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Abstract 
In this paper we consider the problem of shipping several products from an origin to 
a destination, when a discrete set of shipping frequencies is available only, in such a 
way that the sum of the transportation and inventory cost is minimized. This problem, 
which is known to be NP-hard, has applications in transportation planning and in location 
analysis. We derive some dominance rules for the problem solutions which allow to tighten 
the bounds on the problem variables. Moreover, we present a branch-and-bound algorithm 
and we evaluate its performance on randomly generated problem instances. 
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1 INTRODUCTION 

We consider the situation in which each product of a given set is made available at an 
origin and needed at a destination at a constant rate. A discrete set of available shipping 
frequencies is given and the shipment is carried out by trucks with given capacity. The 
problem is to decide how much of each product to ship at each frequency in such a way 
that the sum of the transportation and inventory cost is minimized. 

This problem was introduced in Speranza and Ukovich (1994) together with other 
models for shipping products from an origin to a destination. Similar models, where the 
shipping frequencies are allowed to take any continuous value, are considered in Burns 
et al (1984), Blumenfeld et al (1985), Anily and Federgruen (1990). The problem was 
shown to be NP-hard in Speranza and Ukovich (1991), where an optimal branch-and-
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bound algorithm was presented. The computational results showed that the algorithm 
was efficient on problem instances of small/medium size. The more complex problem of 
shipping products from several origins to a destination, when a given set of shipping 
frequencies is available, was considered in Bertazzi, Speranza and Ukovich (1994), where 
different heuristics were presented, based on solving in a first phase a one origin - one 
destination problem for each of the given destinations, and then on improving the solution 
through local search techniques. 

In this paper, we derive some dominance rules for the solution of the one-origin-one­
destination problem. Such rules allow to tighten the bounds on the problem variables. 
Then we present a new branch-and-bound algorithm in which we apply the dominance 
rules in order to improve its efficiency and we compare it with the branch-and-bound 
proposed in Speranza and Ukovich (1991). 

The paper is organized as follows. In Section 2 the problem is described and its math­
ematical programming formulation is given. The dominance rules and their implications 
are presented in Section 3. In Section 4 the new branch-and-bound is described and the 
computational results are given in Section 5. 

2 PROBLEM DESCRIPTION AND FORMULATION 

A set of products is made available at an origin and needed at a destination at a constant 
rate. Trucks, with given capacity, are available for shipping products, and each product 
can be partly shipped by trucks travelling at different frequencies. Each product can be 
continuously divided. Two cost factors are considered, namely the transportation and 
the inventory cost. Shipping products at a high frequency generates low inventory costs 
but high transportation costs, while shipping at a low frequency generates high inventory 
costs and low transportation costs. The problem is to decide the fraction of each product 
which is shipped at each frequency in such a way that the sum of the transportation and 
the inventory costs is minimized. 
The following notation is used. 

I: set of products; 

J: set of frequency indices; 

n: number offrequencies (=IJJ); 
i: products; 

j: index of frequency; 

Ii: jth frequency, with j E J; 
tj: period offrequency h (= l/h); 
H: time horizon (equal to the minimum common multiple of the periods); 

qi: rate at which product i is produced at the origin and needed at the destination; 

Vi: unit volume of product i; 
hi: inventory cost of one unit of product i per unit time; 

1"j: capacity of each truck travelling at frequency fj; 

Cj: cost of a single trip of a truck travelling at frequency h; 



An algorithm for the transportation problem with given frequencies 537 

Xij: fraction of product i shipped at the frequency h; 
Yj: number of trucks which travel at the frequency h· 

The problem can be formulated as follows. 

min L L hitjqiHxij + L cj(H/tj)yj 
iEI jEJ JEJ 

tj L viqiXij ::; 7'jYj 

iEI 

LXij = 1 
JEJ 

iE/ 

jEJ 

0< x < 1 _ tJ_ iE/,jEJ 

Yj ~ 0 integer j E J. 

(1) 

(2) 

(3) 

(4) 

(5) 

The ob jecti ve function (1) represents the sum of the inventory cost and the transportation 
cost on the time horizon H. Constraints (2) are capacity constraints, which state that the 
number of trucks Yj must be sufficient to load all the products assigned to frequency 
h. Constraints (3) impose that all the quantity of product i produced at the origin 
must be shipped to the destination at some of the given frequencies. The mixed integer 
programming problem defined through (1 )-(5) will be referred to as Problem P. 

In the following, we assume that the unit time is chosen in such a way that all tj are 
integer and that the frequencies are ordered in the decreasing order, that is i1 > h > 
.. , > in. Moreover, we assume that all trucks have the same capacity, independently of 
the frequency, that is that 7'j = 7', Vj, and, without loss of generality, we normalize the 
capacity to 7' = 1. As all trucks have the same capacity, we assume Cj = c, V j. 

3 DOMINANCE CONDITIONS 

In this section we present the most important theoretical results we have obtained for the 
Problem P. For their formal proofs, we refer to Bertazzi, Speranza and Ukovich (1995). 

Dominance is a concept, common in multiobjective optimization, that turns out to be 
convenient for our problem. In fact, Problem P can be considered as stemming from an 
optimization problem with two conflicting objectives: minimize the inventory cost and 
minimize the transportation cost. 

In general terms, a feasible solution for a multiobjective optimization problems is dom­
inated if another feasible solution exists with not worse performance with respect to each 
objective, and a strictly better performance with respect to at least one objective (d. for 
instance Keeney and Raiffa, 1976). 

