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Abstract. Numerical simulations of gravitational planar liquid sheet flows, interacting with unconfined
gaseous environments located on both sides of the liquid phase, are performed through Volume-of-Fluid
(VOF) technique. The global unsteady dynamics of the non-parallel flow is analyzed by perturbing the
initial steady configuration by means of a Gaussian bump in the transverse velocity component of rela-
tively very small amplitude, thereby exciting sinuous modes. Thanks to the development of a theoretical
linear one-dimensional model, more physical insights are gained on the flow system. It is found that
surface tension plays a stabilizing role for the gravitational sheet, and for relatively high values of den-
sity ratio rρ of gaseous-to-liquid phases it becomes unstable. An analogy is shown between the global
unstable behavior exhibited by the liquid sheet as rρ increases, and the shear-induced global instability
found by Tammisola et al. [“Surface tension-induced global instability of planar jets and wakes”, J. Fluid
Mech. 713, 632–658 (2012)] for planar jet and wake flows of two immiscible fluids in the presence of
surface tension.

1 INTRODUCTION

Liquid sheet flows issuing into a gaseous environment have being studied since the middle of the last
century [1], due to their wide scientific and industrial interest, which involves fuel atomization, coating
deposition, paper making, and other applications. The literature includes a wide variety of geometrical
and physical configurations, which span both planar [2] and round [3] geometries, both high [4] and
low speed (gravitational) [5] flows, both quiescent [6] and co-flowing air [7] ambients. Notwithstanding
the large amount of research efforts, some aspects of the unsteady dynamics of liquid sheet flows are the
object of ongoing studies and some are still open. As an example, the analysis of the singularity exhibited
by the equation governing the unsteady subcritical dynamics of the so called liquid nappe, namely the
freely falling liquid sheet interacting with a one-sided closed air chamber, has been fully accomplished
only a few years ago [8], while the extension of the theoretical modeling of the frequency jump to liquid
sheets flowing in unconfined environments is the object of ongoing research.

The present paper deals with the two-dimensional unsteady response to impulse forcing of planar thin
liquid sheets, interacting with unconfined gaseous environments located on both sides of the liquid phase.
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The liquid velocity is relatively low so that the relevant Froude number is small and the gravitation ef-
fects have to be taken into account. As a consequence, the base flow is not parallel, i.e. it is not invariant
with respect to translations along the motion direction. The goal of the investigation is the determination
of the unsteady response (i.e. eigenmodes and eigenvalues) of the flow system in supercritical regimes
(inlet Weber number We greater than unity), which is obtained through direct numerical simulation of
the steady field forced by an impulse disturbance applied at a specified vertical station. The numerical
simulation is performed by means of the Volume-Of-Fluid (VOF) technique, which has been recently em-
ployed to explore the stability of forced planar liquid sheets (jets) at relatively high Weber (and Froude)
numbers by Schmidt and Oberleithner [9]. The analysis of the global behavior of the sheet is completed
by the computation of its natural frequencies, and, furthermore, eigenmodes and eigenvalues will be
compared with predictions made by means of a simplified one-dimensional modeling, making use of a
linear stability approach. Finally, two-dimensional patterns of unstable liquid sheets are presented and
discussed, providing an analogy with the global behavior of planar sheets (jets and wakes) studied by
Tammisola et al. [10].

2 VOF NUMERICAL SIMULATION

The mathematical modeling of the interface separating immiscible fluids is a crucial aspect to obtain
accurate numerical predictions of multiphase flows behavior. A current approach consists in deriving the
governing equations for two-phase flows following the single-phase approach [11]. Given the assumption
of two-dimensional incompressible flow, continuity and momentum equations in the so called one-fluid
formulation read as

∂u?i
∂x?i

= 0, (1a)

ρ

(
∂u?i
∂t?

