


To solve the pathological mesh dependence of local models, various regularisation techniques have been
suggested (de Borst et al., 1993). One possibility is to use nonlocal damage models (Pijaudier-Cabot and
BaZant, 1987; Bazant and Pijaudier-Cabot, 1988; Mazars and Pijaudier-Cabot, 1989). The basic idea of
nonlocal models is that the damage parameter depends on the strain state in a neighbourhood (associated
to a characteristic length) of the point under consideration. Another possibility is the use of gradient
models, in which strain derivatives are incorporated in the description of damage evolution (de Borst et al.,
1995). The relation between nonlocal and gradient medels is discussed by Huerta and Pijaudier-Cabot
(1994) and Peerlings et al. (1998).

The quasi-brittle behaviour is modelled by means of a stress—strain constitutive equation consisting of an
elastic branch and a softening post-peak branch. This typically results in highly nonlinear structural re-
sponses, of the snap-through or snap-back type. Efficient nonlinear solvers based on arc-length control
(Crisfield, 1991) are needed for the numerical simulations.

Due to the brittleness and high nonlinearity of the response, the particular expression of the constitutive
equations or the value of the material parameters can have a major influence on the results of the com-
putations, not only from a quantitative but also from a qualitative point of view. Indeed, as shown later
with some examples, different sets of material parameters can lead to completely different failure patterns.

Of course, the finite element discretization errors also affect the results. This influence is generally of a
quantitative nature. In the case of complex failure mechanisms, the finite element mesh can even have a
qualitative influence on the response, as shown by Huerta and Diez (2000) and Diez et al. (2000).

Error analysis in localization problems is a field of active research in recent years. An a priori error
analysis is presented in Huerta and Pijaudier-Cabot (1994) for transient problems. One of the conclusions is
that the finite element size must be smaller than the characteristic length in order to avoid spurious oscil-
lations. Moreover, an a posteriori error analysis in localization problems is already presented by Huerta et al.
(1997), Arroyo et al. (1997), Huerta and Diez (2000) and Diez et al. (2000) for viscoplastic regularization of
softening. Nonlocal damage models have received less attention, and they constitute the focus of this work.

In summary, two factors can have a crucial impact on the results: (1) the material modelling and (2) the
numerical discretization. The main objective of this paper is to show that the FE discretization errors
should be controlled if one wants to assess the behaviour of a particular damage model and/or set of
parameters. If FE errors are not controlled, their effect in the solution could be erroneously attributed to
the material modelling. For instance, a comparative analysis of two different damage models with a very
coarse mesh (Fichant et al., 1999) can be of little significance, even at the qualitative level.

In order to control the FE discretization errors, an adaptive strategy based on error assessment for
nonlocal damage models is proposed here. The adaptive strategy (Huerta et al., 1999) is based on the
combination of a residual-type error estimator (Diez et al., 1998a; Huerta and Diez, 2000) and quadrilateral
h-remeshing (Sarrate and Huerta, 2000).

An outline of paper follows. The basic features of nonlocal damage models are briefly reviewed in
Section 2. Section 3 deals with the solution of the nonlinear systems of equations. The proposed adaptive
strategy, including a brief review of the error estimator, is presented in Section 4. All these aspects are
illustrated by means of some numerical examples in Section 5. Two tests are considered: the Brazilian
cylinder-splitting test (Section 5.1) and the single-edge notched beam (Section 5.2). Finally, some con-
cluding remarks are made in Section 6.

2. Nonlocal damage models
The basic features of nonlocal damage models are briefly reviewed in this section. First, the generic

equations are presented in Section 2.1. The definition of the state variable and the evolution law for the
damage parameter — the two key ingredients of a nonlocal damage model — are discussed in Sections 2.2 and



2.3 respectively. Finally, the two particular models employed in this work are summarized in Sections 2.4
{Mazars model) and 2.5 (modified von Mises model).

