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Large scale traffic congestion often stems from local traffic jam in single road or intersection. In this paper, macroscopic method
was used to explore the formation and propagation of local traffic jam. It is found that (1) the propagation of traffic jam can be
seen as the propagation of traffic signal parameters, that is, virtual split and virtual green time; (2) for a road with endogenous flow,
entrance location influences the jam propagation. With the same demand (upstream links flow and entrance flow), the upstream
got more influence; (3) when a one-lane road is thoroughly congested, virtual signal parameters everywhere are the same as that
at stop line; for a basic road, the virtual signals work in a cooperative manner; (4) phase sequence is one important parameter that
influences traffic performances during peak hour where spill back of channelization takes place. The same phase plan for left-turn
flow and through flow would be preferred; (5) signal coordination plays an important role in traffic jam propagation and hence
effective network signal parameters should be designed to prevent jam from propagation to the whole network. These findings
would serve as a basis for future network traffic congestion control.

1. Introduction

Urban road network has been considered as the “life line” of
urban daily life. It serves as the basis of urban economy. The
assurance of its normal operation is very important.However,
as the development of urbanization, the number of vehicles
relatively exceeds the capacity of road network which often
results in large scale traffic jam during peak hours. This leads
to many problems such as pollution, and noise. Large scale
traffic jam often stems from local jam which takes place in
a road or single node. According to Wright and Roberg [1],
there are three sources of traffic jam: a temporary obstruction,
stochastic fluctuation in demand, and permanent capacity
bottleneck. These types of congestion cannot be prevented
efficiently because they are related tightlywith road geometry,
land usage, or other factors which cannot be changed easily.
However, if we can control the propagation of traffic jam,
then, network traffic jam will be prevented. The propagation
process looks like “domino phenomena” which is character-
ized by connected set of events. Many literatures are focusing
on this subject.

Simulation methods including microscopic and macro-
scopic types are among the most used methods. Microscopic
tools include cellular automata [2] and car following models
[3]. They are based on dynamic motion of single vehicle
and hence can grasp the traffic performance of the whole
network [1, 4, 5]; macroscopic tools often adopted a discrete
form [6, 7] of LWR model which stemmed from Lighthill
and Whitham [8] and Richards [9]. This method divided
links into a series of consecutive cells and time into equal
time steps. By checking and tracking basic traffic parameters
(flow, density, and velocity) of every cell during each step,
the dynamic nature of traffic jam can be derived. This kind
of method greatly relies on underlying models and the
simulation networks are often regular [10, 11] which lacks
generality. Furthermore, no analytical conclusion can be
obtained through this approach.

Some researchers tried to establish analytical results of
traffic jam. Wright and Roberg [1] proposed a simple ana-
lytical model for incident-based jam growth and discussed
the effect of the length of the channelized part of roads and
stop line width assignment on jam formation;Michalopoulos
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Figure 1: Simple representation of road geometry.

et al. [12] formulated a rigorous but complex mathematical
modeling for signalized links; Skabardonis and Geroliminis
[13, 14] developed an analytical model based on kinetic wave
theory to construct monitor methods for arterials. Based on
the derivation of waves produced by traffic signal, vehicle
trajectory was identified and hence travel time function
was formulated; Daganzo [15] divided the network into
connected neighborhoods and constructed the relationship
between defined traffic variables and formulated the so-called
“gridlock” condition. Through these researches we can get a
deep understanding of traffic jam. If we examine the general
road network, we can see that it is comprised of basic road
(some may be simpler) as shown in Figure 1. The road is
multilane structure controlled by traffic signal. The traffic
demand may come from upstream links or entrance within
roads. Compared with this situation, current researches are
not enough to describe traffic flow operation on basic road
segment, not tomention the network traffic jam propagation.

Some scholars used data collected from control system
(mainly loop detectors) to monitor long queue and spillover
[16, 17]. However, under congestion hour traffic jam involves
various traffic flows that include multilane flow and endoge-
nous flow from within the entrance, and these are difficult
to distinguish from loop detector data. These factors may
undermine the applicability of these methods.

