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Abstract

In this paper we treat several aspects related to time integration methods for the incom-
pressible Navier-Stokes equations that allow to uncouple the calculation of the velocities
and the pressure. The first family of schemes consists of classical fractional step methods,
of which we discuss several possibilities for the pressure extrapolation and the time inte-
gration of first and second order. The second family consists of schemes based on an ex-
plicit treatment of the pressure in the momentum equation followed by a Poisson equation
for the pressure. It turns out that this “staggered” treatment of the velocity and the pressure
is stable. Finally, we present predictor-corrector methods based on the above schemes that
aim to converge to the solution of the monolithic time integration method. Apart from pre-
senting these schemes and check its numerical performance, we also present a complete
set of stability results for the fractional step methods that are independent of the space
stability of the velocity-pressure interpolation, that is, of the classical inf-sup condition.

1 Introduction

The uncoupling of the pressure from the velocity in the numerical approximation of the incom-
pressible Navier-Stokes equations has been traditionally attempted using different approaches.
Perhaps the most well known is the use of fractional step methods, although there are other
techniques based on the solution of a pressure Poisson equation (see [9] for a review of this
type of methods) and predictor-multicorrector algorithms (either using a single stage or a mul-
tistage time integration). The interest for this type of methods is their computational efficiency,
since only scalar equations need to be solved (see e.g. [12, 17]).

The objective of this paper is to study several aspects of some pressure segregation methods
for the transient incompressible Navier-Stokes equations using a finite element approximation
for the space discretization. Our reference will be the solution of the monolithic problem,
that is, the coupled calculation of the velocity and the pressure. Obviously, the fully discrete
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and linearized monolithic scheme leads to an algebraic system the structure of which can
be exploited so as to solve independently for the velocity and pressure degrees of freedom.
However, we consider this a particular algebraic treatment of the final linear system that we
will not study in this paper (even though it might have a counterpart at the space-continuous
level).

It is not the purpose of this paper to discuss how to deal with the pressure interpolation.
All our discussion will be based on a Galerkin finite element interpolation for the velocity and
the pressure. If the velocity-pressure pairs satisfy the classical inf-sup condition, that will yield
a stable pressure approximation. Otherwise, if for example equal velocity-pressure interpola-
tion is used, the Galerkin formulation can be modified to a stabilized finite element method
for which all the discussion that follows could be easily adapted. Likewise, no stabilization
methods for the convective term when it dominates the viscous one will be taken into account,
although these could also be easily incorporated to what follows. An example of this is the
work presented in [4], of which part of the present work is a continuation.

Referring to the time integration, we will concentrate on first and second order implicit
finite difference schemes. The backward Euler method will be used for the former, whereas
for second order methods we will consider both the Crank-Nicolson and backward differencing
(or Gear) schemes. We will refer to the first and second order backward differencing schemes
as BDF1 (which coincides with backward Euler) and BDF2, respectively.

After describing the problem and its time and space discretization in Section 2, the methods
we wish to consider are presented in Section 3. The first family is the classical fractional step
methods. Our approach here is to present the splitting at the pure algebraic level, as in [13, 14],
rather than at the space continuous level as it was done in the original works of Chorin [3] and
Temam [16] and which is still the most common approach. The algebraic viewpoint obviates
the discussion on the pressure boundary conditions (which nevertheless it is obviously there).

The second family of methods is the one based on a particular pressure Poisson equation
presented in [11]. The momentum equation can be solved treating the pressure explicitly, and
then updating the pressure. Contrary to classical fractional step methods, in this case there
is no intermediate velocity to deal with. However, the velocity obtained with this scheme is
not (weakly) divergence free for the discrete problem. Our contribution here is to compare
methods based on this approach with the fractional step methods discussed previously. We
explicitly show the equivalence between this momentum-pressure Poisson equation approach
and classical splitting methods.

The third and last family of methods is of predictor-multicorrector type in the spirit of [1]
(see also references therein). Starting from fractional step methods, we propose an iterative
scheme the goal of which is to converge to the solution of the monolithic problem. The robust-
ness of this scheme relies on the presence of a term that is motivated precisely by the starting
splitting method.

An important part of this paper is devoted to the stability analysis of the fractional step
methods presented. This is done in Section 4. Four methods are considered. In the first two, a
first order time integration is used, both with a first and a second order splitting error. For the
third and fourth methods the splitting error is of second order, the same as the time integration
error. In one case the time integration is performed using the Crank-Nicolson method, whereas
the BDF2 scheme is used in the last case. Two of these four stability results were already
presented in [4], whereas the other two are new. The important issue is that we do not rely on
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the pressure interpolation, which leads to poor stability estimates for the pressure. They could
be improved either by making use of the inf-sup condition or by resorting to stabilized finite
element methods. Nevertheless, we consider important to point out that some pressure stability
is obtained even if none of these possibilities is used.

In the last two sections of the paper (Section 5 and 6) we present some numerical examples
and draw some conclusions.

2 Problem statement

2.1 Continuous problem

Let Ω be the domain of R
nsd occupied by the fluid, where nsd = 2 or 3 is the number of space

dimensions, Γ = ∂Ω its boundary and [0, T ] the time interval of analysis. The Navier-Stokes
problem consists in finding a velocity u and a pressure p such that

∂tu + u · ∇u − ν∇2u + ∇p = f in Ω, t ∈ (0, T ), (1)

∇ · u = 0 in Ω, t ∈ (0, T ), (2)

u = 0 on Γ, t ∈ (0, T ), (3)

u = u0 in Ω, t = 0, (4)

where ν is the kinematic viscosity, f is the force vector and u0 is the velocity initial condition.
We have considered the homogeneous Dirichlet boundary condition (3) for simplicity.

