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Abstract. A 1D bubble expansion problem is solved using standard compressible methods whose nu-
merical solutions are compared with the exact low-Mach solution of the problem. The low Mach solution
is proved to provide a very good approximation of the grid-converged compressible solution for a weak
expansion and an envelope solution for the strong expansion. This motivates the design of a newly pro-
posed Artificial Compressibility solver which will speed up low-Mach simulations of interest for nuclear
safety with respect to standard compressible solvers.

1 INTRODUCTION

High pressure bubble expansion in liquid is involved in several safety problems studied in the Nuclear
Industry, such as Borax-type accidents in pool-type experimental reactors or Hypothetical Core Disrup-
tive Accident (HCDA) in a liquid-sodium fast breeder reactor. A Borax-type accident involves a high-
pressure bubble created by the interaction of melted metal materials with water. For a liquid-sodium fast
breeder reactor, the scenario of an HCDA supposes the reactor core has partially melted and the molten
fuel chemically interacts with the liquid sodium to produce a large quantity of gaseous components [1].
The explosive expansion of the high-pressure gas bubble formed in the core centre yields significant
loads on the reactor vessel. The MARA experimental program was carried out by CEA in the 1980s
on a 1/30-scale model of the Superphenix reactor in order to provide reference measurements (pressure
at transducers, structure deformation) to be used for validation of the codes applied to the HCDA fluid-
structure interaction problem. In the experiments, water replaces the liquid sodium cooling the reactor
core and the cover gas below the reactor roof is air instead of argon; the explosion is triggered by an ex-
plosive charge. The MARA program involved 10 tests of increasing complexity with additional internal
deformable structures gradually accounted for : from MARA 1 and 2 considering a plain vessel with a
rigid roof [2] to MARA 10 including the core support structures and the above core structures [3] (see
Fig.1).

Measurements provided by the MARA experiments have been especially useful to assess the perfor-
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Figure 1: Left : schematic view of the MARA 1/2 configuration taken from [4]. The charge creating the gas
bubble is located at the center of the liquid domain; the layer of air below the vessel cover is also visible. Right
: schematic view of the MARA 10 configuration taken from [5] displaying the added structures included in the
fluid-structure interaction.

mance of fluid-structure coupling strategies developed in various codes (SIRIUS, CASTEM-PLEXUS,
EUROPLEXUS), see [6] [7]. The present work is focused on a different numerical issue which arises
when computing an HCDA-type bubble expansion problem. Two speed scales are associated with the
flow field evolution: the sound speed c and the flow speed u = Mc with a local Mach number M which
can be much lower than unity in some regions of the computational domain. This typically raises two
problems for standard compressible CFD codes when applied to the numerical solution of a bubble
expansion: an accuracy problem and an efficiency problem. The accuracy problem takes the form of
numerical diffusion on the one hand, scaling like c∆x

2 , and on 2D/3D parasite waves on the other hand
with amplitude ρc∆u. The efficiency problem results from the timestep limitation ∆t ∼ CFL·∆x

c . A num-
ber of numerical fixes have been proposed in the literature to address these issues for compressible CFD
codes. The accuracy issue can be tackled by a centering of the pressure instead of upwinding in the
numerical discretization (see [8] for instance). Several workarounds also exist for the efficiency issue
such as the implicit Roe-Turkel approach (though it proves not so efficient in closed geometries such
as the ones encountered for HCDA) or the numerical reduction of the sound speed (though it yields
incorrect isentropic transformations). In the present work, a new fix is proposed which relies on arti-
ficial compressibility (AC), with lower sound speed and low Mach correction for (correct) isentropic
transformations. The relevance of the proposed strategy will be demonstrated for 1D low-Mach bubble
expansion problems, modelling an HCDA configuration. More precisely, we wish to establish that the
efficiency gain offered by AC is not obtained at the expense of a lack of accuracy. The idea in this first
stage is to assess whether the exact low-Mach solution of the 1D bubble expansion problem represents a
relevant approximation with respect to the fully compressible numerical solutions of the same problem.
If the comparison is conclusive, it will motivate the subsequent development of a numerical solver based
on the low-Mach model. Due to the length constraints of the present paper, only the key underlying
principles of the proposed approach are briefly presented in section 2 - more details will be provided
in [9]. The 1D bubble expansion problem is described in section 3. The derivation of the low-Mach
number reference solution for this model problem is reviewed and an accuracy criterion based on exergy
is proposed. Section 4 is devoted to the comparison of the low-Mach reference solution with fully com-
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pressible simulations performed on a series of increasingly refined grids. The comparison is performed
for two bubble expansion problems corresponding to two different initial pressure levels in the bubble
region; this allows to better assess the range of validity of the low-Mach model.

