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Abstract. Certain two and three dimensional numerical solutions to the adjoint Euler equations 

have a value at and near the surface of wings and airfoils that depends strongly on the mesh 

density and which does not converge as the mesh is refined. The purpose of this paper is to 

characterize this problem and offer insights as to the possible explanation of this unusual 

behavior. 
 

 

1 INTRODUCTION 

Recently, it has been shown [1] that in two and three dimensions, certain numerical adjoint 

solutions to the Euler equations have values at and near the surface of wings and airfoils that 

depend strongly on the mesh density and which do not converge as the mesh is refined. This 

phenomenon has been observed for lift-based adjoint solutions for any subcritical or transonic 

flow condition, while for drag-based adjoint solutions it has only been observed in transonic 

rotational flows.  

The problem seems to be rather generic, as it has been found in solutions obtained with 

continuous and discrete adjoint schemes and with different solvers. Increasing the numerical 

dissipation with mesh refinement does not qualitatively change the behavior, although the 

actual value of the adjoint at the wall strongly depends on the level of numerical dissipation. It 

was conjectured in [1] that this behavior is likely caused by the adjoint singularity at the sharp 

trailing edge, although an understanding of the actual mechanism was lacking.  

Here, we offer some new insights concerning this problem. We analyze its dependence on 

the far-field distance and resolution, and also explore a different cost function measuring far-

field entropy flux, which shows the same behavior as the near-field drag. Finally, we show that 

the mesh-divergence is also correlated to the adjoint singularity along the incoming stagnation 

streamline [2], and it appears also in flows past blunt bodies without sharp trailing edges. 

Finally, numerical experiments with point sources hint at a singular behavior at the wall, the 

nature of which is briefly discussed.   
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2 CHARACTERIZATION OF THE PROBLEM 

To introduce the problem, we examine a fairly simple example: the drag-based adjoint 

solution for inviscid transonic flow past a NACA0012 airfoil with sharp trailing edge at Mach 

number M∞ = 0.8 and angle of attack α = 1.25º. The solution obeys the Euler adjoint equation 

0T

UF    with adjoint wall boundary condition ( , )x y S Sn d n      and dual characteristic 

b.c. ( ) 0T

U S
F n U    at the far-field. Here 1 4( , , , )T

x y      is the adjoint state, UF  is 

the flux Jacobian, U  is the linear flow perturbation, Sn  is the wall normal vector and 

(cos ,sin )d    ( ( sin ,cos )d    for lift). This case should be straightforward to solve 

numerically, but turns out to yield unexpected results. Plotting the adjoint values on the airfoil 

profile across several mesh levels, one would expect to see a singularity at the trailing edge [3] 

and also at the shock and the entrance to the supersonic zone, with the solution along the 

remainder of the profile remaining stable or progressively converging over successive mesh 

levels. This is not what is observed: instead, the numerical solution diverges across the entire 

airfoil profile as the mesh density increases (Figure 1-left) 

  

Figure 1. Drag adjoint solution on a NACA0012 airfoil at 0.8M  , 1.25o  computed with DLR’s Tau code 

[4] on 6 progressively refined meshes. Left: ψ1 on the airfoil. Right: Numerical vs. analytic wall adjoint b.c. 

 The wall b.c. ( , )x y S Sn d n      is reasonably well obeyed across mesh levels except in the 

immediate vicinity of the trailing edge (Figure 1-right). Likewise, sensitivity derivatives are 

actually quite accurate and fairly stable across mesh levels (Figure 2). 
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Figure 2. NACA0012 airfoil with 0.8M   and 1.25o  . Adjoint-based (left) and finite-differences drag 

gradients (right). Design variables correspond to local Hicks-Henne deformation functions. 

The first thing to note is that this behavior is not limited to a particular code or scheme: it 

appears in solutions obtained with continuous and discrete adjoint codes and with different 

solvers and schemes, including unstructured, cell-vertex codes such as DLR’s Tau and Stanford 

U. code SU2 [5] (see Figure 3), ONERA’s structured, cell-centered ELSA code [6], and others.   

 

Figure 3. Drag adjoint solution for NACA0012 airfoil at 0.8M   and 1.25o   with Tau 

continuous and discrete adjoint solvers and SU2 continuous adjoint solver. 

Secondly, the issue also occurs in three dimensional inviscid flows (Figure 4, left), while 

viscous adjoint solutions, on the other hand, do not appear to be affected (Figure 4, right).  
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Figure 4. Left: Inviscid lift adjoint solution for an ONERA M6 wing with 0.84M   and 0o   on 4 mesh 

levels. Right: Viscous lift adjoint solution for a NACA0012 airfoil at Re = 5000, 0.5M   and 2o  . 

2.1 Dependence on cost function and flow regime 

 The issue depends on the cost function and flow regime as follows:  

1. drag-based adjoint solutions are only affected for transonic rotational flows. Non-

singular (i.e., mesh converging) cases are shown in Figure 5 (notice that the t.e. 

singularity is missing in all cases). 

2. Lift-based adjoint solutions show this behavior for any (subsonic and transonic) flow 

condition (Figure 6), and in all cases the t.e. singularity is present. 