2.1. Generic equations

For the sake of clarity, only isotropic elastic-damage models are considered in this work. These simple
models, which describe in a satisfactory manner damage due mainly to uniaxial extensions, see Fichant et al.
(1999), are sufficient to illustrate the importance of adaptivity based on error estimation in damage com-
putations. However, the approach presented here and the conclusions drawn can be extended to more
complex damage models, incorporating, for instance, anisotropy and/or coupling with plasticity (Mazars
and Pijaudier-Cabot, 1989), or, more generally, to any complex constitutive model.

The loss of stiffness associated to mechanical degradation of the material is represented by a parameter
D, according to

6= (1-D)C:s, (1)

where o and ¢ are respectively the Cauchy stress tensor and the small strain tensor, and C is the tensor of
elastic moduli (£: Young’s modulus; v: Poisson’s coefficient). Parameter D ranges between 0 (virgin ma-
terial, with elastic stiffness) and 1 (completely damaged material, with no stiffness). It is assumed that D
depends on a state variable ¥, which in turn depends on the strains

Y = ¥(e). 2)

The basic idea of nonlocal damage models is averaging the state variable Y in the neighbourhood of each
point. In this manner, the nonlocal state variable Y is obtained:

Y = /Voc(d)YdV//Voc(d)dV. (3)

The weight function «, which depends on the distance & to the point under consideration, is typically the
Gaussian

a(d) = exp [— (%)2], (4)

where the characteristic length /. is a material parameter of the nonlocal damage model. The nonlocal state
variable drives the evolution of damage,

D =D(Y). (5)

Damage starts above a threshold ¥, (that is, D = 0 for ¥ < ¥;) and it cannot decrease (that is, D > 0).

The characteristic length which appears in Eq. (4) acts as a localization limiter, thus regularizing the
problem (Pijaudier-Cabot and Huerta, 1991). In this manner, the pathological mesh dependence of local
damage models, in which damage is driven by the /ocal state variable Y is avoided.

Egs. (1)—(5) describe a generic nonlocal damage model. To define a particular model, it is necessary to
specify the definition of the state variable, Eq. (2), and the evolution law for damage, Eq. (5). These two
issues are addressed in the following.

2.2. Definition of the state variable

Since the state variable drives damage, ¥ should account for those features of the strain field which are
responsible for damage inception and propagation. As discussed by Peerlings et al. (1998), Y should be



more sensitive to positive strains than to negative strains. In the Mazars model (Mazars, 1986), for instance,
Y is a function of the principal strains ¢;,

Y= /3 [max(0,é))". (6)
Note that only the positive principal strains are accounted for in the definition of Y.
In the modified von Mises model (de Vree et al., 1995), on the other hand, Y is defined as

2
k-1 1 k-1 12k

YV =0—on——J +— — ] —_—J 7
2k(1—2v)1+2k\/<1—2v 1) +(1+v)2 2’ ™
where k is the ratio of compressive strength to tensile strength, f7, the first invariant of the strain tensor and

Jo, the second invariant of the deviatoric strain tensor.
The main difference between the two models concerns the ratio of compressive to tensile strength
{Peerlings et al., 1998), which is in the order of ten for concrete. The Mazars model yields too low values;

for the modified von Mises model, on the contrary, it can be controlled by means of parameter k (in the
numerical examples of Section 5, k is set to 10).

2.3. Evolution of the damage parameter

Next, a particular expression for the evolution of damage for ¥ > ¥, must be chosen. Two typical
choices are the exponential law (Mazars, 1986)

D:l—M—Aexp[—B(?—YO)] (8)

and the so-called polynomial law (Pijaudier-Cabot and Huerta, 1991; Askes and Sluys, 1999)
1
1 +B(Y — %) + A(Y — %o)*

©)

The meaning of the two material parameters 4 and B is clear in a uniaxial stress-strain curve. For a one-
dimensional homogeneous strain ¢, ¥ = ¥ = ¢. Combining Eqgs. (8) or (9) with Eq. (1) results respectively in

oc=FE¢ fore<¥y,

6 =EYy(l—A)+AEexp[—Ble— Yy)le fore> ¥ (10)

and

oc=FE¢ fore<¥y,
E
o= ¢ > for e > ¥ (11)
14 B(e — Yo) + A(e — Yo)

The aspect of these two curves for typical values of parameters 4 and B is shown in Fig. 1. The elastic
branch is followed by a softening post-peak branch. In both cases, parameter A4 is associated to the residual
strength and B controls the slope of the softening branch at the peak (¢ = ¥;).

