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Animating the development of Social networks over time 
using a dynamic extension of multidimensional scaling

Loet Leydesdorff, Thomas Schank, Andrea Scharnhorst, and Wouter de Nooy

Abstract: The animation of network visualizations poses technical and theoretical challenges. Rather stable patterns are 
required before the mental map enables a user to make inferences over time. In order to enhance stability, we developed an 
extension of stress minimization with developments over time. This dynamic layouter is no longer based on linear interpo-
lation between independent static visualizations, but change over time is used as a parameter in the optimization. Because 
of our focus on structural change versus stability the attention is shifted from the relational graph to the latent eigenvec-
tors of matrices. The approach is illustrated with animations for the journal citation environments of Social networks, the 
(co)author networks in the carrying community of this journal, and the topical development using relations among its title 
words. Our results are also compared with animations based on PajekToSVGAnim and SoNIA.

Keywords: Animation, Network, Network visualization, Dynamic, Stress, Structure, Evolution.

Título: Animación de la evolución de la revista Social networks en el tiempo utilizando una ex-
tensión dinámica del escalado multidimensional.

Resumen: La animación de la visualización de una red plantea desafíos técnicos y teóricos. Se necesitan patrones es-
tables para que los usuarios puedan hacer inferencias a través del tiempo. Con el fin de mejorar la estabilidad, hemos 
desarrollado una extensión de la mínimización del estrés en diagramas que evolucionan a lo largo del tiempo. Este visua-
lizador dinámico no se basa en la interpolación lineal entre visualizaciones estáticas independientes, sino que el cambio 
con el tiempo se utiliza como parámetro en la optimización. Debido a nuestro enfoque cambio estructural versus esta-
bilidad, hemos desplazado nuestra atención del grafo relacional a los vectores-eigen latentes de matrices. El método se 
ilustra con animaciones para el entorno de citas de la revista Social networks, las redes de (co-)autores en la comunidad 
de dicha revista, y la evolución de temas usando relaciones entre palabras de los títulos. Nuestros resultados se comparan 
con animaciones basadas en PajekToSVGAnim y SoNIA. 
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Introduction

When one extends the visualization of networks 
at each moment in time to the animation of these net-
works over time, one encounters a number of technical 
and theoretical problems. The technical ones involve 
the stability of the representation because the human 
mind needs to be able to entertain a mental map on the 
basis of the animation (Misue et al., 1995; Moody et 
al., 2005; Bender-deMoll & McFarland, 2006). The 
pattern in the representation has to be stabilized while 
computer layouts can be mapped, rotated, and sized in-
dependently from one instant to another, using criteria 
like stress-minimization. The consequent series may be 
distorted or discontinuous to such an extent that one 
would no longer be able to draw a mental map or to 
infer hypotheses about network growth or structural 
changes from the resulting animations.

More fundamentally, the adjacency matrix of a net-
work contains only relational information, not coordi-
nates of the nodes in a metric space. In a static represen-
tation of a network, positions can be deduced from the 
network of relations. In a dynamic animation, however, 
the researcher may precisely be interested in changes in 
positions of nodes. This would require relative stability 
in positioning the nodes (and not the links). Boerner et 
al. (2005), for example, solved this problem by using 
the last map in a time series to fix the positions of the 
nodes, and backtracked from this map to its evolution 
over time by erasing nodes and links from the perspec-
tive of hindsight, while keeping the positions constant. 

The visualization program Pajek (De Nooy et al., 
2005)1 allows for a strategy in which one first generates 
a configuration using the aggregate of networks over 
time as a baseline. Given this initial layout, one can then 
use the positions at each time t as a starting point for the 
optimization at time t + 1. The sequence thus generated 
can be saved and used as input to PajekToSVGAnim.
exe2. This program generates an SVG-animation that 
can be brought online. Using their program Social Net-
works Image Animator (SoNIA)3, Moody et al. (2005) 
define time windows that span sets of relational events. 
The time windows (“bins”) can be overlapping or not. 
In these animations the nodes move as functions of re-
lationships (Bender-deMoll et al., 2006). The anima-
tions of SoNIA can be exported as QuickTime movies. 

In this study we take an approach different from the 
interpolation between independent snapshots at differ-
ent moments in time. We submit a dynamic extension 
of social network analysis based on stress minimiza-
tion and multidimensional scaling (MDS). Stress can 
be minimized both at each instant in time and over time 
(Baur & Schank, 2008). This algorithmic approach to 
the problem of relating static and dynamic represen-
tations was recently implemented in Visone, another 
publicly available program for the visualization of so-
cial network data. A version of this program with the 
dynamic extension is available online at

http://www.leydesdorff.net/visone/index.htm

The potential of our approach is illustrated below 
with animations of: (1) the position of the journal So-
cial networks among other journals in its citation impact 
environment (1994-2006), (2) the development of the 
co-author networks in Social networks during the pe-
riod 1988-2007, (3) the topical network in terms of co-
occurrences of title words, and (4) the knowledge base 
of the publications in Social networks in terms of their 
aggregate references to other journals. Furthermore, the 
pros and cons of using this new algorithm for the anima-
tion are discussed in relation to PajekToSVGAnim.exe 
and SoNIA as two (non-commercial) alternatives.

Theoretical and methodological 
considerations

When two or more visualizations are generated for 
different moments in time, one is intuitively inclined to 
attribute the observable change to changes in the sys-
tem under study. However, one should be aware that 
the positions of nodes and links in the visualization of 
a network are due to algorithms which optimize the 
visualization using different criteria for the layout, for 
example, in order to avoid the unnecessary crossing of 
edges. Any map remains a projection in two dimen-
sions of a multi-dimensional object. Thus, changes in 
the visualization over time can be attributed to develop-
ments in the system to be visualized or differences in 
the optimizations and/or the angle of the projection. 