To write the weak form of problem (1)-(4) we need to introduce some notation. We denote
by H1(Ω) the Sobolev space of functions whose first derivatives belong to L2(Ω), and by
H1

0 (Ω) the subspace of H1(Ω) of functions with zero trace on Γ. A bold character is used for
the vector counterpart of these spaces. The L2 scalar product in Ω is denoted by (·, ·), and the
L2 norm by ‖ · ‖. To pose the problem, we also need the functional spaces V st = H1

0(Ω)nsd ,
and Qst =

{
q ∈ L2(Ω) |

∫
Ω

q = 0
}

, as well as V = L2(0, T ; V st) and Q = L2(0, T ; Qst) for
the transient problem.

Assuming for simplicity the force vector to be square integrable, the weak form of problem
(1)-(4) consists in finding (u, p) ∈ V × Q such that

(∂tu + u · ∇u, v) + ν(∇u,∇v) − (p,∇ · v) = (f , v), (5)

(q,∇ · u) = 0, (6)

for all (v, q) ∈ V st × Qst, and satisfying the initial condition in a weak sense. For the sta-
bility analysis of Section 4 it will be convenient to write the convective term u · ∇u in its
skew-symmetric form, that is, u · ∇u + (1/2)u∇ · u, although this is irrelevant for the space
continuous case, where ∇ · u = 0.

2.2 Monolithic time discretization

Let us introduce some notation that we will use throughout the paper. Consider a uniform
partition of the time interval of size δt, and let us denote by f n the approximation of a time
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dependent function f at time level tn = nδt. For a parameter θ ∈ [0, 1], we will denote

fn+θ = θfn+1 + (1 − θ)fn,

δfn+1 ≡ δ(1)fn+1 = fn+1 − fn,

δ(i+1)fn+1 = δ(i)fn+1 − δ(i)fn, i = 1, 2, 3, ...

The discrete operators δ(i+1) are centered. We will also use the backward difference operators

D1f
n+1 = δfn+1 = fn+1 − fn,

D2f
n+1 =

1

2
(3fn+1 − 4fn + fn−1),

as well as the backward extrapolation operators

f̂n+1
i = fn+1 − δ(i)fn+1 = fn+1 + O(δti),

f̂n+1
1 = fn,

f̂n+1
2 = 2fn − fn−1. (7)

For the time integration of problem (5)-(6) we consider two types of finite difference approx-
imation. The first is the generalized trapezoidal rule, which consists of solving the following
problem: from known un, find un+1 ∈ V st and pn+1 ∈ Qst such that

(
1

δt
D1u

n+1 + un+θ · ∇un+θ, v) + ν(∇un+θ,∇v) − (pn+θ,∇ · v) = (f̄
n+θ

, v), (8)

(q,∇ · un+θ) = 0, (9)

for all (v, q) ∈ V st × Qst. The force term f̄
n+θ

in (8) and below has to be understood as the
time average of the force in the interval [tn, tn+1], even though we use a superscript n + θ to
characterize it. The pressure value computed here has been identified as the pressure evaluated
at tn+θ, although this is irrelevant for the velocity approximation. The values of interest of θ
are θ = 1/2, corresponding to the second order Crank-Nicolson scheme, and θ = 1, which
corresponds to the backward Euler method.

The second scheme is BDF2. In this case, u1 can be computed from the backward Euler
method, whereas for n ≥ 1 the unknowns un+1 ∈ V st and pn+1 ∈ Qst are found by solving
the problem

(
1

δt
D2u

n+1 + un+1 · ∇un+1, v) + ν(∇un+1,∇v) − (pn+1,∇ · v) = (f̄
n+1

, v), (10)

(q,∇ · un+1) = 0, (11)

for all (v, q) ∈ V st × Qst.

2.3 Finite element discretization

Let Th denote a finite element partition of the domain Ω of diameter h, from which we con-
struct the finite element spaces Qh and V h,0, approximations to Qst and V st, respectively. The
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former is made up with continuous functions of degree kq and the other with continuous vec-
tor functions of degree kv verifying the homogeneous Dirichlet boundary conditions. In the
following, finite element functions will be identified with a subscript h.

The discrete problem is obtained by approximating u and p. We assume that un
h and pn

h

are constructed using the standard finite element interpolation from the nodal values. From
problem (8)-(9), these are solution of the nonlinear algebraic system

M
1

δt
D1Un+1 + K(Un+θ)Un+θ + GPn+θ = Fn+θ, (12)

DUn+θ = 0, (13)

where U and P are the arrays of nodal unknowns for u and p, respectively. If we denote the
node indexes with superscripts a, b, the space indexes with subscripts i, j, and the standard
shape function of node a by N a, the components of the arrays involved in these equations are:

Mab
ij = (Na, N b)δij (δij is the Kronecker δ),

K(Un+θ)ab
ij = (Na, un+θ

h · ∇N b)δij +
1

2

(
Na, (∇ · un+θ

h )N b
)
δij + ν(∇Na,∇N b)δij ,

Gab
i = (Na, ∂iN

b),

Dab
j = (Na, ∂jN

b),

Fa
i = (Na, fi).

It is understood that all the arrays are matrices (except F, which is a vector) whose components
are obtained by grouping together the left indexes in the previous expressions (a and possibly
i) and the right indexes (b and possibly j). Likewise, (12) and (13) need to be modified to
account for the Dirichlet boundary conditions (matrix G can be replaced by −Dt when this is
done). Observe also that we have used the skew-symmetric form of the convective term, which
yields the convective contribution to matrix K(Un+θ) skew-symmetric.