+u?j
∂u?i
∂x?j

)
= −∂p?
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+

∂
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µ
(
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)]
+σκ

?niδS, (1b)

with (u?1,u
?
2)

T = (u?,v?)T representing the velocity vector, p? the pressure, (x?1,x
?
2)

T = (x?,y?)T the spa-
tial coordinates, ρ the density, µ the dynamic viscosity, σ the surface tension coefficient, κ? the mean
interface curvature and (n1,n2)

T = (nx,ny)
T the outward pointing normal vector. Note that all the di-

mensional quantities, except the fluid material properties (ρ,µ,σ), are denoted with the superscript ?.
The phase boundary is the only region of the domain where the term σκ?niδS, accounting for the effect
of the surface tension, is different from zero. Indeed δS is a Dirac distribution function, equal to 1 at the
interface, 0 otherwise. Therefore, density and viscosity fields are evaluated as

ρ = ρa +(ρl−ρa)C, (2a)

µ = µa +(µl−µa)C, (2b)

where subscripts a and l refer to gaseous (a stands for ambient) and liquid phases, respectively, and
C(x?,y?, t?) is the volume fraction, a (dimensionless) Heaviside function equal to the liquid-to-total vol-
ume ratio. Computational cells where C = 1 are located in the liquid phase and cells with C = 0 are
situated in the gaseous phase; 0 < C < 1 for cells crossing the interface. An additional equation is
therefore required to localize the interface, namely the volume fraction advection equation

∂C
∂t?

+
∂Cu?i
∂x?i

= 0, (3)
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Figure 1: Schematic of computational domain (left) and of adaptive grid (right). The sheet of length L? falls under
gravity along x? direction. Red lines define the initial interface shape, which is magnified by a factor of 10 along
y? direction in left panel.

which, coupled with the system of Eqs. (1a - 1b), closes the problem. The equations discussed above are
solved using the finite volume method in the open-source code BASILISK (http://basilisk.fr); for
a detailed description of the implemented numerical schemes the reader can refer to Popinet [12, 13].

2.1 Computational layout

A schematic description of the computational domain is reported in the left panel of Fig. 1, where
for computational convenience the gravity direction x∗ is represented horizontally. The computational
domain is a square whose side length is equal to the liquid sheet length L? = 50H?

i , where H?
i is the

inlet sheet thickness located at the center of the left boundary. The origin of the reference frame Ox?y?

coincides with the mean point of the inlet sheet thickness, while the red lines define the initial rectangular
shape of the interface, employed to start the computation. Dirichlet boundary conditions are enforced at
the inlet: in the liquid region, around the symmetry axis, a fully developed parabolic velocity profile is
imposed, and the conditions read

u? =
3
2

U?
i

[
1−
(

2y?

H?
i

)2]
, v? = 0, C = 1, (4)

where U?
i represents the mean liquid velocity at the inlet. On the remaining part of the left edge (gaseous

phase) a no-slip condition is imposed. The top and lower edges are equipped with Neumann boundary
conditions for all variables. At the right edge a standard outflow condition is considered. The liquid sheet
region is initialized with a rectangular interface shape, and the same Poiseuille velocity profile adopted
as inlet boundary condition is used throughout the entire sheet length.

The physical quantities involved in the problem can be arranged in 6 dimensionless quantities, following
the Buckingham π theorem: a possible choice is reported in Table 1. Furthermore, assuming that the
liquid phase is water, the liquid density and viscosity, ρl and µl , as well as, to within a certain approxi-
mation, the surface tension coefficient σ, are fixed. Note that the surface tension is a chemical property,
and thus its value can be assumed independent of the gas-liquid pair of phases. If also the gas viscosity
µa is considered constant, the independent dimensionless parameters reduce to:
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Table 1: Dimensionless parameters corresponding to the Base Case.