If one considers the relationships as variables de-
veloping over time and in relation to one another, one 
would have to consider the partial differential equations 
for all these variables. This would lead to an analyti-
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cally almost never solvable problem. At issue is that a 
hidden variable may cause dependency relations among 
the observable variables. If one is interested in evolv-
ing structures, for example, eigenvectors of the matrices 
(underlying the networks) can be considered as such 
hidden variables. Indeed, the hypothesis of eigenvectors 
is based on assuming spurious correlations among the 
observables. If both the factor loadings and the factors 
themselves are allowed to vary over time, the models 
become unidentifiable without further assumptions.

Latent dimensions can be reconstructed from the 
observable data, for example, by using factor analysis 
or MDS (in our applications, we sometimes use one-
mode data, e. g., co-authorship relations, but in most 
cases we use two-mode data, e. g., words as variables 
versus documents as cases). For the purpose of mul-
tivariate analysis the (rectangular) attribute matrix 
or, in graph-theoretical terms, the two-mode network 
(Wasserman; Faust, 1994, at pp. 29-30, 154) must 
first be transformed into a (square) matrix of similari-
ties or dissimilarities. A pattern of shared attributes can 
be transformed into a similarity score, e. g., a Pearson 
correlation coefficient (Wasserman; Faust, 1994, at 
p. 386). If the similarity matrix is based on the sym-
metrical adjacency matrix, however, the results can no 
longer be expected to reflect the (eigen-)structure in the 
data (Leydesdorff; Vaughan, 2006)4.

In summary, positional information can be extract-
ed from, e. g., a Pearson correlation matrix generated 
on the basis of an attribute matrix. The extraction can 
be done algorithmically using factor analysis (MDS, 
principal component analysis, correspondence analy-
sis5, etc.) and/or by human pattern recognition on the 
basis of the information contained in a similarity ma-
trix (or a visualization thereof). Using MDS, one previ-
ously had to pencil groupings and relations into the re-
sulting visualizations of positions (Leydesdorff, 1986; 
Leydesdorff; Cozzens, 1993). Network visualization 
programs, however, have the advantage over traditional 
MDS that the links, partitions, and clusters can be visu-
alized by the software. 

Ahlgren et al. (2003) argued that the Pearson cor-
relation is inferior to the cosine for the purpose of 
showing similarities in the case of sparse (attribute) 
matrices. Normalization to the mean (as in the case of 
a Pearson correlation) can then be counterproductive. 
Technically, the cosine is equal to the Pearson cor-
relation coefficient, but without the normalization to 
the mean (Jones; Furnas, 1987; Leydesdorff; Zaal, 
1988)6. Using the cosine matrix as input to the visuali-
zation, one visualizes a vector space (Salton; McGill, 
1983). The vector space has a topology different from 
the relational space since it represents coordinates. Dis-
tances in it are positional measures of similarity in the 

distributions of relations. In this study, we shall reflex-
ively use both topologies.

Stress minimization

The projection of a multi-dimensional object into 
fewer dimensions requires the minimization of stress 
in the projection. Network visualization programs use 
algorithms for this which differ from traditional MDS. 

Kruskal; Wish (1978) defined the stress value for 
MDS as follows (cf. Borgatti, 1998):

  (2)

In terms of network analysis, || x
i
 – x

j 
|| is the actual 

distance in the layout between each pair of nodes i and 
j, whereas the parameter d

ij
 in this formula represents 

the graph-theoretical distance making the shortest path 
between these two nodes. Note that i and j now refer to 
different columns (or rows) in a symmetric similarity 
matrix.

In their seminal work, Kamada; Kawai (1989) re-
formulated the problem of achieving graph-theoretical 
target distances in terms of energy optimization. They 
formulated the ensuing stress in the graphical represen-
tation as follows:

  (3)

Equation 3 differs from Equation 2 not only be-
cause of the square root, but more importantly because 
of the weighting of each term with 1/d

ij
2 in Equation 3. 

This weight is crucial for the quality of the layout, but 
defies normalization with ∑ d

ij
2 in the denominator (as 

in Equation 2). In other words, the two stress values 
cannot be compared. 

Kamada; Kawai (1989) used a gradient descent 
method to iteratively minimize the stress according to 
Equation 3. Gansner et al. (2005) improved on Kama-
da; Kawai’s algorithm by minimizing the majorant of 
S. This function can be minimized efficiently by using 
matrix methods. In a number of empirical case studies, 
these authors showed that their approach leads to faster 
convergence, is less sensitive to local minima, and im-
proves on the remaining stress. Furthermore, the mini-
mization of the majorant can be implemented using an 
algorithm that is more compact than that of Kamada; 
Kawai (1989). The minimization is performed locally 
and, therefore, can more easily be modified. 

Leydesdorff; Schank (2008) used this opportunity 
for addressing the problem of how to relate static and dy-
namic layouts. The dynamic stress function is provided 
by the following equation (Boitmanis et al., 2008):
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  (4)

this context; 146 of these co-authors were part of the 
largest component in any of the years under study, and 
therefore included in the analysis. 

Using the Journal citations reports of the (Social) 
Science citation index, aggregated journal-journal cita-
tion data is additionally available in electronic format 
since 1994 and till 2006. Dedicated routines were used 
to construct aggregated journal-journal citation matri-
ces from this data using Social networks as the seed 
journal. All journals with a citation relation to Social 
networks were included in the analysis, in the ‘cited’ 
and ‘citing’ dimension, respectively (this leads to two 
different citation matrices). Note that an aggregated 
journal-journal citation matrix is asymmetrical (cited 
versus citing), and therefore two structures can be ana-
lyzed. We shall first focus on the citation impact envi-
ronment of Social networks, that is, all journals citing 
articles from Social networks (Leydesdorff, 2007a). 

