
The 8th European Congress on Computational Methods in Applied Sciences and Engineering 

ECCOMAS Congress 2022 

5 – 9 June 2022, Oslo, Norway 
 

 

 

TREE-BASED COMPARATIVE PREDICTION OF STEADY 

TRANSONIC FLOWS OVER A WING   

A. GORGUES*, R. CASTELLANOS+, J. BOWEN AND E. ANDRÉS-PÉREZ 

Theoretical and Computational Aerodynamics Branch, Flight Physics Department,  

Spanish National Institute for Aerospace Technology (INTA) 

Ctra. Ajalvir, km. 4. 28850 Torrejón de Ardoz, Spain 

*PhD Student at University of Alcala 

+PhD Student at University Carlos III de Madrid 

 

Key Words: Machine learning, Data mining, Aerodynamic analysis, Computational fluid 

dynamics, Reduced order modelling. 

Abstract. Machine learning entails powerful information processing algorithms that are 

relevant for modelling, optimization, and control of fluids. Currently, machine-learning 

capabilities are advancing at an incredible rate, and fluid mechanics is beginning to tap into the 

full potential of these powerful methods. Many tasks in fluid mechanics, such as reduced-order 

modelling, shape optimization and uncertainty quantification, may be posed as optimization 

and regression tasks. Machine learning can dramatically improve optimization performance and 

reduce convergence time. 

In this paper, the potential of tree-based machine learning techniques for the aerodynamic 

prediction of pressure coefficients of an AIRBUS XRF1 aircraft wing-body configuration has 

been assessed. For this purpose, a dataset including computational fluid dynamics (CFD) 

simulations has been employed to train the different models, with and without the use of proper 

orthogonal decomposition (POD) and having their hyperparameters values optimized to obtain 

the optimal subspace. A deep comparison of decision tree regressors and random forest 

algorithms has been performed, showing that the random forest regressor model performs better 

on all configurations. 
 

1 INTRODUCTION 

Nowadays, the use of Computational Fluid Dynamics (CFD) simulations is a common practice 

in aeronautical industries due their level of maturity. Such companies use intensively CFD to 

estimate aerodynamic data for a configuration of interest (e.g., an aircraft component). The 

obtained data from CFD runs are commonly then analysed by experts that take certain decisions 

for instance, regarding the optimal design of the configuration or its optimal performance. 

However, due the recent evolution of data-driven techniques, companies are now starting to 

store the results of the CFD simulations, so it is possible to use all these data with multiple 

purposes. One of these purposes, is to use the data for training a machine learning model that 

is capable to reproduce the behaviour of the CFD solver in terms of prediction of some 

aerodynamic features in a fast and reasonable accurate manner, opposite to the intensively 

computations, that the CFD codes usually require to execute. Machine learning models, which 

rely on being data-driven, arises long ago as a solution to reduce computational time, even on 

highly constrained configurations [1]. 

Coefficient prediction in aerodynamics is one of the main challenges to solve in fluid mechanics 

among others such as flow field prediction [2] or turbulence modelling [3]. 
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In this paper, a comparison of different tree-based models for aerodynamic coefficients 

prediction is proposed. The selected test case is the XRF1 model, provided by AIRBUS. XRF1 

is an Airbus-provided industrial standard multi-disciplinary research test/case representing a 

typical configuration for a long-range wide body aircraft. The XRF1 research test/case is used 

by Airbus to engage with external partners on development and demonstration of relevant 

capabilities / technologies.  

 

This paper summarizes part of the work done within the GARTEUR project ML4AERO [4] 

where INTA and other partners evaluate different machine learning methods for aerodynamic 

analysis, uncertainty quantification and propagation in the context of data-driven aerodynamic 

modelling. The dataset consists of different CFD simulations, which were competed using the 

TAU solver for two different Reynolds numbers and (Re = 2.5×107 and 4×107). The flight 

condition parameters swept the whole envelope of the proposed aircraft, ranging the values of 

the Mach number from 0.5 to 0.95, and computing the polar for angles of attack spanning from 

−12º to 15º. 