2 NUMERICAL APPROACH

The newly proposed Artificial Compressibility (AC) numerical approach relies on the following splitting
of the Euler equations governing the flow evolution :

∂ρ

∂t
+ ~v ·~∇ρ = 0 −ρ~∇ ·~v

∂~v
∂t

+
(
~v ·~∇

)
~v+

1
ρ

~∇P = 0

∂P
∂t

+ ~v ·~∇P = −ρc2
AC
~∇ ·~v −ρ(c2− c2

AC)
~∇ ·~v

︸ ︷︷ ︸
part I

︸ ︷︷ ︸
part II

(1)

Part I in the above system corresponds to the convective mechanism with fast acoustic waves filtered
through the use of a (numerical) AC sound speed cAC lower or even much lower than the physical sound
speed c. Part II includes the contribution of the homogeneous term (~∇ ·~v), responsible for the isentropic
transformations of density and pressure, which takes into account the filtered acoustic waves.
The key ingredients of the complete solver under development and to be applied to the numerical solution
of an HCDA problem such as the MARA test-case are: i) a two-phase 7-equation model solved with the
Discrete Equation Method (DEM) of Abgrall and Saurel [10] using an extension of the two-step AC
method schematically described through (1)), ii) a quasi-second order Barth-Jespersen reconstruction
on primitive variables for space discretization of the convective terms, iii) a second-order Runge-Kutta
for time explicit integration, iv) an Arbitrary Lagrangian-Eulerian (ALE) Finite Volume approach to
take into account the fluid-structure interaction (the structure surrounding the fluid being solved with
a Lagrangian Finite Element formulation). In the present work, we analytically solve the 1D HCDA
problem described in the following section by using the low-Mach model.

3 1D BUBBLE EXPANSION PROBLEM

3.1 Presentation of the problem

The proposed 1D bubble expansion problem includes the key features of the full HCDA problem inves-
tigated through the MARA experiments. The 1D domain is divided into 3 regions (see Fig. 2) repre-
sentative of the regions appearing in the MARA experiment : region 1 (or B for Bubble) corresponds to
the high pressure gas bubble, region 2 (or W for water) corresponds to the surrounding water and region
3 (or A for Absorber) corresponds to the low pressure cover gas. In the present simplified analysis, the
1D domain is assumed rigid, of total length 12 m. At t = 0, the respective lengths of the sub-regions are
lB = lA = 3 m, lW = 6 m.
Both B and A are assumed to behave as perfect gases (with γ = 1.4) while water is described by the
stiffened gas equation of state, with γ = 4.4, p∞ = 6.0×108); its sound speed is equal to ≈ 1600 m/s.
The ideal solution of the problem is such that water behaves like a rigid body oscillating around an equi-
librium position.
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High pressure
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Figure 2: Flow regions for the 1D HCDA problem.

Region 1 (B) Region 2 (W) Region 3 (A)
ρ (kg/m3) 26.827 1000.0 1.0

P (Pa) 1×107 1×105 1×105

u (m/s) 0.0 0.0 0.0

Table 1: Initial conditions for the strong bubble expansion.

The initial states in regions B, W and A are summarized in Tables 1 and 2. The two configurations under
study differ by the initial pressure level in the bubble, respectively 100 or 10 bars, yielding a strong or
weak expansion of the bubble.

3.2 Low-Mach number reference solution

In the compressible gases, we have to determine ρ(x, t),u(x, t), p′(x, t) and P(t) (p′ << P) such that

∂ρ

∂t
+u

∂ρ

∂x
+ρ

∂u
∂x

= 0

ρ
∂u
∂t

+ρu
∂u
∂x

+
∂p′

∂x
= 0

dP
dt

+ρc2 ∂u
∂x

= 0, (P = P(t))

In the incompressible liquid, we have to determine uW (x, t), pW (x, t) such that

ρW
∂uW

∂t
+ρW uW

∂uW

∂x
+

∂pW

∂x
= 0

∂uW

∂x
= 0

For the incompressible liquid water, the flow speed uW (t) is homogeneous and the pressure is linearly
varying between PB(t) and PA(t)). For the compressible gases in regions A and B the thermodynamic
pressure P(t) follows the isentropic law while the velocity is linearly varying in the gases between 0 and
uW . Mass is conserved and density also satisfies the isentropic law. The low-Mach solution is eventually
obtained by integrating in time the ODE describing the motion of the liquid column.