The dynamic nature of network traffic jam (critical
condition for its formation, propagation speed, propagation
route, and so on) is complex in that they are influenced by
many factors such as road physical characteristics, network
topology, and control parameters. Understanding of these
relationships is important andpremise for further control and
management. However, they were not fully accounted for in
traditionalmethods. In this paper, with the consideration that
network jam always stems from traffic jam formed within
single road, attention was put on the traffic jam formation
on signal controlled network comprised of basic road as in
Figure 1 that is generally existed. After description of critical
condition of jam formation for one-way link (Section 2.2),
decomposition method is used to divide the road into
two multilane segment (Section 2.3). Factors include insuffi-
cient split or excess demand (Section 3.1), endogenous flow
(Section 3.2) and channelization spillback (Section 3.3) are
discussed.The influences of road spillback on upstream links

𝐿
𝑞𝑖 𝑞0

𝑔, 𝑟(𝑔 + 𝑟 = 𝐶)
Figure 2: A Single one-way link.

are then analyzed (Section 4). We end with some highlights
for further researches.

2. Preliminary Results

2.1. Notations

𝑞
𝑚
: optimal flow rate,

𝑘
𝑚
: optimal density,

𝑘
𝑗
: jam density,

𝑔, 𝑟, 𝐶, 𝜆: green time, red time, cycle and split res-
pectively,
𝑟V: virtual red time,
𝑢
0
, 𝑢
1
, 𝑢
2
: stopping wave, starting wave, and wave that

emerges after 𝑢
0
and 𝑢

2
meet,

𝑙max: maximal queue length,
𝑞
𝑜𝑙
, 𝑞
𝑜𝑠
, 𝑞
𝑜𝑟
: output flow rate of left-turn flow, through

flow and right-turn flow. “𝑜” means output,
𝑔
𝑜𝑙
,𝑔
𝑜𝑠
,𝑔
𝑜𝑟
: green time for left-turn flow, through flow

and right-turn flow.

2.2.WaveDynamics under SimpleCondition. Consider a one-
lane road controlled by signal without endogenous flow as
shown in Figure 2 which is the simplest condition in the
road network (such as a road regulated by one-way traffic
organization), assuming that fundamental diagram of traffic
flow is parabolic function as shown in Figure 3. Upstream
flow is 𝑞 (point A in Figure 2) and from parabolic function
𝑘 can be obtained (density of upstream flow is always smaller
than optimum density under maximum flow; that is, point A
should be on left side of the curve, otherwise stopping wave
speed would be bigger than starting wave which denotes that
queue would not disperse forever, which can be seen from
Figure 3):

𝑘 =

𝑘
𝑗
− √𝑘
2

𝑗
− 4 (𝑘2

𝑚
/𝑞
𝑚
) 𝑞

2
.

(1)

Formation and dispersion of a queue behind stop line at
signal controlled intersection are shown in Figure 4(a). At
first (the beginning of red time), stopping wave (red lines in
Figure 4 which represent queue back) propagates upstream
with velocity 𝑢

0
and a queue forms. When green time begins

a starting wave (blue line in Figure 4) emerges and also
propagates upstreamwith bigger speed (denoted as 𝑢

1
). After

𝑡
 starting wave catches up with stopping wave and queue has
dispersed and a new wave (denoted by its speed 𝑢

2
) forms. It

takes 𝑡 for wave 𝑢
2
to pass through stop line. If green time, 𝑔,
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Figure 3: (a) Concave fundamental diagram; (b) triangular funda-
mental diagram.

is bigger than 𝑡+𝑡, then it can be concluded that traffic state
would reproduce cycle by cycle. However, if 𝑔 is smaller than
𝑡


+ 𝑡
, the wave propagation profile is different (as shown in

Figure 4(b)) cycle by cycle. At first, stopping wave will spread
with speed 𝑢

1
which makes queue back of this cycle further

from stop line than former cycle. As time elapses, queue back
becomes further and further, so it is an unstable condition
which represents oversaturated condition.

Based on the analysis above, some formulas can be got:

𝑢
1
=

𝑞
𝑚

𝑘
𝑗
− 𝑘
𝑚

, 𝑢
0
=

𝑞

𝑘
𝑗
− 𝑘

, 𝑢
2
=
𝑞
𝑚
− 𝑞

𝑘
𝑚
− 𝑘

,

𝑢
0
(𝑟 + 𝑡


) = 𝑢
1
𝑡


⇒ 𝑡


=
𝑢
0
𝑟

𝑢
1
− 𝑢
0

,

𝑙max = 𝑢1𝑡


=
𝑢
1
𝑢
0
𝑟

𝑢
1
− 𝑢
0

,

𝑡


=
𝐿max
𝑢
2

.

