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Abstract. The response of geomaterials to seismic excitations, which are usually
described with time history data, can be estimated by solving governing equations
in the frequency domain and transferring quantities back to the time domain. How-
ever, one limitation of frequency analysis is the simplification of soil response by
assuming constant stiffness during the action of seismic input. Therefore, when the
frequency approach is used in ground response problems, linear-equivalent models
of soil behaviour that allow the description of non-linear stiffness are implemented.
In order to simulate large fields of displacements induced by seismic actions, this
paper introduces a methodological proposal based upon a hybrid Finite Element
(FE) time-frequency approach, coupled with the Material Point Method (MPM).
In the FE solution, the soil stiffness changes after certain number of cycles and
the equation of motion is solved in the frequency domain while the soil stiffness
remains constant. Mapping of kinematic quantities between nodes of the finite
element mesh and material points is performed via a Newton-Raphson numerical
scheme. Each change of the stiffness matrix is marked by a convective material-
point phase and the recalculation of material point locations. By following this
approach, large deformations of geomaterials under constant amplitude harmonic
accelerations can be simulated using a linear equivalent approach for the non-linear
response. A model test case subjected to harmonic shaking is explained.
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1 INTRODUCTION

Background Earthquake-induced movements might cause significant damages
in buildings and infrastructure. The propagation of earthquakes across soil de-
posits can amplify the waves on the ground surface. Amplified waves can produce
the collapse of buildings or trigger landslides on natural or artificial slopes. In
particular, worst-case scenarios of earthquake-induced landslides involve large de-
formations of soils or rocks, affecting human settlements, infrastructure, the envi-
ronment, or the natural habitat of animal species. In this context, the estimation
of the runout of earthquake-induced landslides is of interest to geotechnical engi-
neers for risk assessment. The extension and reach of a landslide depends, amongst
other factors, on the failure mechanism that governs the instability of the soils un-
der driving actions. Landslides often involve interactions between the sliding mass,
the sliding surface, the compressibility of the geomaterials, loss of shear strength,
capillarity, and changes in the pore water pressures of the soil mass.

Hence the importance of a good an accurate prognosis of the seismic ground
response. Besides, there are other less critical scenarios that involve large deforma-
tions of soils; for example, soil penetration and controlled explosions. The failure
mechanism and progression of landslides and other large deformation problems
in different scenarios can be predicted by means of numerical simulations. Such
simulations require a framework that accounts for large deformations of solids,
make use of complex constitutive models with plenty of parameters to be deter-
mined from in-situ and laboratory tests, and are usually performed incrementally
by solving equations of motion in time domain due to the nonlinear nature of the
geomaterials under consideration.

Problem statement In this paper a framework for the solution of seismic
ground response of geomaterials under ideally drained conditions subjected to har-
monic accelerations is presented. In particular, cyclic behaviour of soils is consid-
ered by adopting linear-equivalent characteristics of soil behaviour. The material
point method (MPM) is used to take into account the large deformation process
ensuing the failure and post-failure phases. The framework is valid for a three
dimensional mass of soil although first attempts are simulated under plane strain
conditions. In this paper a solution to the equations of motion in the frequency
domain for different lapses of time of the acceleration time history is proposed.
Such accelerations represent a seismic action on the ground. Continuity of the
response is ensured by convective MPM phases between signal lapses.

Notation In this paper matrices and tensors are denoted with capital bold letters
(e.g. M, K, σ, J), vectors are denoted with lower-case bold letters (e.g. u, ü,
h, r) and 1 is a column vector of ones. Scalars, functions and other variables are
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denoted in lowercase or capital letters without bold (e.g. üb(t), Xi, Yi).

2 STATE OF THE ART

MPM was first proposed by Sulsky et al. [1], [2] as an extension of the existing
particle-in-cell method for fluids to simulate solids. The main advantages of the
MPM are its fully Lagrangian framework and the weak formulation of the method
being consistent with that of the finite element method (FEM). MPM was ini-
tially proposed in an explicit formulation to solve transient problems for solids;
additionally, implicit schemes have also been proposed in the literature [3], [4],
[5]. Bardenhagen et al. [6] proposed an application of MPM for discrete media
considering grain compressibility.