Name Relation Value
Gas-to-liquid density ratio rρ = ρa/ρl 0.01

Gas-to-liquid viscosity ratio rµ = µa/µl 0.02
Sheet slenderness ratio ε = H?

i /L? 0.02
Reynolds number Re = ρlU?

i H?
i /(2µl) 420

Froude number Fr =U?2
i /(gL?) 0.33

Weber number We = ρlU?2
i H?

i /(2σ) 2.5

• We =
ρlU?2

i H?
i

2σ
, Fr =

U?2

i

gL?
, ε =

H?
i

L?
, rρ =

ρa

ρl
,

where ε = H?
i /L? is the slenderness parameter, which is intrinsically a small quantity whose order gener-

ally ranges from O(10−3) to O(10−2). It has been assumed ε = 0.02 for all the computations made in the
present paper. On the other hand, for the standard case of g = 9.81 m/s2, the corresponding dimensional
parameters are:

• U?
i , H?

i , L?, ρa.

It is clearly evident that there exists a 1:1 correspondence between the set of governing dimensionless
numbers and the set of physical parameters. This correspondence will be considered in the subsequent
parametric investigation, which will be carried out by hypothesizing the variation of one physical parame-
ter at a time (for instance the liquid velocity), which will lead to the variation of the related dimensionless
parameters.

Accordingly, the physical quantities can be conveniently made dimensionless by employing the reference
quantities (subscript r):

• L?
r = L?, `?r = H?

i , u?r =U?
i , v?r = εU?

i , p?r = ρlU?2
i , t?r = L?/U?

i .

Note that hereafter dimensionless quantities will be denoted without apex ?. This Section is concluded
by describing the grid adopted in the computations, shown in the right panel of Fig. 1. It is a quadtree-
structured grid which retains its maximum level of refinement in a rectangular region containing the
entire liquid sheet: −0.5 < y?/H?

i < 0.5, 0 < x?/L? < 1. The maximum resolution is limited to N = 11
levels of refinement, corresponding to a minimum dimensionless cell edge length of ∆x?/H?

i = 0.0244
(40 grid cells within H?

i ). A detailed description of the adaptive grid refinement strategy is given in [14].

2.2 Computation of global eigenmodes

The computation via VOF of the fluid system unsteady response is performed forcing at the initial instant
the steady configuration by means of an impulse disturbance applied at a specified x station. The adopted
perturbation is a Gaussian bump in the transverse velocity component

v f = Ae−
1
2(

x−x0
∆ )

2

, (5)

where A is the amplitude, x0 the peak station, and ∆2 represents the variance of the Gaussian function.
To guarantee a linear response, at least at the initial instants after the forcing, the following typical
parameters have been adopted for all the computations:
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• A = 5ε,∆ = 0.1ε, x0 = 0.3.

As will be seen later in this Section, to validate the simulated results the following decomposition of the
unsteady field has been considered:

φ(t,x,y) = Φ(x,y)+φ
′
(t,x,y), (6)

where φ denotes any physical quantity, Φ its value at steady conditions (i.e. before the introduction of
the Gaussian impulse), and φ

′
the unsteady fluctuation. The detailed procedure to achieve the steady flow

field starting from the initial condition described earlier in this Section is reported in [15], together with
the grid convergence properties of the solution.

2.3 One-dimensional data reduction

A one-dimensional reduction of VOF data is required to compare the numerically computed global prop-
erties of liquid sheet dynamics with the predictions of a linear one-dimensional model that will be intro-
duced in Section 3. This reduction is based on the relationship

φ1D =
∑

Ny
i=1Ciφi

∑
Ny
i=1Ci

, (7)

where φ1D is the spatial-averaged value over the lateral y direction, evaluated at every x station, of the
generic physical quantity φ; Ny is the total number of grid cells at the selected x station, while Ci is the
volume fraction in the cell i. In particular, for φ = y, the average deflection of the sheet, namely the
meanline `, is obtained. Note that the implementation of Eq. (7) allows one to extract the average value
of φ for the liquid phase only, being Ci = 0 in the gas phase. The data reduction technique represented by
Eq. (7) allows for the one-dimensional characterization of the perturbation dynamics, which is of great
importance for the comparison between VOF simulation and one-dimensional linear stability theory data.
Therefore, following the flow field decomposition represented by Eq. (6), the corresponding average
perturbation field φ

′
1D has been evaluated as

φ
′
1D = φ1D−Φ1D, (8)

where Φ1D is the generic 1D-reduced flow variable at steady conditions.