Fig. 2 shows various stress—strain curves found in the literature. Taking an exponential evolution of
damage, Eq. (8), with 4 = 1, B = 15000, E = 23400 MPa and ¥, = 2.6 x 10~* leads to a high peak stress
and a very abrupt softening (Pijaudier-Cabot, 1996). With a polynomial evolution of damage, Eq. (9), and
parameters 4 = 0, B = 20000, E = 30000 MPa and ¥, = 1.2 x 107*, a curve with a high residual strength is
obtained (Askes and Sluys, 1999). With E = 35000 MPa, ¥; = 6 x 1075 and an exponential evolution for
damage very similar to Eq. (8), Peerlings et al. (1998) obtain a rather puzzling curve, which is almost bi-












A common definition of s included in Eq. (13) are crack mouth displacements, which account for the
relative displacement of the two nodes at the crack mouth. The crack-mouth sliding displacement (CMSD)
is used to control the single-edge notched beam test of Section 5.2.

Another key issue in solving the nonlinear systems is the choice of a stiffness matrix. Due to nonlocality
(i.e. interaction between Gauss points at different finite elements), computing consistent tangent matrices is
not a straightforward task (Pijaudier-Cabot and Huerta, 1991; Pegon and Anthoine, 1994). In fact, it is
necessary to take into account the nonlocal interaction between Gauss points (Jirdsek, 1999). To avoid
doing so, de Vree et al. (1995) and Askes and Sluys (1999) work with a *“pseudo-consistent” tangent matrix,
obtained by neglecting the nonlocality and computing the tangent moduli at each Gauss point. The re-
sulting matrix is still nonsymmetric.

A different strategy is followed here (Pegon and Anthoine, 1994): a combination of secant stiffness
matrices and an acceleration technique. Secant matrices, computed with the secant moduli (1 — D)C, see
Eq. (1), are symmetric and positive definite, so standard symmetric solvers can be used. The acceleration
technique is based on expressing the solution as a linear combination of the last few iterates and minimizing
the residual. The weights are computed via a least-squares fit.

4. Error estimation and adaptivity
4.1. Why an adaptive strategy?

The numerical implications of the brittle behaviour of nonlocal damage models have been discussed in
the previous section. From the viewpoint of modelling, the main consequence of brittleness is that the
choice of the constitutive equation and the material parameters can have a qualitative influence on the
results. Indeed, as illustrated in Section 5, changes in the constitutive modelling can lead to very different
failure mechanisms.

Of course, the finite element mesh also affects the numerical solution. This influence is general quanti-
tative. However, in some special cases — with complex failure mechanisms — the influence of the finite ele-
ment mesh may even be qualitative. For instance, in the context of softening viscoplasticity, Diez et al.
(2000) show that different meshes can lead to different failure mechanisms, even if the same constitutive
equations and material parameters are employed. For dynamic problems, Huerta and Pijaudier-Cabot
(1994), on the other hand, conclude that the element size must be smaller than the internal length of the
model in order to obtain sufficient accuracy.

In summary, two factors affect quantitatively or even qualitatively the numerical computation: the model
(constitutive equations and material parameters) and the numerical discretization (finite element mesh).
This means that FE discretization errors should be controlled if the effect of the model is to be properly
assessed. If models or sets of parameters are compared with a given mesh without controlling the dis-
cretization errors, the effect of these errors on the solution may be erroneously attributed to the different
modelling. For instance, a comparative analysis of two different damage models with a coarse mesh (Fi-
chant et al., 1999) can be of little significance, even if only qualitative information is sought.