2 REVIEW OF THE STATE-OF-THE-ART 

 

The following review of the state-of-the-art focuses in the use of machine learning techniques 

for the prediction of aerodynamic features in the aeronautical sector. 

 

In the last five years, there have been several publications in this topic. Some of them have 

focused on the application of random forest models to predict the high-fidelity Reynolds-

averaged Navier-Stokes (RANS) flow field, namely, the pressure, velocity, and turbulent 

viscosity [2] [5]. Others have researched in the use of local ML methods, as for instance in [6], 

where it is proposed a so-called Local Decomposition Method that makes use of machine 

learning tools to group the solutions of the training sample into homogeneous clusters and then 

build a model for each region.  

 

The use of machine learning models to predict unsteady aerodynamics features has been also 

an interesting topic, regarding the recent publications. For instance, in [7] authors propose an 

unsteady aerodynamics and dynamic stall model using a long short-term memory variant of 

recurrent neural networks. The developed ML-based model was able to capture the key physics 

associated with dynamic stall, such as the precedence of moment stall before lift stall and cycle-

to-cycle variations in the aerodynamic response. In addition, in [8], a machine-learning model 

for modelling time-dependent dynamics is used to construct an unsteady aerodynamic reduced-

order model, which considers the variation of the airfoil geometry. 

 

Given the amount of data that it is obtained from different data sources, such as simulations, 

the applicability of reduce order modelling (ROM) techniques are highly implemented on 

different areas such as on improving the performance of CFD  [9], or in machine learning to 

speed up the fitting process of the models implemented and to reduce the computational cost 

[1]. In [10] is proposed the use of one of the ROM techniques called principal component 

analysis (PCA) for the structural optimization in different aerodynamic conditions using finite 

elements (FE). The proper orthogonal decomposition (POD) is also presented as another option 

in [11] to use along with the implementation of a surrogate model, based on steady turbulent 

aerodynamic fields in different conditions, to predict coefficients at diverse velocities. In 
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nonlinear structures, Isomap is introduced as a solution technique that tries to obtain an 

approximated low-dimensional nonlinear manifold solution with its associated local invers 

mapping process, for example, in [12] Isomap is developed to obtain an accurate prediction of 

shocks for different airfoils, while comparing it against the POD and the full-order CFD model.  

 

Advanced neural networks have been also applied to this purpose, as for instance, in [13] where 

a deep learning model, named Dual Convolutional Neural Network (Dual-CNN) is developed 

and applied for the aero-engine turbines, or in [14] where a model for prediction of multiple 

aerodynamic coefficients of airfoils based on a convolutional neural network was proposed. 

 

Finally, application of ML methods in the aerodynamic design optimization process has been 

also the subject of very recent publications [15] [16] [17] [18]. In particular, [15] provides an 

extensive review of ML applications contributing to aerodynamic design optimization from 

three fundamental perspectives: compact geometric design space, fast aerodynamic analysis, 

and efficient optimization architecture. 

3 DESCRIPTION OF THE METHODS AND TOOLS 

In this section, the different methods that will be applied in this paper are briefly introduced. 

References to the details and mathematical formulation of each of the methods are provided. 

3.1 CART (Classification And Regression Trees) 

Classification and regression trees algorithms, initially developed by Breiman et al. [19] 

consists of a process of nested decision rules, where observed data pass through each decision, 

from a prediction space, into another prediction space following a top-down, greedy approach 

through a binary splitting process, to obtain a final value that enters in the output space, 

determined by the algorithm stopping criterion defined. 

 

Different metrics can be used to determine the best split, such as the squared error or the 

absolute error from the prediction statement as well as a maximum threshold to set the length 

of a subtree and prevent a poor prediction through the test phase. 

 

Currently, regression tree algorithms are grouped inside the CART algorithms set. While a 

regression tree algorithm is used to predict a numerical label, a classification tree belongs for 

categorical data. 

