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Abstract. The formulation and implementation of a finite-volume, multi-region, electromag-
netic solver into OpenFOAM, and coupled using preCICE is presented, to enable the solution
of electromagnetic problems with large material discontinuities.

1 INTRODUCTION

In this paper we present the formulation and implementation of a multi-region, electromag-
netic solver into OpenFOAM, coupled using preCICE [1]. The solver was developed to handle
large material discontinuities, which can typically not be handled using traditional, continuous
finite-volume based discretisation schemes.

To facilitate solving Maxwell’s equations using the finite volume method (FVM), the equa-
tions are formulated in terms of Coulomb gauged magnetic vector potentials and scalar electric
potentials. Complex, time-harmonic, phasor approximations are introduced to transform the
transient Maxwell equations into a set of quasi-steady equations, which account for the time
variations introduced by alternating currents. When posed in this form, large material discon-
tinuities result in severe numerical instabilities when solved using standard FVM discretisation
schemes.

Across a discontinuous interface, jump conditions exist in both the electric and magnetic
potential fields. Beckstein et al. [2] proposed resolving these discontinuities using embedded
FVM discretisation schemes, similar to those used in free surface flow modelling. More recently,
Saravia [3] presented a multi-region approach, where the discontinuities within the magnetic
potential field were treated with appropriate boundary conditions.

In the current work, we extend on the multi-region idea of Saravia [3], by further posing ap-
propriate jump conditions for the electric potential field interacting with time varying magnetic
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fields. The jump conditions for both the electric and magnetic potential fields are implemented
as Robin transmission conditions using preCICE, and solved using iterative subcycling. The
robustness and accuracy of the proposed solution procedure is demonstrated on a number of
appropriate numerical test cases.

2 GOVERNING EQUATIONS

Maxwell’s equations, describing the flow of current and magnetic fields through a permeable
medium is given by [4]

Gauss’s law ∇ ·D = ρ, (1)

∇ ·B = 0, (2)

Faraday’s law ∇× E = −∂B
∂t
, (3)

Maxwell-Ampere law ∇×H = ∂D
∂t

+ J, (4)

where E and H are the electric and magnetic field intensities, D the electric displacement, B
the magnetic flux field, J the current density and ρ the charge density. In addition to Maxwell’s
equations, we also have a charge continuity equation, given by

∂ρ

∂t
+∇ · J = 0. (5)

To close Maxwell’s equations requires constitutive relationships between D and E, and B and
H. Assuming a continuous, linear, permeable material [4],

B = µH = µ0µrH = µ0(1− χm)H, (6)

where µ is a given material’s magnetic permeability, µ0 = 4π × 10−7 the permeability through
vacuum, µr a material’s relative magnetic permeability, and χm a material’s magnetic suscep-
tibility. The relationship in (6) stems from the observation that exposing a permeable media
to an external magnetic field aligns the electrons spin, resulting in a macroscopic induced mag-
netisation, M. The induced magnetisation in turn results in an induced current Jm = ∇×M,
which is implicitly accounted for by the relationship in (6). The electric displacement, D is
related to E [4] by

D = ϵE, (7)

where ϵ is a given material’s electric permittivity, and finally Ohm’s law relates the current
density and electric fields [4], given by

J = σE, (8)

where σ is the isotropic, electrical conductivity.
In this paper, we limit our application of Maxwell’s equations to low frequencies (in the

order of Hz to kHz instead of MHz to GHz). As such, it is safe to neglect charge displacement
(i.e. ∂D

∂t
≈ 0), with no charge build up (∂ρ

∂t
= ρ ≈ 0) [5], which reduces Maxwell’s equations to

Gauss’s law ∇ · E = 0, (9)

∇ ·B = 0, (10)

Faraday’s law ∇× E = −∂B
∂t
, (11)

Maxwell-Ampere law ∇×B = µJ, (12)
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where the charge continuity equation reduces to

∇ · J = 0. (13)

Solving the partial differential equations, as posed in Eqs. (9)-(12), using the finite-volume
method is a non-trivial exercise, especially when applying generalised boundary conditions. To
this end, based on the solonoidal character of the magnetic flux field, and Faraday’s law, we
can introduce a magnetic vector potential field, A, and a scalar electric potential field, V , such
that [2, 3, 4]

B = ∇×A, (14)

E = −∇V − ∂A

∂t
. (15)

Substituting Ohm’s law (8) into the continuity equation (13), using the electric scalar po-
tential relationship (15), results in

∇ · (σ∇V ) = −∇σ
∂A

∂t
. (16)

Eq. (16) is strictly only valid if σ is continuous everywhere within a given domain [2]. To
treat potentially large material discontinuities, we propose in this paper using a decoupled
multi-region approach, which is further elaborated on in Section 4.