3. Supersonic lift or drag-based adjoint solutions do not show this behaviour (Figure 7). 

 

Figure 5. Non-singular drag adjoint solutions for a NACA0012 airfoil  
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Figure 6. Lift adjoint solutions for a NACA0012 airfoil with different flow conditions. 

  

Figure 7. Lift adjoint solution for a NACA0012 airfoil at 1.5M   and 1o  . 

 A different cost function 
farfield

J sv nds  , measuring far-field entropy flux, shows the same 

behavior as the near-field drag (Figure 8). This is important as the output function is not based 

on near-field computations and, accordingly, the wall boundary condition is simply 

( , ) 0x y Sn     in this case [7]. 

 

Figure 8. Adjoint of the far-field entropy flux for a NACA0012 airfoil with various flow conditions. 
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2.2 Dependence on far-field and trailing edge geometry 

 The problem is rather insensitive to far-field distance and resolution (Figure 9), as well as to 

the details of the implementation of the adjoint far-field b.c. It is also qualitatively insensitive 

to the trailing edge geometry (Figure 10). 

 

Figure 9. Drag adjoint solution for a NACA0012 airfoil with 0.8M   and 1.25o  . Effect of distance to 

farfield (in airfoil chords units) and far-field resolution (number of cells in ff). 

 

Figure 10. Inviscid drag adjoint solution at with 0.8M   and 1.25o   for a modified NACA0012 airfoil 

with progressively reduced wedge angle. 

In fact, similar issues are observed in flows past blunt bodies such as the 6:1 ellipse shown 

in Figure 11. Mimicking the analysis in [2], the adjoint solution in this case shows a 1/r 

singularity at the rear stagnation point (but not at the rear stagnation streamline) even without 

a sharp trailing edge. 
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Figure 11. Inviscid lift adjoint solution for a 6:1 ellipse with 0.2M   and 0o  . 

2.3 Relation to adjoint singularities 

As we have already mentioned, the problem is accompanied by the presence of an adjoint 

singularity at the trailing edge (Figure 12) but also at the incoming stagnation streamline (Figure 

13). In those cases where the adjoint is not singular at those locations, the mesh divergence 

problem is also absent. 

 

Figure 12. NACA0012: surface adjoint values and plots of adjoint momentum vector ( , )x y  . 
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Figure 13. Contour plots of the first component of the lift and drag-based adjoints for a NACA0012 airfoil for 

several flow conditions. 

2.4 Effect of dissipation 

 Adjoint solutions for flows with shocks can show an anomalous behaviour with mesh 

refinement if insufficient dissipation is applied across the shock [8] (such adjoint solutions 

require an internal adjoint b.c. that is usually not enforced explicitly, hence the need for 

additional dissipation). With that in mind, the second dissipation of the JST scheme has been 

modified (including dissipation increasing with mesh size as N1/2D , where N is the number of 

grid nodes and D is the number of spatial dimensions) without significant qualitative changes 

in the behavior, see Figure 14. 
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Figure 14. Drag adjoint solution for the NACA0012 airfoil at 0.8M   and 1.25o   with the JST scheme 

 (2) (4)

: :
( ) ( ) ( )ij ij i j ij k i k jk i k j

d U U U U U U         and modified 2nd dissipation coefficient (2) . 

On the other hand, the actual value of the adjoint solution at the wall has been seen to depend 

on the dissipation level. Focusing on a subcritical case, where it is safe to set (2) 0  , it turns 

out that, on a given mesh, the adjoint solution depends strongly on the dissipation level, in such 

a way that reducing the dissipation actually mimics the effect of mesh refinement (Figure 15) 

  

Figure 15. Lift adjoint solution for the NACA0012 airfoil at 0.5M   and 0o   with 4th order dissipation  

 (4)

: :
( ) ( )ij ij k i k jk i k j

d U U U U      and different values of the JST dissipation parameter 4k . 

3 POINT SOURCE PERTURBATIONS 

Green’s functions are closely related to adjoint equations. If G is a Green’s function obeying 

the linearized Euler equations ( ( , )) ( ) ( )UF G x y f y x y    , then its effect 

( ) ( ) ( )J y J U G J U     on a cost function J can be alternatively computed as 

( ) ( ) ( )TJ y y f y   where   is the adjoint solution corresponding to J. Choosing the source 

vectors f in a clever way (such that the resulting J is easy to compute), it is possible to obtain 

information about the adjoint solutions. This program was completed with a closed-form 

solution for the adjoint quasi-1D Euler equations in [9] and initiated for the 2D Euler equations 

in [2], where the following four linearly independent source vectors representing mass, normal 

force, enthalpy and total pressure perturbations, respectively, were considered  
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  (1) 

(here 5 ( , )x yJ v    ). The above choices are interesting because 1J  is related to the 

(continuous) adjoint-based lift/drag gradient (see for example [10]) 

     1( )p p
S S S
C n d ds C n d ds n v J ds


          (2) 

(S denotes the wall surface, and the first part contains the geometric variation of the objective 

function); 2J  approaches ( , )S x yqn    as the insertion point approaches the wall, where 

( , )S x yn    is fixed by the adjoint b.c.; 3J  is identically zero for pressure-based cost 

functions such as lift or drag; finally, 4J  was conjectured in [2] to lead to a non-uniform mass 

perturbation along the streamline downstream the insertion point that would be responsible for 

the adjoint singularity along the incoming stagnation streamline.  