3 THEORETICAL ONE-DIMENSIONAL MODELING

Under the assumption of small perturbations with respect to the base flow and inviscid conditions, a set
of two equations governing the perturbations dynamics can be derived starting from the two-dimensional
Euler equations; a detailed description of the overall procedure is given in [15]. In the present paper,
we only report a physical interpretation of the liquid sheet unsteady dynamics based on a single second
order integro-differential equation, which has been derived in [15]:

∂2`

∂t2 −
2
π

1
ε

ρa

ρl

1
H

∫ 1

0

∂2`

∂t2 ln |x−ξ|dξ+2U
∂2`

∂x∂t
+U

(
U− 1

We

)
∂2`

∂x2 +U
∂U
∂x

∂`

∂x
= 0. (9)

In terms of substantial derivative, Eq. (9) can be conveniently rewritten also as

D2`

Dt2 −
2
π

1
ε

ρa

ρl

1
H

∫ 1

0

∂2`

∂t2 ln |x−ξ|dξ− U
We

∂2`

∂x2 = 0, (10)
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which is analogous to the classic one representing transverse vibrations of a finite length tensional string.
Therefore, for ρa = 0, Eq. (10) features two real and distinct characteristics on the entire physical
domain, which are physically represented by traveling waves with velocities ±

√
U/We relative to that

of the basic flow U . Observe that the ambient pressure term expressed by the convolution integral models
the so called added mass (to that of the oscillating liquid medium), whose effect is to vary the natural
frequencies of the sheet with respect to the case of oscillation in a vacuum, i.e. ρa = 0. As discussed in
[15], Eq. 9 can be properly rearranged obtaining the following equivalent expression:

∂2`

∂t2 +U
∂2`

∂t∂x
+RU

∫ 1

0
U

∂2`

∂t∂x
ln |x−ξ|dξ− 1

WeH
∂2`

∂x2 =−U
∂v
∂x

+RU
∫ 1

0

∂v
∂t

ln |x−ξ|dξ, (11)

where the parameter R = 2ρa/(περl) has been introduced. According to Eq. (11), the oscillatory dynam-
ics of the average sheet displacement ` appears forced by terms containing the lateral velocity v, which
basically depends on the base flow U . The second and third terms at the left-hand side represent aerody-
namic damping terms, since they contain the first time derivative of the displacement `. Note that the two
damping coefficients, namely the basic flow velocity U and the integral operator RU

∫ 1
0 U(·) ln |x−ξ|dξ,

have opposite sign, and depending on the magnitude of the parameter R, the total damping coefficient
can be negative. This makes the system unstable which, in the absence of nonlinear saturation, manifests
an exponential amplification of disturbances [15].

3.1 Linear stability analysis

To analyze the asymptotic global behavior of the sheet dynamics a boundary value eigenvalues problem
has been formulated. As extensively discussed in [15], this is carried out starting from the governing
equations of the one-dimensional model, eliminating the second time derivative and enforcing the global
temporal modes position: `(x, t) = ˆ̀(x) · eλt and v(x, t) = v̂(x) · eλt , where ˆ̀ and v̂ are eigenfunctions and
λ is the complex eigenvalue. This permits one to recast the governing equations into the following matrix
form

λM
(

v̂
ˆ̀

)
= A

(
v̂
ˆ̀

)
. (12)

The reader is referred to [15] for a detailed explanation of the matrix operators M and A reported in
Eq. 12. Eigenvalues and eigenfunctions are numerically computed by means of a Chebyshev collocation
method in MATLAB environment, with both differential and integral terms being spectrally accurate.