For problem (10)-(11) the resulting algebraic system is analogous to (12)-(13), simply
replacing D1U by D2U and evaluating the rest of the terms at n + 1 instead of n + θ.

3 Some pressure segregation methods

3.1 Fractional step methods

The first family of schemes we consider is classical fractional step methods. They can be intro-
duced at this point, applied to the fully discrete problem (12)-(13). This is exactly equivalent
to

M
1

δt
(Ũn+1 − Un) + K(Un+θ)Un+θ + γGPn = Fn+θ, (14)

M
1

δt
(Un+1 − Ũn+1) + G(Pn+1 − γPn) = 0, (15)

DUn+1 = 0, (16)
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where Ũn+1 is an auxiliary variable and γ is a numerical parameter, whose values of interest
are 0 and 1. At this point we can make the essential approximation

K(Un+θ)Un+θ ≈ K(Ũn+θ)Ũn+θ, (17)

where Ũn+θ := θŨn+1+(1−θ)Un. Expressing Un+1 in terms of Ũn+1 using (15) and inserting
the result in (16), the set of equations to be solved is

M
1

δt
(Ũn+1 − Un) + K(Ũn+θ)Ũn+θ + γGPn = Fn+θ, (18)

δtDM−1G(Pn+1 − γPn) = DŨn+1, (19)

M
1

δt
(Un+1 − Ũn+1) + G(Pn+1 − γPn) = 0, (20)

which have been ordered according to the sequence of solution, for Ũn+1, Pn+1 and Un+1. This
uncoupling of variables has been made possible by (17).

Even though problem (18)-(20) can be implemented as such, it is very convenient to make
a further approximation. Observe that DM−1G represents an approximation to the Laplacian
operator. In order to avoid dealing with this matrix (which is computationally feasible only if
M is approximated by a diagonal matrix), we can approximate

DM−1G ≈ L, with components Lab = −(∇Na,∇N b). (21)

Matrix L is the standard approximation to the Laplacian operator. Clearly, this approximation
is only possible when continuous pressure interpolations are employed. Likewise, it introduces
implicitly the same wrong pressure boundary condition as when the splitting is performed at
the continuous level (see [9] for a discussion on boundary conditions for the pressure Poisson
equation). In [10], the use of approximation (21) is referred to as “approximate projection”.

After using (17) and (21) the problem to be solved is:

M
1

δt
(Ũn+1 − Un) + K(Ũn+θ)Ũn+θ + γGPn = Fn+θ, (22)

δtL(Pn+1 − γPn) = DŨn+1, (23)

M
1

δt
(Un+1 − Ũn+1) + G(Pn+1 − γPn) = 0. (24)

In Section 4 we will consider three possibilities depending on the choice of θ and γ. Formally,
it is easy to see that the splitting error, introduced by approximation (17), is of order O(δt)
when γ = 0 and of order O(δt2) when γ = 1 (observe from (15) that O(‖Un+1 − Ũn+1‖) =
δtO(‖Pn+1 − γPn‖) in any norm ‖·‖). Thus, we will refer to the case γ = 0 as the case with
splitting error of order 1, called SE1 in the following, and the case γ = 1 as the case with
splitting error of order 2, called SE2. The three possibilities mentioned are:

• θ = 1, γ = 0. Method BDF1-SE1.

• θ = 1, γ = 1. Method BDF1-SE2.

• θ = 1/2, γ = 1. Method CN-SE2.
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Method BDF1-SE2 will obviously be first order, and thus the second order splitting er-
ror unnecessary. However, this method has some interesting properties that will be discussed
below.

So far, we have considered the trapezoidal rule for the time integration. If, instead, we use
BDF2 with a second order splitting error, the final algebraic system will be

M
1

2δt
(3Ũn+1 − 4Un + Un−1) + K(Ũn+1)Ũn+1 + GPn = Fn+1, (25)

2

3
δtL(δPn+1) = DŨn+1, (26)

M
1

2δt
(3Un+1 − 3Ũn+1) + G(δPn+1) = 0. (27)

We will call this method BDF2-SE2.

3.2 Momentum-pressure Poisson equation methods

In this section we discuss a family of methods that allow us to segregate the pressure calcula-
tion recently proposed in [11]. The idea is to start with a formulation of the continuous problem
equivalent to (1)-(2) obtained by replacing the continuity equation by a pressure Poisson equa-
tion. The system of equations to be solved is thus

∂tu + u · ∇u − ν∇2u + ∇p = f , (28)

∇2p = ∇ · (f + ν∇2u − u · ∇u). (29)

The pressure boundary condition is obtained by imposing that the normal component of the
pressure gradient be equal to the normal component of the term within parenthesis in the
right-hand-side of (29). The viscous term in this equation could be deleted by assuming that
the divergence and the Laplacian operator commute, but this would lead to a non-physical
pressure boundary condition.