Region 1 (B) Region 2 (W) Region 3 (A)
ρ (kg/m3) 5.1795 1000.0 1.0

P (Pa) 1×106 1×105 1×105

u (m/s) 0.0 0.0 0.0

Table 2: Initial conditions for the weak bubble expansion.

4



A. BECCANTINI, C.H. PHAN and C. CORRE

3.3 Exergy as accuracy criterion

When conservative numerical methods are used to solve compressible flows, total energy conservation
cannot be used as a criterion of solution accuracy since automatically satisfied. Numerical entropy pro-
duction could be retained as a better criterion, however entropy is in (J/K) and we would rather monitor
a physical quantity homogeneous with energy. Because of entropy production, part of the initial energy
is not transformed into kinetic energy for the liquid but numerically converted into heat, reducing the
so-called “exergy”(J), that is ”the amount of work obtainable when some matter is brought to a state
of thermodynamic equilibrium with the common components of the natural surroundings by means of
reversible processes” [11]. For the 1D HCDA test-case under study, exergy is also the maximum amount
of energy which, at any time, can be converted into kinetic energy (of the liquid). Anergy (J) is equal to
the initial energy minus the exergy. From an energetic point of view, the following identity holds :

1
γ−1

∫
VB

PdV︸ ︷︷ ︸
EB

+
1

γ−1

∫
VA

PdV︸ ︷︷ ︸
EA

+
1
2

∫
VW

ρv2dV︸ ︷︷ ︸
KW

+EW = constant

where EW is the internal energy of the liquid. According to the motion equation and assuming the
variation of EW remains negligible, the velocity (and thus the kinetic energy) of the liquid is maximum
when the acceleration is zero, i.e. when both PB and PA are equal to the ”equilibrium” pressure Pe. As the
anergy (and the entropy), Pe will increase in time if dissipative phenomena take place in the flow. Without
(physical) dissipative phenomena occurring in the flow, the more accurate the numerical discretization is,
the lower the value of Pe remains. From the time evolution equation for the pressure, we can determine
Pe and VA,e at each time by writing :

PeV
γ

A,e = PAV γ

A,

Pe(VA+B−VA,e)
γ = PB(VA+B−VA)

γ,

where VA+B is the total volume of the gas (constant in time). For the case of the low-Mach solution of
the strong bubble expansion (initial pressure level equal to 100 bar), Figure 3 displays the evolution over
time of the equilibrium pressure, along with the pressure in the A and B regions. Also reported is the
evolution of exergy, total energy, liquid kinetic energy and total energy in regions A and B. Regarding
the pressure evolution, it can be noticed the decrease of the bubble pressure corresponds, because of the
motion of the liquid column, to an increase of the absorber pressure; the equilibrium pressure remains
constant over time for the low-Mach reference solution (no dissipative phenomena). It will be monitored
for the compressible calculation and used as an accuracy criterion. Regarding the energy evolution, it
can be noticed that exergy is also constant over time, as expected, and equal to the maximum of the water
kinetic energy.

4 Numerical investigation: Compressible solutions vs reference low-Mach number solution

4.1 Numerical method for compressible solutions

Compressible solutions are computed using the Discrete Equation Method (DEM) for two-phase flow
with the HLLC solver, including Barth-Jespersen second-order reconstruction on primitive variables;
time-integration is performed using a second-order Runge-Kutta approach. An instantaneous relaxation
of the pressure and of the velocity is also applied to prevent negative pressure in the water. In order to
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Figure 3: Strong bubble expansion. Top: time-evolution of the bubble pressure PB, absorber pressure PA and
equilibrium pressure Pe for the reference low-Mach solution. Bottom: time-evolution of the bubble energy EB,
aborber energy EA, water kinetic energy KW , total energy Etot and exergy Eexe.

ensure a reliable comparison between the compressible solutions and the quasi-analytically computed
reference low-Mach solution, a series of increasingly refined meshes is considered for the compressible
simulation: 192 cells (coarse), 384 cells (medium), 768 cells (fine). In the strong expansion case, the
maximum speed of the liquid is about 70 m/s, which remains lower than sound speeds for liquid and
gases.

