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Interactions between motorized and nonmotorized vehicles have drawn considerable attention from researchers. They are
commonly seen at mixed flow intersections where nonmotorized vehicles, without the restriction of lane markers or physical
barriers, may disperse into adjacent lanes and thus lead to complex interactions with motorized vehicles. Such a dispersion
phenomenon between heterogeneous participants (e-bikes and bicycles as nonmotorized vehicles versus motorized vehicles) is
difficult to model. In this paper, we were inspired by the dispersion of charged particles in an electric field and modeled the
dispersion phenomenon of go-straight, nonmotorized vehicles at mixed flow intersections accordingly, as it was discovered in
this research that these two dispersion phenomena share three underlying commonalities with each other. A novel particle
dispersion model (PDM) based on a particle’s movement in an electric field is proposed. The model is calibrated and validated
using 1,490 high-definition sets of trajectory data for go-straight, nonmotorized vehicles during 43 cycles at two typical mixed flow
intersections.The PDM is compared with the social force model (SFM) on their dispersion characteristics that are used to describe
the nonmotorized bicycles’ behavior. The results show that the PDM performs better than the SFM with regard to depicting the
dispersion characteristic indices of the nonmotorized vehicles, such as the travel time, the dispersion intensity of heterogeneous
nonmotorized vehicles, the sectional dispersion degree, and other dispersion characteristics.

1. Introduction

Nonmotorized vehicles have a great impact on the safety
and efficiency of mixed flow intersections. Accurately depict-
ing the interactions between motorized and nonmotorized
vehicles has important ramifications regarding improving
safety [1–3] and evaluating the capacity [4, 5] of intersections.
Previous studies paid more attention to the interactions
between motorized and nonmotorized vehicles that have
temporal or spatial crossing conflicts, such as the conflict
between left-turn, nonmotorized vehicles and opposing go-
straight motorized vehicles [6] and between go-straight,
nonmotorized vehicles and left-turn/right-turn motorized
vehicles [7–10]. Recent studies have shown that the safety
and efficiency of these intersections can decline as well due
to interactions without any crossing conflict [11, 12]. One
of the most common interactions is the lateral interaction
between nonmotorized and motorized vehicles driving in
the same direction (e.g., go-straight, left-turn) because of the

dispersion phenomenon of nonmotorized vehicles. The term
dispersion phenomenon [13] refers to a situation where after
nonmotorized vehicles move across a mixed flow intersec-
tion, some of them will disperse laterally into the adjacent
motorized vehicle lane or crosswalk without being restricted
by a lane marker or physical barrier. This phenomenon can
result in nonmotorized vehicles’ laterally dispersing outside
their presumed driving space (the yellow dashed line drawn
based on the lane markers of the sequential roadway segment
in Figure 1(a)) and thus invading the motorized vehicles’
driving space. During the whole crossing process in each
cycle, the group of nonmotorized vehicles will disperse at the
beginning and shrink near the end (Figure 1(c)), resulting in
an elliptical driving space (Figure 1(b)).

Modeling the dispersion phenomenon of nonmotorized
vehicles is therefore of great significance. First, it helps predict
the driving zone of the nonmotorized vehicles and thus can
indicate potential guidelines with regard to the design of lane
markers or the intersections themselves in order to further
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Figure 1: Dispersion phenomenon at a mixed flow intersection.

the safety of mixed flow intersections [14]. Second, it is
useful to estimate the saturation flow of motorized vehicles
when the nonmotorized vehicle group disperses [15] into
the motorized vehicles’ lane. Third, it helps to develop a
heterogeneous traffic simulation model with high accuracy.
Lastly, it helps driverless vehicles foresee abnormal behavior
of nonmotorized vehicles at intersections.

To date, there is a lack of knowledge and understanding
as to what the principle factors that influence how nonmo-
torized vehicles disperse are and what the best approach to
model such dispersion is. There are two main challenges
to this problem. First, the diversity of interaction objects is
complex (including dispersing nonmotorized and motorized
vehicles) and the nonmotorized vehicles are heterogeneous
(including e-bikes and bicycles) [16]. The inherent stochastic
nature is thus introduced because of the heterogeneity of the
traffic flow. Second, the abnormal trajectories of dispersion,
which resemble serpentine routes in unlimited driving space,
are difficult to predict and model at mixed flow intersections.

To overcome these challenges and model the dispersion
phenomenon, 1,490 high-definition trajectories of nonmo-
torized vehicles were collected for 43 cycles in total at two
intersections in Shanghai. Meanwhile, the motorized vehicle
trajectory data was collected for the adjacent lane. The
following contributions are made in this study. (1) Using field
data, the dispersion characteristics of the heterogeneous non-
motorized vehicle flow was analyzed. The different character-
istics between the e-bikes and the bicycles were compared.
(2) A novel particle dispersion model (PDM) was proposed
to model the dispersion behavior of nonmotorized vehicles.
This model is derived from charged particles’ dispersion in
an electric field. (3) A simulation prototype was established
using this PDM and the results generated by the PDM were
compared with that of a classic social force model (SFM).
The results show that the PDM performs better than the
SFM, as it is capable of simulating the dispersion of the
nonmotorized vehicle flow and has a higher accuracy when
describing dispersion characteristics.

2. Literature Review

Two groups of literature are related to the dispersion phe-
nomenon of nonmotorized vehicles: (1) research on the
moving characteristics of nonmotorized vehicles, and (2) the
interaction models between motorized and nonmotorized

vehicles in general. Literature in those two groups is reviewed
in this section.

In their study on a group of nonmotorized vehicles, Khan
and Maini [17] reviewed the maneuverability and interaction
characteristics of nonmotorized vehicles under non-lane-
based traffic from many researchers, but the dispersion
maneuver had yet to be put forth. Lin and Wu [18] observed
and surveyed the mean crossing speed and the acceptance
critical gap in between nonmotorized vehicles. Wang et al.
[16] analyzed the conversion factor of go-straight, nonmo-
torized vehicles based on the relationship between the flow
rate of nonmotorized vehicles and the flow rate of motorized
vehicles for different crossing times. Similarly, dispersion was
not yet considered in this research. To date, only two projects
were found to emphasize the dispersion characteristics of
go-straight, nonmotorized vehicles. Jiang et al. [19] surveyed
the clearance time of the dispersion of nonmotorized vehicle
groups and compared it with a situation without dispersion.