4 BASE CASE RESULTS

The unsteady behavior of the liquid sheet forced by an impulse perturbation is reported in the present
Section for the Base Case configuration (Table 1 of Section 2). Fig. 2 shows the snapshots of v and
` perturbations obtained by numerical integration in MATLAB environment of the theoretical model,
superimposed on VOF results. The initial v perturbation splits in two down-winding traveling wave
fronts which leave the domain through the right exit section at t = 0.22 and t = 0.53, respectively.
Comparing these results with the expulsion times provided by the theoretical one-dimensional model
[15], a good agreement is found, with differences of 2 % and 7 % for the fast and the slow traveling waves,
respectively. The perturbation in v produces a corresponding deformation of the meanline shape; this
induced perturbation does not split in two wave fronts, as for the v signal, but it exhibits a compact front
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Figure 2: Instantaneous v velocity component and meanline ` distributions at t = 0.05 extracted from VOF simu-
lation (black solid line) and computed from numerical integration of the one-dimensional model (blue solid line).
We = 2.5, Fr = 0.33, rρ = 0.01.

whose ends travel downstream with the two characteristic speeds, which determines the enlargement
of the perturbation front as t increases. Results reported in Fig. 2 represent a validation of the VOF
simulation, which is able to capture the underlying physics of the system under consideration. One of
the main findings of the present investigation is that, after the complete expulsion of the perturbation
from the computational domain, the meanline time evolution is characterized by low frequency sinuous
oscillations. This oscillatory behavior has been investigated computing frequency spectra of meanline
temporal signals stored at different x stations along the liquid sheet. The results are shown in Fig.
3, which reports frequency spectra computed with the Fast Fourier Transform (FFT) algorithm. The
presence of two low-frequency peaks is clearly detected at all the stations considered. In particular, for
x = 0.2 the highest peak occurs for f = 5.83, but it moves to f = 4.37 for x = 0.4, and then it remains
constant for all the other stations. In the panels of Fig. 3 the frequency of the least stable eigenvalue
predicted by linear stability analysis is also represented as a red vertical line: a very good agreement with
VOF results can be appreciated.

5 PARAMETRIC ANALYSIS

The effect of Weber number We and density ratio rρ on the liquid sheet unsteady dynamics is examined
in this Section. Two-dimensional flow fields obtained by means of VOF simulation are finally discussed
for relevant conditions, providing comparisons with the work of Tammisola et al. [10], selected from the
huge amount of literature papers for some interesting analogies.

5.1 Influence of Weber number

The variation of the Weber number We is initially performed by increasing the inlet mean velocity U?
i =

0.70 m/s and leaving the inlet sheet thickness unchanged, to not modify neither the slenderness parameter
ε nor the size of the computational domain L?. As a consequence, also the Froude number Fr varies,
while clearly the density ratio rρ is unaffected. The new set of dimensionless parameters considered for
the VOF simulation is

• We = 5, Fr = 0.66 , ε = 0.02, rρ = 0.01.
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Figure 3: Fast Fourier Transform (FFT) of sheet meanline deflection extracted from VOF simulations at different
x stations. The red line represents the least stable frequency λi = 3.78 arising from stability analysis. From left to
right, top to bottom: x = 0.2,0.4,0.6,0.8. We = 2.5, Fr = 0.33, rρ = 0.01.

According to the prediction of the theoretical model, a reduction in the difference between the two
crossing times with respect to the Base Case is expected, with the slow wave becoming faster and vice
versa. This prediction is clearly recovered by the spacing ∆λi between the eigenvalue real parts in Fig.
4, as regards the comparison between the spectrum at We = 5 and the Base Case one. The crossing
times arising from VOF simulation agree again well with the theoretical predictions, with differences of
10% and 7% for the fast and slow waves, respectively [15]. Finally, the spectrum computed at We = 20
(where the surface tension is practically almost neglected) reveals the stabilizing effect of surface tension
on the gravitational liquid sheet, since the maximum growth rate increases with increasing We and the
peak growth rate λr moves towards higher frequencies λi (see Fig. 4).