(2)

When 𝑔 = 𝑡


+ 𝑡
 holds (we can deduce that this

equation determines a specific split 𝜆) a stable state forms (if
𝜆 decreases, it will result in oversaturation), that is,

𝑙max = 𝑢1𝑡


=
𝑢
1
𝑢
0
𝑟

𝑢
1
− 𝑢
0

, (3a)

𝑔 =
𝑙max
𝑢
1

+
𝑙max
𝑢
2

. (3b)
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Figure 4: Traffic wave propagation.

The critical condition is defined such that the furthest
queue back reaches road tail because larger 𝑞 or smaller split
will result spillover of queue:

𝑙max = 𝑢1𝑡


=
𝑢
1
𝑢
0
𝑟

𝑢
1
− 𝑢
0

, (4a)

𝑔 =
𝑙max
𝑢
1

+
𝑙max
𝑢
2

, (4b)

𝑙max = 𝐿. (4c)

Equations (4a), (4b), and (4c) establishe the relationship
between link length𝐿, cycle𝐶, split𝜆, and flow 𝑞. Given 𝑞 split
can be obtained as shown in embedded figure in Figure 5.
When 𝑞 and 𝐿 are given, 𝜆 and 𝑔 (also 𝐶) can be deduced
as shown in Figure 5. It can be seen that links with different
lengths require different control parameters and upstream
inflow tomaintain their normal operation. Muchmore green
time is needed during higher demand under the same road
length. This is why unchanged green time usually causes
longer queue especially during peak hours. Spillover caused
by smaller green time will be discussed later.

2.3. Decomposition of Complex Link Topology. The problems
discussed above are mainly focusing on the ideal scenario
of one-way links while the case in reality shows more
topological complexity. We define the basic road shown in
Figure 6(a) that always appears in urban road network. It
is a road controlled by signal with a channelized section of
length 𝑙

2
. Overall upstream traffic demand, 𝑞

𝑖
is assumed to

be uniformly distributed between two lanes, that is, 𝑞
𝑖1
= 𝑞
𝑖2
.

Proportion of left-turn flow, right-turn flow, and through flow
is 𝑝
𝑜𝑙
, 𝑝
𝑜𝑠
, and 𝑝

𝑜𝑟
(and 𝑝

𝑜𝑟
= 1 − 𝑝

𝑜𝑙
− 𝑝
𝑜𝑠
), respectively. The
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Figure 6: Sketch map of basic road and its decomposition.

same symbol expressionmethod is for signal parameters, that
is, 𝑔
𝑜𝑙
, 𝑔
𝑜𝑠
, 𝑟
𝑜𝑙
, and 𝑟

𝑜𝑠
, so we can get

𝑞
𝑖
= 𝑞
𝑜𝑙
+ 𝑞
𝑜𝑠
+ 𝑞
𝑜𝑟
,

𝑞
𝑜𝑙
= 𝑞
𝑖
𝑝
𝑜𝑙
,

𝑞
𝑜𝑠
= 𝑞
𝑖
𝑝
𝑜𝑠
,

𝑞
𝑜𝑟
= 𝑞
𝑖
𝑝
𝑜𝑟
.

(5)

Decompose the basic road as shown in Figure 6(b). The
basic road has been divided into two sections: upstream
section and channelized section. Both are comprised of some
single one-way links. Channelized sections are controlled by
traffic signal (except right-turn section).The analysis hence is
simplified that themethod in Section 2 can be used in further
analysis.

3. Complex Circumstances

During daily operation, circumstances often hold more com-
plex nature.This section deals with this problem by analyzing

𝑙
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Figure 7: Stopping wave and starting wave with insufficient split.

dynamic and insufficient split, endogenous flow of basic road,
and the spillover of channelized section.

3.1. Dynamic and Insufficient Split. Usually oversaturation is
developed gradually and queue back extends cycle by cycle,
that is, domino phenomenon is the result of oversaturation
extending in several cycles as shown in Figure 7(a). Each
green signal tends to pull back queue back while each red
signal prolongs queue back. Furthermore, the length pulled
back or prolonged is proportional to time duration of traffic
signal because in the figure slope of wave trajectory; that
is, wave speed including starting wave and stopping wave is
fixed.

Given green time 𝑔
𝑖
of cycle 𝑖 (or red time 𝑟

𝑖
) queue length

ℎ
𝑔𝑖
pulled back (ℎ

𝑟𝑖
prolonged) can be computed fromFigures

7(b1) and 7(b2):

ℎ
𝑟𝑖
=
𝑟
𝑖
𝑢
0
𝑢
1

𝑢
1
− 𝑢
0

,

ℎ
𝑔𝑖
=
𝑔
𝑖
𝑢
2
𝑢
1

𝑢
1
+ 𝑢
2

.