Similarity matrices (using the cosine as similarity 
criterion) were constructed on the basis of the column 
vectors of the two-mode matrices. Because the cosine 
varies between zero and one, a threshold has to be set8. 
In most cases, we shall use cosine ≥ 0.2 as a (relatively 
arbitrary) threshold value9. Nodes that did not attach to 
the aggregated component(s) in any of the years under 
study were removed to reduce noise in the animations. 

Visone allows for the attribution of centrality values 
to the nodes which can be used for coloring or sizing 
the nodes in the animation. In the dynamic version, en-
durance of the nodes over the years can additionally be 
visualized as shades of colors. Links (edges and arcs) 
can be qualified both in width and color according to 
their respective values. In this study, animations were 
screen-captured and recorded using BlueBerry’s Flash-
back™. This program allows for editing of the anima-
tions and export into the flash format which is ready for 
upload on the Internet. 

Results

a. Aggregated journal-journal citation structures

In the early 1980s several research teams more or 
less at the same time and independently realized that 
aggregated journal-journal citation listings, as provided 
by the Journal citations reports (JCR) of the (Social) 
Science citation index could be used for the generation 
of networks which exhibit structure in scientific com-
munication (Doreian; Farraro, 1985; Leydesdorff, 
1986; Tijssen et al., 1987). The JCR data has been avail-
able in electronic format since 199410. The time series 

In Equation 4, the left-hand term is equal to the 
static stress in Equation 3, while the right-hand term 
adds the dynamic component, namely the stress be-
tween subsequent years. If the weighting factor ω for 
this dynamic extension is set equal to zero, the method 
is equivalent to the static analysis, and the layout of 
each time frame is optimized independently. The dy-
namic extension penalizes drastic movements of the 
position of node i at time t (x

i,t
) toward its next position 

(x
i,t+1

) by increasing the stress value. Thus, stability is 
provided in order to preserve the mental map between 
consecutive layouts so that an observer can identify 
corresponding graph structures. 

In other words, the configuration for each year can 
be optimized in terms of the stress in relation to the so-
lutions for previous years and in anticipation of the so-
lutions for following years. In principle, the algorithm 
allows us (and Visone enables us) to extend this to more 
than a single year, but in this study the optimization is 
extended by only one year in both directions (that is, 
including t + 1 and t – 1). Note that this approach is 
different from the approach that takes the solution for 
the previous moment in time as a starting position for 
iterative optimization along recursive trajectories. The 
nodes are not repositioned given a previous configura-
tion, but the entire previous and next configurations are 
included in the algorithmic analysis for each year.

Methods and materials

In order to demonstrate the new algorithm, we 
apply it to a number of scientometric analyses of the 
journal Social networks. The relevant publication and 
citation data were harvested from the Web-of-Science 
edition of the Social science citation index for the pe-
riod 1988-2007 on January 27, 2008. The document 
set of 425 titles corresponds to the volumes 10 to 29 
of the journal7. These data were used to construct two-
mode matrices (for each of the years) of documents as 
cases versus authors, title words, and cited references, 
respectively, as variables. Dedicated software routines 
for these purposes are made available by one of us at

http://www.leydesdorff.net/software.htm 

Words listed as stopwords at

http://www.uspto.gov/patft/help/stopword.htm 

were excluded from the co-word analysis. Single occur-
rences of variables in each year were also deleted; 165 
title words occurred more than once in a single year. 
Among the 445 authors publishing in Social networks 
during this period, 364 co-authored with one another in 
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contains the information required to study the chang-
ing patterns of citations among journals, for example 
in the case of interdisciplinary or emerging develop-
ments in the sciences. These aggregated developments 
are beyond control of individual agents and, therefore, 
provide us with a potential baseline for measuring the 
effects of (e. g., governmental) interventions and prior-
ity programming (Studer; Chubin, 1980, at pp. 269 
ff.; Leydesdorff, 1986; Leydesdorff et al., 1994; Ley-
desdorff; Schank, 2008). 

The journal Social networks was established in 
1978. The corresponding field of network analysis be-
came topical among scholars in other disciplines in the 
aftermath of the emergence of the Internet during the 
1990s (Scharnhorst, 2003). Algorithms developed by 
social network analysts such as various forms of cen-
trality (Freeman, 1978/1979; Wasserman; Faust, 
1994) became core concepts in the newly emerging 
network sciences. Did this change the citation impact 
of Social networks itself? Did the journal become a hub 
in an increasingly interdisciplinary network among so-
cial scientists, applied mathematicians, and physicists 
interested in the distributional properties of the Inter-
net? 

Leydesdorff (2007b) added that betweenness cen-
trality in the vector space might be used as an indicator 
of interdisciplinarity of a journal, and illustrated this 
with Figure 2 for the citation impact environment of 
Social networks.

Figure 1: Number of publications (n) and impact factors (t), Social	
networks 1994-2007

Figure 1 shows the development of the number of 
publications and the impact factor of Social networks 
since 1994. Both the size and the impact of the journal 
have increased steadily since 2003. However, the im-
pact factor is a global measure that, while it may vary 
dramatically among fields of science, does not inform 
us about where the journal has impact in terms of fields 
of science (Leydesdorff, 2008a). 