Extensions of the MPM for geomaterials include hydro-mechanical coupling [7],
[8], [9], [10], [11], [12], [13], [14], [15], granular column collapse [16], penetration
problems [17], [18], random fields in combination with MPM for simulation of
retrogressive behaviour of landslides [19] and soil dynamics [8], [20], [21]. MPM
simulations of real case studies of landslides have been conducted by Zabala and
Alonso [22], Yerro [10] and Liu et al. [23].

3 THEORETICAL FRAMEWORK

The solution of governing equations and the hybrid time-frequency approach
for geomaterials is introduced and discussed in this section.

3.1 Governing equations

Equation of motion Following Bathe (2014) the updated Lagrangian (UL)
finite element formulation of the equation of motion for dynamic analysis with
implicit time integration is [24]:

Mü + K∗u = − f (1)

Where K∗ is the complex stiffness matrix, K∗ = K + iωC, M is the consistent
mass matrix, ü is the nodal acceleration vector, u is the increment of the nodal
displacement vector and f is the nodal point inertial force vector. In the seismic
case the inertial force vector is expressed as:

f = M 1 üb(t) (2)

Where üb(t) is the seismic acceleration signal at the base of the numerical model.
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Determination of matrices The stiffness matrix is calculated as:

K = KL + KNL

KL =

∫
V

B>L D BL dV

KNL =

∫
V

B>NL σ BNL dV

(3)

Where KL is the linear strain incremental stiffness matrix, KNL is the nonlinear
strain (geometric or initial stress) incremental stiffness matrix, BL is the linear
strain displacement transformation matrix, BNL is the non-linear strain displace-
ment transformation matrix, D is the linear elastic stress-strain material matrix
and σ is the Cauchy stress tensor.

The consistent nodal mass matrix is calculated based on Sulsky [1]:

M = S>MpS (4)

Where S is the mapping matrix evaluating shape functions at material points and
Mp is the lumped mass matrix with material point masses.

3.2 Solution in the frequency domain

Equation (1) can be solved in the frequency domain following the equivalent
linear approach of seismic ground response for dynamic finite element analysis
stated by Kramer (1996) [25]. Considering seismic harmonic accelerations, the
relative displacement vector can be calculated as:

u = h(ω) ̂̈ub(ω)eiωt (5)

Where ̂̈ub(ω) is the Fourier transform of üb(t) and h(ω) is a vector of spectral
functions in the frequency domain, so-called transfer functions.

Transfer functions Transfer functions link the response at nodal values of a
finite element model with the input signal, in this case with ̂̈ub(ω). The solution of
Equation (1) requires an intermediate step in which the vector h(ω) is determined
based on the consistent mass matrix and the complex stiffness matrix:

h(ω) = [ω2M−K∗]−1M 1 (6)

3.3 Hybrid time-frequency approach

The disadvantage of a solution of the type shown in the previous section lies on
the limitation of a solution by means of Fourier analysis, which is the consideration
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Figure 1: Flow chart of the hybrid time-frequency approach for linear-equivalent response of
soils

of constant stiffness over-time. In order to consider seismic ground response via
Fourier analysis, the following approach is suggested:

Divide the seismic signal üb(t) in a n number of lapses with the same ∆t.
Thus, stiffness and mass matrices change n times during the simulation. Calculate
the functions ̂̈ub(ω)j for j between 1 and n and build the initial consistent mass
matrix. For each lapse between 1 and n: Assume an initial shear modulus of
the soil at element level G

(el)
0 and determine the complex stiffness matrix of the

current grid-material point set. Compute the vector h(ω)j and the response of the
system in terms of nodal displacements relative to the base excitation, Equation
(5), in accordance with the UL formulation presented above. This step requires
the estimation of corresponding values of shear modulus per element based on an
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iterative scheme where a tolerance value λ must be larger than the magnitude
between two consequtive values of shear modules per element. Therefore, the
element stiffness matrices will change from those calculated with G

(el)
0 ; at the end

of each lapse, each element is associated to an updated value of shear modulus
G

(el)
j . Afterwards, map new locations of material points based on nodal relative

displacements by means of MPM interpolation, so-called convective phase, and
determine a new consistent mass matrix for the next lapse.

