved independence of
the steady solution reached with implicit fractional step methods in steady
flaw problems, provided pressure correction is used. Finally, we developed an
erative scheme for the numerical solution of the resulting system of linear
equations in each time step for our pressure correction method; this scheme
18 explictt in each iteration. We vahdated this scheme on some benchmark
problems, such as the flows over a backward facing step and around a circular
cylinder, with two different finite element space diseretizations: good resulis
were obtained in all cases.

Finally, we redeveloped a well-known predictor multicorrector algorithm,
in a semidiserete setting within the context of fractional step methods, with
the help of the methods just introduced; this is an Herative algorithm in each
titne step, in which each ileration is decomposed into two phases, in a similar
way to our pressure correction, fractional step method. This allowed us to
justify several properties of the algorithm, such as the possibility of imposing
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the correct houndary conditions in all phases of the algorithin; the need for
space miterpolations of the algorithin to satisfy the discrete LBB condition:
the independence of the steady state reached with respect to the time step
in steady flow problems or the fact that a single iteration of the algorithm
15 enough Lo achieve first order accuracy in the time step, We obtained
several numerical results with two different finite element discretizations of
the algorithm, the classical @,/ element and the 24P element.
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Appendix A

Improved error estimates

We give here some improved error estimates which we can prove for our vis-
cosity splitting method, both with and without pressure correction, assnming
that the semidiscrete velocities are uniformly bounded m H?*(2). We also
prove some error estimates for the pressure which depend on the improved er-
ror estimates {or the velocity; these show that the pressure is at least weakly
order 1/2 accurate for the method with and without pressure correction,

A.1 Viscosity splitting method

We pgive here an improved error estimate for the end-of-step velocity of our
viscosity splitting method 4.8-4.10. We show that u™t! is actually a strongly
order | approximation of the solution in L*(§2) and weakly order 1 in H}(£2),
assuming a uniform hound for utt/E iy H*({1).

Theorem A.l;  assume that Al and A2 hold, and that the Stokes problem is
reqular, assume also that the intermediate velocities salisfy:

a2, <@, VYn=0 (A.1)
uwith ' = 0 mdependent of k; then, for N = 0,...,[T/k| - 1, and small
enough k:

N
eV 4 kv 3 [l = o (A-2)

n=i
PROOF: we recall equation 4.36 here:

o(e™ — ") — pA(e") + Vg (A.3)
= (u" V" = (a(taga) c VIn(taga) + R”
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Taking the inner product of A.3 with 2ke™™' which is in Y, we get:

|En-i-l [2 o |Fn'2 i IE“H - Eﬂli + ok Heﬂ-l-l ”J
= 2 k ‘( n n-l-]/? pu-1-]) = 2 k 'L(“(f'n-}'ljp ll({"l'l-f-.l )I (‘.”+1)
b 2k - Rn LELIES (AQ)

The right-hand-side terms are bounded as follows, For the Taylor resid-
ual term we have:

2k <R, e > < 2k|R |y [l
< Mg 4 ok
- Bt g k[ bl
< fﬁ’f"-||ﬂ"+‘|[“ § Ok ft"“('t—ﬁ.,)"’ritf’r"“ [l [}t

A’” I'I+|. 2 ¥ 1.2 bnid 2
< Tl g ekt [l

¥k

For the nonlinear terms, we again use the splitting 4.27 fo express them
an,

2k (c(u",u"““, "H) - (Il{t,,+1),1|{:,,.1l)le"‘”))
= 2k (—o(u(tuin) €M) - (ulta) - ultnsa), w2 )
= ﬂ(“ﬂ'un-l-lﬁ‘ ot ))

which we call I, IT and II1, respectively. Then:

I = _Bkc(u(tn+j),ﬂﬂ-l'1f2‘c"'l"l)
= 2kE'(““’n-l-j),HH+1,&!M'U!)
< Ck|lu(tug)]|z ||| 'Er|+3f:'c|
< Ck|le™| e
- i'Elle““ll"‘ + Ok |enr /e
I = Z2ke(u(ty) —ultin), u /e (,'I--H)
5 St - t(f:-+n)|Hu"“f‘nne"“n
< Chllu(ta) =ultasa)ll e

G’kllf! g dt|] [[e" ]|
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) fita Jops N
< k|l [ w4 et

= r IIl|+:| Dt-'\'-.-‘
< klf (e [® db 4 _’_[Iem-l“a
ty 4
Il = —2}1‘-1“:(1:"‘u"'l'ub!‘e""")
< Ckle"| “u""“r’*“:‘t [le™H]]
< Ckle"||[e™!|
ket o
< oref 4 Mo

where we have used 4.34 and A1, Adding up Ad forn =0,..., N, taking
into account 4,31 for the term |, and the previons inequalities, we get:

'EN+1|'J' + i |En+1 _Enlﬂ

]
Ly N
bk D [l 4 Ok 3 (et
n=i =0}

5 -
< CA:“A Jugel |2 dt + (}k‘ﬁ |2 dt

ur, N
+ Ck Y |e"? + Ok 3 [t —entli2?
n=l ne=0
# hd ] a
b Ok Z(l ¢n+1”3 i ||q':”"'1 ! cn-+-1/3“z)
rie=)

For sufficiently small k, we can apply the discrete Gronwall lemma to the
last inequality; using the regularity properties of the solution (R2 and R4)
and the estimates of Lemma 4.7, we get:

N N
|ll.‘,‘N+1 Iﬁ + Eﬂ !En-l-l = &nlz + b EUHEMJHB
= =
< oK

and 4.35 is proved. (]

We now show that the pressure approximation of our viscosity sphiting
fractional atep method is order 1/2 accurate in the time step, as it is for
the classical projection method, according to [90]. We first recall a technical
result, similar 1o that of Lemma Al in |&12]. In Theorem A.1 we have proved
that, in particular:
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N
ElEnH _ﬂulﬂ 5 Gk?

el

This 1mi pIius that:

N
Sollet! —et|?, £ ¢k (A.5)
Aa=0

prove the following error estimate for the pressure:

ginee for all v £ LE(S‘I-), |’v||_1 < t?|v|. This 15 what we actually use to

Theorem A.2:  assume thal A1 and A2 hold, that thg Stokes problem 1s
reqular and that A.1 also holds; lhen, for N = 0,... |T/k| — | and small
enough k;

N
b S0 ™ = pltaia )2y < Ck (A.6)

=0
PROOTF: we rewrite A3 as;

Vgt = e o) - wA(e) - R (A7)

~ (") b (utg) - V)ulte)

Using the continuous LBB eondition 1.25:

: Vp,v)
lplaginy = € sup (Ve,

. Ype L9 A8
veHi(n) [|v]] ¢ olf1) ( )

for the pressure error p = ¢™*!, we need to bound the products of the RHS
of ATwithve Hé,(ﬂ) We have:

1 I
R =€) 5 llet = el v

s

< —pA(e™) v = ((uc""'l,v)) < p|je"*| Il
" q tuii 1/2
IRl Il £ (™ il de) ™ vl

L1

< -R".v>

1

For the nonlinear terms, we use the following splitting, taken from [90]:

S DY (b)) (A9)
= ((UU--+|] = u(ls)) V)“(tuﬂ) + (e V)u(tny)
4 (un . v)“rl-l-lfﬂ
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s0 Lhat:

I,

(“(fnu’ } ("-H) (f'tll) V)
Clu(tugr) — wta)] [ulti )2 [1v]]
C(tngs) = ulta)l |[v]|

ol [ wedt] vl
ok [ fwfF ey v

r'"

1M

[Py

1M

Ty e(e”, u(tni1), v)
(e [fu(twe)ll ([l

¢ le”| [1v|

M 1A

&

G

=

F(‘l nl-]/! )

¢ Jju”] ||L'"“"“H vl
C [le™ 7| [lv]]

P P |

where we have used 4.33. Thus, taking the produet of A7 with v and taking
into account A.8 and all these inequalities, we obtain:

]
gy = 7 lle" — et
+ O {]le |+ |lem)] + [lemt |

Bit 1
b el a7 b [ g )

| =1 fill

which yields:

.(-1 n T
"™ g = g e = el

O {Jlem P + [le|* + flem
Lrd b i 4
4 f; gl de + fr g dt}
and A.6 results from A5, the mgularity of u, and Lemma 4.7, ]

We have proved, in summary, that the pressure solution 15 weakly order
1/2 aceurate in Lﬁ(ﬂ).
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A.2 Viscosity splitting, pressure correction
method

We now give improved error estimates for the end-of-step velocities of our
pregsure correction method, assuming again uniform bounds for the inter-

mediate velocities in H*(§2) and uniform bounds for the pressure gradient in
LA(£2).