Similarly, inserting the magnetic potential relationship (14) into the Maxwell-Ampere law,
leads to the transport equation for the magnetic potential field, A,

∇×∇×A = µσ

(
−∇V − ∂A

∂t

)
. (17)

Using the Laplacian identity,∇×∇×A = ∇(∇·A)−∇2A, and the Coulomb-gauged assumption
of ∇ ·A = 0, Eq. (17) reduces to

µσ
∂A

∂t
−∇2A = −µσ∇V. (18)

2.1 Phasor representation

In many applications, the time-varying aspect of the electric magnetic fields are driven by
time-harmonic alternating source currents, typically described by

J = Jm cos (ωt+ θ) , (19)

where Jm is the physical amplitude of the current density, ω the case-specific angular frequency
and θ the current phase shift. Solving the transient set of equations, for moderate to high
frequencies would require solving for very small time steps. To circumvent this, and assuming
that all time variations are solely based on the time-harmonic input currents, it is possible
to introduce phasor approximations for the fields of interest, transforming the set of transient
equations into a set of quasi-steady equations.
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The phasor representation, or phasor transform [2], of Eq. (19) can be stated as

P{Jmcos(ωt+ θ)} = J

= Jmcosθ + jJmsinθ (20)

= Jme
jθ ⇒ Jm θ

where Jmcosθ and Jmsinθ represent the real, Re, and imaginary, Im, parts.
Similarly, V , A and B can be expressed in terms of their phasor transforms

V = Vme
(iωt+iθ) = VRe + iVIm, (21)

A = Ame
(iωt+iθ) = ARe + iAIm, (22)

B = Bme
(iωt+iθ) = BRe + iBIm. (23)

Applying the phasor notation to equations (16) and (18) yields a set of equations which are
now a function of complex numbers, given by the real, Re, and imaginary, Im, components,
such that

∇ · (σ∇(VRe + iVIm)) = − ∂

∂t
∇ · (σ(ARe + iAIm)) , (24)

∇2(ARe + iAIm), = µσ
∂(ARe + iAIm)

∂t
+ µσ∇(VRe + iVIm). (25)

Based on distributive properties involving gradient, divergence and curl operators, along with
the observation that two complex numbers can only be equal if the real and imaginary parts
are equal, i.e.

a+ jb = c+ jd ⇐⇒ (a = c and b = d) , (26)

the continuity equations (24) and (25), can each be split into independent real and imaginary
components such that

∇ · (σ∇VRe) = − ∂

∂t
∇ · (σARe), (27)

∇ · (σ∇VIm) = − ∂

∂t
∇ · (σAIm), (28)

∇2(ARe), = µσ
∂

∂t
(ARe) + µσ∇VRe, (29)

∇2(AIm) = µσ
∂

∂t
(AIm) + µσ∇VIm. (30)

Furthermore, since a harmonic solution was assumed, the temporal derivatives of A can be
evaluated analytically, where

∂ARe

∂t
= −ωAIm,

∂AIm

∂t
= ωARe. (31)

Inserting the analytical temporal derivatives into the continuity equations yields the following
final, quasi-steady, harmonic, electromagnetic equations

∇ · (σ∇VRe) = +∇ · (σωAIm) , (32)

∇ · (σ∇VIm) = −∇ · (σωARe) , (33)

∇2(ARe) = −µσωAIm + µσ∇VRe, (34)

∇2(AIm) = +µσωARe + µσ∇VIm. (35)
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3 TIME AVERAGED QUANTITIES OF INTEREST

In the numerical test cases to follow (Section 7), we report a number of post-processed
quantities, including Lorentz forces and material self-inductance. This section briefly sum-
marises these quantities of interest in terms of the time averaged values stemming from the
time-harmonic, phasor approximations.