To reduce the discretization errors, the finite element must be sufficiently fine. As shown by Diez et al.
{(2000), deciding whether a mesh is “sufficiently fine” or not for a given analysis is not a simple task. For this
reason, and adaptive strategy is proposed in that reference and adapted here to the case of nonlocal damage
models.

The adaptive strategy (Huerta et al., 1999) is based on the combination of a residual-type error estimator
{(Diez et al., 1998a; Huerta and Diez, 2000) and /4-remeshing. The error distribution is computed with the
error estimator and translated into desired element sizes with a so-called optimality criterion (Diez and
Huerta, 1999). An unstructured quadrilateral mesh generator (Sarrate and Huerta, 2000) is then used to



build a mesh with the desired sizes. This iterative process stops (typically after 2—4 iterations) when the
relative error of the solution is below a prescribed threshold set a priori.

4.2. The error estimator

The error estimator used in this work was first developed for linear problems (Diez et al., 1998a,b) and
later extended to nonlinear problems (Huerta et al., 1998; Huerta and Diez, 2000; Diez et al., 2000). A
detailed presentation an analysis can be found in these references. Here, only a brief review is given, to-
gether with some remarks specific of nonlocal damage models.

Using a mesh of characteristic size 4, the finite element method provides the discrete equilibrium
equation

i (w) = £, (14)

where the unknown is the nodal displacement vector w,, f™(u;) is the vector of nodal internal forces as-
sociated with u, and f;’“ is the discretized external force term.

The goal is estimating the error of the solution u, of Eq. (14). Since the actual displacements are un-
known, the actual error cannot be computed. However, using a much finer mesh of characteristic size h
{h < h), a new solution u; is obtained which is much more accurate than u,, because the regularized
nonlocal model ensures convergence as the element size goes to zero. This solution can be taken as a
reference solution and, consequently, the actual error can be fairly replaced by the reference error ey, i.e. the
difference between u; and u,.

Note, however, that the determination of uj (or e;) requires solving an equation analogous to Eq. (14)
but in the finer mesh

2 (uz) = £7(u; + ;) = £ (15)

This problem is computationally much more expensive than the original one. The basic idea of the error
estimator is to approximate e; by low-cost local computations, following the standard procedure in re-
sidual-type error estimators. That is, instead of solving Eq. (15), e; is approximated by solving a set of local
problems. The method consists of two phases. First, a simple residual problem is solved inside each element
(interior estimation). Second, a new family of simple local problems over so-called patches is considered
and the interior estimate is complemented adding a new contribution (patch estimation).

In order to simplify the presentation, the error estimator is presented for the linear case first and then
extended to nonlinear problems.

4.2.1. The error estimator for linear problems
If the problem is linear, f*'(u) is a linear function of u and, consequently, Egs. (14) and (15) become

f;’llt (ll;,) = K;,ll;, and fi};m(ll,;) = K;;ll;;, (16)

where K, and K; are the elastic stiffness matrices associated with the coarse computational mesh and the
finer mesh respectively. These two equations can be easily manipulated to provide a linear equation for the
reference error,

Kje; = £ — £7(u;) = —1;(w,), (17)

where f*(u;) is the internal force vector in the finer mesh associated with the solution w; of the coarse mesh,
and r;(uy) is the residual.

Fig. 7 shows a graphic illustration of the reference error and its relation with the residual. The solutions
u; and u; can be seen as the intersection between the curves describing the evolution of the internal forces
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The idea is to use this new partition to define new local problems — with the help of a submesh — for the
error. Again, homogeneous Dirichlet boundary conditions are imposed on the whole boundary of each
patch. A system analogous to that of Eq. (18) must be solved for each patch. In this manner, a new ap-
proximation to the error is obtained. The key idea of the patch estimation is that this new approximation
takes nonzero values in the boundary of the elements, where the interior estimate ¢ vanishes. Thus, flux
jumps across element edges are accounted for.

Using the patch estimation, local and global error estimates can be computed following equations
analogous to Eqgs. (19) and (21) respectively. Care is taken during patch estimation to ensure orthogonality
between the patch estimate and the interior estimate. By doing so, the two contributions can be added and a
new approximation to the reference error is found.