3.2 Random Forest  

The use of decision trees for data prediction on big datasets can cause the model to be overfitted 

on the process; this means that the model only learned the association locally using a greedy 

algorithm that tries to minimize the error on each split. A solution for that can be the 

implementation of bagging technique, described by Breiman et al. [20], which randomly selects 

the number of predictors spaces for each tree created to reduce the high variance that a single 

decision tree can contain while calculating the accuracy to be the best. The use of bagging 

technique can cause correlation between some trees and as a result, the prediction could be 

erroneous. 

 

Random forest technique [21] comes out as another option that tries to reduce this correlation 

while using the bagging technique. Instead of using the same amount of data to be considered 
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on each split of each tree, random samples of data are taken on each one, which increment the 

variation that each decision tree contains and reduce the correlation of each one. 

3.3 POD  

The proper orthogonal decomposition (POD) is a numerical method, typically implemented to 

be able to solve Navier-Stokes equations [22], which aims at obtaining a low-dimensional linear 

basis from the description approximation of a high-dimensional process.  

 

The POD is a model reduction technique that allow identifying a set of POD modes that 

correlates between the original data and the new orthonormal basis vectors limited by that 

number of modes. The POD contains several interpretations [23]. The first interpretation uses 

the POD as the Karhunen-Loève decomposition (KLD); the other interpretation includes the 

use of KLD, the principal component analysis (PCA) [24], and the singular value 

decomposition (SVD). In this article, the SVD has been used among other methods for a data 

analysis approach. 

 

SVD factorize a matrix A of type MxN into three matrices shown in equation (1). 

𝐴 = 𝑈𝛴𝑉𝑇  (1) 

Where U is denoted as [u1, u2,… um], that refers to the left-POD modes, is an MxN matrix of 

the orthonormal eigenvectors of AAT, VT , V is denoted as [v1, v2,… vn], that refers to the right-

POD modes, is the transpose of an NxN matrix containing the orthonormal eigenvectors of ATA 

and Σ is an NxN diagonal matrix of the singular values denoted in (2, which are the square roots 

of the eigenvalues of ATA.  

Σ = [
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

] 

(2) 

One of the key properties of the SVD implemented in this work is the possibility to approximate 

each one to specific low rank matrices that can still represent the same information [25]. This 

truncation technique consist on choosing a reduced number of modes given the rank of the Σ  

matrix, so that the most energetic ones are kept for its reconstruction and therefore, the most 

relevant features are conserved. In this work, the threshold to stablish how many modes was set 

to 99% 

3.4 Optuna  

Optuna [25] is a python library that provides several functionalities for optimization of the 

hyperparameters, which can be applied not also on a function of type f(x), but also for 

hyperparameter tunning on a machine-learning algorithm to obtain the best configuration. 

 

Optuna uses a technique called Sequential model-based optimization (SMBO or Bayesian 

optimization) [26] which is used for the evaluation of different parameters associated on 

problems that requires intensive computations for real physical problems like tunnel prediction 

modeling [27] or the prediction of axial compressors [28] or for aircraft design [29]. 

 

SMBO algorithm iterates over a surrogate function, which in this article uses the Tree Parzen 

Estimator (TPE) [30], to optimize the parameters selected previously on the target function. 

This process will require to quantify it over a custom defined metric through a Bayesian 

machine learning technique, usually a Gaussian regression, to narrow down the current space 
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of parameters, defined in this surrogated function, that the target can take, as shown in Figure 

1. 

 

Figure 1: Basic Pseudo-code for Bayesian optimization taken from [26] 
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4 METHODOLOGY 

A global approach has been followed through the training, test, and validation process on the 

database, were the 3D coordinates associated to the mesh nodes are not taken in consideration 

as values to train the models, however, the data is sorted by CaseID and by origin coordinate 

system of each configuration, which allows to speed up the model fitting part. Once the database 

is pre-processed, the optuna module is used to find the optimal sub-space of hyperparameters 

based on the custom loss function defined in equation (1) through 500 evaluations for the 

Decision Tree Regressor and 500 evaluations for the Random Forest algorithm (with and 

without using the ROM model).  