The key point is the way the pressure appearing in (28) and (29) is treated in the time
discretization. In principle, to guarantee that the incompressibility condition holds, both pres-
sures should be the same. However, another possibility is to use an explicit treatment of the
pressure in (28). This implies that the incompressibility constraint will be relaxed, but allows
to uncouple the velocity and pressure calculation. Using a BDF time integration method of
order k, k = 1, 2, the equations to be solved are

1

δt
Dku

n+1 + un+1 · ∇un+1 − ν∇2un+1 + ∇p∗,n+1
k = fn+1, (30)

∇2pn+1 = ∇ · (fn+1 − un+1 · ∇un+1 + ν∇2un+1), (31)

where p∗,n+1
k is an explicit approximation to pn+1 of order k. The right-hand-side of (31) is

cumbersome to evaluate numerically. Making use of (30) in (31) we can alternatively solve

1

δt
Dku

n+1 + un+1 · ∇un+1 − ν∇2un+1 + ∇p∗,n+1
k = fn+1, (32)

δt∇2(pn+1 − p∗,n+1
k ) = ∇ · (Dku

n+1). (33)
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Let us compare now these momentum-pressure Poisson equation methods with the frac-
tional step methods of the previous subsection when the space discretization is carried out. For
k = 1, problem (32)-(33) leads to

M
1

δt
(D1Un+1) + K(Un+1)Un+1 + GP∗,n+1

1 = Fn+1, (34)

δtL(Pn+1 − P∗,n+1
1 ) = D(D1Un+1), (35)

whereas the algebraic equations of the BDF1-SE1 of the previous subsection can be rearranged
to yield

M
1

δt
(D1Ũn+1) + K(Ũn+1)Ũn+1 + GPn = Fn+1, (36)

δtL(Pn+1 − Pn) = D(D1Ũn+1). (37)

It is observed that problems (34)-(35) and (36)-(37) are identical, provided the intermediate
velocity of the fractional step method is identified with the velocity to be computed at each
time step and the following two conditions hold: an initial pressure (which is unnecessary in
fractional step methods) is obtained from the equation δtLP0 = DU0 and the explicit first
order approximation to the pressure is taken as P∗,n+1

1 = Pn.
In the case k = 2, problem (32)-(33) leads to

M
1

δt
(D2Un+1) + K(Un+1)Un+1 + G(P∗,n+1

2 ) = Fn+1, (38)

L(Pn+1 − P∗,n+1
2 ) = D(

1

δt
D2Un+1), (39)

whereas the algebraic equations of the BDF2-SE2 of the previous subsection, with an appro-
priate choice for the initial conditions, can be written as

M
1

δt
(D2Ũn+1) + K(Ũn+1)Ũn+1 + G(P̂

n+1

2 − 1

3
δ2Pn) = Fn+1, (40)

L(Pn+1 − (P̂
n+1

2 − 1

3
δ2Pn)) = D(

1

δt
D2Ũn+1). (41)

Problems (38)-(39) and (40)-(41) are again identical, also identifying the intermediate veloc-
ity of the fractional step method with the velocity to be computed at each time step and taking

P∗,n+1
2 = P̂

n+1

2 − 1
3
δ2Pn as explicit second order approximation to the pressure at tn+1. There-

fore, scheme BDF2-SE2 can be consideread a particular case of (38)-(39).

3.3 Predictor corrector schemes

Starting from the fractional step method (22)-(24), a predictor multicorrector scheme is pro-
posed in [7] whose goal is to converge to the monolithic time discretized problem. We will
omit the details of the motivation. Denoting by a superscript i the ith iteration of the scheme,
the resulting linearized system is

M
1

δt
(Un+1,i+1 − Un) + K(Un+θ,i)Un+θ,i+1 + GPn+θ,i = Fn+θ, (42)

δtL(Pn+θ,i+1 − Pn+θ,i) = DUn+θ,i+1. (43)
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Apparently, this is a straightforward iteration procedure for solving the original monolithic
problem (12)-(13) freezing the pressure gradient in the momentum equation. However, there
is a term whose presence would be hardly motivated by looking only at this system, namely,
the term δtL(Pn+θ,i+1 − Pn+θ,i). The motivation to introduce it comes from the inspection of
what happens in the fractional step scheme.

If instead of starting from the generalized trapezoidal rule the second order BDF scheme
is employed, the iterative scheme we propose is

M
1

2δt
(3Un+1,i+1 − 4Un + Un−1) + K(Un+1,i)Un+1,i+1 + GPn+1,i = Fn+1, (44)

2

3
δtL(Pn+1,i+1 − Pn+1,i) = DUn+1,i+1 (45)

with

Pn+1,0 = 2Pn − Pn−1, (46)

Un+1,0 = 2Un − Un−1. (47)

Both (42)-(43) and (44)-(45) are iterative schemes in which the pressure calculation is un-
coupled from the velocity. This is why we have included them in this section about pressure
segregation methods. Their numerical performance will be discussed in Section 5.

4 Stability of fractional step methods

The goal of this section is to present stability estimates for the fractional step methods in-
troduced previously. Let us first introduce some additional notation. If X, Y are arrays,
{Xn}n=0,1,...,N is a sequence of arrays of N +1 terms and A a symmetric positive semi-definite
matrix, we define

(X, Y)A := X · AY,

‖X‖A := (X · AX)1/2,

‖Y‖−A := sup
X�=0

Y · X
‖X‖A

(here A is assumed to be positive definite),

{Xn} ∈ �∞(A) ⇐⇒ ‖Xn‖A ≤ C < ∞ ∀n = 0, 1, ..., N,

{Xn} ∈ �p(A) ⇐⇒
N∑

n=0

δt‖Xn‖p
A ≤ C < ∞, 1 ≤ p < ∞.

Here and in the following, C denotes a positive constant, not necessarily the same at different
appearances.

A remark is needed when A = K. This matrix is not symmetric, but it has the contribution
from the convective term, which is skew-symmetric, and the contribution from the viscous
term, Kvisc, which is symmetric and positive definite. We will simply write U · K(U)U =
U · KviscU ≡ ‖U‖2

K.
We will make use also of L+ := −L, which is the positive semi-definite matrix correspond-

ing to the discretization of −∇2.
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These definitions will allow us to express our stability results in a compact manner. The
basic assumption in all the cases will be that

N∑
n=0

δt‖Fn‖2
−K ≤ C < ∞, (48)

which is the matrix version of the classical condition required for the problem to be well
posed. Apart from this, no other regularity assumptions will be required. Thus, the following
estimates hold for the minimum velocity-pressure regularity.