The current distribution through a domain, induces thermal energy in the form of Joule
heating, which can be computed via [2, 4]

P = JE =
|J|2

σ
, (36)

for which the time-averaged RMS values can be obtained given the sinusoidally varying input
current as

Pavg =
1

2σ

(
J2
Re + J2

Im

)
. (37)

The Lorentz-force, induced by the interaction of current and the magnetic field is given by [2, 4]

F = J×B, (38)

where the time averaged Lorentz-force can then be defined as

Favg =
1

2
(JRe ×∇×ARe + JIm ×∇×AIm) . (39)

The stored magnetic energy is given by [4]

Wm =
1

2

∫
V

B ·HdV =
1

2

∫
1

µ
B2dV. (40)

The stored magnetic energy in turn is related to a material’s self inductance, L, and current I
via [4, 10]

Wm =
1

2
LI2. (41)

4 PARTITIONED, MULTI-REGION SOLUTION APPROACH

One of the primary issues when solving Maxwell’s equations, using continuum numerical
solution schemes, arises when dealing with material discontinuities. When solved for using
continuous discretisation schemes, large discontinuities lead to poor numerical stability, often
leading to non-convergence. When solvable, standard continuous FVM schemes has further
been shown to lead to incorrect results [3], by not appropriately accounting for the jump
conditions which exist along the discontinuous interface.

In this paper, we propose resolving these jump conditions by using a multi-region, partitioned
coupling approach, similar to the partitioned approaches popularised by the recent advances in
black-box, partitioned, multiphysics solvers [1].

The domain, containing multiple different material properties, is decomposed into separate
regions, where each region then consists of a single, continuous material property. The various
regions are then coupled by iteratively transferring appropriate boundary conditions along the
shared interfaces.

In the sections to follow, we briefly outline the necessary and sufficient interface compatibility
conditions which need to be satisfied, along with a brief overview of the implementation of the
interface boundary conditions.
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Material 1 Material 2

Figure 1: Notional illustration of two magnetic materials sharing a common interface, Γ.

4.1 Magnetic interface compatibility conditions

In this section, the necessary and sufficient, interface compatibility conditions for the electric
and magnetic potential fields are presented.

Consider Figure 1, where two magnetic materials, with different material properties, share a
common interface Γ. Following on from ∇B = 0, and the Maxwell-Ampere law, the necessary
compatibility conditions, for the magnetic potential field, can be posed as [2, 4, 3]

A1 = A2 on Γ1,2, (42)

and
1

µ1

· ∂A1

∂n
− 1

µ2

· ∂A2

∂n
= Kf on Γ1,2, (43)

where Kf is the free surface current. In the current formulation, because the free current is
based on Ohm’s law (J = σE), there can be no additional free surface current [4], unless an
external user applied surface current is imposed along the shared interface.

Similarly, following from Gauss’s law and charge continuity, the compatibility conditions for
the electric potential field can be posed as [2, 4]

V1 = V2 on Γ1,2, (44)

and
J1 · n1 = J2 · n2 on Γ1,2, (45)

which given the definition of the electric scalar potential (15), results in

σ1

(
∂V1

∂n
+

∂A1

∂t
· n1

)
= σ2

(
∂V2

∂n
+

∂A2

∂t
· n2

)
on Γ1,2. (46)

Having assumed the time-harmonic formulation for A and V , Equations (42), (43), (44) and
(46) have to be satisfied for each of the real and imaginary components, leading to the final
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necessary and sufficient interface conditions, which have to be satisfied at convergence:

A1,Re = A2,Re, (47)

A1,Im = A2,Im, (48)

V1,Re = V2,Re, (49)

V1,Im = V2,Im, (50)

1

µ1

· ∂A1,Re

∂n
=

1

µ2

· ∂A2,Re

∂n
, (51)

1

µ1

· ∂A1,Im

∂n
=

1

µ2

· ∂A2,Im

∂n
, (52)

σ1
∂V1,Re

∂n
− σ1ωA1,Im · n1 = σ2

∂V2,Re

∂n
− σ2ωA2,Im · n2, (53)

σ1
∂V1,Im

∂n
+ σ1ωA1,Re · n1 = σ2

∂V2,Im

∂n
+ σ2ωA2,Re · n2. (54)

4.2 Partitioned coupling interface information transfer

To deal with the large potential material discontinuities using the finite-volume method, we
propose using partitioned domain decomposition. Each domain is solved independently, assum-
ing continuous material properties, where information is then iteratively transferred between
the various domains sharing a common interface.