For the POD model, hyperoptimization cannot be implemented intrinsically, however the 

number of POD-modes has been optimized from a range of it and where the minimum value is 

the number of modes is the one that keeps at least the 99% of information. 

The space of hyperparameters declared for the optimization can be quite large into a point where 

the number of combinations can be made up to ~20 million and random forest optimization can 

take a lot of time, as hundreds of trees of different depth are built. In order to fasten the search 

process, a reduce space of hyperparameters have been selected. 

The evaluation process of the models usually contains a training part, where train/test data is 

used to make the model learn from input and output data, and a validation data, where the model 

will predict output data from input data that the model have not previously known. In this case, 

instead of dividing the train-test and validation process independently, the validation data is 

appended to the test data as another entry in the data to be tested, afterwards, the metrics are 

also calculated for each case, which are shown in equation 2. 

𝐿(𝑦, 𝑦) = 0.5𝑀𝐴𝐸(𝑦, 𝑦) + 0.5(1 − 𝑅2(𝑦, 𝑦)) (2) 

 

After all the models have been built, based on the metrics obtained, the best-fitted models 

results are selected to visualize them in terms of real vs predicted coefficient data and X/c vs 

predicted coefficient data. 

 

A diagram of the aforementioned process is shown in Figure 2. It consists of two parts; the first 

one contains the model creation for the different configurations over the sub-space optimization 

founded with the optuna module on tree-based algorithms. The SVD technique is also applied 

on both cases for the evaluation of the models on the next part. In the second part, the r-squared, 

mean absolute error, mean squared error, maximum error and EVS metrics are used to evaluate 

each model for the POD and no POD processes to select the best and use them in the validation 

process, where validation data were extracted from each dataset previously.  
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Figure 2: Diagram overview of the methodology: (a) Input data on the left. (b-c) no ROM model block and 

ROM model. (e) As the backmapping process. (d) Regression models implemented in the middle. (f) Output data 

in low middle block. 

Two datasets (“2p5g_Sting_on_HTPoffVTPon_SST” and “m1g_Sting_On_HTPoffVTPon_SST”) were 

generated from the same turbulence model and same mesh under different Mach and Alpha conditions, 

this allows to join both into a single dataset for model evaluations. 

Table 1: Configurations used for model comparisons. 

2p5g_Sting_on_HTPoffVTPon_SST 

m1g_Sting_On_HTPoffVTPon_SST 

Datasets with CFD data of the XRF1 with 

sting and VTP, using SST turbulence model. 

No_Sting_HTPoffVTPon_EARSM Dataset with CFD data of the XRF1 without 

sting and with VTP, using EARSM 

turbulence model. 
 

5 NUMERICAL RESULTS 

Table 2 shows the results for the best combination of hyperparameters for the minimum loss 

function, regarding the model and the optuna module in terms of metrics for tree-based 

algorithms without ROM. In the table, the metrics calculated for the 500 iterations of the 

random forest were not possible, as the computational resources needed were higher than 

expected, instead, the grid search methodology was performed over a reduced number of 

variables for each hyperparameter. As can be observed, on the test dataset, the decision tree 

performs better for all configurations, while the random forest metrics were lower. This issue 

is probably explained by the fact that the decision tree could have overfit the data. To investigate 

it, the k-fold technique has been implemented, whose results are displayed on Table 3. The 

disperse range of results along all 5 k-fold might indicate that even with a meshless approach, 

overfitting can happen. On the other side, the limited range of values for the random forest 

process shows that more iterations could improve the metrics for the model generated. 