The first stability result we present was proved already in [4]. For method BDF1-SE1, we
have:

Stability of BDF1-SE1:

{Un} ∈ �∞(M), {Ũn} ∈ �∞(M) ∩ �2(K), {
√

δt Pn} ∈ �2(L+)

The stability estimate for the pressure shows that the pressure gradient multiplied by δt is
�2 bounded. When δt is of order O(h2) this is optimal [8, 2, 15]. For the velocity, the stability
estimates are optimal.

Method BDF1-SE1 is first order because of the order of both the time integration and the
splitting error. However, if we consider method BDF1-SE2, with a second order splitting error,
we obtain the same estimates for the velocity but much weaker estimates for the pressure. The
result is:

Stability of BDF1-SE2:

{Un} ∈ �∞(M), {Ũn} ∈ �∞(M) ∩ �2(K), {δtPn} ∈ �∞(L+)

The stability estimate for the pressure is now multiplied by δt instead of
√

δt as in the
previous case, which makes it weaker (even though the temporal norm is stronger). The way
to improve it is by making use of the inf-sup condition, if it holds for the velocity-pressure
interpolation employed, or by using stabilization techniques.

Let us prove this result. First, let us write the scheme as

M
1

δt
(Ũn+1 − Un) + K(Ũn+1)Ũn+1 + GPn = Fn+1, (49)

δtL(δPn+1) = DŨn+1, (50)

M
1

δt
(Un+1 − Ũn+1) + G(δPn+1) = 0. (51)

Taking the inner product of (49) with 2δtŨn+1 and using the identity

(2a, a − b) := a2 − b2 + (a − b)2,

we get

‖Ũn+1‖2
M − ‖Un‖2

M + ‖Ũn+1 − Un‖2
M + 2δt‖Ũn+1‖2

K + 2δtŨn+1 · GPn

= 2δtŨn+1 · Fn+1 ≤ δt‖Fn+1‖2
−K + δt‖Ũn+1‖2

K. (52)
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Multiplying (51) by 2δtUn+1 we obtain

‖Un+1‖2
M − ‖Ũn+1‖2

M + ‖Un+1 − Ũn+1‖2
M + 2δtUn+1 · GδPn+1 = 0. (53)

Adding up (52) and (53) it is found that

‖Un+1‖2
M − ‖Un‖2

M + ‖Un+1 − Ũn+1‖2
M + ‖Ũn+1 − Un‖2

M + δt‖Ũn+1‖2
K

+ 2δtUn+1 · GδPn+1 + 2δtŨn+1 · GPn ≤ δt‖Fn+1‖2
−K. (54)

Since (51) implies
Un+1 − Ũn+1 = −δtM−1G(δPn+1),

and Gt = −D with the boundary conditions considered, we have that

‖Un+1 − Ũn+1‖2
M = δt2M−1G(δPn+1) · G(δPn+1)

= −δt2(δPn+1) · DM−1G(δPn+1) = δt2‖δPn+1‖2
L
+
D
, (55)

being L+
D := −DM−1G positive semi-definite.

From (50) we now obtain

2δtŨn+1 · GPn = −2δtPn · DŨn+1 = 2δt2Pn · L+δPn+1

= δt2(‖Pn+1‖2
L+ − ‖Pn‖2

L+ − ‖δPn+1‖2
L+). (56)

On the other hand, using again (51) and (50) we get

2δtUn+1 · G(δPn+1) = −2δt(δPn+1) · D(Ũn+1 − δtM−1GδPn+1)

= 2δt2(δPn+1) · L+(δPn+1) + 2δt2(δPn+1) · DM−1G(δPn+1)

= δt2‖δPn+1‖2
L+ + δt2‖δPn+1‖2

B − δt2‖δPn+1‖2
L
+
D
, (57)

being B := DM−1G − L = L+ − L+
D positive semi-definite (see [4]).

Using (55), (56) and (57) in (54), we find that

‖Un+1‖2
M − ‖Un‖2

M + δt‖Ũn+1‖2
K + δt2‖Pn+1‖2

L+ − δt2‖Pn‖2
L+ ≤ δt‖Fn+1‖2

−K,

and summing from n = 1 to n = N , an arbitrary time level, we obtain

‖UN‖2
M +

N∑
n=1

δt‖Ũn‖2
K + δt2‖PN‖2

L+ ≤ C, (58)

where C includes the norm of the force vector and the initial condition. This inequality (58)
proves the desired stability estimate for method BDF1-SE2, except for the �∞(M) estimate for
{Ũn}, which is easily obtained from (51), the �∞(M) estimate for {Un} and noting that the
right-hand-side of (57) is non-negative.