4.2 Strong bubble expansion

Figures 4 to 6 display the pressure and the velocity distributions computed on the coarse, medium and
fine grids using the fully compressible model and compare them with the low-Mach solution at selected
times t = 4 ms, t = 42 ms and t = 68 ms. In the early stage of the bubble expansion (t = 4 ms, see
Fig. 4) it can be observed how the liquid column is accelerated by the acoustic waves propagating in the
closed domain. At a later time, t = 42 ms, it can be observed in Fig. 5 how the compressible solutions
are much closer to the low-Mach number solution. Time t = 68 ms (see Fig. 6) corresponds to the
impact of the liquid column with the highly compressed absorber gas region A at the right end of the
flow domain. The large differences observed between the compressible solutions and the reference low-
Mach solution, be it on the pressure or on the velocity, are actually produced by the time-shift between
the compressible solutions where the acoustic waves propagate in the water with a finite velocity and
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the low-Mach solution where this propagation takes place at an infinite speed. This is clearly observed
in Fig. 7 where the time-evolution of the average pressure in the bubble and in the absorber region
is displayed for both the low-Mach reference solution and the compressible solution computed on the
coarse, medium and fine grids. Time t = 68 ms corresponds to the time where the bubble average
pressure reaches its minimum value, the absorber reaching its maximum value at the same time. Because
of the finite speed of propagation for the acoustic waves in the compressible calculation, the minimum
bubble pressure or absorber peak pressure is reached slightly later (hence the large pressure difference
previously observed in Fig. 6). Another consequence is the much larger peak of pressure observed in
the absorber for the low-Mach solution with respect to the compressible solution. The finite value of
the sound speed is indeed responsible for the weaker momentum variation of the liquid column in the
compressible solutions. The plot of the time-evolution for the equilibrium pressure displayed in Fig. 8
shows the equilibrium pressure decreases with the mesh size for the compressible numerical solution.
However, it does not exactly converge to its initial value because of the entropy/anergy production at the
impact of the liquid column on the right end of the closed domain. Keeping in mind that HCDA analysis
is particularly focused on the structural loads induced by the bubble expansion, it is worth noticing
that low-Mach number and compressible solutions remain close and that the low-Mach number solution
provides a useful upper limit for the compressible simulations as far as pressure and kinetic energy of
water are concerned.

Figure 4: Strong bubble expansion. Compressible flow solution vs reference low-Mach number solution at t=4
ms. Left: pressure distributions. Right: velocity distributions.

4.3 Weak bubble expansion

Figure 9 displays the time-evolution of the equilibrium pressure for the case of the weak bubble expansion
(with an initial pressure level of 10 bar in the bubble region). Because of the larger characteristic time
associated with the physical phenomena in that case, there is no longer a visible time shift at the impact
of the liquid column. The equilibrium pressure decreases with the mesh size (since numerical dissipation
is reduced by the grid refinement) and better converges to its initial value with respect to the case of
the strong bubble expansion. The agreement between the low-Mach and compressible solutions for the
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Figure 5: Strong bubble expansion. Compressible flow solution vs reference low-Mach number solution at t=42
ms. Left: pressure distributions. Right: velocity distributions.

Figure 6: Strong bubble expansion. Compressible flow solution vs reference low-Mach number solution at t=68
ms. Left: pressure distributions. Right: velocity distributions.

water kinetic energy remains very good over the whole computed time-interval.

5 CONCLUSIONS AND PERSPECTIVES

1D Bubble expansion problems at low-Mach number have been computed using a state-of-the art com-
pressible method on a series of increasingly refined grids and the compressible numerical solutions have
been compared with a reference low-Mach solution. The goal of this comparison is to assess whether the
low-Mach solution is accurate enough to allow safety analysis for HCDA configurations. An accuracy
criterion based on the exergy/anergy has been proposed for a thorough comparison of compressible and
low-Mach solutions. It has been observed through numerical experiments that the low Mach number
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Figure 7: Strong bubble expansion. Comparison of the pressure time-evolution for the low-Mach solution and the
compressible numerical solution using the increasingly refined grids. Left: time evolution of the average pressure
in the bubble. Right: time-evolution of the average pressure in the absorber.
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Figure 8: Strong bubble expansion. Comparison between the low-Mach solution and the compressible numerical
solution using the increasingly refined grids. Left: time evolution of the equilibrium pressure. Right: time-
evolution of the water kinetic energy.

solution provides indeed a very good approximation of the grid-converged compressible solution for the
weak expansion and an envelope solution for the strong expansion. This motivates the design of a low-
Mach number solver based on the splitting (1) which will offer a reduction of the CPU time consumption
directly proportional with the ratio between the actual speed of sound c used in the compressible simula-
tions and the artificially reduced speed of sound cAC introduced in the Artificial Compressibility method.
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