To improve stability, and ensure the set of interface compatibility conditions (Eqs. (47)-(54))
are satisfied at convergence, we make use of Robin-Robin interface information transfer, coupled
using the preCICE coupling library [1]. To illustrate the implementation of the Robin-Robin
interface information transfer, let us consider here the electric potential boundary conditions,
reproduced here for clarity:

σ1

(
∂V1

∂n
+

∂A1

∂t
· n1

)
= σ2

(
∂V2

∂n
+

∂A2

∂t
· n2

)
on Γ1,2. (55)

To described the surface gradients of the electric potential field, we adopt a similar philosophy
as used within the conjugate-heat transfer module of preCICE [6], where

∂V

∂n
=

VΓ − Vc

∆x

, (56)

where VΓ is the potential at the boundary, Vc the cell centred value adjoining the boundary cell
Γ, and ∆x the distance from the boundary face to cell centre. Using the gradient approximation,
we can rewrite Eq. (55) as

σ1,Γ

∆x,1

(VΓ − V1,c) + σ1,Γ
∂A1

∂t

∣∣∣∣
Γ

· n1 =
σ2,Γ

∆x,2

(VΓ − V2,c) + σ2,Γ
∂A2

∂t

∣∣∣∣
Γ

· n2. (57)

Eq. (57) can then be cast into an OpenFOAM mixed boundary condition, which requires
defining the boundary condition in the following form:

VΓ = fVref + (1− f)(Vc +∆xgref), (58)
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where f is the value fraction, Vref the potential reference value and gref the reference gradient.
By definining

α1 =
σ1,Γ

∆x,1

, and α2 =
σ2,Γ

∆x,2

, (59)

and assuming we transfer information from domain 2 to domain 1, the mixed boundary condi-
tion coefficients for VΓ,1, can then be defined as

Vref = V2,c (60)

f =
α2

α1 + α2

(61)

gref =
1

σ1,Γ

(
−σ2,Γ

∂A2

∂t
· n2 + σ1,Γ

∂A1

∂t
· n1

)
. (62)

In order to fully define VΓ,1,Re and VΓ,1,Im, requires transferring α2, V2,c,Re, V2,c,Im, µ2σ2ωA2,Re

and µ2σ2ωA2,Im from domain 2 to domain 1. Inversely, for interface information transfer from
domain 1 to domain 2 requires transferring α1, V1,c,Re, V1,c,Im, µ1σ1ωA1,Re and µ1σ1ωA1,Im. The
same procedure is employed for the magnetic potential boundaries AΓ,1 and AΓ,2 (not shown
here for brevity).

For the numerical tests presented in Section 7, preCICE’s nearest neighbour interface transfer
scheme is used, where the interface meshes are designed to be exactly matching along the various
shared interfaces.

5 BOUNDARY CONDITIONS

5.1 Far field boundary

At far field boundaries, Γ∞, an appropriate boundary condition for the magnetic field is
B · n∞ = 0, which can be expressed in terms of A, using the Coulomb-gauge condition [2] as

n∞ ×A = 0, and n∞ · (∇ ·A) = 0. (63)

Loosely translated, this relates to a boundary condition forA, where the tangential components
and normal derivative of A vanish at Γ∞.

5.2 Imposed current boundary

To impose a surface current, I, at a boundary, requires defining an electric potential gradient.
Using the definition of the electrical potential field (Eq. (15)) and Ohm’s law (Eq. (8)), an
imposed input current flowing normal through a surface, ∂Ω, is given by

∂VRe,Im

∂n
=

IRe,Im

σA∂Ω

− ∂ARe,Im

∂t
· n, (64)

where A∂Ω is the surface area, defining the input surface current density (i.e. J∂Ω · n = I∂Ω
A∂Ω

).
Based on the time harmonic approximation,

IRe = Im cos(θ) = Irms

√
2 cos(θ), IIm = Im cos(θ) = Irms

√
2 sin(θ), (65)

where θ is the phase shift in the alternating current, Im the peak magnitude of the alternating
input current, and Irms the root mean square of the input current.