For the CN-SE2 the stability estimate was already obtained in [4]. The result is the follow-
ing:
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Stability of CN-SE2:

{Un} ∈ �∞(M), {Ũn} ∈ �∞(M), {Ũn+1/2} ∈ �2(K),

{δtPn} ∈ �∞(L+), {
√

δt δPn} ∈ �2(L+)

The same remarks as those made concerning the stability of method BDF1-SE2 apply now.
We therefore conclude that the pressure stability depends on how the splitting is done rather
than on the time integration scheme. This is also ratified by the stability estimate for method
BDF2-SE2, which we present now:

Stability of BDF2-SE2:

{Un} ∈ �∞(M), {Ũn} ∈ �2(K),

{δtPn} ∈ �∞(L+), {
√

δt δPn} ∈ �2(L+)

We conclude this section by proving this result. Let us start by the method obtained without
using approximation (21). This method reads

M
1

2δt
(3Ũn+1 − 4Un + Un−1) + K(Ũn+1)Ũn+1 + GPn = Fn+1, (59)

DUn+1 = 0, (60)

M
1

2δt
(3Un+1 − 3Ũn+1) + G(δPn+1) = 0. (61)

In this case, the velocity at the end of the step is divergence free (in the discrete weak sense).
Alternatively, (60) could be replaced by

2

3
δtDM−1G(δPn+1) = DŨn+1, (62)

in contrast with the pressure Poisson equation

2

3
δtL(δPn+1) = DŨn+1, (63)

that would be obtained making use of approximation (21).
To obtain the stability of problem (59)-(61), let us start by multiplying (59) by 4δtŨn+1,

getting

(2Ũn+1, 3Ũn+1 − 4Un + Un−1)M + 4δt‖Ũn+1‖2
K + 4δtŨn+1 · GPn

= 4δtŨn+1 · Fn+1 ≤ 2δt‖Fn+1‖2
−K + 2δt‖Ũn+1‖2

K (64)

Expanding the first term of (64) we get

(2Ũn+1, 3Ũn+1 − 4Un + Un−1)M

= (2Un+1 + 2Ũn+1 − 2Un+1, 3Un+1 − 4Un + Un−1 + 3Ũn+1 − 3Un+1)M

= (2Un+1, 3Un+1 − 4Un + Un−1)M + (2Ũn+1 − 2Un+1, 3Un+1 − 4Un + Un−1)M

+ (2Ũn+1, 3Ũn+1 − 3Un+1)M. (65)
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Using the identity

(2a, 3a − 4b + c) := a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2,

we can manipulate the first term in the right-hand-side of (65) as follows:

(2Un+1, 3Un+1 − 4Un + Un−1)M

=‖Un+1‖2
M − ‖Un‖2

M + ‖2Un+1 − Un‖2
M − ‖2Un − Un−1‖2

M + ‖δ2Un+1‖2
M. (66)

From (61) it follows that

Ũn+1 − Un+1 =
2

3
δtM−1G(δPn+1),

which can be used to express the second term in the right-hand-side of (65) as

(2Ũn+1−2Un+1, 3Un+1−4Un+Un−1)M = −4

3
δt(δPn+1)·D(3Un+1−4Un+Un−1) = 0, (67)

which is zero because of (60).
For the last term in (65) we have

3(2Ũn+1, Ũn+1 − Un+1)M = 3‖Ũn+1‖2
M − 3‖Un+1‖2

M + 3‖Ũn+1 − Un+1‖2
M. (68)

Using (66), (67) and (68) in (65), and applying the result in (64) we obtain

3‖Ũn+1‖2
M − 3‖Un+1‖2

M + 3‖Ũn+1 − Un+1‖2
M + ‖Un+1‖2

M − ‖Un‖2
M

+ ‖2Un+1 − Un‖2
M − ‖2Un − Un−1‖2

M + ‖δ2Un+1‖2
M + 2δt‖Ũn+1‖2

K

+ 4δtŨn+1 · GPn ≤ 2δt‖Fn+1‖2
−K. (69)

On the other hand, (61) can be reordered to get

3

2δt
Un+1 + M−1GPn+1 =

3

2δt
Ũn+1 + M−1GPn.

Squaring both terms of this equation with the inner product (·, ·)M we obtain

(
3

2δt
Un+1 + M−1GPn+1) · (M 3

2δt
Un+1 + GPn+1)

= (
3

2δt
Ũn+1 + M−1GPn) · (M 3

2δt
Ũn+1 + GPn).

After expanding the terms of this equality and using the fact that the velocity at the end of step
is divergence free, it is found

9

4δt2
‖Un+1‖2

M + ‖Pn+1‖2
L
+
D

=
9

4δt2
‖Ũn+1‖2

M +
6

2δt
Ũn+1 · GPn + ‖Pn‖2

L
+
D
. (70)

Recall that L+
D := −DM−1G is positive semi-definite. Multiplying this equation by 4

3
δt2 and

adding it to (69) we obtain

‖Un+1‖2
M − ‖Un‖2

M + 3‖Ũn+1 − Un+1‖2
M + ‖2Un+1 − Un‖2

M − ‖2Un − Un−1‖2
M

+ ‖δ2Un+1‖2
M +

4

3
δt2‖Pn+1‖2

L
+
D
− 4

3
δt2‖Pn‖2

L
+
D

+ 2δt‖Ũn+1‖2
K+ ≤ 2δt‖Fn+1‖2

−K. (71)
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Using (61) we can express ‖Ũn+1 − Un+1‖M as

3‖Ũn+1 − Un+1‖2
M =

4

3
δt2M−1G(Pn+1 − Pn) · MM−1G(Pn+1 − Pn)

= −4

3
δt2(Pn+1 − Pn) · DM−1G(Pn+1 − Pn) =

4

3
δt‖

√
δt(Pn+1 − Pn)‖2

L
+
D
.

Using this in (71), adding the result up from n = 1 to an arbitrary time level N and neglecting
some positive terms we get

‖UN‖2
M +

4

3

N∑
n=1

δt‖
√

δtδPn‖2
L
+
D

+
4

3
‖δtPN‖2

L
+
D

+ 2
N∑

n=1

δt‖Ũn‖2
K ≤ C, (72)

where C involves the norm of the force vector and the initial condition. Therefore, the stability
results obtained are:

{Un} ∈ �∞(M), {Ũn} ∈ �2(K), {
√

δtδPn} ∈ �2(L+
D), {δtPn} ∈ �∞(L+

D).