There are many models used to depict nonmotorized
vehicles. A summary of existing models can be found in
Twaddle et al. [20]. These models can be divided into three
groups: the virtual lane models in simulation tools, the social
force models (SFM), and the cellular automation (CA) mod-
els. Barceló [21] introduced the virtual lanemodel for nonmo-
torized vehicles in practice simulation tools such as VISSIM,
Aimsun, and SUMO. In these simulation tools, the dispersion
phenomenon cannot be expressed because the models are
one-dimensional. The SFM was first proposed by Helbing
and Molnar [20] to model pedestrians and was later widely
adapted to depict nonmotorized vehicles’ behavior [22, 23].
There are three forces considered in the SFM during the
process when nonmotorized vehicles move to a destination:
the driving force to the destination, the repulsive force from
other nonmotorized vehicles, and the boundary force. Some
researchers further developed the SFM to model nonmotor-
ized vehicles sophistically. Liang et al. [24] developed a SFM
in which if two nonmotorized vehicles came close enough,
a physical model took over to prevent a collision. Schönauer
et al. [25] used a three-level model to depict the behavior of
mixed flow traffic: an infrastructure model, an operational
model, and a tactical model. All the prior studies using
the SFM have not referred to the dispersion phenomenon
of nonmotorized vehicles. The disadvantages of SFM when
depicting the dispersion phenomenon are that the dispersion
direction of a nonmotorized vehicle is usually flexible during
the process of dispersion and shrinkage, while the direction is
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fixed in the SFM. The CA model is a time and space discrete
model and it was proposed by Nagel and Schreckenberg
[26]. In the CA model, the road segment is divided into
cells, and the model was used to emulate motorized vehicles
at first. Vehicles use four regimes to move in the grid of
cells: acceleration, deceleration, randomization, and update.
Yao et al. [27] divided the shared space into a 1m∗1m grid
to simulate the interaction between nonmotorized vehicles
and motorized vehicles. These interactions are classified into
two types: friction and blockage. Luo et al. [28] divided the
nonmotorized vehicle lane more precisely, and the lateral
movement rules and front movement rules were given for
nonmotorized vehicles. Ren et al. [13] divided the driving
zone into a 1m∗1m grid where the nonmotorized vehicles
would disperse into the lateral margin grid if the volume
of the nonmotorized vehicles exceeded a certain threshold.
The authors compared the clearance time with different e-
bike ratios. However, the microdispersion characteristics,
such as the dispersion ratio or the dispersion degree of
nonmotorized vehicles, were not analyzed. Along this line of
research, Jiang et al. [19] set up a similar dispersion zone and
further established the interaction rules between go-straight,
nonmotorized vehicles and go-straight motorized vehicles.
Two major shortcomings exist for CA models when applied
to depicting dispersion phenomenon. First, the difference in
the dispersion characteristics of the heterogeneous e-bikes
and bicycles cannot be described. Second, the dispersion
boundary of the cells is fixed in CA models, while bound-
aries in reality are observed to be varying from cycle to
cycle.

In summary, there are studies on the characteristics
of nonmotorized vehicles while very few of them focused
on the dispersion phenomenon. The existing studies on
dispersion phenomena are mostly empirical analysis with
only the macroindex considered.Themicroscopic behavioral
mechanism of the heterogeneous e-bikes and bicycles is never
considered. Therefore, existing models cannot be adopted to
accurately simulate the dispersion phenomenon, meaning a
new model is necessary. This paper puts forward a novel
PDM to overcome these challenges, and the improvements
and innovation of the model compared to existing ones are
as follows.

(a) The most important characteristic of the dispersing
go-straight, nonmotorized vehicles is that theirmoving direc-
tion is dynamic during the crossing process. The existing
model including the well-received SFM and CAmodel could
only generate a fixed direction for nonmotorized vehicles
and thus would omit such influential dispersing character-
istics. The proposed PDM could capture such pattern with
dispersing nonmotorized vehicles heading towards outside
of their lane to find a comfort space to move with a high
speed, while heading back to inside of the lane to exit the
intersection.

(b) The different nonmotorized vehicles with different
desired speeds (such as bicycles and e-bikes) would have
different dispersion intensity. The PDM can capture such a
phenomenon.

(c) The PDM has fewer parameters that need to be
calibrated compared to the SFM and CA model.

3. Data Collection and Preliminary Analysis

3.1. DataCollection. Tomodel the dispersion phenomenonof
nonmotorized vehicles at mixed flow intersections, the high-
definition trajectory data of dispersing nonmotorized vehi-
cles was utilized. Specifically, the trajectories were collected
for go-straight, nonmotorized vehicles from the east bound
entrance of two mixed flow intersections in Shanghai during
evening peak hours (16:30-17:30 as per the observations at
the intersections). One is the Changji-Moyu intersection, and
the other is the Xianxia-Jianhe intersection. The geometric
designs of the two intersections are similar, as there is no
lane marker at the intersections (shown in Figure 2) and
go-straight, nonmotorized vehicles are composed of both e-
bikes and bicycles. A video trajectory processing software
[29, 30] was utilized to extract the time-space trajectory data
of the go-straight, nonmotorized vehicles and the motorized
vehicles in the adjacent lane (Figure 2) at the intersections.
The trajectory data frequency is 0.12s, and the positional
accuracy is 0.05m. Such high-definition data is adequate to
ensure the reliability of the analysis results. A total of 830
go-straight, nonmotorized vehicles’ trajectory data during 19
cycles at the Changji-Moyu intersection and 660 go-straight
nonmotorized vehicles’ trajectory data during 24 cycles at the
Xianxia-Jianhe intersection were collected. The channeliza-
tion design of the two intersections and a screenshot of the
video processing software are shown in Figure 2.

The cycle lengths are 152 seconds (s) at the Changji-
Moyu intersection and 138s at the Xianxia-Jianhe intersec-
tion. In this study, it was decided to analyze the dispersion
characteristics at the most typical intersection, so those two
typical major arterial intersections were selected. The width
of the nonmotorized vehicle lane is 3.5 meter (m). 3.5m is
one of the commonly suggested nonmotorized vehicle lane
width listed in the national standard of Chinese transport
planning on urban road [31]. Such configuration has been
utilized in most recent research articles on nonmotorized
vehicles’ behavior in China [13, 32, 33]. The lengths of the
intersections are 47m at the Changji-Moyu intersection and
50m at the Xianxia-Jianhe intersection. The average speed of
the e-bikes and bicycles is 6.59m/s and 4.44m/s, respectively,
at the Changji-Moyu intersection. The average speed of the
e-bikes and bicycles is 6.79m/s and 4.25m/s, respectively, at
the Xianxia-Jianhe intersection. The overall ratio of e-bikes is
70.84% at the Changji-Moyu intersection and 68.33% at the
Xianxia-Jianhe intersection.

3.2. Dispersion Characteristics and Influence Factors. Let 𝑑𝑖,𝑡
denote the lateral offset distance from the lane center to
the nonmotorized vehicle 𝑖 at time t (see Figure 3). The
maximum lateral offset distance 𝐷𝑚𝑎𝑥𝑖 can be derived as𝐷𝑚𝑎𝑥𝑖 = max(𝑑𝑖,𝑡), ∀𝑖 ∈ 𝑉, where 𝑉 denotes the set of
nonmotorized vehicles. 𝐷𝑚𝑎𝑥𝑖 (shown in Figure 3) could
then be adopted to describe the dispersion intensity of each
nonmotorized vehicle. The larger the 𝐷𝑚𝑎𝑥𝑖 is, the more
severe the dispersion of nonmotorized vehicle 𝑖 is. Since
the width of the nonmotorized vehicle lane 𝑤 is 3.5m for
both intersections of interest, a 𝐷𝑚𝑎𝑥𝑖 lower than 1.75m
denotes a nondispersing nonmotorized vehicle 𝑖 with low
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Figure 2: Channelization design of the two intersections and a screenshot of the trajectory extraction software.
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Figure 3: Illustration of the sectional lateral location, the dispersion width and the lateral offset distance.

dispersion intensity. Otherwise, it indicates a dispersing
nonmotorized vehicle (𝐷𝑚𝑎𝑥𝑖 > 1.75m) and represents either
a nonmotorized vehicle with medium dispersion intensity
if 1.75𝑚 < 𝐷𝑚𝑎𝑥𝑖 ≤ 3.25m or a nonmotorized vehicle
with high dispersion intensity if 𝐷𝑚𝑎𝑥𝑖 > 3.25m. 3.25m is
selected as the boundary between the two bins because the
nonmotorized vehicles start to block motorized vehicles on
the left side or influence pedestrians on the right side if𝐷𝑚𝑎𝑥𝑖 > 3.25m based on field data (further discussed in
Section 3.4).

