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SUMMARY

The proposed methodology lies on the use of the adaptive mesh remeshing
(AMR) techniques in the context of 2D shape optimization problems analyzed
by the Finite Element Method. A suitable and very general technique for the
parametrization of the optimization problem, that uses B-splines to define the
houndary, is first presented, Then, mesh generation, using the advancing frontal
method, the error estimator and the remeshing criteria are studied in the context
of shape optimization problems. Particularly, the analytical sensitivity analysis of
the different items ruling the problem (B-splines, Finite Element Mesh, structural
behaviour, and error estimator) is studied in detail. The sensitivities of the Finite
Blement Mesh and error estimator permit their projection from one design to the
next one leading to an “a priori knowledge” of the finite element error distribution
on the new design without the necessity of any additional structural analysis. With
this information the remeshing criteria permits to build up a finite element mesh on
the new design with an specified and controlled level of error, The robustness and
reliability of the proposed methodology is checked through several examples.

1. INTRODUCTION

From a mathematical point of view the structural optimization problem can be
approached as the minimization of a real function f, depending on several variables
and subjected to some restrictions. The general form of such problem is:

minimize: f(z);z={zi}ji=1,...,n

with : glz) = {g;(z)};7=1,...,m 1)
verifying : g;(z) <0 L VO {
a; <z <b ji=1.am

where f is the objective function, z; are the design variables and g; are inequality
restrictions normally expressed in terms of stresses or displacements. The values a;
and b; define lateral restrictions. Each set of values z defines one structural design
and the problem consists in finding those z values defining the optimum design.

The algorithms for the resclution of eq. (1) are, normally, iterative and the
computation of the derivatives (sensitivities) of the objective function and restrictions
with respect to the design variables is needed. Besides, in each step of that process it
is necessary o calculate the f and g values and its sensitivities. In many cases, as the
ones considered in this work, those computations are done via a finite element analysis
which allows us to know the structural response of each design, and compute the
corresponding sensitivities. The definition of each design in terms of the z variables
of eq. (1) is called the “parametrization” of the optimum design problem.
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There are many exisiing codes and different methodologies to solve the
optimization problem of eq. (1) 5], However, some problems still remain unsolved in
this context .ie.: the inclusion of roebust parametrization procedures for the definition
of each design, the control of the error associated to the finite element computations
and 1ts influence on the solution of the eptimization problem. Normally, once the
optimization process is finished there is no warranty about the accuracy of the final
design; sometimes a more accurate analysis would reveal that the final design is

infeasible, violating one or more of the imposed restrictions.

Looking at this problem a general methodology to solve structural shape
oplimization problems should include the following features:

General parametrization procedures in order to be able to deal with different
structural types with the same structural optimization code. The definition of
any design should only need a reduced number of design variables.

An easy treatment of boundary conditions and loads,

- An easy and general definition of the objective funetion and restrictions.
An automatic, robust and fexible mesh generator.

- An accurate and inexpensive estimation of the discretization errors.

- An effective, reliable and not too expensive sensitivity analysis.

- Etheient optimization procedures.

Automatic inclusion of adaptive remeshing procedures without a big increasing
of the cost of the total problem.

- A control over the quality of the meshes used for each design, .e.: distorted
elements should be avoided when big changes of the structural shape are
expected.

In this paper we present a general methodology for structural optimization
problems including all the mentioned features. In the following sections we describe
the parametrization of the optimum design problem, automatic mesh generation,
error estimalion, sensitivity analysis, and the adaptive remeshing strategy which is
used in this methodaology.

2. THE PROPOSED METHODOLOGY

A general scheme for the proposed methodology is shown in Figure 1, It consists
in a series of modulus each one corresponding to a specific task.

The input module reads the data concerning parametrization of the problem,
the objective function, design variables and restrictions defining the structural
oplimization problem (1) to be solved.
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After the input module there is a closed loop for each iteration of the
oplimization process, Bach iteration corresponds to one design that is called the
actual design.

In the mesh parameters module an AMR strategy defines the characteristics
of a proper mesh to be used in the computations on the actual design. The proposed
AMR strategy is based on the results of the previous design. Ior the first design a
uniform mesh hags to be specified because no previous information is available.