Leydesdorff (2007a) suggested the use of local ci-
tation environments of specific journals instead of glo-
bal impact factors, and brought these environments on-
line as cosine matrices for all journals in the ISI-set at 

http://www.leydesdorff.net/jcr07

Figure 2: The local citation impact environment of Social	networks	in 
2004 (sizes of nodes are proportional to betweenness centrality in the 

vector space; cosine ≥ 0.2)

Figure 2 provides the local citation impact11 en-
vironment of Social networks 2004 in the format that 
we shall use in the animations. The sizes of the nodes 
correspond to the betweenness centrality and the co-
lor shades to endurance in this citation environment. In 
2004, Social networks functioned as a bridge between 
two social science clusters (sociology and organization 
studies), a computer science cluster including some 
statistics journals, and, related via the Journal of ma-
thematical sociology, a physics cluster. The time series, 
however, will inform us that this interdisciplinary posi-
tion was exceptional rather than the rule.

Figure 3 shows the local citation environment of 
Social networks in 2006. In this year, papers in Social 
networks were cited by papers in 78 journals, of which 
63 were related to the main component with a cosine 
value larger than or equal to 0.2. Two major clusters 
are involved in most of the recent years: one among 
journals in sociology and another among journals in 
organization and management studies. Social networks 
itself is part of the former cluster. 

The animation at

http://www.leydesdorff.net/journals/socnetw/index.htm

teaches us that during the period under study, Social 
networks has been part of the cluster of sociology jour-
nals in most of the years, while journals in organization 
and management studies increasingly became part of 
its citation impact environment. In some years, the ci-
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tation impact of Social networks reaches beyond these 
two sets. However, this position cannot be sustained, as 
shown in Figure 4, which reveals the development of 
the betweenness centrality of Social networks during 
these years12. In the terminology of nonlinear dynamics 
and chaos theory, one could say that the journal makes 
excursions from its basin-of-attraction in some of the 
years, but thereafter returns to its disciplinary position. 

Social networks in recent years has increased, this has 
not changed its disciplinary identity. 

The transposed matrices provide us with the citing 
structures of Social networks. In this case, the relevant 
citation environment consists of all journals from which 
articles are cited in Social networks in a particular year. 
The corresponding animation can be retrieved from

http://www.leydesdorff.net/journals/socnetw/citing.htm

While the citation impact environment provides us 
with a visualization of the relevant environment of So-
cial networks as a source, this animation provides us 
with an impression of the citation behavior of authors 
within the journal: how do these authors reconstruct 
their field in terms of relevant references? 

In terms of cited references made by authors within 
the journal, Social networks is embedded in a sociology 
set of journals even more firmly than in the cited dimen-
sion. Journals in social psychology provide a more contin-
uous source of references than organization and manage-
ment studies, although in more recent years the latter have 
become increasingly important. The relation with social 
psychology in the (re)construction of this field is under-
standable given the important role of this discipline in the 
genesis of social network analysis (Freeman, 2004).

In summary, the journal cannot be considered as an 
interdisciplinary journal in its contribution to the recon-
struction of aggregated journal-journal relations; it is 
rather a specialist journal with citation impacts outside 
sociology as a discipline. In the terminology of Gould; 
Fernandez (1990), Social networks can be considered 
as a representative of sociology journals.

Figure 3: 63 journals in the local citation environment of Social	networks	in 2006

Figure 4: Betweenness centrality of Social	networks	in its citation 
impact environment

In summary, Social networks is primarily part of a 
set of journals in sociology. In most years, it is well em-
bedded in this group of journals that relates as a group 
with journals in management and organization studies. 
In some years, Social networks is cited in a larger cita-
tion environment including journals in physics and ap-
plied mathematics, but this is an exception rather than 
the rule. In spite of the fact that the citation impact of 
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b. The co-author network among publications in So-
cial networks

For the co-authorship analysis we use a dedicated 
routine available at 

http://www.leydesdorff.net/software/coauth/index.htm

for each respective volume of Social networks during 
the period 1988-2007. As noted, this routine provides 
us in each year with the (two-mode) attribute matrix, 
the cosine-normalized matrix, and the adjacency ma-
trix. In the case of co-authorship analysis, we focus 
on the adjacency matrices for the animation because 
co-authors form a relational network. The animation is 
brought online at

http://www.leydesdorff.net/journals/socnetw/coauth/
index.htm

As noted above, the 425 documents in volumes 10 
to 29 of Social networks were written by 445 unique 
authors, of whom 146 co-authored during the period 
under study as participants of a main component. Fig-

ure 5 first shows the aggregated MDS of this compo-
nent (Brandes; Pich, 2007).

This graph visualizes the carrying community of the 
journal and specialty. At the top left, one finds schol-
ars developing new statistical methods for social net-
work analysis. These are Exponential Random Graph 
Models analyzed by Mark Handcock in Washington, 
Garry Robins in Melbourne, and coworkers (Robins; 
Morris, 2007; Robins et al., 2004, 2007a, and 2007b), 
statistical estimation of longitudinal network data ana-
lyzed by a group around Tom Snijders in Groningen 
and Oxford (Baerveldt; Snijders, 1994; Van Duijn et 
al., 1999; Lubbers; Snijders, 2007; Snijders, 1990; 
Van Der Gaag; Snijders, 2005), and Bonacich’s con-
tinuous work with coworkers on (eigenvector) centrali-
ty (Bonacich, 1991, 2007; Bonacich et al., 1998, 2004; 
Bonacich; Lloyd, 2001, 2004). 