The varying dispersion characteristics in each cycle are
also of interest, as they reflect the real driving space of the
nonmotorized vehicle group at mixed flow intersections. In
order to analyze nonmotorized vehicles’ dispersion char-
acteristics at each crossing stage in each cycle, a variable

called the sectional dispersion degree 𝜆𝑥 is put forward. It is
calculated by

𝜆𝑥 = 𝑤𝑥𝑤 (1)

where 𝑥 denotes the sectional lateral location of nonmo-
torized vehicle i. In our study, the intersection is longitudi-
nally divided into 10 sections every 5 meters from 0m to
50m, with 𝑥 ∈ [0𝑚, 5𝑚, 10𝑚 . . . , 45𝑚]. 𝑤𝑥 is the dispersion
width (shown in Figure 3) at location 𝑥. w is the width of the
nonmotorized vehicle lane.

3.3. The Critical Dispersion Boundary. The critical bound-
aries (𝛿𝑚𝑎𝑥𝑙 and 𝛿𝑚𝑎𝑥𝑟 ) of the maximum lateral offset distance
between the medium and high dispersion intensity can be
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obtained from either side of the moving direction and they
are not necessarily identical to each other. On the left side,
the dispersing nonmotorized vehicles may block motorized
vehicles. The “block” interference (or behavior) is generated
when the bicycle occupies part of themotorized vehicle lane and
it blocks the way of a motorized vehiclemoving forward. In this
case, the motorized vehicle has to move at a slower speed, and
this is likely to lead to traffic congestion. This definition was
put forward by Zang et al. in 2000 [34] and has been referred
to by other researchers afterwards [22, 28, 35, 36]. However,
most of the time, there is no lane marker in between the
motorized and nonmotorized vehicle lanes at intersections
and the motorized vehicles are likely to move inside of the
intersection to avoid collisions with nonmotorized vehicles.
As such, it is desired to find the criticalmaximum lateral offset
distance 𝛿𝑚𝑎𝑥𝑙 above which the nonmotorized vehicles start to
impact the speed of the rear motorized vehicle.

To obtain 𝛿𝑚𝑎𝑥𝑙 , the speed of the rear motorized vehicle
V𝑟𝑒𝑎𝑟𝑖 of the dispersing nonmotorized vehicle 𝑖 (with 𝐷𝑚𝑎𝑥𝑖 >1.75m) inside of the intersection (left side of the nonmotor-
ized vehicles) at the time when the lateral offset distance is𝐷𝑚𝑎𝑥𝑖 is extracted. 𝑓(𝐷𝑚𝑎𝑥𝑖 ) denotes the mapping function
between 𝐷𝑚𝑎𝑥𝑖 and V𝑟𝑒𝑎𝑟𝑖 .

𝑓 (𝐷𝑚𝑎𝑥𝑖 ) = V𝑟𝑒𝑎𝑟𝑖 (2)

Let 𝑖1 denote the index of a nonmotorized vehicle with𝐷𝑚𝑎𝑥𝑖 that 1.75𝑚 < 𝐷𝑚𝑎𝑥𝑖 ≤ 𝛿𝑚𝑎𝑥𝑙 . 𝑖2 denotes the index of a
nonmotorized vehicle with 𝐷𝑚𝑎𝑥𝑖 that 𝛿𝑚𝑎𝑥𝑙 < 𝐷𝑚𝑎𝑥𝑖 . Let 𝑁1
and 𝑁2 denote the total number of nonmotorized vehicles 𝑖1
and 𝑖2, respectively. Then, 𝛿𝑚𝑎𝑥𝑙 could be given by

𝛿𝑚𝑎𝑥𝑙 = argmax( 1𝑁1
𝑁1∑
𝑖1=1

𝑓 (𝐷𝑚𝑎𝑥𝑖1 )
− 1𝑁2

𝑁2∑
𝑖2=1

𝑓 (𝐷𝑚𝑎𝑥𝑖2 ) | 𝐷𝑚𝑎𝑥𝑖1 ≤ 𝛿𝑚𝑎𝑥𝑙 𝑎𝑛𝑑 𝐷𝑚𝑎𝑥𝑖2
> 𝛿𝑚𝑎𝑥𝑙 )

(3)

Based on (3), 𝛿𝑚𝑎𝑥𝑙 is 3.22m at the Changji-Moyu inter-
section and 3.27m at the Xianxia-Jianhe intersection. The
relationships between 𝐷𝑚𝑎𝑥𝑖 and V𝑟𝑒𝑎𝑟𝑖 for both intersections
are shown in Figures 4 and 5.

With such a 𝛿𝑚𝑎𝑥𝑙 , the average speeds of rear motorized
vehicles when 𝐷𝑚𝑎𝑥𝑖 > 𝛿𝑚𝑎𝑥𝑙 are 25% and 27.4% lower than
that when 𝐷𝑚𝑎𝑥𝑖 ≤ 𝛿𝑚𝑎𝑥𝑙 at two intersections, respectively.
Such a speed drop would have a significant influence on the
saturation flow of motorized vehicles and is likely to lead to
traffic congestion (V𝑟𝑒𝑎𝑟𝑖 < 10km/h) as has been shown in
Figures 4 and 5.

The values of 𝛿𝑚𝑎𝑥𝑙 are close to each other at both
intersections. Therefore, 3.25m is selected as the uniform
critical value to present the boundary between nonmotorized
vehicles with high and medium dispersion intensity for both
intersections for the sake of calculation simplicity.

To obtain 𝛿𝑚𝑎𝑥𝑟 for the right side, the most intuitive
approach is to conduct a similar statistical analysis on the
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Figure 5: Relationship between 𝐷𝑚𝑎𝑥𝑖 and V𝑟𝑒𝑎𝑟𝑖 at the Xianxia-
Jianhe intersection. When 𝛿𝑚𝑎𝑥𝑙 = 3.27𝑚, the difference between
the average speed of rear vehicles when 𝐷𝑚𝑎𝑥𝑖 ≥ 3.27𝑚 and 𝐷𝑚𝑎𝑥𝑖 <3.27𝑚 reaches the maximum.

speed drop of pedestrians. However, as has been observed in
field data, the speed drop of pedestrians due to the blockage
of nonmotorized vehicles is not noticeable as compared to the
drop for motorized vehicles on the left side since the speeds
of pedestrians are generally lower than that of nonmotorized
vehicles. In the meantime, the motion of pedestrians because
of the impact of nonmotorized vehicles often involves lateral
movement. Therefore, the safety distance (>1m) [37, 38] is
taken into count to obtain 𝛿𝑚𝑎𝑥𝑟 for the right side. Figures 6
and 7 present the histograms of safe and unsafe occurrences
with respect to the 𝐷𝑚𝑎𝑥𝑖 of nonmotorized vehicles.

The binary logistic model [39] is adopted to find the
optimal value of 𝛿𝑚𝑎𝑥𝑟 . In the binary logisticmodel,𝐷𝑚𝑎𝑥𝑖 is set
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Figure 7: Histograms of the safe and unsafe occurrences with
respect to the 𝐷𝑚𝑎𝑥𝑖 of nonmotorized vehicles at the Xianxia-Jianhe
intersection.

as the independent variable, and whether the nonmotorized
vehicle keeps a safe distance to pedestrians is set as the
dependent variable. As such, the model has a binary choice
result. Let 𝐵1 denote the coefficient of the independent
variable 𝐷𝑚𝑎𝑥𝑖 and 𝐵2 as a constant. The formulation of the
binary logistic model is given in

𝑃 (𝐷𝑚𝑎𝑥𝑖 ) = 1 − 11 + 𝑒𝐵1𝐷𝑚𝑎𝑥𝑖 +𝐵2 (4)

When 𝑃(𝐷𝑚𝑎𝑥𝑖 ) equals 0.5, the value of 𝐷𝑚𝑎𝑥𝑖 can be
adopted as 𝛿𝑚𝑎𝑥𝑟 . The parameters of (4) at two intersections
are shown in Table 1.