The mesh generation module uses the information coming from the previous
madule to generate a mesh for the actual design. Traditionally, structured meshes
are used for the optimization processes and then a good control on the mesh quality
15 not possible, In the present methodology we propose to use a non structured mesh
cenerator. The module should carry out not only the mesh generation but also the
application of the specified boundary conditions and loads. Moreover, il has also
to produce the necessary information to compute the mesh sensitivity analysis in a
posterior module,

The structural analysis module performs the classical structural Finite
Element (FE) computations. The generated information about displacements and
stresses will be used in the next modules. Particularly, this information will be used
Lo compute the values of the objective function, restrictions and sensitivities for the
actual design,

The error estimation module computes an error estimator to check the
quality of the results produced by the previous module.

The sensitivity analysis module performs the whole sensitivity analysis
of the shape optimization problem. Some of the main newness of the proposed
methodology are included in this medule. The objective function and restrictions
are normally expressed in terms of the volume, shape, and structural behaviour.
Thus, their sensitivity analysis needs the derivation of each intermediate variable
involved in the FE analysis. In particular, sensitivities of the following variables are
computed: boundary shape (parametrization), nodal coordinates (mesh sensitivity
analysis), displacements, siresses at gauss poinis, nodal stresses, objective function,
restrictions and error estimator.

In the present work first and second order sensitivities are computed. Although
the sensitivity analysis of the error estimator is not strictly necessary to solve the
optimizalion problem, it is very useful for the AMR strategy this being one of the
main characteristics of the proposed methodology. Another important feature of this
module is the sensitivity analysis of the nodal coordinates of a non structured mesh
as will be described later.

The design improvement module uses the previous information to produce
an improved design. Using the sensitivity analysis, the error estimator and other
magnitudes of the actual design are projected to the next one in order to produce the
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necessary information for the mesh parameters module. This projection is the main
newness of this methodology because it allows to introduce an AMR strategy without
remeshing any design. It saves a lot of CPU time because the adaptive remeshing is
introduced without repeating FE computations over any design. In thal sense, an “a
posteriori” error estimator for the previous design is projected and converted in an
“u priori” error estimator for the new one.

After checking the convergence (minimum condition) of the oplimization
process, a new loop starts for the next design.

In the nexi sections some of those modules are commented in more detail.

3. PARAMETRIZATION OF THE STRUCTURAL OPTIMUM
DESIGN PROBLEM

The first point in a structural optimum design problem is the definition of the
design itself. This definition, called “parametrization”, relates each possible design
with a set of values of the design variables.

In the proposed methodology, B-splines are used to define the shape (boundary)
of the structure to be optimized. The definition of each geometry is done in terms of
the coordinates of some points (called definifion points) that are used to interpolate
a B-spline. Loads and boundary conditions are also specified along this curves. The
B-splines allow the control of the degree of continuity and slope and curvature of the
boundary at each definition point. The curve defining the boundary can be expressed

a6

4

r(t) =S Ny pa(t) (2)

=0

where () is the position vector depending on the ¢ parameter. The curve is expressed
as a lineal combination of ¢ + 1 normalized fourth order (cubic) B-splines B3], The T
coeflicients are the coordinates of the so called polygon definition points (3] and are
[ound using the coordinates of the definition points and some additional conditions
on them. The normal degree of continuity of a cubic B-spline is %, but it can be
decreased at any definition point through one additional condition for each diminished
depree. This additional conditions are normally related with slopes p and curvatures
of the curve over the corresponding point. The definition of the slope of the curveat a
definition point requires also the specification of an additional factor f for this point.
from eq. (2) the coordinates of the definition points and the additional conditions
are used to form a lineal system of equations:

V- NR (3)
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where ¥ is a vector composed by the imposed conditions at the definition points, the
N matrix contains some terms corresponding to the values of the polynomials N that
define each B-spline, and the R vector contains the coefficients r; to be computed.
Details of this process can be found in 3],

The definition of the geometry of each design in terms of the coordinates of some
definition points, and the characteristics of the interpolating curve is very useful in
the struetural optimization problems because after defining an initial design in terms
of some definition points, some of their characteristics (coordinates, slopes p, factors
f, ete.) can be used as design variables. The values corresponding to a boundary
condition, material properties, and load multiplication factors can be used as design
variables as well. Thus, this definition can be used to parametrize the structural
optimization problem in a very general form.