Let us consider now scheme BDF2-SE2 using approximation DM−1G ∼= L. In this case,
the velocity at the end of the step is not divergence free. Making use of (27) in (26) the scheme
can be written as follows:

M
1

2δt
(3Ũn+1 − 4Un + Un−1) + K(Ũn+1)Ũn+1 + GPn = Fn+1, (73)

DUn+1 +
2

3
δtB(δPn+1) = 0, (74)

M
1

2δt
(3Un+1 − 3Ũn+1) + G(δPn+1) = 0. (75)

Recall that B := DM−1G − L is positive semi-definite.
The places of the previous stability analysis where there will be differences are those where

the divergence free property of the end-of-step velocity has been used. This assumption has
just been made in equations (67) and (70). Using (74), expression (67) in this case is:

− 4

3
δt(δPn+1) · D(3Un+1 − 4Un + Un−1) =

4

9
δt2(2δPn+1) · (3BδPn+1 − 4BδPn + BδPn−1)

=
4

9
δt2 · (‖δPn+1‖2

B − ‖δPn‖2
B + ‖2δPn+1 − δPn‖2

B − ‖2δPn − δPn−1‖2
B + ‖δ3Pn‖B).

(76)

On the other hand, the following term has to be added to the left-hand-side of (70):

6

2δt2
Un+1 · GPn+1 = − 6

2δt2
Pn+1 · DUn+1

= 2Pn+1 · BδPn+1 = ‖Pn+1‖2
B − ‖Pn‖2

B + ‖δPn+1‖2
B. (77)
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With the change (76) in (67) and (77) in (70), inequality (71) has to be replaced by

‖Un+1‖2
M − ‖Un‖2

M +
4

3
δt‖

√
δtδPn+1‖2

L
+
D

+
4

3
‖δtPn+1‖2

L
+
D
− 4

3
‖δtPn‖2

L
+
D

+
4

3
‖δtPn+1‖2

B −
4

3
‖δtPn‖2

B +
4

3
δt‖

√
δtδPn+1‖2

B

+ 2δt‖Ũn+1‖2
K + ‖2Un+1 − Un‖2

M − ‖2Un − Un−1‖2
M + ‖δ2Un+1‖2

M

+
4

9
δt2 · (‖δPn+1‖2

B − ‖δPn‖2
B + ‖2δPn+1 − δPn‖2

B − ‖2δPn − δPn−1‖2
B + ‖δ3Pn‖B)

≤ 2δt‖Fn+1‖2
−K.

Adding up from n = 1 to an arbitrary time level N and neglecting some positive terms we find
that

‖UN‖2
M +

4

3

N∑
n=1

δt‖
√

δtδPn‖2
L
+
D

+
4

3
‖δtPN‖2

L
+
D

+ 2

N∑
n=1

δt‖Ũn‖2
K

+
4

3

N∑
n=1

δt‖
√

δtδPn‖2
B +

4

3
‖δtPN‖2

B ≤ C. (78)

which, noting that B + L+
D = L+, yields the stability result we wished to prove.

5 Numerical tests

In this section we present some numerical results to test the time integration schemes described
in this paper. Even though all the exposition has been based on the Galerkin method for the
spatial discretization, in the following examples we have used equal velocity-pressure inter-
polation and the pressure stabilization technique presented in [5]. In particular, we have taken
kq = kv = 1, with the notation of Section 2.

5.1 Convergence test

The first example we consider is a simple convergence test whose goal is to check numerically
the rate of convergence in time for some of the numerical methods described.

The computational domain is the unit square, discretized using a uniform triangular mesh
of 11×11 nodal points (200 triangles). The boundary and initial conditions and the force term
are prescribed so that the analytic solution is u = (y,−x) sin(πt/10) exp(t/25), p = 0.
Note that the exact solution belongs to the finite element space, and thus the only source of
numerical error is the time approximation. The nonlinear term of the Navier-Stokes equations
is neglected (it is zero for the exact solution), that is, we consider the transient Stokes problem.

Results are shown in Figure 1. The error E is measured in the �2 norm of the sequence
{un − u(tn)}. It is seen that all the methods show the expected rate of convergence. This is
particularly relevant for the predictor-corrector schemes, whose error is affected by the con-
vergence tolerance adopted in the iterative loop of each time step.

15



 0.01

 0.1

 1

 10

 0.1  1

lo
g(

E
)

log(dt)

Slope 1
Slope 2

Monolithic Order 1
Monolithic Order 2

Fractional Step Order 1
Fractional Step Order 2

Predictor Corrector Order 1
Predictor Corrector Order 2

Figure 1: Convergence test

5.2 Flow in a cavity

In this second example we solve the classical cavity flow problem at a Reynolds number Re =
100. The computational domain is the unit square, discretized using a mesh of 21×21 nodal
points (400 triangles). The velocity is fixed to zero everywhere except on the top boundary,
where it is prescribed to (1,0).

Even though the solution in this simple example is stationary, we obtain it by stepping in
time. The goal of this test is precisely to check the properties of the schemes proposed for the
long-term time integration of stationary solutions (very often difficult to obtain in a stationary
calculation) and, particularly, their numerical dissipation. The time step employed is δt = 1.

Figure 2 shows the evolution towards the steady state obtained. It is observed that the
monolithic scheme is more dissipative than the fractional step method, particularly for the
second order scheme (BDF2-SE2). In this particular example, BDF2 seems to be slightly more
dissipative than BDF1 for the monolithic case.