It has been recently pointed out [6] that computing iJ  with a numerical solution can shed 

light on the structure of adjoint solutions and, particularly, on the problem at hand. iJ  can be 

computed either as T

if  (with a suitable numerical adjoint solution) or with a linearized flow 

solution. The latter can be approximated via finite differences as ( ( ) ( )) /i iJ J U J U   , 

where   is the step size1, iU   is the numerical solution of the perturbed non-linear flow 

equations ( ) ( )a i ab i bR U f x   and aR  is the integrated non-linear residual at mesh node a. 

Carrying out this analysis shows that, for drag or lift, 1J , 2J  and 3J have relatively small 

gradients near the wall and are fairly stable as the mesh is refined (which explains why both the 

sensitivity derivatives and the adjoint b.c. behave well with mesh refinement), while 4J  grows 

strongly towards the wall (see Figure 16). Actually, for a given point, mesh refinement does not 

change much the value, but as finer meshes are considered the perturbation point can be placed 

closer to the wall. The latter behavior is also shared by 5J , which would correspond to a force 

applied in the local flow direction. Further experimentation (not shown) indicates that placing the 

perturbation point directly at a wall node yields a finite value for both 4J  and 5J  which 

grows as the mesh is refined.  

                                                 
1 The value of the step size is taken as ε = 10-9 in all cases.  Results obviously depend on the choice of step size, 

which was not optimized for accuracy for all perturbations, although a reasonable effort was made to determine 

an acceptable value by scanning a large range of values 10-4 ˗10-10 and choosing the step size that did not 

significantly change the results. 
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Figure 16. NACA0012 with M∞ = 0.8 and α =1.25º. Left: plot of δJi  for drag on mesh 3 (1.85 × 105 nodes) 

computed as ψTfi along a vertical line at x/c = 0.5. Right: δJ4 computed via finite-differences on 6 sequentially 

refined meshes at selected points along the line x/c = 0.5. 

4 SUMMARY AND DISCUSSION 

 We have shown that 2D and 3D inviscid continuous and discrete adjoint solutions are 

generically strongly mesh dependent at and near walls and do not converge as the mesh is 

refined. Lift-based adjoint solutions are affected for any flow condition (subsonic or transonic), 

while drag-based adjoint solutions are affected for transonic lifting flows. As this issue has been 

observed in totally unrelated solvers with different schemes, we assume that the mesh 

dependence is not caused by a bug or an inconsistency of the adjoint scheme.  

 Mesh dependence of adjoint solutions has been observed for shocked flows and can be cured 

with carefully tuned levels of dissipation at the shock [8], but the problem we are dealing with 

here also appears in non-shocked flows and is largely insensitive to dissipation levels at the 

shock region. A certain amount of (local) mesh dependence can also be expected near adjoint 

singularities (the trailing edge, the shock foot, the supersonic characteristic, the stagnation 

streamline, the entrance to the supersonic zone along the wall, etc), but in our case the mesh 

dependence extends to all the wall boundary. The fact that it is correlated with the trailing edge 

singularity led us at first to conjecture that the problem is a numerical effect caused by the t.e. 

singularity. However, recent evidence ([6] and Figure 16) shows that there might actually be an 

adjoint singularity along the wall (with the same origin as the one along the incoming stagnation 

streamline). The presence of a singularity at the wall would certainly explain the behavior (it 

appears that, without dissipation, the adjoint values would grow unbounded), but it would 

remain to determine if the singularity is of numerical or analytic origin and, in the latter case, 

how a singular (i.e. infinite) adjoint solution could be reconciled with the adjoint wall b.c. For 

the numerical solution, 1 4, , ,x y     appear to diverge while the quantities

1 1 4( , )x yJ v H        , 2 x yJ v u        and 1 1
3 1 42 2H

J      remain finite, so 
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this could offer a hint of the mechanism at work in the case that there is an analytic singularity 

at the wall. Such singularity was not found, though not completely excluded either, in [2] by 

the analysis of adjoint solutions using the Green’s function approach. He have analyzed 4J  

near the wall as was done in [2] for the stagnation streamline, but this approach has not yielded 

any useful result so far, neither in the simple plane stagnation-point potential flow 

approximation considered in [2], nor in a more complex case involving potential flow around a 

circular cylinder. In both cases, 4J  tends to zero as the insertion point approaches the wall. 

However, our analysis is based on the simple linearized solution 

 1

4 0 1, , 0
( , ) ( ) ( )( ) / ( / ) ( , ( ,0))

p H
u x s n q U p dm ds u x x s ds


  


       H  

derived in [2], which is incomplete (it does not obey the linearized equations  

4 4( ( , )) ( ) ( )UF u x f x       ), and the complete solution is far more complex to analyze.  

We intend to address these issues in future work.  
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