4.2.2. The error estimator for nonlinear problems
If the problem is nonlinear, Eq. (17) does not hold and the only available equation for the error is Eq.
(15). That is, the reference error e; verifies

2 (u; + e;) = £ (22)

This is a general nonlinear equation, to be solved using any standard nonlinear solver. In fact, this problem
is equivalent to finding the reference solution uj (recall that u; = u; + e;). Note, however, that the unknown
e; can be assumed to be small compared with u; and, consequently, this nonlinear problem is much easier
than the original one (because u; is a good initial approximation to u;). Typically only two iterations are
needed for convergence. Fig. 10 illustrates the nonlinear error estimation. Note that, in contrast to Fig. 7,
the curves describing the evolution of the internal forces are not straight lines due to nonlinearity, so an
iterative solver is needed to compute e;.

If the tangent stiffness matrix is available, this general nonlinear estimation can be simplified by means of
a standard linearization (Huerta and Diez, 2000; Diez et al., 2000). The resulting tangent error estimation is
illustrated in Fig. 11. The reference error is approximated using a tangent approximation of the curve
representing the behaviour associated with the finer mesh. However, as discussed in Section 3, computing
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Fig. 10. Graphic interpretation of the reference error in nonlinear problems and fully nonlinear error estimation.
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Fig. 11. Graphic interpretation of the reference error in nonlinear problems and error estimation using tangent approximation.

tangent stiffness matrices is involved for nonlocal damage models, so they are not used in this work. In fact,
the nonlinear error estimation is performed iteratively as shown in Fig. 10, by means of the same com-
bination of secant stiffness matrices and acceleration technique used to compute the solution.

The main idea of the generalization of the error estimator to nonlinear cases is to reproduce the same
structure of the linear case with a different equation for the error. Thus, again in this case, the estimation of
the error is splitted into two steps. First, elementary nonlinear problems are solved over the elements with
null error boundary conditions, and an interior estimate is computed. Second, a nonlinear problem is
solved over each patch, again with homogeneous Dirichlet boundary conditions. Once the two contribu-
tions are added, the energy of the error is measured using a simple scalar product: [e]|* = —&frs. A relative
error is obtained (see Section 5.2) by dividing the energy of the error over the energy of the solution.

4.2.3. The error estimator for nonlocal damage models

To sum up, the basic idea of the error estimator is to solve local problems over the elements and over
patches (with patch size ~ element size, see Fig. 9). In the context of nonlocal damage models, it is im-
portant to notice that, upon mesh refinement during the adaptive process, the element/patch size may
become much smaller than the characteristic length /. of the nonlocal model. This result was already
predicted by Huerta and Pijaudier-Cabot (1994) via an analytical study. As a consequence, the Gaussian
function used for the nonlocal averaging, Eq. (4), is truncated and its support is limited to one element/
patch. This means that, for every local problem, the nonlocal interaction between Gauss points located at
different elements/patches is neglected. Since the patches overlap the elements, the current error estimation
procedure (i.e. a loop of elements followed by a loop on patches) takes into account the nonlocal inter-
action between adjacent elements, but not between more distant elements. The development of an esti-
mation procedure that takes into account the full nonlocality is currently under progress. Nevertheless, it
should be pointed out here that the influence at a given Gauss point of distant Gauss points, which in fact
recalls the concept of pollution errors, can be assessed with a global analysis (Huerta and Diez, 2000).
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Fig. 14. Brazilian test. Force versus (a) the vertical displacement of the bearing plate and (b) the crack opening displacement (i.e. the
horizontal displacement of point P, see Fig. 12). The damage field at states A, B, C and D is depicted in Fig. 15.

5.2. Single-edge notched beam

The second example is the single-edge notched beam test. First, the reference test is presented and the
adaptive procedure is discussed in detail in Section 5.2.1. After that, the influence of the constitutive model
and/or the material parameters is assessed in Sections 5.2.2-5.2.4.