The above mentioned approach is assumed to overcome the problems of large
deformations associated with conventional finite-elements for the simulation of
seismic-induced landslides. Figure 1 illustrates the procedure explained in this
section with a flowchart.

Inverse material point - finite element mapping The evaluation of finite
element shape functions at material points in this work is done by following a
Newton-Raphson numerical scheme in order to find the natural coordinates of a
material point located within a finite element. The problem involves the calcula-
tion of the roots of non-linear equations in two dimensions.

Finite element mapping is conventionally performed from known natural coor-
dinates of points lying within an element to global coordinates of a finite element
configuration. Inverse mapping is less trivial because it involves the solution of
a set of non-linear equations, as many equations as dimensions considered in the
geometry, to find the natural coordinates of material points within finite elements.
In Figure 2 an example of conventional and inverse mapping for a particle within
a four-noded finite element is presented.

Figure 2: Mapping locations between natural and global coordinates of particles within a four-
noded finite element
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For a two-dimensional configuration, natural coordinates r and s must be de-
termined. Inverse mapping via a Newton-Raphson scheme requires to find values
of residual functions g(r, s) that approach zero (see Equation (7)).

g1(r, s) =
∑
i

Ni(r, s) ·Xi − x

g2(r, s) =
∑
i

Ni(r, s) · Yi − y
(7)

Where Ni are finite element shape functions, Xi and Yi are the nodal coordinates
of the finite element configuration and x, y are the coordinates of a material point.
The roots of g1 and g2 are determined numerically by assuming an initial vector
of local coordinates rj and iteratively solving Equation (8) for rj+1.

rj+1 − rj = − Jj gj (8)

Where Jj is the Jacobian matrix of the residual functions evaluated at rj.

Jj =


∂g1(rj, sj)

∂r

∂g2(rj, sj)

∂r
∂g1(rj, sj)

∂s

∂g2(rj, sj)

∂s

 (9)

4 NUMERICAL EXAMPLE

An elastic column subjected to vertical accelerations at nodal points is simulated
using the approach described above. The inner loop of Figure 1 accounting for the
linear-equivalent behaviour typical of soils is not yet incorporated in the present
results and two materials are chosen in order to test the method on a configuration
with multiple materials. Thus, only linear elastic parameters are chosen for the
upper and lower sections of the column. The column has a height of 100 meters
and a width of 4 meters. The geometry is divided into 20 plane strain elements
with a height of 5 meters and 4 material points per cell are originally located within
each element (see Figure 3). The parameters of the 2 material sets are shown in
Table 1.

The acceleration signal imposed to the column is üb(t)[m/s2]= sin

(
2π

100
t

)
. The

calculation undergoes one cycle of the outer most for loop shown in Figure 1. Thus,

Table 1: Parameters of the elastic column

Material set E [MPa] ν % [kg/m3]
1 2000000 0.3 7800
2 4.432 0.3 1560
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Figure 3: Elastic soil column problem definition in a MPM framework: model dimensions (a),
boundary conditions and material points per cell (b) and external accelerations imposed at a
finite element level (c).

transfer functions are evaluated, displacement time histories of the finite element
nodes are determined and mapped to the material points via the aforementioned
inverse mapping procedure. Relative displacements of three nodes of the finite
element mesh and three material points are shown in Figure 4.

Node n1 and material point mp1 experience almost zero relative displacements
due to the high value of stiffness of the material at the top of the column. Node
n2 and material point mp2 reach a relative displacement amplitude of almost 0.7
mm. Amplitude of relative displacements decrease from the interface between the
two materials to the base of the column.