The interest in social ties centered around Barry 
Wellman and his NetLab at the University of Toronto 
(Mok; Wellman 2007; Plickert et al. 2007; Suitor et 

Figure 5: MDS map of the main component of 146 co-authoring authors in Social	networks 1988-2007
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al., 1997; Wellman, 1996, 2007; Wellman et al., 1991, 
1997) is represented by a Canadian dominated cluster at 
the bottom left. The bottom right features the Slovenian 
group around Vladimir Batagelj and Anuška Ferli-
goj working on Pajek software and algorithms (Bat-
agelj; Mrvar, 2000, 2001), blockmodels with Patrick 
Doreian (Batagelj, 1997; Batagelj et al., 1992a and 
b; Doreian et al., 2004a and b), and measurement va-
lidity (Coromina et al., 2008; Ferligoj; Hlebec 1999; 
Hlebec; Ferligoj, 2001; Kogovsek; Ferligoj, 2005; 
Kogovsek et al., 2002). 

At the middle right, one finds the first scholars 
who worked on statistical models for (random) net-
works including Stanley Wasserman (Anderson et 
al., 1992, 1999a; Wasserman; Anderson, 1987), John 
Skvoretz and Thomas J. Fararo (Fararo; Skvoretz, 
1984; Fararo et al., 1994; Skvoretz, 1982, 1985, 1990, 
1991; Skvoretz et al., 2004). They are linked to other 
parts of the network by other pioneers of social net-
work analysis, notably Katherine Faust (Anderson et 
al., 1992; Faust, 1988, 1997; Faust et al., 2000, 2002; 
Faust; Wasserman, 1992) and Kathleen M. Carley 
(Anderson et al., 1999b; Borgatti et al., 2006; Carley; 
Krackhardt, 1996; Hummon; Carley, 1993; Sanil et 
al., 1995).

At the top right, we retrieve the Florida-based group 
around H. Russell Bernard, Peter D. Killworth and 
Christopher McCarty (Bernard et al., 1990; Johnsen 
et al., 1995; Killworth et al., 1998; Killworth et al., 
2003, 2006; McCarty et al., 1997; Shelley et al., 1995) 
specializing in data collection13. In the center, we find 
scholars who have contributed to social network analy-
sis on diverse fronts for a long time, including Linton 
C. Freeman (Freeman, 1996; Freeman et al., 1991, 
1998; Freeman; Duquenne 1993; Keul; Freeman, 
1987; Ruan et al., 1997), Ronald Breiger (Breiger, 
2005; Breiger; Pattison, 1986; Pattison; Breiger, 
2002), Martin G. Everett and Stephen P. Borgatti 
(Borgatti; Everett 1989, 1992a, 1992b, 1993, 1994, 
1997, 2000, 2006; Everett; Borgatti, 1988, 1990, 
1993, 1996, 2000, 2005), Philippa Pattison (Lazega; 
Pattison, 1999; Pattison, 1988; Pattison; Breiger, 
2002; Robins et al., 2001, 2004, 2007a and b), David 
Krackhardt (Borgatti et al., 2006; Carley; Krack-
hardt, 1996; Friedkin; Krackhardt, 2002; Krack-
hardt 1988; Krackhardt; Kilduff, 2002; McGrath 
et al., 1997), and Douglas R. White (Freeman et al., 
1991; White; Duquenne, 1996; White, 1996; White; 
Borgatti, 1994; White; Jorion, 1996)14. For several of 
these authors Social networks has been a primary outlet 
for publications and some of them are or have been (as-
sociate) editors of this journal. 

In summary, the multidimensional scaling of the 
aggregated co-authorship network groups the found-

ing fathers and mothers of social network analysis as 
a methodology with branches representing more spe-
cialized developments. Some of these developments 
are rather recent, such as the new statistical models and 
generalized blockmodeling, while other specialties are 
almost as old as social network analysis itself such as 
issues of network data collection and the analysis of 
random graphs. 

Figure 6a shows the configuration in 2007. Twen-
ty-two authors belonging to the large component are 
authoring or co-authoring in this year (the five single-
authored presences are related to the main component 
because of co-authorship relations in other years). In 
summary, co-authorship relations in a specific year pro-
vide us only with instantiations of the network that is 
formed by this community. The observable structures 
of each year show how the relations vary, given a back-
ground of communal interests.

In Figure 6b, the map of 2007 (Fig. 6a) is superim-
posed on the aggregated network for the same year. In 
the animation, available online at

Figure 6a: The author and co-author map of Social	networks 2007

Figure 6b: The 2007 map of Fig. 6a superimposed on the aggregated 
network 1988-2007
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http://www.leydesdorff.net/journals/socnetw/coauth/
au_aggr.htm

this aggregate of relations over the years is added as a 
background. The animation begins with the full picture 
of the configuration in 1988 (Figure 5 above). In sub-
sequent years, various authors from the periphery are 
drawn into the circle by co-authorship relations. A core 
group is thus shaped whose members, however, are not 
visible in terms of single-authored or co-authored pub-
lications in visualizations for each year separately. 

If we focus on the movements of authors within the 
center, that is, watch the movements of authors that are 
already in the center of the network, we see that Lin-
ton C. Freeman is moving around a lot in the first part 
of this period, signifying that he is collaborating with 
people working in diverse specialties. This also applies 
to Douglas R. White. It seems apt to conceive of them 
as pioneering generalists. In the later part of the period, 
Stephen P. Borgatti and, to a lesser extent, Kathleen 
M. Carley, are the most volatile nodes. They seem to 
represent generalists of the second generation, combin-
ing work on network-analytic methodologies in general 
with a specialization in substantive applications15.