The results show that the critical boundary of safe and
unsafe distances on the right side 𝛿𝑚𝑎𝑥𝑟 is 3.067m and 3.191m,
respectively, at the two intersections. However, 3.25m is again
chosen as the boundary between the high dispersion intensity
and medium dispersion intensity for the right side for the
following reasons.

(a) The operation of motorized vehicles has a greater
influence on overall safety and efficiency of the intersection
compared to pedestrians. Therefore, the left side boundary is
chosen in the study.

(b) The relative discrepancy between 3.067m (or 3.191m)
for 𝛿𝑚𝑎𝑥𝑟 on the right side and 3.25m for 𝛿𝑚𝑎𝑥𝑙 is less than
6%. For the sake of modeling simplicity, such a difference is
omitted and 3.25m is adopted uniformly.

3.4. Dispersion Characteristic Analysis. Themaximum lateral
offset distance 𝐷𝑚𝑎𝑥𝑖 for all 1,490 go-straight e-bikes and
bicycles at both intersections was recorded. The histograms
of 𝐷𝑚𝑎𝑥𝑖 (bins for low/medium/high dispersion intensity
are marked by green/yellow/red, respectively) are shown in
Figure 8 for e-bikes and bicycles, respectively.

FromFigure 8 one can tell that the e-bikes have a relatively
stronger dispersion intensity compared to bicycles, as the
percentage of dispersing e-bikes (including vehicles with
medium/high dispersion intensity) is 7.82% higher than that
of bicycles at the Changji-Moyu intersection and 12.67%
higher at the Xianxia-Jianhe intersection. Moreover, the
percentage of high dispersion intensity e-bikes is almost twice
of that of bicycles at both intersections. Themaximum lateral
offset distance 𝐷𝑚𝑎𝑥 of e-bikes is also higher than that of
bicycles. Therefore, the heterogeneity is observed that the
e-bikes are more likely to disperse and have a relatively
higher dispersion intensity as compared to bicycles. One
may notice that the dispersion intensity at the Xianxia-Jianhe
intersection is generally higher than that at theChangji-Moyu
intersection, most likely due to the fact that the adjacent
motorized vehicle lane at the Xianxia-Jianhe intersection has
relatively less volume and thus nonmotorized vehicles are
more likely to disperse into the motorized vehicle lane.

The boxplots of the sectional dispersion degree value 𝜆𝑥
are shown in Figures 9 and 10. From these figures one can tell
that, in general, the median value of the sectional dispersion
degree 𝜆𝑥 increases first and then decreases, which is in
agreement with the “dispersion and shrinkage” phenomenon
that has been observed in previous literature. However,
the geometric pattern of such a “dispersion and shrinkage”
phenomenon differs in two intersections. One can tell that
the dispersion zone of the Changji-Moyu intersection tends
to be longer than that of the Xianxia-Jianhe intersection.
In the meantime, the dispersion intensity is higher at the
Changji-Moyu intersection as the dispersion degree raises
up to a high level and then stays flat for roughly 35 meters
and then decreases within the last two sections. As for the
Xianxia-Jianhe intersection, the dispersion degree gradually
reaches the maximum at the 20-meter marker and then
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Figure 8: Histograms of 𝐷𝑚𝑎𝑥𝑖 for e-bikes and bicycles at both intersections.

Table 1: Parameters of the binary logistic model at two intersections.

Location Parameter Value S.E. Sig.
Percentage
correct

of the model

Critical
boundary 𝛿𝑚𝑎𝑥𝑟(𝑃(𝐷𝑚𝑎𝑥𝑖 ) = 0.5)

Changji-Moyu
intersection

𝐵1 -6.122 1.194 0.000 96.4% 3.067𝐵2 18.793 3.658 0.000
Xianxia-Jianhe
intersection

𝐵1 3.623 0.661 0.000 94.1% 3.191𝐵2 -11.50 2.004 0.000

gradually decreases back to 1.0. Such differences might be
due to the difference in the geometric design as well as the
composition of the nonmotorized and motorized vehicles at
two intersections.

Themaximum sectional dispersion degree 𝜆𝑥 determines
the maximum lateral dispersion position. Seven factors that
may influence themaximumsectional dispersion degreewere
further selected and they are (1) the number of go-straight,
nonmotorized vehicles, (2) the number of go-straight, non-
motorized vehicles queued at the stop line when the traffic
light turns green, (3) the number of pedestrians, (4) the
ratio of e-bikes, (5) the average speed of the e-bikes, (6) the
average speed of bicycles, and (7) the go-straight motorized

vehicle’s time occupancy in the adjacent lane. A correlation
analysis between the maximum sectional dispersion degree
is conducted and the results are summarized in Table 2.

The result shows that the maximum sectional dispersion
degree has a positive correlation with the number of go-
straight, nonmotorized vehicles queued at the stop line
and a negative correlation with the go-straight motorized
vehicle’s time occupancy. These conclusions help set up the
model for depicting the dispersion behavior of go-straight,
nonmotorized vehicles.

Based on the preliminary analysis of the dispersing
nonmotorized vehicles, two important characteristics are
discovered and should be captured in the model. (1) The
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Figure 9: Boxplot of sectional dispersion degree at Changji-Moyu intersection.
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Figure 10: Boxplot of sectional dispersion degree at Xianxia-Jianhe intersection.

dispersion intensity, such as the dispersion ratio and the
maximum lateral offset distance, differs between e-bikes and
bicycles. The e-bikes have a relatively stronger intensity of
dispersion. (2) The nonmotorized vehicle groups behave in a
“dispersion and shrinkage” way during the crossing process.
The average dispersion boundary is serpentine.

4. Methodology

4.1. Basic Idea. Conventional models for nonmotorized vehi-
cles summarized in literature review, including the virtual
lane model, the SFM, and the CA model, cannot depict
the two essential characteristics mentioned in the previous
section.

In this paper, we were inspired by the dispersion of
charged particles in an electric field and decided to adopt
the charged particles behavior model to depict the dispersion

phenomenon of go-straight, nonmotorized vehicles. The
macroscopic nonmotorized vehicles and the microscopic
charged particles share three inherent commonalities with
regard to the forces directly applied on them. First, a driving
force is applied on the charged particle as the destination
panel has an opposite sign of charge and attracts the particle.
The nonmotorized vehicles also experience such a driving
force, as the ultimate objective of the nonmotorized vehicle
is to exit the intersection as soon as possible. Therefore, the
exit lane attracts the nonmotorized vehicles. Second, charged
particles within the electric field experience repulsive forces
from other particles, and such repulsive forces increase as the
speed of particle increases. It is the same for nonmotorized
vehicles in that nonmotorized vehicles experience repulsive
forces from other nonmotorized vehicles, and such repulsive
forces increase if the nonmotorized vehicle’s speed increases,
since nonmotorized vehicles are more likely to maintain
a longer clearance distance with others under high-speed
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Table 2: Results of the correlation analysis in between of the maximum sectional dispersion degree and 7 dynamic factors.

Dynamic factors Parameters Value

Maximum sectional dispersion degree

Number of go-straight non-motorized vehicles Pearson Correlation -0.038
P-value 0.790

Number of go-straight non-motorized vehicles queued at stop line Pearson Correlation 0.324∗∗

P-value 0.014

The number of pedestrians Pearson Correlation -0.012
P-value 0.231

Ratio of e-bikes Pearson Correlation -0.096
P-value 0.500

Average speed of non-motorized vehicles Pearson Correlation -0.195
P-value 0.040

Average speed of motorized vehicles in adjacent lane Pearson Correlation 0.094
P-value 0.562

Go-straight motorized vehicle’s time occupancy in adjacent lane Pearson Correlation -0.772∗∗

P-value 0.000
∗Correlation is significant at the 0.05 level (2-tailed).
∗∗Correlation is significant at the 0.01 level (2-tailed).