Restrictions g; of eq. (1) can also be defined along the curves defining the
boundary. Restirictions on displacements and stresses can be imposed at points
located on that curves or along complete parts of them. It is worth noting that
the maximum values of displacements and stresses are normally produced along the
houndary, this emphaticing the importance of being able to impose restrictions on
this part of the structure.

The presented methodology also permits to impose restrictions on some linear
combinations of the design variables. Then, it is possible to restrain in a very easy
manner magnitudes as the width or the height of the structure, the distance between
two points, the movements of a definition point during the optimization process, ete.

4. MESH GENERATION

After the geometric definition of each design it is necessary to generate a finite
element mesh. To do that, an advancing {ront technique, which allows the control of
the element size at every point of an arbitrarily shaped domain, is used. This method
produces non structured triangular meshes. Details of this generation algorithm can
be found in ¥ and 778,

The information about the characteristics of the desired mesh is stored in the
called background grid, That is a triangular mesh which completely covers the domain
of interest. This background mesh is used to provide a spatial distmbution for the
sizes § of the elements of the desired mesh. During the generation process the loecal
value of the element size is obtained from the information in the background grid.

For the first design there is no information to predict the sizing of the mesh,
so an initial background grid has to be constructed by hand and a uniform sizing
can be specified. For next designs the background grid can be constructed with the
information coming from the previous ones.

At the beginning of the generation process the boundary of the domain is
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diseretized (see Figure 2.). Nodes are placed on the boundary with a separation
between them corresponding to the spacing & specified in the background grid. Each
pair of contiguous nodes are joined by a straight line in order to form the initial
peneralion front,

For the generation of every new triangle & segment is chosen from the generation
front and the new triangle is built containing the segment as one of its sides. The new
element is formed generating a new node or connecting the segment of the [ront with
an already existing node. After the generation of each new element it is necessary to
npdate the generation front in order to get all the segments over which new elements
can be built. The process stops when there are no segments in the front,

The steps to be followed to generate & new element with size § are (see Figure
A H
|. Choose the segment AB from the generation front to be used as a base for the

new element. Normally, the smallest segment in the front is chosen.

2, Position the point Cy to a distance §; from A and B. The value of & is chosen
from the next expressions:

if 0.55 |AB| < § < 2|AB|
| i 0.55 |AB| > é (4)
if § > 2 |AB|

3. Position the points Cy, C'q, Cy, C's, C'y in a equidistant form in the segment €' M.
i 2,3, w4y L5 q g 1

4. Make a list of the points of the actual generation front which lie inside a circle
of radius » = 3 |AB| and center in . This list is ordered according to the
distance to the point 7 beginning with the closest one.

5. Position the points Uy, ..., Cg in the list adding a penalty of §; to their distance
io (-'1 .

6. Search the connection point €. It will be the first node of the list which
accomplish the next two conditions:

A. The interior of the triangle A BC does not contain any other nodes of the
list {excepting C1q,..., Cs)

B. The segment CM does not cut any of the segments in the actual
ceneration front.

. Update the generation front (see Figure 2). I it is void the process is finished.

With this algerithm the coordinates of each point € are obtained from the
coordinates of the two previous points A and B using the expression:
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| . 2 12 Vyp —ya) +(zp —=a)*

where & is the value for the required element size, interpolated from the background
grid which in turn is used to define the characteristics of the new mesh, and 1 range
from 1 to 6 depending of the type of point (Cy,...,Cs).

5. STRUCTURAL ANALYSIS

The structural analysis of each design is computed using a bidimensional linear
¥ B

elastic model. It is a standard F.E.M. analysis to solve a linear elliptic problem of

Lhe Torm |1”.'.