(6)

After 𝑖th red time 𝑟
𝑖
(𝑖th green time 𝑔

𝑖
) location of queue

back is

𝑙
𝑟𝑖
= 𝑙
0
+∑

𝑖−1

(ℎ
𝑟𝑖
− ℎ
𝑔𝑖
) + ℎ
𝑟𝑖
= 𝑙
𝑔𝑖−1

+ ℎ
𝑟𝑖
,

𝑙
𝑔𝑖
= 𝑙
0
+∑

𝑖

(ℎ
𝑟𝑖
− ℎ
𝑔𝑖
) ,

(7)

where 𝑙
0
denotes the length of initial oversaturated queue. It

can also be calculated easily by assuming that the traffic is
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Figure 9: Spillover of road queue.

undersaturated at first, as shown in Figure 8. Symbols and
derivations are as follows:

𝑙
𝑢2
+ 𝑙
𝑢1
= 𝑙,

𝑢
2
𝑡
𝑥
+ (𝑡
𝑥
+ 𝑡


− 𝑔
𝑖
) 𝑢
1
= 𝑙,

𝑡
𝑥
=
𝑙 − (𝑡


− 𝑔
𝑖
) 𝑢
1

𝑢
1
+ 𝑢
2

,

𝑙
0
= (𝑡
𝑥
+ 𝑡


− 𝑔
𝑖
) 𝑢
1
,

𝑙
0
= (

𝑙 − (𝑡


− 𝑔
𝑖
) 𝑢
1

𝑢
1
+ 𝑢
2

+ 𝑡


− 𝑔
𝑖
)𝑢
1
.

(8)

Replace 𝑙
0
in (7) queue back can be calculated at any

time. Given changeable 𝑟
𝑖
and𝑔
𝑖
and upstream traffic demand

𝑞, ℎ
𝑟𝑖
and ℎ

𝑔𝑖
hence each 𝑙

𝑟𝑖
also can be determined. When

queue back exceeds road length, that is, 𝑙
𝑟𝑖
> 𝐿 then spillover

emerges (𝑡
𝑗
in Figure 9 is the time when queue back exceeds

road length).
However, spillover itself does not result domino phenom-

ena because there may be no upstream traffic demand, this
problem will be discussed in Section 4.

In order to describe jam propagation upstream, the
method of SVS (speed of virtual signal) is used.The principle
is that there is a virtual signal located everywhere. When
the jam has not reached a specific location, the virtual signal

𝑙

Virtual signal

Virtual signal

𝑔/𝐶
𝑢1 𝑢1

𝑥𝑖

𝑦𝑖
𝑧𝑖

𝑡

Figure 10: Method of virtual signal.
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𝑟𝑣 = 𝑟𝑖

𝑟𝑖 𝑔𝑖

𝑙

Figure 11: Virtual split calculation.

is always green. When the location is occupied by a queue
(i.e., jam propagates to this position), the virtual signal shows
red. When the queue is cleared, the virtual signal turns to
green. From this description, we can see that the propagation
of jam can be transformed to the propagation of virtual signal
parameter. We use split to explore the propagation of jam.
If we obtain locations of 𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖
shown in Figure 10, then

we can derive the split dynamics along time and space (see
Figure 11). If demand exceeds supply, at the end of each cycle,
the residual vehicle number is 𝐶𝑞 − 𝑔𝑞

𝑚
(the queue that

remains after past cycles is not included in this formula), so
three locations for each cycle can be derived:

𝑥
𝑖
= 𝑥
𝑖−1
+
𝐶𝑞 − 𝑔𝑞

𝑚

𝑘
𝑗

,

𝑦
𝑖
= 𝑥
𝑖
+ ℎ
𝑟𝑖
,

𝑧
𝑖
= 𝑦
𝑖
− ℎ
𝑔𝑖−1
.

(9)

After obtaining 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
for every cycle, together with

Figure 11, split everywhere for any cycle can be determined.
Figures 12 and 13 present a simple numerical example for

propagation of split. From Figure 12, for a specified location,
the gradual change of virtual signal cycle by cycle can be easily
seen. Figure 13 gives the split on space-time (expressed as
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cycle number) diagram. The slope can be seen as the speed
of jam propagation.