When the predictor-corrector scheme is employed, the evolution towards the steady-state
depends on the final error of the iterative scheme within each time step. For loose convergence
requirements, it is expected that the predictor-corrector method will behave in a way similar to
the fractional step method, whereas the behavior will approach that of the monolithic scheme
as the iterative error per time step decreases. This is what is observed in Figure 3. With a small
tolerance (10−6) the error is directly given by the number of iterations allowed per time step. It
is observed that for 20 iteration the behavior in time is similar to that of the monolithic scheme,
whereas for 5 iterations it is much less dissipative.
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Figure 2: Evolution towards the steady-state for the cavity flow problem using different
schemes
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Figure 3: Time dissipation of the predictor-corrector scheme in terms of the time step iterations
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Figure 4: Contours of velocity norm for the flow over a cylinder

5.3 Flow over a cylinder

The last example is also a classical benchmark, namely, the flow over a cylinder. The compu-
tational domain is Ω̄ = [0, 16] × [0, 8] \ D, with the cylinder D of diameter 1 and centered at
(4, 4). The velocity at x = 0 is prescribed to (1, 0), whereas at y = 0 and y = 8 the y-velocity
component is prescribed to 0 and the x-component is left free. The outflow (where both the x-
and y-components are free) is x = 16. The Reynolds number is 100, based on the cylinder di-
ameter and the prescribed inflow velocity. The finite element mesh employed consists of 3604
linear triangles, with 1902 nodal points. A snapshot of the contours of the velocity norm and
pressure isolines is shown in Figures 4 and 5. The purpose of this example is not to compare
the quality of these results with those presented in the literature, but rather to discuss the time
behavior of the schemes proposed in this paper.

The evolution of the y-velocity component at the control point located at (6,4) is shown
in Figure 6. The time step size used in all the cases is δt = 0.05. The tolerance of the itera-
tive procedure of each time step has been set to 0.0001 (0.01%), although a maximum of only
5 iterations has been permitted. It is observed that the least dissipative scheme (with higher
frequency and amplitude) is the second order monolithic method (using BDF2 for the time in-
tegration), and the most dissipative one (with the smaller frequency and smaller amplitude) is
BDF1-SE1. This example serves to show that even though fractional step schemes are attrac-
tive for their low computational cost, they are usually less accurate for a given time step size
than monolithic methods. Likewise, for this particular example predictor-corrector methods
lie in between fractional-step and monolithic schemes (recall that only 5 iterations have been
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Figure 5: Contours of pressure for the flow over a cylinder

allowed per time step). The improvement with respect to fractional step methods is particularly
significant for the first order method.

Finally, concerning the number of iterations performed (for a tolerance of 0.01%) it is inter-
esting to study the effect of the initial guess. Independently of the time integration employed, it
is always possible to use a second order extrapolation for the unknowns as given by (46)-(47)
to start the iterative procedure. The following table shows the influence of how the initial guess
is taken. The numbers listed are the total number of iterations from t = 0 to t = 10 using two
time steps sizes, predictor-corrector and monolithic schemes of second order and first or sec-
ond order extrapolations to take the initial guess (X refers here to both velocity and pressure
degrees of freedom). It is observed that the monolithic schemes need fewer iterations, which
can be easily explained since the iterations for the predictor-corrector scheme need to deal not
only with the nonlinearity of the problem but also with the velocity-pressure coupling to con-
verge to the monolithic solution. Nevertheless, what is interesting is that an important gain in
the total number of iterations is obtained using the second order extrapolation. For first order
schemes, it implies that the unknowns at two previous time steps need to be stored (which is
unnecessary) but it certainly pays off in view of the significant reduction in the calculation
time.
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Figure 6: Temporal evolution of the y-velocity component at the control point

PC using BDF2 Monolithic using BDF2

δt = 0.10 δt = 0.01 δt = 0.10 δt = 0.01

Xn+1,0 = Xn 414 2025 300 2000

Xn+1,0 = 2Xn − Xn−1 325 1046 204 1006

6 Conclusions

In this paper we have discussed several ways to implement first and second order time integra-
tion schemes for the incompressible Navier-Stokes equations whose objective is to uncouple
the calculation of the velocity and the pressure.

Taking as a reference the monolithic approach, the advantage of all these methods is that
they are more effective from the computational point of view, although other aspects need to
be taken into account.

Fractional steps methods based on a pressure Poisson equation offer some pressure stabil-
ity independent of the space approximation. We have presented here stability results for four
of these methods that show this. However, numerical evidence also shows that they are less
dissipative in the evolution towards a steady solution, and thus less effective when a transient
calculation is used to reach a steady state. Only one example showing this effect has been pre-
sented here, but we have observed this in many cases. Likewise, for a given time step they tend
to be less accurate than fractional step methods, in spite of the fact that the rate of convergence
be optimal. Again, an example of this behavior has been presented in this paper.

Another family of methods discussed is what we have called momentum-pressure Poisson
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equation with an explicit treatment of the pressure gradient in the momentum equation. Even
though the derivation of these methods is different, we have shown that the bottom line is a
method that can be considered a fractional step one.

Finally, predictor-corrector schemes can be considered as a way to avoid the shortcomings
of fractional step methods while allowing to uncouple the velocity and pressure calculations.
As it has been shown in the last numerical example presented, the price is a higher number of
iterations to be done per time step. We believe that in some cases this can be worthy (see also
[6]). Also in this last example and as a by-product, we have observed that using as initial guess
for the iterations within each time step a second order extrapolation of the unknowns leads to
significantly fewer iterations. This also can be worthy in many cases and for different methods.
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