Figure 4: Relative displacements of the column subjected to a harmonic acceleration, three
nodes of the finite element grid and three material points are shown.
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5 CONCLUSIONS AND FUTURE WORK

A framework to calculate the linear-equivalent seismic response of geomaterials
using the material point method has been introduced by discussing theoretical
aspects of a hybrid time-frequency methodological proposal. The authors proposed
to solve governing equations in the frequency domain for segments of a time history
of nodal accelerations. Afterwards, kinematic quantities are transferred back to
the time domain in order to perform convective phases between finite element
nodes and material points. The method is expected to take into account large
deformations of soils subjected to seismic scenarios.

As a limitation of the method, the formulation summarized in section 3.2 would
only be valid for constrained degrees of freedom in the perpendicular direction of
base excitation in the plane strain case. The formulation must be revised to con-
sider more general cases of two and three dimensional cyclic deformations of soils.
A numerical scheme based on Newton-Raphson method was used to map material
points to the natural coordinates of a finite element. Inverse mapping equations
for a material point within a plane strain finite element were presented and they
can be applied to any two-dimensional problem with higher-order elements. The
numerical scheme could be easily extended to the three-dimensional case.

Additionally, a numerical example in which an elastic column was excited ver-
tically while constrained horizontally was shown. The convective phase between
finite element nodes and material points was effectively achieved in the example.
The recalculation of displacements of material points belongs to the last process
of the outer most loop of the proposed hybrid time-frequency method. Numeri-
cal implementation of Equation (6) for the problem of the elastic column showed
that transfer functions reached small absolute values. Thus, calculated relative
displacements are small when compared to the total displacements of the system
subjected to nodal accelerations.

Finally, the authors expect to simulate the linear-equivalent response of the
column shown in the example considering non-linear properties of real soils in order
to use all features of the hybrid time-frequency method for a relatively trivial case.
Earthquake-induced landslides and other problems involving large deformations of
soils considering cyclic shear modulus degradation could be simulated following
the proposed methodology. The technique must be compared to other well-known
solutions for transient response of geomaterials and more examples will contribute
to the validation of the method.
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Cristian David Rodŕıguez, Luis Felipe Prada-Sarmiento and Torsten Wichtmann

[14] Liang, D., Zhao, X., Soga, K., 2020. Simulation of overtopping and seepage
induced dike failure using two-point MPM. Soils and Foundations 60, 978–988.

[15] Yamaguchi, Y., Takase, S., Moriguchi, S., Terada, K., 2020. Solid–liquid cou-
pled material point method for simulation of ground collapse with fluidization.
Comp. Part. Mech. 7, 209–223.

[16] Ceccato, F., Leonardi, A., Girardi, V., Simonini, P., Pirulli, M., 2020. Nu-
merical and experimental investigation of saturated granular column collapse
in air. Soils and Foundations 60, 683–696.

[17] Ceccato, F., Beuth, L., Vermeer, P.A., Simonini, P., 2016. Two-phase Mate-
rial Point Method applied to the study of cone penetration. Computers and
Geotechnics 80, 440–452.

[18] Ceccato, F., Beuth, L., Simonini, P., 2016. Analysis of Piezocone Penetra-
tion under Different Drainage Conditions with the Two-Phase Material Point
Method. J. Geotech. Geoenviron. Eng. 142, 04016066.

[19] Wang, B., Vardon, P.J., Hicks, M.A., 2017. The Random Material Point
Method, in: Geo-Risk 2017. Presented at the Geo-Risk 2017, American Soci-
ety of Civil Engineers, Denver, Colorado, pp. 460–466.

[20] Bhandari, T., Hamad, F., Moormann, C., Sharma, K.G., Westrich, B., 2016.
Numerical modelling of seismic slope failure using MPM. Computers and
Geotechnics 75, 126–134.

[21] Ceccato, F., Yerro, A., Girardi, V., Simonini, P., 2021. Two-phase dynamic
MPM formulation for unsaturated soil. Computers and Geotechnics 129,
103876.

[22] Zabala, F., Alonso, E.E., 2011. Progressive failure of Aznalcóllar dam using
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