In order to develop a measure of this speed, an index
which incorporates stopping wave and starting wave is pro-
posed later on. For a cycle of jam propagation, the increment
of queue back can be got:

Δ𝑙
𝑖
= ℎ
𝑟𝑖
− ℎ
𝑔𝑖−1
. (10)

If the control parameters are constant, then we define
speed of virtual signal (SVS) to express the severity of jam,
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Figure 14: SVS versus split; 𝑘

𝑗
= 180 veh/km, 𝑞

𝑚
= 1800 veh/h.

that is, the propagation of congestion. During a cycle, queue
back propagates Δ𝑙

𝑖
, and the average speed is then

SVS =
Δ𝑙
𝑖

𝐶
=
𝑟
𝑖
𝑢
0
𝑢
1
/ (𝑢
1
− 𝑢
0
) − 𝑔
𝑖
𝑢
2
𝑢
1
/ (𝑢
1
+ 𝑢
2
)

𝐶

=
(1 − 𝜆) 𝑢

0
𝑢
1

𝑢
1
− 𝑢
0

−
𝜆𝑢
2
𝑢
1

𝑢
1
+ 𝑢
2

,

(11)

SVS =
𝑢
0
𝑢
1

𝑢
1
− 𝑢
0

− 𝜆 [
𝑢
2
𝑢
1

𝑢
1
+ 𝑢
2

+
𝑢
0
𝑢
1

𝑢
1
− 𝑢
0

] = 𝑓 (𝑞, 𝜆) . (12)

From the expression we can see that SVS is in linear
relationship with split.

Figures 14 and 15 present the relationship between SVS
and split, arriving flow rate, respectively. From the figure
we can see that SVS is very sensitive to traffic state under
saturation condition.The results above are based on parabolic
fundamental, which is symmetrical about optimal flow. Fig-
ures 16 and 17 plot the SVS versus split and arriving flow
under triangular fundamental diagram like Figure 3(b). The
parameters are given beneath the figure.

Similar trend is also found for triangular fundamental
diagram. However, it is evident from both figures that change
of SVS is somewhat moderate compared with parabolic
diagram. This phenomena stem from the different nature
embedded in these two fundamental diagrams: wave speed
for triangular diagram is constant when the density is below
𝑘
𝑚
, but for parabolic fundamental diagram, wave speed

(tangent line of specific point) is changing simultaneously
with traffic demand.

Equation (12) assumes that the arriving flow is constant;
however, it is not the case. But we can generalize it to dynamic
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condition where within one cycle the arriving is stable but
different from cycle to cycle, that is,

SVS =
𝑢
0
(𝑖) 𝑢
1

𝑢
1
− 𝑢
0
(𝑖)

− 𝜆 [
𝑢
2
(𝑖) 𝑢
1

𝑢
1
+ 𝑢
2
(𝑖)

+
𝑢
0
(𝑖) 𝑢
1

𝑢
1
− 𝑢
0
(𝑖)
] , (13)

where 𝑢
0
(𝑖) is stop wave speed at cycle 𝑖.
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Figure 18: Single road with endogenous traffic flow.

3.2. Influence of Endogenous Flow. Traditionally it is assumed
that flow is generated at nodes (i.e., intersections within the
network or originations of a road network) as we did in
network traffic analysis [18]. However, intersections inside
road network actually do not generate flow (of course, from
the viewpoint of downstream intersection, flow is “produced”
at upstream intersection). In fact, most traffic stems from
entrance within road (e.g., shopping malls, schools, and
official departments about the road). It is necessary to take
endogenous traffic flow into account. Due to complexity in
analyzing multilane road, we only deal with one-way road
with entrance insidewhich the flow is denoted as 𝑞

𝑒
(shown in

Figure 18). The basic assumption is major road priority; that
is, vehicles in major road have priority to cross.

When a formed queue back has not reached entrance
location, the upstream flow is 𝑞

𝑖
+ 𝑞
𝑒
; when queue length

exceeds 𝑙
𝑑

(distance between stop line and endogenous
flow entrance location) upstream flow becomes 𝑞

𝑖
, so the

stopping wave and starting wave propagate differently from
that without endogenous flow (Figure 4(a)). Given 𝑞

𝑖
and
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Figure 19: Fundamental diagram.

𝑞
𝑒
stopping wave profile and starting wave profile can be

obtained using the same method. Denote stopping wave as
𝑢
01

(wave when queue length has exceeded 𝑙
𝑑
), 𝑢
02

(wave
when queue length has not exceeded 𝑙

𝑑
) and 𝑢

21
, 𝑢
22

as the
wave produced after 𝑢

02
and 𝑢

1
meet as shown in Figure 20.