5.2 Influence of density ratio

The density ratio effect on the global unsteady dynamics of the liquid sheet is here investigated. Com-
pared to the Base Case (Table 1), the gas density ρa is the only parameter varied, and the following cases
will be considered:

• We = 2.5, Fr = 0.33, ε = 0.02, rρ = 0.001;0.01;0.05,

where rρ = 0.01 represents the Base Case extensively discussed in previous Section 4. The density ratio
effect on the system behavior predicted by the stability analysis is shown in Fig. 5, where the inner
part of eigenvalues spectra is reported. While the case rρ = 0.001 is interesting because it refers to a
realistic air-water flow system, the case rρ = 0.05 is analyzed because it represents the first value of
density ratio for which flow instability is detected. It has to be stressed that in the case rρ = 0.05 the
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Figure 4: Weber number We effect at rρ = 0.01 on the inner eigenvalues of spectrum (left), with a zoom on the
upper branch around the least stable part (right). We = 2.5 (black filled dot); 5 (red unfilled dot); 20 (blue asterisk).
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Figure 5: Density ratio rρ effect on the inner eigenvalues of spectrum (left), with a zoom on the upper branch
around the least stable part (right). We = 2.5, Fr = 0.33, rρ = 0.001 (blue unfilled dot); 0.01 (black filled dot);
0.05 (red asterisk).

computational procedure described in Section 2 and already used for all the other cases presented in
this work, has been reconsidered. In particular, the impulse perturbation represented by Eq. (5) has no
longer been introduced; indeed, it has been noted that in case of unstable configuration, the rectangular
initial condition itself represents a perturbation with respect to the theoretical steady base flow, which
can eventually amplify and trigger the natural oscillations of the system.

5.3 Two-dimensional patterns of unstable liquid sheet

The occurrence of liquid sheet instability detected as the density ratio parameter rρ increases makes the
analysis of the whole two-dimensional flow field of great interest, to determine the presence of significant
flow patterns associated with the unstable system behavior. With this objective in mind, a further VOF
simulation of the following case has been performed:

• We = 2.5, Fr = 0.33, rρ = 0.1,

for which the unstable behavior is much more evident than the case rρ = 0.05 previously discussed.
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Figure 6: Instantaneous view of the ambient-phase velocity components u?a/U?
i (top) and v?a/U?

i (bottom) fields.
We = 2.5, Fr = 0.33, rρ = 0.1. In all the panels the interface is highlighted by the black contour line.

Indeed, the unsteady oscillating dynamics of the flow for rρ = 0.1 is clearly visible in Fig. 6, where an
initial region of linear disturbance growth is followed by nonlinear saturation of the sheet pattern.

An analogy seems to exist between the global unstable behavior exhibited by the liquid sheet as the
density ratio rρ increases, and the surface tension-induced global instability found by Tammisola et al.
[10]. These authors computed two-dimensional linear temporal global modes of planar jet and wake
flows of two immiscible fluids with different velocities, and found that surface tension can induce global
instability for large enough values of the shear ratio Λ, which measures the external flow velocity effect,
being the underlying physical mechanism located in the shear layer. Apart from the differences in the
two physical configurations, the role of the shear ratio parameter Λ underlined in [10] (when surface
tension is present) can be related to the density ratio effect rρ outlined in the present work, where the
relatively strong entrainment effect of high density gas plays the destabilizing role. This analogy is also
supported by the good qualitative agreement between Fig. 11 of [10], reporting global eigenmodes for
a wake flow (Λ < 1) for different values of the Weber number, and Fig. 6 of the present paper, showing
the liquid sheet shape together with the distributions of velocity components ua and va of the ambient
gaseous phase for rρ = 0.1. The oscillatory flow pattern exhibited by the u eigenmode at We = 5 in Fig.
11(e) of [10] can be recovered in the ua distribution shown in Fig. 6, in particular for 30 < x?/H?