Table 3: Similarities between the dispersion of charged particles in electric fields and nonmotorized vehicles’ dispersion at intersections.

Dispersion
characteristics

Dispersion of charged particle in
electric field

(microscopic field)

Dispersion of non-motorized
vehicles at intersections
(macroscopic space)

Dispersion and
shrinkage process

Charged particles dispersing to
electric boundary will shrink

back to the field [41]

Go-straight non-motorized
vehicles will disperse and shrink
during the crossing process

(Figures 9 and 10)

Dispersion
intensity

Particle with higher charge
quantity disperses with higher
intensity since a higher repulsive
force is applied to them [41]

High-speed e-bike has a stronger
intension to disperse (Figure 8)

Distance among
participants

The distances between charged
particles increases if their speeds

increase [40]

The distance between
non-motorized vehicles will
increase if the non-motorized
vehicles’ speeds increase [46]

scenarios. Third, particles are repelled from the upper and
lower boundaries as they hold the same sign of electric charge.
As for nonmotorized vehicles, they are also repelled from
the inner motorized vehicle lane as vehicles wish to avoid
motorized vehicles and return to the nonmotorized vehicle
lane laterally near the exit of the intersection.

When a charged particle beam (or group) starts to move
along the longitudinal direction in an unrestricted field, it
disperses in the field laterally. The lateral dispersion distance
has a positive correlation with the speed V𝑖 of the electron i,
the charge quantity 𝑞𝑖 of electron i, the electric field intensity𝐸, and the longitudinal moving distance 𝑙𝑎 [40]. If a boundary
exists in the field, the laterally dispersing electron will shrink
when it approaches the boundary [41]. There are three key
similarities between the charged particles’ dispersion in a
restricted electric field and nonmotorized vehicles’ dispersion
at intersections.These similar characteristics are documented
in Table 3.

The charged particle beam (or group) departs from the
starting panel and moves towards the ending panel. Such a
moving field has upper and lower boundaries. The starting
panel and boundaries have the same sign of electric charge
with the charged particle beamwhile the ending panel has the
opposite sign of electric charge. The particles in the electric
field are affected by three forces: the driving force 𝐹𝑑𝑖 , the
boundary force 𝐹𝑏𝑖 , and the repulsive force 𝐹𝛼𝑖𝑗 .

The driving force 𝐹𝑑𝑖 is calculated as

𝐹𝑑𝑖 = 4𝜋𝑘𝑞𝑖 (𝑄𝑜 + 𝑄𝑑)𝑆 (5)

where k is the electrostatic constant, 𝑞𝑖 denotes the
quantity of electric charge on particle i,𝑄0 and 𝑄𝑑 denote the
electric quantity of the starting panel and the ending panel,
and S is the overlapping area of the starting and ending panels.
The driving force of the particle i has positive relationship
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with the quantity of electric charge 𝑞𝑖, the electric quantity
in the starting panel 𝑄𝑜, and the ending panel 𝑄𝑑. It has the
negative relationship with the overlapping area of starting
panel and the ending panel. When the overlapping area is
smaller, the electron on the starting panel and the ending
panel will be more concentrated. The driving force in the
electric field will be stronger as a result.

The boundary force 𝐹𝑏𝑖 is calculated as

𝐹𝑏𝑖 = 𝑘𝑞𝑖 ⋅ 𝑄𝑏𝑑2
𝑏

(6)

where𝑄𝑏 denotes the electric quantity of the upper/lower
boundary and 𝑑𝑏 denotes the distance from particle i to
the upper or lower boundary. The boundary force has the
positive relationship with the quantity of electric charge 𝑞𝑖,
the electric quantity of upper/lower boundary. It has the
negative relationship with the square of distance to upper
boundary or lower boundary. The direction of the boundary
force is perpendicular to the boundary.

The repulsive force 𝐹𝛼𝑖𝑗 [42] on particle i from another
particle j is calculated as

𝐹𝛼𝑖𝑗 = 𝑘𝑞𝑖 ⋅ 𝑞𝑗𝑑2 (7)

where d denotes the distance between particles i and j.
Therepulsive force has a negative relationship with the square
of the distance between the two particles. The direction of
repulsive force is from j to i.

This model can only describe the dispersion process of
particle groups with a fixed boundary but cannot depict
the shrinkage process. At the same time, there is no limit
to the speed and acceleration of the charged particles so
that the speed of the charged particles can increase forever.
Moreover, the repulsive force of the particles comes from
all particles in the electric field while the nonmotorized
vehicles may only experience repulsion from front nonmo-
torized vehicles. Therefore, this model is further upgraded to
consider the following items: (1) dynamic dispersion bound-
ary: go-straight, nonmotorized vehicles may have varying
dispersion boundaries in each cycle, (2) shrink force: when
nonmotorized vehicle groups move to a certain position,
the dispersing nonmotorized vehicles will shrink into the
regulation zone and exit the intersection, and (3) repulsive
force and maximum speed: generally speaking, go-straight
nonmotorized vehicles only receive a repulsive force from
nonmotorized vehicles in front, and the speed cannot exceed
a maximum threshold.

4.2. Particle Dispersion Model for Go-Straight Nonmotorized
Vehicles. In this paper, a PDM is proposed to depict the
go-straight, nonmotorized vehicles’ dispersion phenomenon.
The model is developed based upon the particle moving
model in an electric field with an enhancement implemented
to address the issues mentioned in the previous section. The
forces applied upon the go-straight, nonmotorized vehicles in
the dispersion area are as shown in Figure 11.

In the PDM, the nonmotorized vehicle i will move from
the stop line to the exit line under four forces: the driving

force
󳨀󳨀→𝐹𝑑𝑃𝑖 , the boundary force

󳨀󳨀→𝐹𝑏𝑃𝑖 , the repulsive force
󳨀󳨀→𝐹𝛼𝑃𝑖 ,

and the shrink force
󳨀󳨀→𝐹𝑠𝑃𝑖 .The coordinate of the nonmotorized

vehicle i in the system is (𝑥𝑖, 𝑦𝑖). The resultant force
󳨀→𝐹𝑃𝑖 on

nonmotorized vehicle i is defined in󳨀→𝐹𝑃𝑖 = 󳨀󳨀→𝐹𝑑𝑃𝑖 + 󳨀󳨀→𝐹𝑏𝑃𝑖 + 󳨀󳨀→𝐹𝛼𝑃𝑖 + 󳨀󳨀→𝐹𝑠𝑃𝑖 (8)

The four kinds of forces are given as follows.

(1) Driving Force
󳨀󳨀→𝐹𝑑𝑃𝑖 . The driving force of nonmotorized

vehicle i is
󳨀󳨀→𝐹𝑑𝑃𝑖 , and the unit is N.The force is given by

󳨀󳨀→𝐹𝑑𝑃𝑖 = 4𝜋𝑘𝑃𝑞𝑃𝑖 (𝑄𝑃𝑜 + 𝑄𝑃𝑑)𝑆𝑃 ⋅ 󳨀→𝑛𝑃𝑑 (9)

where 𝑘𝑃 is a parameter that needs to be calibrated, 𝑄𝑃𝑜
denotes the width of the nonmotorized vehicle lane at the
approach of the intersection, and 𝑄𝑃𝑑 denotes the width of the
nonmotorized vehicle lane at the exit of the intersection. 𝑆𝑃
is defined as w∗w. 󳨀→𝑛𝑃𝑑 is the unit vector of the force direction
(1,0). 𝑞𝑃𝑖 is the momentum of the nonmotorized vehicle i and
is calculated by

𝑞𝑃𝑖 = 𝛽𝑃 ⋅ V𝑖 (10)

where 𝛽𝑃 is a parameter that needs to be calibrated and V𝑖
is the current speed of nonmotorized vehicle i. 𝑞𝑃𝑖 is so defined
because the moving intensity is found to have positive linear
relationship with V𝑖 as per the observations in field data.