From Figure 19 formulas below can be got:

𝑢
01
=
(𝑞
𝑖
+ 𝑞
𝑒
)

𝑘
𝑗
− 𝑘

, 𝑢
02
=

𝑞
𝑖

𝑘
𝑗
− 𝑘

,

𝑢
21
=
𝑞
𝑚
− 𝑞
𝑖

𝑘
𝑚
− 𝑘

, 𝑢
22
=
𝑞
𝑚
− (𝑞
𝑖
+ 𝑞
𝑒
)

𝑘
𝑚
− 𝑘

.

(14)

For case I, critical condition can be formulated just as in
(3a) and (3b):

𝑙max = 𝑢1𝑡


=
𝑢
1
𝑢
02
𝑟

𝑢
1
− 𝑢
02

, (15a)

𝑔 =
𝑙max
𝑢
1

+
𝑙max
𝑢
22

. (15b)

For cases II and III, critical conditions as follows:

𝑟V = 𝑟 − 𝑙𝑑 (
𝑢
1
− 𝑢
02

𝑢
02
𝑢
1

) , (16a)

𝑙max = 𝑙𝑑 +
𝑢
1
𝑢
01
𝑟V

𝑢
1
− 𝑢
01

, (16b)

𝑔 =
𝑢
1
𝑢
01
𝑟V/ (𝑢1 − 𝑢01)

𝑢
21

+
𝑙
𝑑

𝑢
22

. (16c)

The virtual red time in Figure 20 and (16a), (16b), and
(16c) is obtained from geometric relationship. Figure 21 gives
the relationship between critical split and different entrance
locations from (15a), (15b), (16a), (16b), and (16c). We can see
that upstream location getsmore influence in that once queue
propagates exceed entrance endogenous flow cannot enter.
Moreover, propagation of jam (i.e., SVS under this condition)
also holds such trend because of the same tendency of
propagation speed of stopping and starting wave.

3.3. Channelized Section Spillover. Most researches do not
take spillover of channelized section into account. But at

peak hours due to length constraint the channelized section
often cannot accommodate excessive vehicles which make
spillover of channelized section inevitable. Following Wright
and Roberg [1], we assume that traffic flow running on
the upstream section was mixed uniformly (i.e., velocity,
density, and flow are uniformly distributed in the section)
and lane changing are executed instantly at interface between
channelized section and upstream section. This is acceptable
from the viewpoint of system description although some
details we do not concern with are lost. Road layout is as
that in Figure 6. From fundamental traffic theory we can
easily get flow-density relationship as shown in Figure 22.
Parabolic curve beneath is flow-density relationship of left-
turn channelized section (right-turn or through channelized
section is the same) and the upper curve is that of upstream
section.

When there exists channelized section spillover the influ-
ence can be considered as “virtual red time,” principle of
which is described in Figure 23: once there is spillover a queue
will propagate upstream and block upstream section result of
which is the same as signal control. A virtual signal is set at the
interface between two sections as shown in Figure 23. Virtual
red time equals to time difference between stopping wave and
starting wave spreading over the interface. Now the analysis
of spillover with consideration of channelized section can be
taken by two steps:

(I) analyze supply-demand of channelized section to
obtain block time (note that queues of two chan-
nelized sections, that is, through section and left-
turn section may be overflowed at the same time or
may be not, so block time of these spillovers may be
separated, overlapped, or overlapped partly);

(II) after virtual time (interface block time) is obtained,
analyze supply-demand of upstream section. If
upstream section queue back exceeds road length,
then upstream intersection will be blocked.

Due to the fact that both channelized sections may block
the interface we first deal with only one section spillover and
then two.

3.3.1. One Section Spillover. Since results of spillover of the
two channelized section are the same, here we simply assume
that only left-turn section spillover takes place. When 𝑝

𝑜𝑙
=

𝑝
𝑜𝑠
, that is, left-turn traffic flow 𝑞

𝑜𝑙
equals through flow 𝑞

𝑜𝑠
.

It can be deduced from Figure 22 that starting wave and
stopping wave keep its speed after spread over interface. It is
conditionA in Figure 24.This condition degrades to one-way
link spillover which has been discussed in Section 2.