5.2.1. Reference test

A single-edged notched beam (SENB) is subjected to an anti-symmetrical four-point loading. The ge-
ometry, loads and supports, shown in Fig. 16, correspond to the medium-size specimen tested by Carpinteri
et al. (1993). A plane stress analysis is performed. To begin with, the test is carried out with the modified
von Mises model with exponential damage evolution, see Fig. 6, and the material parameters of Table 2.
Later in this same section, the test is reproduced with the Mazars model. The CMSD - that is, the relative
vertical displacement between the two nodes at the crack mouth — is taken as the arc parameter in the arc-
length control procedure.

The adaptive analysis starts with a rather coarse mesh, see Fig. 17(a), with 659 elements and 719 nodes.
Note, in particular, that there is only one finite element in the notch width. This mesh is denoted Mesh O to
emphasize that it is the initial approximation in an iterative process. The damage distribution and the
deformed mesh (amplified 300 times) for the final state {(corresponding to a CMSD of 0.08 mm) are shown
respectively in Fig. 17(b) and (c).

The distribution of absolute error in the final state is depicted in Fig. 17(d). The estimator clearly detects
the zones with larger errors: the supports and the edges of the “crack™ (i.e. the damaged band). The solution
with Mesh O has a global relative error of 4.41%, larger than the prescribed goal of 2%.

The error distribution of Fig. 17(d) and the error goal of 2% are translated into a field of desired element
sizes, from which Mesh 1 (3185 elements and 3340 nodes) is generated, see Fig. 18(a). As expected, elements
are concentrated where the solution with Mesh O has larger errors. With the new mesh, the damage dis-
tribution and the deformed mesh of Fig. 18(b) and (c) are obtained. Fig. 18(d) shows that there is a sig-
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suggests that the incipient secondary crack of the previous test has become dominant and determines the
failure pattern. A similar result (i.e. vertical straight instead of curved crack) is reported for the Mazars
model by Peerlings et al. (1998). From the discussion of Section 5.2.1, it is clear that this result is due to a
{not unique) particular choice of parameters, not to any intrinsic difficulty of the Mazars model to capture
the curved crack of the SENB test.

6. Concluding remarks

An adaptive strategy to ensure the quality of finite element computations with nonlocal damage models
has been presented. The proposed strategy relies on two basic ingredients: a residual-type error estimator
and an unstructured quadrilateral mesh generator.

The constitutive modelling of failure in concrete is a topic of current research. As pointed out in this
paper, there is no unanimous agreement on the stress—strain behaviour of concrete, even for the specific
case of scalar nonlocal elastic-damage models.

A key issue in the nonlinear solution of complex damage problems is the use of local control variables,
which take into account the localized nature of the failure pattern.

The error estimator is probably the most distinct feature of the proposed adaptive strategy. An existing
residual-type nonlinear error estimator has been extended to the context of nonlocal damage models, where
tangent stiffness matrices are not readily available.

By keeping under control finite element discretization errors, it is possible to focus on constitutive
modelling and its effect on the structural response. As illustrated with the single-edge notched beam test, the
proposed approach allows to assess the influence of the particular choice of the state variable, the evolution
law for damage or the material parameters in a reliable manner. In particular, the capability of the Mazars
model to capture the curved crack pattern observed in experiments — a debated issue in the literature — has
been confirmed.

Various interesting topics lie ahead. As already discussed, work is under progress to develop an error
estimation procedure that takes fully into account the nonlocal interaction. The basic idea is that the error
associated to the nonlocal interaction between different elements can be cast as a pollution error. Also in
perspective is goal-oriented error estimation: instead of estimating the error of the displacement field, it may
be preferable to estimate the error in outputs of special relevance, such as the peak load in the Brazilian test.

On a wider scope, a combined experimental-numerical study could now be used to identify the material
parameters for the nonlocal damage models. If this process is done without controlling the quality of the
FE solution, the obtained parameters fit a solution affected by discretization errors, so their significance is
limited.
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