(2) Boundary Force
󳨀󳨀→𝐹𝑏𝑃𝑖 . The boundary force is given by

󳨀󳨀→𝐹𝑏𝑃𝑖 =
{{{{{{{{{{{{{{{{{

𝑘𝑃 𝑞𝑃𝑖 ⋅ 𝑄𝑃𝑏(𝑑𝑃𝐸𝐵)2 ⋅ 󳨀󳨀→𝑛𝑃𝐸𝐵, 𝑦𝑖 > 𝑤20, −𝑤2 ≤ 𝑦𝑖 ≤ 𝑤2
𝑘𝑃 𝑞𝑃𝑖 ⋅ 𝑄𝑃𝑏(𝑑𝑃𝐹𝐵)2 ⋅ 󳨀󳨀→𝑛𝑃𝐹𝐵, 𝑦𝑖 > −𝑤2

(11)

where𝑄𝑃𝑏 is the length of the nonmotorized vehicle lane at

the intersection and
󳨀󳨀→𝑛𝑃𝐸𝐵 and 󳨀󳨀→𝑛𝑃𝐹𝐵 are unit vectors of the force

direction with values of (0, -1) and (0, 1), respectively. 𝑑𝑃𝐵𝐸 is
the distance between nonmotorized vehicle i and the upper
boundary (elastic boundary shown in Figure 11) and 𝑑𝑃𝐵𝐹 is
the distance between nonmotorized vehicle i and the lower
boundary (fixed boundary shown in Figure 11). The fixed
boundary is lateral offset 𝑤 (see (1)) from the nonmotorized
vehicle lane, so the distance between the fixed boundary and
the center line of the nonmotorized vehicle lane is 1.5𝑤. 𝑑𝑃𝐵𝐸
and 𝑑𝑃𝐵𝐹 are defined in

𝑑𝑃𝐵𝐸 = 𝑦𝐸 − 𝑦𝑖 (12)

𝑑𝑃𝐵𝐹 = 𝑦𝑖 − 1.5𝑤 (13)
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Figure 11: Forces in the dispersion model.

where 𝑦𝐸 is the elastic boundary location and is presented
in

𝑦𝐸 = 𝑓 (𝑛𝑐, 𝑂𝑐) (14)

where 𝑛𝑐 is the number of queuing nonmotorized vehicles
at the stop line in cycle c. 𝑂𝑐 is the time occupancy of
go-straight, nonmotorized vehicles in cycle c. This equation
needs to be fitted based on the field data.

(3) Repulsive Force
󳨀󳨀→𝐹𝛼𝑃𝑖 . When the nonmotorized vehicle i

is moving in the area, the repulsive force from the front
nonmotorized vehicle j is defined in

󳨀󳨀→𝐹𝛼𝑃𝑖𝑗 = {{{{{
𝑘𝑃 𝑞𝑃𝑖 ⋅ 𝑞𝑃𝑗𝑑2𝑖𝑗 ⋅ 󳨀→𝑛𝑖𝑗, 𝑥𝑖 < 𝑥𝑗
0, 𝑥𝑗 ≤ 𝑥𝑖

(15)

where 𝑑2𝑖𝑗 is the distance between the nonmotorized
vehicle i and the nonmotorized vehicle j. 󳨀→𝑛𝑖𝑗 is the unit vector
of the force direction (pointing from j to i). The resultant
repulsive force from all nonmotorized vehicles in front is
given by

󳨀󳨀→𝐹𝛼𝑃𝑖 = 𝑁𝑓∑
𝑗=1

󳨀󳨀→𝐹𝛼𝑃𝑖𝑗 (16)

where 𝑁𝑓 is the number of nonmotorized vehicles in
front of nonmotorized vehicle i.

(4) Shrink Force
󳨀󳨀→𝐹𝑠𝑃𝑖 . As observed in the field data, the

nonmotorized vehicle will gradually shrink back to the

regulation zone once it reaches the 20-30mmarker.Therefore,
it is assumed that the nonmotorized vehicle begins to shrink
when it reaches the middle of the intersection for the sake of
simplicity. For the shrink force of the nonmotorized vehicle,
the closer the nonmotorized vehicle is to the exit of the
intersection, the greater the force is. The shrink force

󳨀󳨀→𝐹𝑠𝑃𝑖 is
calculated as󳨀󳨀→𝐹𝑠𝑃𝑖

=
{{{{{{{{{{{{{{{

0, 𝑥𝑖 ≤ 𝐿2𝑘𝑃 ⋅ 𝑞𝑃𝑖 ⋅ 𝑄𝑃𝑏 ⋅ (𝑥𝑖 − 𝐿/2)(𝐿/2) ⋅ 𝑥𝑖 ⋅ 󳨀󳨀→𝑛𝑃𝐸𝐵, 𝑥𝑖 > 𝐿2 , 𝑦𝑖 > 𝑤2𝑘𝑃 ⋅ 𝑞𝑃𝑖 ⋅ 𝑄𝑃𝑏 ⋅ (𝑥𝑖 − 𝐿/2)(𝐿/2) ⋅ 𝑥𝑖 ⋅ 󳨀󳨀→𝑛𝑃𝐹𝐵, 𝑥𝑖 > 𝐿2 , 𝑦𝑖 < −𝑤2

(17)

where L is the length of the intersection. Lastly, the
acceleration 󳨀→𝛼𝑖 of nonmotorized vehicle i is calculated as

󳨀→𝛼𝑃𝑖 = 󳨀→𝐹𝑃𝑖𝑚𝑖 (18)

where 𝑚𝑖 is the mass of nonmotorized vehicle i.
󳨀→𝛼𝑃𝑖 is

the acceleration of nonmotorized vehicle i. In addition, the
maximum speed of the nonmotorized vehicle is set according
to the field data.

5. Simulation and Results Analysis

5.1. Parameter Calibration of the PDM. Despite the differ-
ences in terms of the geometric designs between the two
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Table 4: Observed and calibrated parameters of the PDM.

Type of Parameter Parameter Value of parameters Description

Observed Parameters

w 3.5 Width of non-motorized vehicle lane (m)
L 47 Length of non-motorized vehicle lane (m)

V0𝑖

(6.48,1.56) Mean and std. deviation of
e-bikes’ desired speed (m/s)

(4.05,1.64) Mean and std. deviation of
bicycles’ desired speed (m/s)

𝑎0𝑖 (0.75,0.42) Mean and std. deviation of
e-bikes’ max acceleration (m/s2)

(0.52,0.27) Mean and std. deviation of
bicycles’ max acceleration (m/s2)

𝑚𝑖 115 Mass of e-bike (kg)
75 Mass of bicycle (kg)

Calibrated 𝑘𝑃 2.201 Force coefficient
Parameters 𝛽𝑃 1.998 Momentum coefficient

intersections of interest, the objective of the model is to
be generalizable and thus would be adopted as a universal
model for any general intersections. Therefore, the data
collected at the Changji-Moyu intersection was used for
model calibration and the data collected at the Xianxia-
Jianhe intersection was used for model validation. Based on
the previous description of the PDM, there are three kinds
of parameters that should be calibrated, and they are the
elastic boundary parameters, the observed parameters, and
the calibrated parameters.𝑛𝑐 and 𝑂𝑐 in (11) should be fitted for the elastic boundary
location. There exist multiple options for the form of the
equation, so the curve fitting toolbox in MATLAB was
utilized and the most suitable equation was obtained as
follows:

𝑦𝐸 = 0.1829 + 0.0721𝑛𝑐 + 3.3657𝑒−(19.93𝑂𝑐)2 (19)

within which the goodness of fit 𝑅2 is 0.933.
The observed parameters at the Changji-Moyu intersec-

tion are presented in Table 4. Based on (19) and the observed
parameters, a genetic algorithm (GA) was applied to calibrate
the rest of the parameters in the PDM. In the calibration,
GA was adopted to minimize the relative error between
the simulated aggregate travel times and extracted aggregate
travel times of all the nonmotorized vehicles at the Changji-
Moyu intersection. The time step of the simulation is 0.12s,
which is the same with the extracted data. The objective
function for the relative travel time error 𝑔(𝑡) is given by

𝑔 (𝑡) = 1𝑁
𝑁∑
1

𝑡𝑃𝑖 − 1𝑁
𝑁∑
1

𝑡𝑖 (20)

where 𝑡𝑃𝑖 denotes the travel time of nonmotorized vehicle𝑖 in the PDM and 𝑡𝑖 denotes the travel time of nonmotorized
vehicle 𝑖 in the field data. The initial range of 𝑘𝑃 and 𝛽𝑃
is from 0 to 20. Once the average change in the fitness
value reaches lower than 0.01%, the iterative optimization
terminates. The observed and calibrated parameters of the
PDM are summarized in Table 4.

The calibrated parameters were then applied to the
Xianxia-Jianhe intersection.

5.2. Parameter Calibration of the SFM. The SFM is widely
adopted for depicting nonmotorized vehicles’ driving behav-
ior and the forces emulated within the SFM are similar to that
in the PDM [4, 22, 23, 43]. Therefore, the simulated results
obtained by the PDM were compared to those obtained
by the SFM in this study. The standard social force model

includes the driving force
󳨀󳨀→𝐹𝑑𝑆𝑖 , the boundary force

󳨀󳨀→𝐹𝑏𝑆𝑖 , and
the repulsive force

󳨀󳨀→𝐹𝛼𝑆𝑖 . The resultant force is
󳨀→𝐹𝑆𝑖 .They are

summarized in the following equations.

󳨀→𝐹𝑆𝑖 = 󳨀󳨀→𝐹𝑑𝑆𝑖 + 󳨀󳨀→𝐹𝑏𝑆𝑖 + 󳨀󳨀→𝐹𝛼𝑆𝑖 (21)

󳨀󳨀→𝐹𝑑𝑆𝑖 = 1𝜏 (󳨀→
V0𝑖 − 󳨀→V𝑖) (22)

󳨀󳨀→𝐹𝑏𝑆𝑖 = A𝐵𝑒−𝑑𝑆𝐵/B𝐵 ⋅ 󳨀→𝑛𝑆𝐵 (23)

󳨀󳨀→𝐹𝛼𝑆𝑖 = 𝑁𝑓∑
𝑗=1

󳨀󳨀→𝐹𝑆𝛼𝑖𝑗 = 𝑁𝑓∑
𝑗=1

AV𝜔𝑒−𝑑𝑖𝑗/BV × 󳨀→𝑛𝑖𝑗 (24)

where
󳨀→
V0𝑖 denotes the desired speed of nonmotorized

vehicle I and 󳨀→V𝑖 denotes the current speed of nonmotorized
vehicle i. 𝜏 is the relaxation time. 1/𝜏 represents the value

of tendency to approach desired speed
󳨀→
V0𝑖 .

󳨀→𝑛𝑆𝐵 is the unit
vector pointing from bound to influenced nonmotorized
vehicle, 󳨀→𝑛𝑖𝑗 is the unit vector pointing from influencing j
to influenced nonmotorized vehicle i as (13), 𝑑𝑆𝐵 is the
distance from nonmotorized vehicle i to the upper or lower
boundary, 𝑑𝑖𝑗 is the distance between nonmotorized vehicle i,
and a nonmotorized vehicle j in front. 𝐴V, 𝐵V, 𝐴𝐵, and 𝐵𝐵 are
calibrated parameters.The upper and lower boundaries in the
SFM are the same as with the PDM. The calibration process
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Table 5: Observed and calibrated parameters of SFM.

Type of
Parameter

Parameter Value of parameter Description

Observed
Parameter V0𝑖

(6.48,1.56) Mean and std. deviation of
e-bikes’ desired speed (m/s)

(4.05,1.64) Mean and std. deviation of
bicycles’ desired speed (m/s)

Calibrated
Parameter

𝜏 13.03 Buffer time of driving force
AV 0.610 Repulsive force of other non-motorized vehicle users
BV 0.841
A𝑙𝐵 0.401 Lower boundary force
B𝑙𝐵 19.554
A𝑢𝐵 0.352 upper boundary force
B𝑢𝐵 9.207

is similar to what was shown in the previous calibration
procedure for the PDM.Meanwhile, the elastic boundary and
the shrink force in the SFMare the same as the PDMas shown
in (14) and (17).

There are one observed parameter and seven calibrated
parameters in the SFM. AGA [44, 45] is adopted tominimize
the relative error between the simulated aggregate travel
times and observed aggregate travel times of all nonmotor-
ized vehicles at the Changji-Moyu intersection. The observed
and calibrated parameters obtained by the GA are given in
Table 5.

5.3. Results Analysis. In this section, the travel time is com-
pared since it is the principal output of traffic flow simulation.
Then, the analysis of the three important dispersion char-
acteristics is presented: the dispersion ratio, the dispersion
intensity, and the sectional dispersion degree. Lastly, the
spatial-temporal distribution of all nonmotorized vehicles is
presented.

5.3.1. Travel Time. In this paper, travel time is adopted to
calibrate the parameters in the PDMand SFM at the Changji-
Moyu intersection and the calibrated model is then applied
to the other intersection directly. The cumulative probability
curves of travel time for all nonmotorized vehicles at both
intersections are shown in Figures 12 and 13.

From Figure 13, one can easily tell that the PDM is
superior to the SFM in describing the travel times of non-
motorized vehicles at the intersection for validation. A paired
t-test was conducted, and it shows that the distributions of
travel time are obtained by the PDM and that from the
field data belong to the same distribution (P value is 0.09
at the Changji-Moyu intersection and 0.17 at the Xianxia-
Jianhe intersection). On the other hand, the SFM largely
underestimates the travel time of nonmotorized vehicles for
the Xianxia-Jianhe intersection.

5.3.2. Dispersion Ratio and Dispersion Intensity. In order
to evaluate the model performance for different types of
dispersing nonmotorized vehicle (e-bike and bicycle), the
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Figure 12: Cumulative probability curve of the travel time at the
Changji-Moyu intersection.

total number of dispersing/high dispersion intensity e-bikes
and bicycles is compared. The results are shown in Figures 14
and 15.

From those two figures one can tell that the PDM
outperforms the SFM at both intersections. Since the number
of dispersing nonmotorized vehicles is not the objective for
calibration, the SFM largely underestimates the number of
dispersing and high dispersion nonmotorized vehicles, even
for the calibration intersection. It also reveals that the SFM is
not capable of depicting the dispersion phenomenon.

5.3.3. Sectional Dispersion Degree. Next, the “dispersion-
shrinkage” process of nonmotorized vehicle groups simu-
lated in the PDM and SFM are compared. The simulated sec-
tional dispersion degrees at two intersections are compared
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Figure 13: Cumulative probability curve of the travel time at the
Xianxia-Jianhe intersection.
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Figure 14: Number of dispersing nonmotorized vehicles at the
Changji-Moyu intersection.

with field data. There are 19 values (19 cycles) in each section
at the Changji-Moyu intersection and 24 values (24 cycles) in
each section at the Xianxia-Jianhe intersection. The median
values in each section are shown in Figures 16 and 17.