Theerem A.3;  assume that Al and A2 hold, and that the Stokes problem s

reqular; assume also that the mlermediale velocilies satisfy:

([at%| <@, Vnz0 (A.10)

with €' = 0 dndependent of k and thal 4.46 alse holds; then, for N =
0,...,[T'/k| = 1, and small enough k:

)
BYHP 4 ke YD (EHF < CF (A.11)

n=fl

PROOT: the proof is similar to that of Thearem A1, We recall equation 4,55
here;

":(E"“ (;_.") pA(ﬁ”H) — V(f’"lw }J(:fm-r'ln (A.lﬂ)
= (@ - VA" — (u(tuyr) - V)u(tays) + R

where p"t¢ = $pnt1 4 (1 — ¢)F". Taking the inner produet of A.12 with
2ke™t! which is in ¥, we get:

ol

|ﬁn-|-1l‘i ) |En|2 4 Iﬁ“-'-l . én]}h + 2F-HJ' ||I_‘.‘“ |-]||'.{
= 2he(, @& )~ Zhe(ultan),utan ), &)
+ 2k =R &M > (A.13)

The right -hand-side terms are bounded as in Theorem A.1, using again
the sphtting 4,27 for the nonlinear terms, yielding;

= ki i !
2k < R%& > < e ck.*f g [ dt

Dhe(ulbya), &EH) < SER 4 Okl
ks

[N
Dk e(u(ty) — by ), 02 @MY < m‘f’ "l dt 4 :

kv
1

e

—2ke(& amt Vi gty < Ck|E")F + — &Y
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where A 10 has been used, Adding up A13 for n = 0, ., N, taking into
account 4.31 for the nonlinear terms and the previous mequalities, we get:

NI“ il -llﬂﬂ
by e

n=i
N N ,
bokw 3SR 4 CR Y (et
n=f =
r ; i
B C'kgf |[nge |5 dt + K f ||ui||’fj,t
0 J0
N1 N
| c"' k E i-r! b 'l‘" (:i k E |&r|\!-l _ E" |.]f2|2
n=il
N )
+ Ok L(”‘"“”z ||t = &n-’rl/z”.#)
r=ull

For sufficiently small k, we can apply the discrete Gronwall lemma to
the last inequality; using the regularity properties of the solution and the
estimates of Lemma 4.8, we get:

N
1ENHIE Lr—ruﬂ (-:ﬂlz } ki E“En-t-lnz

n=0 =1
= K

and A.11 13 pmvcd. []

We finally show that the pressure approximation of our viscosity split-
ting fractional step method wilh pressure correction is also weakly order If:!
accurate in the time step in the space Li(£2). We also need a technical re-
sult, which is a consequence of the the proof of Theorem A.3. We have,
particular, that:

E[un+l rllﬂ ..__: Ckﬂ

which implies that:

N
E”én-l--l‘ =-h”:l = f} h! (A..l-i)

n==il

We then have:

Theotem A4 assumne thal Al and A2 hold, thal the Stokes problem is
reqular, and that 446 and A_10 also hold; then, for N = 0, .., [T/k] —1,
and small enough k!
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k Ll-n-lldc uil]lh’(m = 'k [A!H)

n=0

FROOF: the proofis similar to that of Theorem A.2. We call "™ = p(t,, 1)~
ﬁ“"d'. We rewrite 4 55 as:

. vgr||1|1 - (E”H ‘:n) : y&(érl-l-i) = R (Alfj)

v)arti/z (u(t“_,_(l) - V)u(t, 1)

| s
-
=

that 15, an equality sumilar to A.7. Using again the LBB condition A 8, we
bound the products of the RHS of A.16 with v € H(Q), to get:

('"'1 & v) < —|I”'+1 - &1 ||v]]

< u.&( S ((ma"” v)) < w|[& | ||v]|
:—R"v>= < [[R"||-]]v]|

e[ tlwallzy &))" vl

Az for the nonlinear terms, we use ngain the splitting 4.27, to get:

i

T‘ = E(E TR V)
= ] ||| v
= el vl

Ty = —ec(u(ty) = ullugy), 0" v)
< Cu(ta) = a1 ]|
= O |lu(t, ) (b )] [[v]
= ol [ wer) vl
Bk - i
< (k /s "l ey v
Ty = e(u(tn), 82 v)

_‘:( u("’ﬂ+| )1 v, 'E""HII/B.}

< ()l [IvI] &2
< Ol &7
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This way, we find:

el

-

g™ iy <

+ C{Ilén-1-lll + “enH + |ﬁn+if!l

# .
i ||e —t‘:r'”_l

O e ) G [ ) )

" n"n

that 1s:

3 & en ,

| Cf{”ﬁn-&-'l“ﬂ_l_ “éﬂ”!& } 'au+|/;|:
o ki
+ ﬂ el 2, dt ""f g

and A.15 follows from A.14, Theorems A3 and 4.3 and the regularity RZ

and R3 of u.

In summary, we have obtained first order error estimates for the end-
of-step velocities of our viscosity splitfing method with # = 1, both with
and without pressure correction, and order 1/2 estimates for the intermedi-
ate velocities, both of them strong in L’(H) and weak 1 Hé(ﬂ), under the
usnal regularity assumptions Al and A2 and the uniform bounds for the
intermediate velocities in H*({2); we have also obtained order 1/2 weak error

estimates for the pressure in Lﬁ(ﬂ).
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