i < 40,
which is the liquid sheet region where the amplification of disturbances is not yet significantly affected
by nonlinear effects. Furthermore, remember that in Section 3 it has been observed, Eq. (11), that the
oscillatory dynamics of the average sheet displacement ` resembles that of a tensional string forced by
terms containing the lateral velocity v, and subjected to a total damping coefficient which can assume
negative values. Accordingly, one can argue that the distribution of velocity component va of the ambient
gaseous phase for rρ = 0.1, showed in the bottom panel of Fig. 6, represents such a forcing term which
leads the system towards the instability when, for relatively high density ratios rρ, the total damping
coefficient becomes negative. The comparison with wake rather than jet flows of Tammisola et al. [10] is
motivated by the observation that the inner stream acceleration and interface contraction experienced by
wake flows (Fig. 1 of [10]), due to the shear effect of the higher velocity outer stream, can be regarded as
the counterpart of the gravity effect considered in the present work. On the other hand, the analogy seems
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to fail in the initial part of the sheet where the shear induced velocity of the gaseous phase is weaker.
Finally, it has also to be stressed that the surface tension plays a destabilizing role on the flow fields
studied in [10], whilst for the gravitational liquid sheet which is the object of the present investigation,
the surface tension is stabilizing, as already found by Girfoglio et al. [8] for the nappe problem.

6 CONCLUSIONS

The unsteady dynamics of planar liquid sheet flows freely falling in the gravitational field in supercritical
regimes and surrounded on both sides by quiescent gaseous environments has been numerically inves-
tigated by means of the Volume-Of-Fluid (VOF) technique. Surface tension at the interface of the two
phases and viscosity effects have been included in the computations, carried out by means of the open
source BASILISK code. It takes advantage of an adaptive-grid strategy, which has been exploited to
retain the maximum level of refinement at the gas–liquid interface, adapting dynamically the grid to
its spatiotemporal evolution. The global behavior of the non-parallel liquid flow has been analyzed by
perturbing the initial steady configuration by means of a Gaussian bump in the transverse velocity compo-
nent of relatively small amplitude, thereby guaranteeing the linearity of the system response. To validate
the numerical results, and to gain more physical insights on the fluid system, a linear one-dimensional
model has been developed. A physical interpretation of the theoretical model relates the sheet sinuous
dynamics to transverse vibrations of a tensional string forced by terms containing the lateral velocity, and
subjected to a total damping which can assume negative values. It features two real and distinct character-
istics on the entire physical domain, which are physically represented by traveling waves with velocities
U±

√
U/We. Global 1D sinuous eigenmodes and eigenvalues have been evaluated by using the normal

modes approach. To effectively compare VOF simulations data to findings of the linear stability theory,
a suited one-dimensional reduction technique applied to the VOF fields has been implemented. Such a
reduction technique has allowed one not only to compare the average sheet displacements (eigenmodes)
obtained with both the procedures, but also to extract from the VOF data the peak frequencies of the
sheet centreline oscillations via FFT analysis.

The VOF computation of the average sheet shape and natural oscillation frequency closely agrees with
predictions of the one-dimensional theoretical model. A parametric investigation has been also per-
formed, to analyze in particular the influence of Weber number and density ratio. The results showed
that the surface tension plays a stabilizing role. The major novel finding is that the sheet becomes unstable
for relatively high value of density ratio, thus confirming the theoretical prediction. Since the oscilla-
tory dynamics of the average sheet displacement resembles that of a tensional string forced by terms
containing the lateral velocity, and subjected to a total damping coefficient which can assume negative
values, it has been argued that the distribution of transverse velocity component of the ambient gaseous
phase represents such a forcing term which leads the system towards the instability when, for relatively
high density ratios, the total damping becomes negative. The VOF simulations have also highlighted the
convective character of the instability. Therefore, an analogy seems to exist between the global unstable
behavior exhibited by the liquid sheet as the density ratio increases, and the shear-induced instability due
to the wave motions of both flow streams on the interface, when the surface tension is present, found
by Tammisola et al. [10]. This analogy is supported by the qualitative agreement between global eigen-
modes for the wake flow shown in [10], and present distributions of velocity components of the ambient
gaseous phase for rρ = 0.1. However, while the surface tension plays a destabilizing role on the flow
fields studied in [10], for the gravitational liquid sheet the surface tension is stabilizing.
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