In summary, the sparseness of the co-author net-
works and the clarity of the aggregated collaboration 
network, suggest that the mental map is improved by 
animating the accumulative network (retaining all pre-
vious collaborations as changes to the structure of rela-
tions). This collective construction is not visible on a 
year to year basis, but a structure among the central 
authors is reproduced in terms of authorship and co-au-
thorship by a carrying community. As the community 
of (co)authors is constructed over the years, their net-
work is increasingly contracted towards a center.

c. Title words

During the period 1988-2006, 165 title words oc-
curred more than once in a single year, and were in-
cluded in the analysis (after the correction for stop-
words). An animation of this is provided at

http://www.leydesdorff.net/journals/socnetw/ti/index.
htm

Through the course of time, we see particular is-
sues reappear, notably centrality, measurement and 
measure, and concepts relating to data collection. Less 
frequently, concepts related to balance, blockmodels or 
equivalence appear. Sometimes, special issues are re-
sponsible for the appearance of tightly connected clus-
ters of concepts, e. g., in the case of the special sections 
on personal networks and exponential random graphs 
in 2007 or the special issue on network analysis of in-
fectious diseases in 1995. Due to the low frequency at 
which topics reappear, obvious title words such as ‘net-

work’ and ‘social’ are indispensable for the continuity 
throughout this animation.

When the same animation is shown against the 
background of all title words included at

http://www.leydesdorff.net/journals/socnetw/ti/ti_aggr.
htm

the point made above about co-authorship relations can 
be made with even more saliency: the title words in 
each year are specific instantiations of a semantic struc-
ture in the relevant repertoire (Figures 7a and 7b). This 
repertoire does also contract: the words at the margin 
are drawn into the center when used, and this reshapes 
the network to some extent. However, after a while suf-
ficient structure is available in the background to pro-
vide a mental map against which the variation can be 
recognized as instantiations of a vocabulary. 

In other words, in each year topical issues addressed 
in journal articles draw on the vocabulary of a discourse 
which is shaped and reproduced at the level of the spe-
cialty. The title words in the publications of each year 
provide a specific selection from this larger repertoire.

Figure 7a: Semantic map of title words in Social	networks 2003

Figure 7b: The semantic map for 2003 as an instantiation of the 
vocabulary



620

Loet	Leydesdorff,	Thomas	Schank,	Andrea	Scharnhorst,	and	Wouter	de	Nooy

El profesional de la información, v.17, n. 6, noviembre-diciembre 2008

d. Title words from Google Scholar

Would this volatility in the representations not be 
a consequence of the relatively small samples in each 
year? As shown in Figure 1 above, the number of 
publications per year is approximately 20 until 2003. 
Thereafter, it climbs to 45 in 2007, but this is still a 
limited set. Adding other journals (e. g., the Journal 
of mathematical sociology) to the set would not really 
solve this problem –because twice a small set remains a 
small set– but might even lead to more heterogeneity in 
the sets. Another option would be to include words in 
the abstracts of the articles under study, but this contex-
tualization would also add a systematic source of vari-
ance (Leydesdorff, 1989). 

Large sets on specific topics in scholarly publica-
tions can nowadays easily be generated at the Internet, 
for example, by using Google Scholar. Using the search 
string ‘intitle:“social network” OR intitle:“social net-
works”’, 6,071 titles were harvested on March 25, 2008 
from Google Scholar. The distribution of these titles 
over the years is provided in Figure 8. 

The semantic structure in which the networks for 
each year appear is more constant than in the previous 
animation. In the later years, that is, when more words 
are involved (see the second line in Figure 8), the oc-
cupation of this structure in each year is increasingly 
dense, and the instantiations therefore show more of 
the underlying structure (we used ω = 4 for the stability 
factor (Eq. 5) in this case in order to stabilize the men-
tal map; otherwise, the instantiations remained too vol-
atile from year to year). Like in the previous case, each 
event changes the structure, but the change in structure 
is less than the change in the variation. 

Figure 8: Number of hits with the title words “Social Network” or 
“Social Networks” for various years using Google Scholar (25 March 

2008)

Indeed, this set is an order of magnitude larger than 
the one based on the journal Social networks. After cor-
rection for the stopwords, 5,632 words occur 46,692 
times of which 2,676 appear only once, and hence 
2,956 more than once. After removing ‘social’ and 
‘network’ –because these were the connecting words 
which therefore would dominate all visualizations– we 
used the 172 remaining words which occurred eight or 
more times in any single year. The resulting animation 
is brought online at

http://www.leydesdorff.net/socnetw/googlescholar/
index.htm

Figure 9: The network of 87 words instantiated in 2007 superimposed 
on the aggregated network of 172 words for the period 1994-2007 

(N = 6071; cosine ≥ 0.1; ω = 4)

Figure 9 shows the instantiations of 2007 against 
the structural background of the repertoire. It is worth 
noting that more technical concepts such as centrality, 
measure, equivalence, are hardly found. Instead, we 
find many title words relating to social networks such 
as social capital, as in having friends, relatives, or sup-
porters. The repertoire is dominated by concepts that re-
fer to less-privileged social groups, such as minorities, 
women, patients, and the elderly. In our opinion, scien-
tific communities studying social cohesion rather than 
the vocabulary of scholars developing techniques for 
social network analysis are retrieved. However, these 
communities are not separated from the more methodo-
logically oriented group around Social networks. 

In 2003, the software program Ucinet, developed 
by authors who are central in the Social networks co-
authorship network, surfaces in this repertoire. At first, 
technical matters seem mainly related to dynamic anal-
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ysis, while later in the period data mining and visuali-
zation appear in this domain. The words ‘method’ and 
especially ‘model’ move towards the center in more re-
cent years, suggesting that methodological issues pio-
neered in Social networks gain increasing prominence 
among scholars investigating social networks. The ti-
tles of most publications, however, focus on substan-
tive issues rather than technical ones.