 

Table 2: Metrics for each model on which combinations of type of algorithm hand hyperparameters are 

optimized. 
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Configuration Model Dataset R2  MAE MSE RMSE Maximum 

error 

EVS 

2p5g_Sting_on_HTPoffVTPon_SST 

and 

m1g_Sting_On_HTPoffVTPon_SST 

Decision 

tree 

 

Test 
0.937 0.056 0.0168 0.1004 

 

1.324 0.929 

Validation 0.949 0.054 0.021 0.1089 1.373 0.914 

Random 

forest 

 

Test 
0.916 

 

0.076 

 

0.024 0.1415 1.411 

 

0.887 

Validation 
0.917 

 

0.078 

 

0.026 0.1454 1.408 

 

0.885 

No_Sting_HTPoffVTPon_EARSM 

 

Decision 

tree 

 

Test 0.925 0.068 0.020 0.1143 1.531 0.927 

Validation 
0.901 0.080 0.032 0.1373 1.833 0.902 

Random 

forest 

 

Test 0.904 0.098 0.026 0.1448 1.328 0.907 

Validation 
0.874 0.126 0.037 0.1736 1.488 0.876 

 

Table 3: Metrics for the first two configuration on a 5 k-fold with decision tree algorithm. 

K-fold Dataset R2  MAE MSE RMSE Maximum error EVS 

1 

 

Test 0.7856 0.1215 0.0565 0.200 2.3142 0.7881 

Validation 0.8928 0.0720 0.0277 0.1222 1.7839 0.8938 

2 

 

Test 0.8918 0.0788 0.0182 0.1235 1.1649 0.8938 

Validation 0.9167 0.0624 0.0194 0.1091 1.7559 0.9191 

3 

 

Test 0.8405 0.1026 0.0402 0.1718 2.0796 0.8489 

Validation 0.9120 0.0658 0.0220 0.1129 1.7733 0.9152 

4 

 

Test 0.7891 0.1082 0.0384 0.1633 2.3070 0.7932 

Validation 0.8809 0.0711 0.0255 0.1186 2.1435 0.8827 

5 

 

Test 0.8194 0.1137 0.0412 0.1670 1.15994 0.8505 

Validation 0.8911 0.0787 0.0285 0.1309 1.83593 0.9009 

 

The optimal hyperparameters calculated for the best model are shown in Table 4. Because the 

three configurations are made for the XRF1 wing profile, the hyperparameters for each dataset 

should not tend to vary too much as well as their metrics, for that, their values have remain the 

same for each model. 

Table 4: Hyperparameters associated to the best models for each dataset from Table 2 

Configuration Model  Max 

depth 

Min 

samples 

split 

Min 

samples 

leaf 

Estimators Bootstrap 

2p5g_Sting_on_HTPoffVTPon_SST 

m1g_Sting_On_HTPoffVTPon_SST 

No_Sting_HTPoffVTPon_EARSM 

Random 

forest 
4 3 2 400 True 

 

 

Table 5 shows the metrics for the best combination of hyperparameters for the minimum value 

of the loss function after 500 iterations on the random forest model with POD. 

 

In comparison to Table 2, the metrics obtained reveal that the application of the truncated POD 

technique, reduces the precision of each model due to the loss of information, however, given 

the mathematical complexity that the POD technique require, the metrics are reasonable enough 

to indicate that the POD and, by extension, any ROM technique could be included together with 

machine learning algorithms. 

 

Table 5: Metrics for each model on which the combinations of type of algorithm and use of truncation have 
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been made for the configurations data whose hyperparameters have been optimized. 

Configuration Model Dataset R2 MAE MSE RMSE Maximum 

error 

EVS 

2p5g_Sting_on_HTPoffVTPon_SST 

and 

m1g_Sting_On_HTPoffVTPon_SST 

 

Random 

forest 

 

Test 0.8876 0.0781 0.0259 0.1295 1.7053 0.8897 

Validation 0.8925 0.0748 0.0234 0.1215 1.8036 0.8950 

No_Sting_HTPoffVTPon_EARSM 

 

Random 

forest 

 

Test 0.9486 0.0552 0.0148 0.0937 1.1692 0.9499 

Validation 0.9041 0.9041 0.0322 0.1353 1.6515 0.9061 

The optimal hyperparameters calculated for the best models are shown in  

Table 6. As well as in Table 2, the hyperparameters for all three configurations do not differ 

between each other. 