Iu=S8"DSu= fin (6)
with the appropriate boundary conditions, After the discretization process the

classical expressions to solve (6) are:

s e :
Fquilibrium equations:

Ka=f (7)
Assembling rules:
K=> K.
F=X.te (8)

f-_'-:.fﬂf .E'JFE,,;sz

Flemental stiffness matrix:
K.= / BT DBd4O (9)
{1

- Nodal forces vectors;

fa=fq, NTbin
fr. = Jp N7l (10)
fr,=XN'p



(Geometric and constitutive equations:

- B
{g=De ()

- Smoothing of stresses:

=Y Jo, Nl dq (12)
%

[10]

The meaning of each term is the classical one ', the terms b, t and p correspond

to the volumelric, surface and point loads respectively.

6. ERROR ESTIMATION

To control the error associated to each finite element mesh the Zienkiewicz
and Zhul'!l error estimator has been used. It estimates the existing error in the
displacement energetic norm from the difference between the stresses ¢ at the Gauss
points and a smoothed stresses field ¢* = Y N7} = NT#*. The resulting expression
for the error estimator is:

lel|% =7° = fn[:r' ~ o)’ D Yo" —a)dt =) 7’ (13)
<]

The last calculations can be performed element by element giving the error on
each element as:

”E”i} e = ‘L (0" - o\ Do — g)dD (14)

With the values obtained from a given mesh it is possible o compute the
necessary element sizes of a new mesh, which produces the required error level, using
and AMR strategy. This error estimator has revealed to be quite robust, reliable and
inexpensive, specially for linear elements.




7. SENSITIVITY ANALYSIS

For each design il is necessary to compute the sensitivities of the objective
funetion and restrictions. The sensitivity analysis for the whole problem is done step
by step following the same path that the structural analysis. This path indicates
ihe dependence of each quantity used in the structural analysis with respect to
the rest of the quantities previously employed. For example, the expression of the
stifitiess matrix depends on the nodal coordinates, so that, following the chain rule for
derivatives, the stiffness matrix sensitivities can be expressed in terms of the nodal
coordinates sensitivities. Then, it is necessary to compute the nodal coordinates
sensitivities (mesh sensitivities) previously to the stiffiness matrix sensitivities.

[n the present implementation of the proposed methodology first and second
order sensitivily analysis have been used. This sensitivity analysis has been developed
{o get directional derivatives of any quantity. So, in the next paragrafs the vector
s will mean a unity vector in the design variables space, and derivatives will be
computed in the s direction. To obiain the sensitivities with respect lo a specific
design variable z;, the s vector has to be the unity vector corresponding to the z;
direction.

7.1 B-spline sensitivity analysis

The first order sensitivities of the B-splines can be obtained by derivation of
eq: {2}

Dy q
S Z%’— A0 (15)
=l

The terms dr;f/ds can be extracied from the HR/8s matrix obiained by
derivation of equation (3):

JR _1{8B 0N )
— =N = e 16
ds ( ds  Os (46)
Second order sensitivities can be obtained using similar expressions:
327' f} q—\ [!.}Efi -
B 5 Ty ) (17)
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'R 1 (3*B 9N N OR’
= Sl ko 1
s> ( s s’ % fa Oa ) (18)

Eqs. (15) and (17) give also the sensitivities of the nodes placed at the boundary
of the domain fixing { to the corresponding value.

7.2 Mesh sensitivity analysis

Once the sensitivites of the coordinates of each boundary node are known, it
is also possible to compute the sensitivities of the coordinates of each internal nodal
poinl {mesh sensitivities),

For non siructured meshes its sensitivity analysis can be obtained by studying
the varintions of the mesh in front of changes in the design variables.

There are many different ways to define the movement of the mesh in terms
of the design variables. One possibility is to consider thal after a change in the
boundary shape, the mesh nodes behave as part of a continuous elastic media movin
towards o new equilibrium state. With this approach used by Wei Hong Zhang 1 [?
the obtainment of the sensitivity of a mesh with respect to a specific design variable
immplies the resolution of a new linear elestic problem were the displacements of the
boundary nodes are fixed. In this case the computation of the mesh sensitivity with
respect to each different design variable needs the resolution of a new linear elastic
problem with the same mesh but with different boundary conditions this implying a
high computational cost.