It is interesting to backtrack the trajectories of the 
concepts that are most central in the 2007 network 
(Figure 10). Both the words ‘group’ and ‘method’ are 
central in this year. They appeared for the first time in 
the network in 2001, but at the margin, and immedi-
ately disappeared in the year thereafter. However, they 
were reintroduced in the network’s center in 2004 and 
2005, respectively, and remained there since. In con-
trast, the concepts ‘community,’ ‘capital,’ and ‘system’ 
progressed gradually towards the center of the net-
work after their introduction in 1995, 1998, and 2002, 
respectively. These words seem to have acquired new 
meanings in the course of time. 

‘Capital,’ for example, was first linked to ‘political,’ 
but thereafter it was tied to ‘relation’ and ‘community,’ 
suggesting that it is used increasingly in the context of 
interpersonal relations. In later years it is linked to ‘job,’ 
presumably due to Mark Granovetter’s (1995 [1974]) 
study entitled Getting a job. A study of contacts and ca-
reers. In the later period, ‘capital’ is also connected to 
‘business’ and ‘economic.’ In summary, ‘capital’ seems 
to have become a central catchword for the application 
of social network analysis across the social sciences. 

The words ‘community’ and ‘system’ show similar 
albeit less pronounced developments. ‘System’ is first 
linked to ‘economic’ and ‘analysis’ in the periphery, but 
it gradually expands its connections to other concepts, 
notably ‘method’. ‘Community,’ originally linked to 
‘health,’ gets links to very diverse concepts such as 
‘capital,’ ‘ethnic,’ ‘building,’ ‘online,’ ‘people,’ and 
‘group’. In this case, the dynamic visualizations show 
both a rather stable structure consisting of the main 
fields of application of social network analysis, and the 
dynamic rise of methodological reflection and theoreti-
cal concepts such as ‘capital’ and ‘community’.

Conclusions and discussion

A scientific journal can be considered as a niche of 
scientific communication entailing a specific set of au-
thors, words, and cited references. Each journal is part 
of a larger network system of scientific communica-
tion including the journals of very different disciplines 
(Bradford, 1934; Garfield, 1972). The network of ag-
gregated citation relations among journal relations can 
be considered as a next-order system (Leydesdorff, 
1995). This network system provides a frame for each 

single journal such as Social networks. The position of 
a journal in this reference system may change relation-
ally without changing the structural (e. g., disciplinary) 
dimensions of the system. From this next-order per-
spective, the citation relations of a journal in a specific 
year provide the variation, while structures are repro-
duced over the years. 

We have seen above that the perception of Social 
networks in terms of its being cited in these journal en-
vironments, varies over the years more than the focus of 
the references provided by the authors publishing in the 
journal. In the citing dimension, authors construct and 
reconstruct the identity of a journal, while in the cited 
dimension the archive is selectively reproduced. Since 
the citation behavior of authors publishing in this jour-
nal is more stable than the citation impact environments, 
the journal can be considered as community-based.

Because the disciplinary dimensions of the next-or-
der journal system are structural from the perspective 
of each journal, we used the vector space (that is, co-
sine-normalized matrices) for the respective animations 
in the “cited” and “citing” dimensions. This structural 
perspective enables us to organize the topology in terms 
of its latent dimensions. However, the construction of 
the discourse in the journal is carried by a community 
of authors who may or may not co-author with one an-
other from year to year. We used co-authoring as a re-
lational indicator for the bottom-up construction of the 
network. This bottom-up construction is relational, but 
the constructed system thereafter contains a structure 
that feeds back as a selection mechanism (e. g., qual-
ity control) on new variation by positioning the agents. 
As the network gravitates towards a coherent structure, 
codification of the discourse and therefore more codi-
fied citation patterns can increasingly be expected. 

For mapping the discourse we assumed the genera-
tion of a semantic structure (Leydesdorff; Hellsten, 
2005) and therefore adopted again the structuralist per-
spective of using cosine-normalized word-document 
matrices. The animations show how different domains 
in this semantic structure are instantiated in the vari-
ous years and how these events change the structure by 
introducing new relations. When the semantic domain 
was enlarged by delineating it using Google Scholar, 
the semantic structure became more stable. However, 
we seem to have measured a different set of scientific 
communities using this latter database, notably one 
with more focus on substance than methods. In general, 
the semantic networks for each specific instance (year) 
can be considered as a retention mechanism: as words 
are used, they are repositioned and the network is re-
constructed. The position of some words changes more 
than others while in each instantiation a large group of 
words also remains latent. 
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Are changes in the composition and structure of the 
impact and reference environments of Social networks, 
its author community, and its semantic map to be con-
sidered as structural or rather fluctuations? The anima-
tions serve us primarily to infer hypotheses about latent 
dimensions. For example, they may help us to designate 
changes in the structures which could be tested in terms 
of static factor analyses in each of the years. Is there 
reason to assume a change in the number of principal 
components to be included in the factor analysis? Our 
analysis seems to indicate that the disciplinary basis 
and function of the journal has not changed; changes 
can be considered as fluctuation within a prevailing pat-
tern. However, the use of specific layout and visualiza-
tion techniques makes changes visible. A comparison 
with other dynamic visualization tools may shed light 
on the nature of these changes. To what extent are they 
artifacts of our methods?

Skye Bender-deMoll was so kind as to feed our 
journal matrix of Social networks into SoNIA. The re-
sults were brought online as a QuickTime movie at 

http://skyeome.net/movies/leySnJournalII.mov

(mirrored at 

http://www.leydesdorff.net/socnetw/sonia/sonia.mov 

In this case, the animation itself explains the mech-
anism: all journals are initially placed on a circle and 
drawn into the network in the years that they are con-
nected. When the journals leave the network in another 
year, they return to an open position on the enveloping 
circle. The focus of SoNIA is on the events in the mid-
dle of the circle.