8



Alfred E.J. Bogaers, Willem Roos, Quinn G. Reynolds and Johan H. Zietsman

6 SEMI-COUPLED MAGNETIC POTENTIAL LINEAR SYSTEM

The partial differential equations describing the time harmonic current and magnetic field
distributions (Eqs. (32)-(35)), were implemented in OpenFOAM [7], an open-source, predom-
inantly finite-volume based toolbox, which allows for easy development of continuum based,
numerical solvers.

OpenFOAM adopts a staggered solution philosophy, where each equation is solved indepen-
dently, and any cross-coupling terms in the equations are introduced as explicit source terms.
This is especially problematic for the real and imaginary components of ∂A

∂t
, in Eqs. (34) and

(35). When σ is large, the magnitudes of the explicit µσωARe and µσωAIm terms can become
several orders of magnitude larger than the implicit divergence terms. In such settings, the
convergence of the set of equations is entirely driven by the explicit contributions, which leads
to rapid divergence unless very small (in the order of 1 × 10−6) linear relaxation factors are
used.

To improve the overall convergence rates, a partially coupled linear system solution is used,
as was first proposed in [2]. The electric potential equations (Eqs. (32) and (33)) are solved in
the standard segregated setting, where the two magnetic potential equations are then strongly
coupled by solving the linear system[

+µσω ∇2·
−µσω ∇2·

]
·
[
ARe

AIm

]
=

[
µσ∇VRe

µσ∇VIm

]
. (66)

The partial coupling is performed using standard OpenFOAM implicit and explicit FV oper-
ators, and populating the corresponding matrix coefficients into a larger linear system, solved
using the PETSc library [8]. The reason for only partially coupling the two magnetic potential
equations, instead of fully coupling all four equations, is that the fully coupled set of equations
lead to a poorly conditioned linear system. Numerical experiments have shown that the so-
lution times of the semi-coupled equations, for frequencies in the Hz to kHz range, is several
orders faster than solving the full monolithic system. The PETSc implementation is based on
the RheoTool collection of libraries and utilities [9].

7 NUMERICAL TESTS

7.1 Copper wire with AC current

In the first test case, we consider an alternating current (AC) source through a copper wire,
fully enclosed by air, illustratively shown in Figure 2. When AC travels through a highly con-
ductive medium, the current preferentially travels along the outer periphery of the conductor.
This phenomenon is known as the skin effect, where the magnitude and depth of the current
along the outer extremities of the conductor is directly proportional to the AC frequency and
the magnitude of the electrical conductivity.

The copper wire radius is chosen to be R = 50mm, with a length of 0.3m, where the
surrounding air is modelled with a radius of 1m. A time-harmonic AC is imposed at the top
of the wire, with Irms = 1A, and a zero potential imposed along the bottom of the wire. The
surrounding air boundary conditions are set to be electrically insulating, with Irms = 0A. Since
the model is intrinsically symmetrical, the domain is constructed assuming 2D axisymmetry
about the central axis.

9



Alfred E.J. Bogaers, Willem Roos, Quinn G. Reynolds and Johan H. Zietsman

0.3m

1m

Figure 2: Alternating current through copper conductor test case overview.
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Figure 3: Copper wire test case results, showing (a) current density and (b) magnetic flux
density fields for a frequency of 100Hz and (c) simulated and analytical current densities for
three different frequencies compared to analytical expressions of the current density field.

The current and magnetic flux densities, for a frequency of f = 100Hz, is shown in Figure 3.
Current uniformly enters the top of the copper conductor, before rapidly concentrating along
the conductor’s surface. The skin effect is caused by the time varying magnetic field, which
induces an electromotive force which the current has to overcome, where the path of least
resistance, with the lowest force, is towards the outer extremities of the conductor.

In Figure 3c, the simulated, radially varying current densities, is shown in comparison to
analytical expressions. Simulations were performed for three different frequencies of f =10, 100
and 1000Hz, with a near perfect match to the analytical results. The analytical results, for the
radially varying current density, J(r), were computed using [5],

Jr =
I(1− i)

2πRδ

J0 ((1− i)r/δ)

J1 ((1− i)R/δ)
, δ =

√
2

ωµσ
, (67)

where r is the radial co-ordinate, Jv(·) is the vth order Bessel function of the first kind, and δ
is the analytically approximated skin depth.