It is also possible to consider a simpler elastic media defining the mesh
movement, This is the case of the “springs analogy” where each element side is
considered as a spring connecting two nodes. The force produced by each spring is
proportional to its length, The resolution of the equilibrium problem in the springs
analogy is simpler than the corresponding to a continuous elastic media but, again,
it is also necessary to solve a system of equations with the same number of degrees
of freedom than in the continuous case,

The spring analogy equilibrium problem can be solved iteratively, as done in the
present work, using the Laplacian smoothing which is a very frequently used technique
to improve the quality of non structured meshes. It consists in the application of some
cycles where, in turn, each interior node of the mesh is placed in the baricenter of
the nodes connected with it. For each cycle the expression of the new position vector
of each node r; is:

T e
T = o=kl (19)

T




where r; are the position vectors of the m; nodes connected with the i-th node.

Te obiain the solution of the spring analogy equilibrium problem with a
preseribed error tolerance it would be necessary to check the solution after each
smoothing cycle. Taking into account that the deseribed iterative process is only a
way to obtain mesh sensitivities rather than the solution of the equilibrium problem
itself, rigorous convergence conditions are not needed. For this reason we fix a priori
the number of smoothing cycles to be applied. In the test cases we have checked, 50
loops are enough to assure a good quality of the results.

To obtain the first order mesh sensitivity analysis in any direction of the design
variables space, 8, it is necessary to derivate, for each cycle, eq. (19) with respect to
L H

— T *I}r
dr; }_._;'-_l! _L"I:il

a B iy {J{]]

Second and higher order mesh sensitivilies can be obtlained by successive
derivation of eq. (19):

a*r
o2 =171 ;
L'} T . }_.1_11 I'jl_t'l
is” Tt

(21)

7.3 Structural sensitivity analysis

To get the structural analysis sensitivities it is necessary the derivation of the
integral expressions (9), (10) and (12). To do that, we need to transform those
integrals to the isoparametric space of the canonic coordinates [5:6] swhere the shape
of the integration domain does not depend on the design variables, and the derivation
of an integral expression consists in the derivation of its kernel. The jacobian of
this iransformation |J| can be expressed in iterms of the node coordinates, so that,
it can be derivated in order to know the integral sensitivities. Using the techniques
developed in [5:6] by Navarrina et al. the sensitivities of the elemental stiffness matrix
can be obtained as:

i 2 dB
5 [ 8B ppia)+ BT2 B3| + BTD 2 7|+
iHa ] (s s s
3 _ (21)
87 B e, e,
s J



Where the sensilivity of the jacobian is:
a|J| 4 ﬂ.f)
—_ = | Jt i 22
s W r(J s (22)

In eq. (21) the matrix B depends on the nodal coordinates of the element, so
that, its sensitivities B /ds can be oblained through the mesh sensitivities.

Normally, the sensitivities of the D matrix will be zero unless a design variable
alleets the mechanical properties of the material.

With this technique it is possible to obtain the first and higher order sensitivities
of the stiffness matrix K, the nodal forces vector f and any other integral expression
involved in the computations. The detailed expressions for the computation of the
first and higher order sensitivity analysis can be found in [3,8,6],

After the computation of eq. (21) the sensitivities of the displacement vector
a can be calculated as:

Ilf?ﬂ- ; -1 {}f SK ,

By = [54 O “] (23)
8%a __,[8°Ff 0°K 0K Oa _
Hse K [E’}.::l - 0s2? . da s (24)

Eqs. (23) and (24) show that the inverse of the stiffness matrix is used for the
computation of each sensitivity. If a direct solver is used for the structural analysis
this matrix has already been factorized and each new sensitivity analysis needs only
a new backsubstitution process, but not a complete resolution of a new system of
equations. On top of that, it is not necessary to assemble the sensitivities of the
stiffness matrix because they always appear multiplying a vector, and this products
can be compuled element by element.