Using SoNIA, we tried to generate an animation in 
accordance with the animation shown above, at

http://www.leydesdorff.net/socnetw/sonia/index.htm

One recognizes the same structure as in the corre-
sponding animation using Visone, at

http://www.leydesdorff.net/journals/socnetw/index.htm

However, the drawing in of new journals from the 
(latent) circle disturbs the mental map in the case of 
the animation using SoNIA. The massive movement of 
appearing and disappearing journals prohibits a focus 
on the dynamics within the set of journals that remain 
in the layout.

The dynamic layout of Visone introduces new 
nodes (in this case, journals) in an anticipatory mode. 
The new nodes are introduced in the year before be-
cause the positions in the year (t + 1) are anticipatorily 
included in the computation of the year t, and so too are 
the positions in the year (t – 1). Thus, the new nodes do 
not come from an outer environment, but are generated 

within their context. Similarly, nodes can disappear lo-
cally. 

We also used the same matrices as input into Pajek-
ToSVGAnim.exe, and uploaded the resulting animation at

http://www.leydesdorff.net/socnetw/index.htm

The animation results generated using this routine 
are not essentially different from the ones generated us-
ing Visone, but for reasons specified above we submit 
that our results improve on these animations because 
they are not based on linear interpolations in a design 
that uses comparative statics. The differences might 
have been clearer if the trajectories had happened to 
diverge more significantly between these two anima-
tions. 

Nevertheless, if one focuses on the position of the 
journal Social networks in the animations, it is clear 
that the Visone approach produces much more stable 
results while still conveying the same information. In 
the animation produced with PajekToSVGAnim.exe, 
Social networks moves from one side of the sociologi-
cal cluster to the other from 1997 to 1998, and it moves 
from one side to the other and immediately back again 
between 2000 and 2002. Constraining movement to the 
preceding and following year is very effective in avoid-
ing this.

There is a fundamental difference between provid-
ing stability by using an initial layout (either common 
for all times or that of the previous moment), followed 
by an iterative layout procedure, and our approach that 
includes stability in the optimization. The outcome of 
the first approach can be stable or not; this depends on 
the relation to the layout at a previous point in time and 
the iterative procedure itself. The dynamic approach of 
Visone searches algorithmically for stability over time 
by considering the time axis as a third dimension of 
an array of matrices (networks) in which stress can be 
minimized. This approach allows for the extension to 
more than a single year in the future or the past, and can 
thus perhaps be made useful for our interest in the mod-
eling of intentional systems which communicate mean-
ing –meaning is provided from the perspective of hind-
sight!– in addition to information which is processed 
along the arrow of time (Dubois, 1998; Leydesdorff, 
2008b, 2009; Luhmann, 1984; White, 1992).

Notes
1. Pajek is freely available for non-commercial usage at http://vlado.fmf.
uni-lj.si/pub/networks/pajek/

2. PajekToSVGAnim.Exe is available at 
http://vlado.fmf.uni-lj.si/pub/networks/pajek/SVGanim/default.htm

3. SoNIA is available at 
http://www.stanford.edu/group/sonia/

4. The one-mode adjacency matrix or sociomatrix contains less information 
than the two-mode attribute matrix because it is generated by multiplying 
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the latter with its transposed. However, it is not possible to generate an attri-
bute matrix from the adjacency matrix.

5. In the case of (quasi-)correspondence analysis, the similarity measure is 
implied by the use of chi-square statistics (Faust, 2005; De Nooy, 2003).

6. The cosine is formulated as follows:

Cosine(x,y) =  (1)

where x
i
 and y

i
 refer to the score of the ith row (e. g., document) in column x 

or y (e. g., different words).

7. The download includes 10 more documents of the third and fourth issues 
of 1987 which appeared only in 1988 and were therefore included in the 
download, but not in this analysis. 

8. When one uses the Pearson correlation matrix, one can set the threshold at 
r ≥ 0 because r varies between -1 and +1. However, there is no one-to-one 
relation between the cosine and the Pearson correlation coefficient (Egghe; 
Leydesdorff, forthcoming).

9. In both SoNIA and Visone one can use the cosine-matrix without a thres-
hold for spanning the vector space, and thereafter use a threshold value 
only for the visualization. However, this option is not available in Pajek (De 
Nooy et al., 2005), and we used Pajek in this study for the pre-processing 
(see below). 

10. The Web-of-Science version became available in 1998.

11. The choice of the word ‘impact’ is to be considered technically. A refe-
rence can be expected to mean different things in different contexts (Ma-
cRoberts; MacRoberts, 1987; Leydesdorff; Amsterdamska, 1990).

12. The development of this betweenness centrality and the impact factor 
are not correlated (r = 0.07; n.s.).

13. The top (middle) cluster is an artifact resulting from the grouping of 
three different authors with the name Johnson. We intend to correct the 
software so that first initials are taken into account (next initials may gene-
rate error again because authors are not always using these next initials). In 
this case, however, two of these three authors would have had a “J” as their 
first initial.

14. Kevin White co-authoring with Susan Watkins in an article in 2000 
is not Douglas R. White who is involved in the other co-authorship ties in 
Social networks. 

15. Transition to the cosine-normalized matrices, available at
http://www.leydesdorff.net/journals/socnetw/coauth/cosine.htm 
does not change the nodes or their relations when compared with the ani-
mation based on the adjacency matrices. In this case, there are no large 
differences among the players (as there is among journals) and therefore 
normalization does not make much difference. 
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