When 𝑝
𝑜𝑙
> 𝑝
𝑜𝑠
(i.e., 𝑞

𝑜𝑙
> 𝑞
𝑜𝑠
), upstream section holds

more flow averagely than channelized section. The wave
propagation profile should be the pattern as B in Figure 24. Its
stopping wave speed 𝑢

0𝑎
is bigger than 𝑢

0
and 𝑢

2𝑎
is smaller

than 𝑢
2
. When green time 𝑔

𝑜𝑙
extends over 𝑍, the queue will

be cleared completely. From the figure critical conditions for
domino formation are deduced:

(
𝑙
2

𝑢
0

+
𝑙
1

𝑢
0𝑎

) + (
𝑙
1

𝑢
2𝑎

+
𝑙
2

𝑢
2

) = 𝑟
𝑜𝑙
+ 𝑔
𝑜𝑙
. (17)
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Figure 20: Stopping wave and starting wave with endogenous flow.
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When 𝑝
𝑜𝑙
< 𝑝
𝑜𝑠
(i.e., 𝑞

𝑜𝑙
< 𝑞
𝑜𝑠
), upstream section holds

less flow averagely than channelized section, so the wave
propagation profile should be the pattern as𝐶 in Figure 24. Its
stopping wave speed 𝑢

0𝑐
is smaller than 𝑢

0
and 𝑢

2𝑐
is greater

than 𝑢
2
. When green time 𝑔

𝑜𝑙
extends over 𝑋 then the queue

will be cleared completely. Critical conditions for domino
formation are deduced:

(
𝑙
2

𝑢
0

+
𝑙
1

𝑢
0𝑐

) + (
𝑙
1

𝑢
2𝑐

+
𝑙
2

𝑢
2

) = 𝑟
𝑜𝑙
+ 𝑔
𝑜𝑙
. (18)

From geometry and Figure 24, we can deduce virtual red
time for interface when critical condition (i.e., (17) and (18))
is not reached:

𝑟V = 𝑟𝑜𝑙 +
𝑙
2

𝑢
1

−
𝑙
2

𝑢
0

= 𝑟
𝑜𝑙
− 𝑙
2
(
𝑢
1
− 𝑢
0

𝑢
0
𝑢
1

) , (19)

where 𝑟V is virtual red for interface. From it split can also be
determined: 𝜆V = (𝐶 − 𝑟V)/𝐶. Since (𝑢1 − 𝑢0)/𝑢0𝑢1 > 0, from

𝑞
2𝑞𝑚
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𝑢2𝑠

𝑢2𝑙
𝑢0𝑙
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𝑘

𝑞𝑜𝑠
𝑞𝑜𝑙

𝑘𝑜𝑠𝑘𝑜𝑙 𝑘jam 2𝑘jam

Figure 22: 𝑞-𝑘 relationship of two sections.

𝑞𝑖
𝑙1

𝑙2

2 1
Virtual
signal Virtual

red time

Figure 23: Virtual signal and virtual red time.

(19) we can see that virtual red time increases against chan-
nelization section length, and opposite relationship holds for
split and channelization section length.

Now critical condition of (4a), (4b), and (4c) can be used
to determine supply-demand of upstream section. Note that
there is no channelization spill back for through traffic flow.
Since virtual split of interface is bigger than (𝐶− 𝑟

𝑜𝑙
)/𝐶 (from
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Figure 24: Wave profile when channelized section spillover exists.

(19) relationship that 𝑟V < 𝑟𝑜𝑙 is evident and also 𝜆V < 𝜆𝑜𝑙), for
conditionAandC inFigure 24, if critical condition of (18) has
not reached, demand of upstream section is always satisfied
because

𝑞
𝑜𝑙
+ 𝑞
𝑜𝑠

𝜆V𝑞𝑚 + 𝜆V𝑞𝑚

<
2𝑞
𝑜𝑙

2𝜆V𝑞𝑚

=
𝑞
𝑜𝑙

𝜆V𝑞𝑚

<
𝑞
𝑜𝑙

𝜆
𝑜𝑙
𝑞
𝑚

. (20)

For condition B, if the critical relationship of (4a), (4b),
and (4c) is not hold, traffic jam will form and propagate
upstream.

If channelization spillover of only one direction happens,
capacity of the other two directions may be wasted, which
imply the importance of well-designed phase sequences.
From (4a), (4b), and (4c), it implies that the equation below
should hold to prevent wasted capacity:

𝑙max = 𝑢1𝑡


=
𝑢
1
𝑢
0
𝑟
𝑜𝑙

𝑢
1
− 𝑢
0

, (21a)

𝑔
𝑜𝑙
>
𝑙max
𝑢
1

+
𝑙max
𝑢
2

, (21b)

𝑙max < 𝑙2. (21c)

Equations (21a) and (21b) assure that the demand can be
satisfied and (21c) guarantees queue back would not reach
interface such that block cannot happen.