The strain and stress sensitivities can be computed from eq. (11) as:

de aB fa

¢ @B _0BOa 0%
E;E_—as,zu! ..EE_};-I-BT&;E [25}

— = —¢+ D— (27)
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s a2 L3 ds Os s (28)

To obtain the sensitivities of the smoothed stresses it is necessary to compute
previously the sensitivities of the mass matrix M and the @ vector of eq. (12). The
nbove commented techniques for the integral expressions are used to compute this
sensitivities. Finally, the sensitivities of the smoothed stresses are obtained as:

(-]
LAl (31)

The same previous comments about the factorization of the stiffness matrix
and its sensitivities can be applied to the mass matrix.

7.4 Sensitivity analysis of the objective function and restrictions

Both the objective funetion and resirictions will be expressed in terms of other
guantities previously computed during the structural analysis.

Normally, the objective function is related with the volume of the whole or
some parts of the structure to be optimized. This volume can be obtained as the
sum of the volume of each finite element, and it can be computed through a simple
integral expression:

V=YY%= /n Q=Y L{ \J|dE dEy (33)

a E

The same techniques above commented for the computation of the integral
expressions sensitivily analysis can be applied for the derivation of eq. (33).
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Normally, restrictions will be expressed in terms of displacements or stresses. In
this case the expression of each restriction can be derivated using the chain rule and
this derivatives can be expressed in terms of the previously computed sensitivities of
displacements and stresses.

7.5 Sensitivity analysis of the error estimator

The error estimator used in the present methodology is the integral expression
{14}, Again, the previously eommented techniques for the computation of the
sensilivily analysis of integral expressions can be used for the sensitivily analysis
of Ahe error estimator. The resulting expression for the first order sensitivities is:

i
f."d a JI

o _i S i
(d.i— f_-::) D Yo' - o) T |+

ils ila

'€

' Tﬁﬂ_l s |
(o' — o) z (o' — o)l J|+ (34)
" do* o
" _|r el
(0" —a) D" ( ils f}s)u“

(" — croD_l{cr' - o)|J|tr (J_l J)]dfld‘_-:

The second order sensitivity analysis of the error estimator is done by derivation
of eq. (34) and its detailed expression can be found in 13,

In order to use an AMR strategy it is also necessary to compute the elemental
and total strain energy. The values of this strain energy and its sensitivities can be
approximated from the finite element solution:

i}, ~a'Kea (35)
dlully,  saT +0K. g 0a
e + | = 36
Ds 5s K@ a Pl (36)
3'.!|u 2 2 T .7 2
| LE"xa_a,} KEaT‘aTafguJ- TKEﬁEL
= Os= ﬁa a2 (37)
dﬂT &KE A E R'E aﬂ- oL TaKc aﬂ

© s ::3‘5 ﬁ'a s 3s Os
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8 DESIGN IMPROVEMENT

Using the information supplied by the finite element computations and the
sensitivity analysis it is possible to use any optimization algorithm for the resolution
of the mathematical problem of minimization (1). In the present methodology we
have used an algorithm developed by Navarrina'®l, Tt uses information about first
and second order sensitivities of the objective function and restrictions. Using this
data and the design variables values for the k-iteration {zk} the algorithm searches
the modified values of those variables defining an improved design:

gt = zF 4 ghst (38)

where 8* is a unity vector corresponding to a direction of change in the design
]

i s g e . [
variables space, and 8% is the advance or amplification factor 18],

The algorithm computes the direction of change s° using a complete first order
B g g I

sensitivity analysis, Then, a second order sensitivity analysis is computed in the
direction of s* and it is used to perform a line search in this direction to obtain the
9" factor,

9. DEFINITION OF THE MESH FOR THE NEW DESIGN

After the definition of the new design (k 4+ 1) it is necessary to construct
on it a background grid which contains the information to build the new mesh.
This background mesh is the one used for the old design (k) whose coordinates are
projected to the actual design (k+1). This extrapolation is done using the previously
computed eoordinate sensitivities. The new position vector for each node PLARNTE

R4l 33;51"*_ lész—’?"k

=t 4

ﬂsi_' 9 34',';2

(39)

Likewise, the error and the deformation energy estimated over each element
can also be projected using the expressions:

o ke 2. k2
WET) 2 n 1 28
Ti‘i“H xr:,f 4 gkl ey Lk T e

gst 2 ks

T a b2
ik, | 1,20k,
dsk 2 Aak?