7.2 Two parallel conductors

In this test case, we model current flowing through two parallel conductors, illustratively
shown in Figure 4a. Two 1m long, copper wires, with radii of rw = 4mm, are separated by a

10
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(a) (b) (c)

Figure 4: (a) Two parallel wire test case overview, with magnetic fields lines generated by 1A
flow through the parallel wires, shown for (b) current flowing in opposite directions and (c)
current flowing in the same direction.

distance of d = 1m. The test case is designed to study the self-inductance and Lorentz forces
from the interacting magnetic fields, generated by current flowing through the two wires.

The magnitude of the self generated inductance, for current flowing in opposite directions
through two parallel wires, can be approximated using [10]

L =
µl

π
ln

(
d

rw
+

1

4

)
, (68)

where the magnitude of the force exerted onto each of the wires, for current in the same
direction, can be approximated using [10]

F =
µI1I2
2πd

. (69)

When setting the distance to d = 1m, and I1 = I2 = 1A, results in a force of 2× 10−7Nm−1,
which is the formal definition of one Ampere.

For the current test case, we apply a DC current to each of the wires, by setting f = 0Hz.
Two scenarios are tested, the first where a current of 1A flows through each conductor, in
opposite directions (Figure 4b), and the second where a current of 1A flows in the same
direction through each of the wires (Figure 4c). When current flows in the same direction, we
expect an attractive force between the two conductors, and an opposing force when the current
flows in opposite directions.

In Table 1, we provide a comparison of the the simulated results to the analytical expressions
from Eqs. (68)-(69). The model correctly approximates the change in the directionality of the
resulting forces, and closely matches the expected impedance and force magnitudes.

7.3 Two parallel conductors with permeable core

In this test case, we demonstrate the ability of the interface conditions to adequetly describe
the discontinuity in the magnetic flux field when a magnetic field interacts with a discontinuous
permeable material. The test case setup is similar to the parallel conductor case presented in
Section 7.2. Two parallel conductors are positioned 1m apart, each with a radius of 100mm.
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Table 1: Comparison of simulated and analytical impedance and Lorentz force for current
flowing through two parallel conductors.

Current Lanal Lsim Fx,anal Fx,sim

I1[A] I2 [A] (eq. (68)) [H] [H] (eq. (69)) [N] [N]

1 -1 2.31×10−6 2.24×10−6 – -1.13×10
−7

1 1 2.31×10−6 2.70×10−6 2.0×10−7 2.20×10
−7

(a) µr = 1× 10−3 (b) µr = 1× 103

Figure 5: Magnetic field lines interacting with permeable core with different relative magnetic
permeabilities.

A DC current of 1A flows in opposite directions, generating a nearly parallel magnetic flux
field in the middle of the two conductors. A permeable cylinder, with a radius of 50mm, is
placed in the centre of the magnetic field, where two different relative magnetic permeabilities
are tested, namely µr = 1 × 103 and 1 × 10−3, compared to a relative permeability of µr = 1
for the surrounding air.

The magnetic flux fields for the two different permeable cores is shown in Figure 5. µr < 1
(Figure 5a) represents a diamagnetic material, which repels the magnetic field, leading to
a reduction in the magnetic flux field intensity within the diamagnetic core. By contrast,
ferromagnetic material, where µr > 1 (Figure 5b), attracts the surrounding magnetic field,
leading to an increase in the magnetic flux field. In both the diamagnetic and ferromagnetic
cases, a jump discontinuity in the magnetic flux field exists across the discontinuous interface.

8 CONCLUSION

In this paper, we presented the formulation and implementation of a multi-region, finite-
volume based, electromagnetic solver. The solver was implemented into OpenFOAM, where
the various continuous regions were coupled using the preCICE multiphysics coupling library.
The solver was designed to handle large material discontinuities, by iteratively transferring the
electromagnetic interface jump conditions as Robin-Robin boundary conditions, with iterative
subcycling. The validity of the solution procedure was demonstrated on a number of relevant
test cases.
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