3.3.2. Two Section Spillovers. Sometimes during peak hour
left-turn demand and through demand may both exceed
respective capacity which results in spillover of both sections.
In such case the problem may be complicated but can be
explained conveniently. Spillover of two sections is just as
we set two signals in the interface at the same time. When
both virtual signals show green then overall virtual signal is

Virtual signal
of left-turn

spillover
Virtual signal

of left-turn
spillover

Virtual signal
of all spillovers

Figure 25: Virtual signal of both spillover.
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+
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=
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(III)

Figure 26: Virtual signal for three cases.
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Spill back

time

Figure 27: Spillover time and block time.

green otherwise the overall signal is red. One case is shown
in Figure 25.

According to the signal assignment of left-turn flow and
through flow, there will be three cases as shown in Figure 26.
Apparently for the same split, different “offset” will produce
different spillover virtual signal which implies the importance
of phase sequence under spillover condition. We can see
that during congestion hours (where channelized section spill
back take place); it would be better to put through flow and
left-turn flow in the same phase.
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Figure 28: Block of upstream intersection.

4. Impact of Spillover on
Upstream Intersection

Spillover is the precondition of congestion propagation.
However, spillover itself is not enough for domino phe-
nomena formation because if there is not enough upstream
demand congestion would not spread.Thus the sufficient and
necessary condition for domino phenomena is first, spillover
of downstream road and second, there is continuous demand
upstream.

When a queue forms and spill back and blocks upstream
intersection, there are basically two events to be analyzed:
first, how long it will block upstream intersection and second,
its influence on upstream flows. When queue back reaches
upstream intersection at time, say, 𝑡

𝑗
(as shown in Figure 27)

then it blocks the intersection till the starting wave catches up
with it.

We denote that the time duration of the intersection is
blocked (i.e., blocked time) as Δ𝑡, then from the viewpoint of
upstream signal phases there are three types (using a typical
four-phase intersection shown in Figure 28 as an example) of
block. Take phase A to describe as following.

(I) Block fully happens at green time. Then the phase
will lose Δ𝑡 effective green time which will decrease
capacity respectively.

(II) Block fully happens at red time. Since no matter
whether the intersection is blocked, this movement
always has not got RoW (Right of Way), so this type
of block holds no impact.

(III) Block happens partially at green time and partially at
red time (let us neglect amber time because it will not

harm the conclusion). This block will encroach some
green time which will reduce some capacity.

Due to reduced capacity caused by downstream block,
specific phase upstream will be under oversaturation tem-
porarily and long queue forms which may be block upstream
intersection of this crossroad.

The block influences upstream link flow differently. In
Figure 28 the most possible flow blocked by downstream jam
is highlighted in red line for each phase. Green time for
these flows then may be wasted hence new jam may form at
upstream links. This can be seen as domino phenomena of
traffic jam in the whole network.

From the description above we can see that badly
designed signal may contribute to network jam propagation,
which suggests the importance of network signal coordina-
tion during peak hours.

5. Conclusion

Due to the complexity of urban traffic jam, many researches
were taken under simplified assumption or used simulated
methods. In this paper, urban traffic jam formation is studied.
From the research we can see that many factors (such as road
geometry, flow structure, and signal settings) contribute to
the traffic jam formation and propagation which should be
took into account in the control of jam during peak hours.

However, limited by the macroscopic method, we cannot
look into deeply mutual influence of different flow, (left-
turn flow, right-turn flow, and through flow) which may
contribute to the formation and propagation of traffic jam.
This may be solved by using microscopic analysis methods.
Furthermore, formation of congestion is only prelude of



12 Discrete Dynamics in Nature and Society

large scale urban traffic jam. Propagation of urban traffic
jam (denominated as “domino phenomena” here) itself is
influenced bymany factors. Some further researches could be
highlighted.

(1) The calibration of fundamental diagram: the rela-
tionship between flow, density, and speed is a basic
problem of traffic engineering field and exerts great
influence on jam propagation (severity and propaga-
tion speed). A thorough examination of the influence
is needed.

(2) The asssumption of uniformlymixed flowat upstream
section shoule be revised. In reality, the distribution
may be not averagely. Whether this feature prompts
the propagation f traffic jam can be included in our
model with a coefficient that needs to be explored
closely.

(3) Isolated intersection signal design at peak hours.
From this research we can see that traditional control
principle of minimizing delay may be ineffective in
dealing with peak hour flow due to the spillover of
long queue. Till now the control strategy that takes
this condition into account is absent.
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