(40)

This projections give an approximation to the values of the error and the
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deformation energy that would be obtained if the next design was computed with
the previous mesh suitably deformed. Then, before any computation on the new
design we get information about the quality of the results that would be obtained
o1l it, with a mesh equivalent to the one used in the last design. From this point of
view, an “a posteriori” error estimator is converted, through the projection, in an
“a priori” error estimator for the new design. This is one of the key points of the
methodology described in this work because it allows to use remeshing techniques
without repeating calculations on the successive designs.

The projections of the mesh, the error estimator and the sirain energy close
the optimization loop of figure 1. After this projections the situation is exactly the
same that in a standard remeshing procedure after using a previous mesh,

Using the extrapolated values it is possible to compute the required element size
in the new mesh over the zone corresponding to each element of the background mesh.
This is made by means of a suitable “optimality criteria” for the error distribution
aver the new mesh and an AMR strategy. In this work the criteria defined in B3] has
been used, which establishes that the optimum mesh is the one that has a uniform
distribution of the error level * for unit area (uniform specific error). This criteria
is different from the classical one which establishes that a mesh is optimum when
all the elements contains the same amount of error {[1.‘3,11|}_ The justification of the
uniform specific error distribution criteria can be found in 31,

After the specification of the maximum allowable percentage v of the error
norm with respect to the total strain energy 7, the element size h to be used in the
new mesh generation in the zone corresponding to each element of the background

grid is defined using:

B 1t ":I' i ]
lelle < —llulle

00"
he
=
o (1)
180n. [0
ff = = !

Tiwlz ¥ Qe

where he is the size of the corresponding element of the background grid, (1. is the
volume for each background element, p is the order of the polynomials of the shape
functions and Q is the volume of the whole domain. Using the eq. (41) and the
extrapolated values from (39) and (40) the characteristics of the desired mesh for the
new design are completely defined.

The value of £ has been limited to 1.5 in order to avoid a too fast diminution of
the size of the elements between two consecutive iterations. Numerical experiments
show that the designs requiring a large number of elements are, many times, far away
from the optimal one, and it is not useful to dedicate a lot of computational effort to
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compute it. The reason for it is that the optimization process tends to avoid stress
concentrations where a large number of elements are needed. So, many times the
designs close to the optimum one do not require the most dense meshes.

10. EXAMPLES

10.1 Optimization of a pipe cross section: First case.

The structure to be optimized is the cross section of a pipe subjected to an
internal pressure. Due to the symmetry of the problem only one quarter of the piece
has been considered. The initial shape is shown in figure 4. This shape has been
defined using four definition points with discontinuous slope. The chosen design
variables are the distance of the two outer definition points to the origin (21, z4), the
slope of the curve at this points (zg, z5) and the corresponding f factors (g, zg).
This shape optimization problem consists in finding the best shape for the external
boundary keeping constant the inner radius.

The considered mechanical properties do not correspond to any specific
material. We have used E = 100000, Kg/em?®, and 5 = 0.3 in a plane strain
model. A uniform interior pressure (1.0 Kg/em?) has been applied as shown in
liggnre 4,

The objective function is the total volume of the pipe. Along all the
boundary the maximum value of the biggest principal stress has been restricted to
10.0 Kg/fem®.

The problem has been solved using triangular quadratic elements and limiling
the maximum percentage of the error norm v to 1% of the total strain energy.

The algorithm converges after 7 iterations. The successive meshes and designs
can be observed in figure 5, and the evolution of the objective function, global
percentage of error and number of elements for each mesh can be observed in figures
6,7 and 8 respectively.

It can be observed that the evolution of the process is completely satisfactory.
The error norm is controlled and a logical final shape is obtained. This example
shows the utility of the limitation of the {, factor (see eq. (41)) to 1.5 because
otherwise the number of elements on the second design would be very large in order
to control the corresponding error. With the limitation of £. the error norm for the
first designs is larger, but the final result is the same, and obtained with a much
smaller computational effort.
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10.2 Optimization of a pipe cross section: Second case.