 

Table 6: Hyperparameters associated to the best models for each dataset from TABLE3 

Configuration Model  nPODModes Max 

depth 

Min 

samples 

split 

Min 

samples 

leaf 

Estimators Bootstrap 

2p5g_Sting_on_HTPoffVTPon_SST 

m1g_Sting_On_HTPoffVTPon_SST 

No_Sting_HTPoffVTPon_EARSM 

Random 

Forest 
371 15 6 3 300 True 

 

Even though different configurations have been tested, for the sake simplicity, in this 

manuscript, only the representation associated to the “2p5g_Sting_on_HTPoffVTPon_SST” 

configuration is shown. 

 

Figure 3 shows a comparison of the pressure coefficient (Cp) for the validation case with Mach 

and Alpha values of 0.9040 and 6 respectively. In a), b) and c) random forest with POD 

correlates better than the random forest without POD. Even for both predictions, they are no 

able to predict accurately near the root and kink, which can be seen at e) and f) error distribution 

figures. 
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Figure 3: (a-c) Cp distribution for Mach of 0.9040 and Alpha 6 at wing sections 10%, 50% and 90%. Solid grey 

line for input Cp, short dashed red line for Cp from random forest and large dashed blue line for Cp from the 

random forest with POD. (d) Error regression representation between Cp’s predicted. (e,f) prediction error for 

the Cp distribution for random forest with POD(e) and random forest without POD (f). 

Figure 4 shows a comparison of the pressure coefficient (Cp) for the validation case with a 

Mach and Alpha values of 0.8840 and 9.75 respectively. In this case, random forest with POD 

performs better at n = 50 and n = 90 (b and c).  These results can be seen in the error distribution 

at e) and f), where the root prediction is worse with the random forest with POD model. 
 

 

Figure 4: (a-c) Cp distribution for Mach of 0.8840 and Alpha 9.75 at wing sections 10%, 50% and 90%. Solid 

grey line for input Cp, short dashed red line for Cp from random forest and long dashed blue line for Cp from the 

random forest with POD. (d) Error regression representation between Cp’s predicted. (e,f) prediction error for 

the Cp distribution for random forest with POD (e) and random forest without POD (f).  
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7 CONCLUSIONS AND FUTURE WORK 

This paper describes a study of different tree-based algorithms for the prediction of the pressure 

coefficient values using a global approach on the wing surface of the XRF1 dataset. The 

approach consists of two steps. In the first step, the data is pre-processed and the optimized 

hyperparameters are searched by using the optuna module for the decision tree and random 

forest algorithms with and without using the ROM model. In the second step, once the 

hyperparameters are found, the metrics are calculated for the testing data and validation data. 

After the whole process is done, the results reveal that the application of the random forest 

algorithm for each configuration obtains better results in terms of the metrics stablished.  

 

Even though the models generated without using ROM modelling show better metrics, the 

complexity and amount of data that each tree needs to manipulate without dimensional 

reduction, make the possibility that each model generates overfitting, which means that its 

prediction results are only adjusted to the training data and do not generalize well for other 

dataset. For that, the models trained with the ROM method that appear on  

Table 5 are selected to be the most reliable among all. 

 

The surface along the wing does not follow a linear regime, as some areas are affected distinctly 

under different conditions, and therefore other reduction techniques that works under non-linear 

environments, such as Isomaps, could be implemented. Another approach to follow along with 

the ROM modelling refers to neural networks (NN). Given the amount of data that each 

configuration has, NN can be a solution to manage them properly and create models that 

overcome the previous models generated. Graph or convolutional neural networks are options 

to take into account, where the mesh as well as the connection between coordinates are also 

considered in the machine-learning model. 
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