First, the dispersion zone is roughly from 0m to 25m
at the Changji-Moyu intersection as observed in the field
data. The PDM successfully replicates such outputs (there
is only a 5m offset as the dispersion zone obtained by the
PDM is 0m to 30m) while the SFM fails as dispersion
after 5m is never observed in the simulated results of the
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Figure 15: Number of dispersing nonmotorized vehicles at the
Xianxia-Jianhe intersection.

SFM. Similar patterns are observed at the Xianxia-Jianhe
intersection, that the PDM’s prediction of the dispersion zone
is exactly the same as the field data (0m to 20m). In the
SFM, the nonmotorized vehicles shrink from the origin to
the destination. It cannot describe the “dispersion-shrinkage”
phenomenon at all, which also explains why there are much
fewer dispersing nonmotorized vehicles observed in the SFM
as shown in the previous section.

Second, the difference of the median dispersion degree
between the simulated and observed data is calculated. The
results show that the average error in each section is 4.33%
at the Changji-Moyu intersection and 4.96% at the Xianxia-
Jianhe intersection in the PDM simulation, which is much
lower than the 39.02% and 28.78% achieved with SFM
simulation, respectively.

5.3.4. Distribution of Nonmotorized Vehicles. To analyze the
location of all nonmotorized vehicles at both intersections,
the heat maps of the trajectories of nonmotorized vehicles are
presented in Figures 18 and 19.

One can tell that the PDM is capable of accurately
replicating the dispersion and shrink procedures, while the
SFM fails. Since the SFM is not capable of depicting the
dispersion phenomenon, nonmotorized vehicles shrink to a
small region in the SFMand there is no dispersion zone in the
middle of the intersection as shown in the field data. In the
meantime, the destination in the SFM is fixed and thus the
trajectories concentrate to a small region at the end, which is
not the case in field data.

It is not feasible to compare the trajectory of each
individual nonmotorized vehicle at the microscopic level
as stochastic factors exist. RMSE is used to evaluate the
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Figure 16: Median dispersion degree in each section at the Changji-Moyu intersection.
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Figure 17: Median dispersion degree in each section at the Xianxia-Jianhe intersection.
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Figure 18: Distribution of nonmotorized vehicles at the Changji-Moyu intersection.
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Figure 19: Distribution of nonmotorized vehicles at the Xianxia-Jianhe intersection.
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Figure 20: Force and acceleration in the PDM.

distribution of nonmotorized vehicles at an aggregate level
herein and is given as

RMSE𝜆 = √ 1𝑍
𝑍∑
𝑖=1,𝑗=1

(𝑚𝑖𝑗 − 𝑚𝜆𝑖𝑗)2,
𝜆 = 𝑃𝐷𝑀 𝑜𝑟 𝑆𝐹𝑀

(25)

where𝑚𝑖𝑗 is the frequency that the nonmotorized vehicles
appear in the grid ij in field data, and 𝑚𝑖𝑗 ̸= 0. Z is the
total number of grids with 𝑚𝑖𝑗 not equal to 0. 𝑚𝜆𝑖𝑗 is the
frequency that the nonmotorized vehicles appear in the grid
ij in simulated trajectory data. 𝜆 is set to either the PDM or
SFM.The lower the RMSE is, the better-fit the model is.

The RMSE score of the PDM simulation is 44.72 at the
Changji-Moyu intersection, and the score of the SFM is 70.09.
The RMSE score of the PDM simulation is 20.44 at the

Changji-Moyu intersection, and the SFM simulation achieves
53.35, which is much worse than the PDM.

5.4. Insights and Discussion. Furthermore, in order to reveal
the causes of nonmotorized vehicles’ dispersion phenomenon
in the PDM and to explain why the SFM is not able to
depict such phenomenon, the lateral and longitudinal forces
and acceleration of a typical dispersing nonmotorized vehicle
in a typical cycle are plotted, and the results are shown in
Figures 20 and 21.The force and acceleration for a dispersing
nonmotorized vehicle in the PDM are shown in Figure 20.

It can be seen from Figure 20 that this dispersing nonmo-
torized vehicle experiences a lateral mutual repulsion force󳨀󳨀→𝐹𝛼𝑃𝑖−𝑦 (x and ymean the longitudinal and latitudinal direction
of the force, respectively) at the beginning of the trip and that
the force pushes the nonmotorized vehicle to disperse out of
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the regulation zone. Once the nonmotorized vehicle reaches

close to the boundary, the lateral boundary force
󳨀󳨀→𝐹𝑏𝑃𝑖−𝑦 and

shrink force
󳨀󳨀→𝐹𝑠𝑃𝑖−𝑦 pull the dispersing nonmotorized vehicle

back into regulation zone.The dispersion zone and shrinkage
zone are distinct during the go-straight process as shown

in Figure 20. Meanwhile the longitudinal acceleration
󳨀󳨀→𝑎𝑃𝑖−𝑥

and latitudinal acceleration
󳨀󳨀→𝑎𝑃𝑖−𝑦 are within the normal range

based on the field data shown in Table 4.
Figure 21 shows the forces and acceleration of the same

nonmotorized vehicle in the SFM simulation. In the SFM,
the result of the force is the acceleration and the unit for
force is N, meaning that the force in the SFM is equal to
the acceleration multiplied by the mass of the nonmotorized
vehicle. The destination in the SFM is a single fixed point
during the whole process of crossing, rather than a dynamic
adjustable destination in the PDM. Furthermore, once the
nonmotorized vehicle departs heading to the destination, the

lateral boundary force
󳨀󳨀→𝐹𝑑𝑆𝑖−𝑦 remains at a low value because

the nonmotorized vehicle is too close to the lane center and
too far away from the boundary.Therefore, the nonmotorized
vehicle stays at the lane center at the beginning of the trip and
remains at the lane center thereafter. Thus, the nonmotorized
vehicle does not disperse in the SFM.

6. Conclusion and Future Work

This paper presents a novel particle dispersion model (PDM)
for simulating the dispersion phenomenon of nonmotorized
vehicles. The PDM had been calibrated and validated using
1,490 high precision trajectory data sets at two typical mixed

flow intersections. The main conclusions of the paper are
summarized as follows:

(i) The nonmotorized vehicles have obvious dispersion
phenomenon at mixed flow intersections. More than
68% of go-straight, nonmotorized vehicles disperse
out of the regular driving zone at the two studied
intersections. Compared to bicycles, e-bikes have a
stronger dispersion intensity. The average of the max-
imum lateral offset distance is 2.27m and 2.63m for
e-bikes at the two intersections and 2.09m and 2.17m
for bicycles at the two intersections, respectively.

(ii) The PDM can describe the dispersion phenomenon
with clear physical meanings and less parameters.The
PDM is derived from the microphysics realm and the
mechanism (with four types of forces) in the model
shows that it has a great advantage in depicting the
successive dispersion and shrinkage phenomenon of
nonmotorized vehicles over a conventional SFM.

(iii) The PDM can simulate nonmotorized vehicle flow
and has higher accuracy when describing dispersion
characteristics. Four kinds of indices have been vali-
dated and compared with the field collected trajecto-
ries: the travel time, the dispersion ratio, the sectional
dispersion degree, and the distribution of all non-
motorized vehicles. Results show that the PDM not
only can describe the nonmotorized flow accurately,
but also achieves better performance compared to the
widely used SFM model.

In the future, it is planned to explore modified SFMs
that may be able to better depict the dispersion phenomenon
as benchmark. Besides, to extend the PDM to depict the
behavior of nonmotorized vehicles on intersections with dif-
ferent configurations and basic road sections and to further
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integrate it with microscopic traffic simulation packages to
establish an integrated simulation model for nonmotorized
traffic flow under various scenarios is worthy of further
exploration.
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