I the previous case a very simple parametrization with a small number of
design variables has been used. Furthermore, the shape of the initial design is similar
fo the optimal one. In order to check the reliability of the proposed methodology,
the optimization problem of the same cross section has been solved, but now using a
very different parametrization and initial design,

The initial shape and some of the design variables are shown in figure 9. The
defined design variables are 6 coordinates (2, 24, 27, Tg, 13, z14), 6 angles (z2, =5,
2y £11, 215, £17) and the factors f associated to this angles (3, g, 10, £12, 16,
£18). The objective function and boundary restrictions are the same that in the first
cise. New restrictions have been imposed over the pairs z7, g and 3, rj4 to get
Lhe corresponding points moving along the symmetry axes of the figure, The rest of
e chinracteristics of the problem are exactly the same that in the first case.

The algorithm converges after 16 iterations. The successive meshes and designs
can be seen in figure 10 and the evolution of the objective function, global percentage
of error and number of elements for each mesh can be observed in figures 11,12 and
13, respectively.

Despite the parametrization complexity the final design is the same that in
the first example. The convergence of the objective function is very fast and the
percentage of error keeps below the specified 1% beyond the sixth iteration.

There is an increase of the number of elements around the point A (see figure 9)
in the last iterations of the process. This is due to the presence of a kink producing
a singular point in A (see figure 10). This concentration of elements reveals the
presence of this singularity and suggests to use a different parametrization with a
higher degree of conlinuity at the boundary shape. This is a good example of how
an AMR strategy can help the designer to discover singularities and to improve the
parametrization of the problem.

10.3 Optimization of a connecting rod

_ This example was first solved in 31, but it has been also used by other authors
[4.99 {5 check different optimization methodologies,

Due to the symmetry of the problem only one quarter of the piece has been
considered (see figure 14). The initiz]l shape and the definition points are shown in
figure 14. At the points 1,2,6,7 and 13, discontinuous slopes (90%) have been imposed.

Very simple hypothesis about the load acting on the structure have been
assumed. 11 has been modelled a parabolic normal load in between points 4 and
6, with a resulting load of 400 Kg. The considered material properties have been:
Young modulus E=2100000 K g/cm? and Poisson ratio v=0.3. A plane stress model



with 6 node iriangular elements has been used. The error level has been limited to
YL,

The following 10 design variables have been used:
r coordinates of points 7 and 8.
y coordinates of points 8,9,10,11,12,and 13.

- f factors corresponding to the points T and 13.

The objective function is the weight of the connecting rod. The restriction on
the maximum value of the Von Mises stresses is 2000 Kg/cm®, This restriction has
been applied 1o all the nodes placed along the boundary. The thickness of the tail
las heen underlimited to 0.25 em, and point number 8 has been enforced Lo move
along a 45= straight hine.

The algorithm converges after 11 iterations. The successive meshes and designs
can be seen in lgure 15, and the evolution of the objective function, global percentage
ol error und number of elements are presented in figures 16,17 and 18 respectively.

[ the evolution of the objective function (figure 16) there is a very fast initial
drop to a minimum value at the iteration nr. 2. This value corresponds to a non
feasible design because there are stresses higher than the allowed maximum. After
that point the objective function grows slightly, up to reach a feasible final design.

The highest error percentage is obtained in the iteration nr. 3, but beyond the
iteration nr. 8 it remains below the preseribed 5% value. The high error levels in the
initial iterations are due to the limitation of the £ (eq. (41)) factor to 1.5.

11. CONCLUSIONS

A general methodology to perform structural optimization analysis including
automalic mesh generation, error estimation techniques and adaptivity has been
presented, The following aspects of the methodology have been highlighted:

A very general parametrization to solve very different problems without any
modification of the optimization computer code.

- The use of cubic B-splines to represent the boundary shape.

- The use of nen structured meshes and the computation of its sensitivity
analysis,
- The use of an error estimator to check the quality of the results obtained for

each design and the development of its sensitivity analysis.

The projection of the error estimator from one design to the next in order to
use an AMR strategy without any extra computations on the new design.
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The presented examples show the usefulness, robustness and reliability of the
proposed approach.

Although all the presented examples are 2D problems, the generalization of the
proposed methodology to 3D cases is straightforward.
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Figure 2. Spacing and update of the generation front.
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