The following result states a general condition guaranteeing that a solution is dominat­
ed. 
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Lemma 1 A solution (x, y) for Problem P is dominated if 3 0: E ~+ (the set of positive 
real numbers), j, k E J such that: 

(6) 

(7) 

(8) 

It is worth to point out that the above result generalizes the saturation property for 
Problem P presented in Speranza and Ukovich (1994): 

Corollary 1 Consider an optimal solution (x, y) for Problem P. Suppose 3j, k E J such 
that j > k, "Vi > O. Then Yk = Vk. 

As a consequence of the last result, in the sequel we always consider solutions satis­
fying the saturation condition. Then Lemma 1 yields a more convenient condition for 
domination: 

Theorem 1 A feasible solution (x,y) for Problem P is dominated if 30: E ~+, j,k E J 
such that conditions (6) and (7) of Lemma 1 are satisfied, and 

(9) 

Corollary 2 A solution (x, y) for Problem P is dominated if yjtk/tj :c:: 1 for some j > k 
with tj /tk integer. 

Corollary 2 allows to tighten the bounds for the variables Yi> j > 1, whenever tj admits 
a proper submultiple in the given set of periods {tj}. Let us denote by J' <; J the set of 
indices of the periods which admit a proper submultiple. Then 

Yj ::; UEl j = m!n{tj/tk - 1: tj/tk is integer} j E J'. (10) 

In the case J' = J, then Yj ::; UElj, Vj, and the range for YI can be made tighter. In 
fact, 

n n 

YI :c:: ttC~= viqi - LYj/tj) :c:: tI(L viqi - L min(U EOj , U Blj)/tj) = LEI (11) 
j=2 j=2 

where U EOj = r tj I:iEI viqi 1· 
Observe that, in this case (J' = J), the width of the range of the variables does 

not depend on the volume to be shipped, but on the periods only. Let us emphasize this 
feature. Since U Elj ::; tj -1, then YI :c:: rII(I:i Viqi -n+ 1 + I:j=21i)1 :c:: U EOI -tl (n-l). 
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A complete enumeration of the solutions generates a number of solutions not larger than 
(tt (n - 1) + 1 )t2 ... tn. This quantity depends on the number and on the values of the 
periods only, which in practice are quite moderate. Thus, for fixed n, such a "brute force" 
enumeration turns out to be just pseudo-polynomial. 

A different kind of bounds for the variables Yj, j > 1 can be inferred from a new 
domination result, which in turn is another consequence of Theorem 1: 

Corollary 3 A solution (x, y) for Problem P is dominated if V; ~ tj for some j > 1. 

As a consequence of the last result, then V; < tj in any optimal solution, hence rv; 1 = 
Yj :::; tj, Vj > 1. Furthermore, note that if Yj = tj, then the above Corollary still applies 
(i.e. the corresponding solution is still dominated), thus yielding a tighter upper bound 
for Yj, j > 1, equal to tj - 1. 

Another different dominance rule is given by the following theorem. which states that 
a solution is dominated if all products travelling at a certain frequency can be shipped by 
full load trucks at a higher frequency. 

Corollary 4 A solution (x, y) for Problem P is dominated if V;tk/tj is an integer positive 
number for some j > k. 

Corollary 4 can be further generalized as follows. 

Theorem 2 Given a solution (x,y), if a subset J of the frequencies and a frequency fk 
exist such that tj > tk, Vj E J, and l: "EJ V;tk/tj is an integer positive number, then the 
" J 

solution is dominated. 

4 A BRANCH-AND-BOUND ALGORITHM 

In this section we present a branch-and-bound algorithm for the solution of the Problem P. 
In this algorithm we apply the dominance rules we have derived in Section 3; this algorithm 
will be compared in Section 5 with the branch-and-bound proposed in Speranza and 
Ukovich (1991) in order to evaluate its performance. 

The branch-and-bound works on a search tree where each level corresponds to a fre­
quency fj and each node v represents the vehicles Yj used at this frequency. This number 
of vehicles belongs to a set of values defined in the following way. 

We recall that, by the Corollary 3, Yj < tj Vj > 1 and that, in the particular case 
in which the period tj admits a submultiple in the given set of the periods {tj}, by the 
Corollary 2, Yj:::; UBlj = mink{tj/tk -1: tj/tk is integer}. Furthermore, given a partial 

solution (Yt, ... , Yj-d, Yj :::; U B2j with U B2j = f(l:i Viqi -l:t;,~ Yk/tk)tl Therefore, 

the upper bound for Yj, j > 1, is, in general, Yj :::; min(tj - 1, U B2j) and, in the particular 
case in which tj has a submultiple in {tj}, Yj :s: min(tj-l,UBl j ,UB2j). The lower bound 
for Yj is LBI for j = I, as defined in (11) and Yj = 0 for all j > 1. 

The tree is explored in the depth first way. 
The fathoming criteria are the following. An upper bound U is initially set to the 

minimum value obtained by solving the heuristics presented in Bertazzi, Speranza and 



540 Contributed Papers 

Ukovich (1995) on the instance of the problem; this upper bound mantains the best current 
upper bound during the algorithm. 

In each node v, a lower bound Lv is calculated by solving the relaxed problem by the 
Procedure Ext-Greedy presented in Speranza and Ukovich (1991). If the solution of the 
relaxed problem is integer, this node is fathomed. If Lv > U, the node v is fathomed. 
Furthermore, in each node v the dominance rules presented in Section 3 are applied; if 
the obtained solution is dominated, the node v is fathomed. When the number of vehicles 
Yj are fixed in all the level of the tree, if the solution is feasible, the optimal value is 
calculated and the node v is fathomed. If the optimal value is lower than the current 
upper bound U, then U is modified. 

5 COMPUTATIONAL RESULTS 

The branch-and-bound proposed in Speranza and Ukovich (1991) and the new branch­
and-bound have been implemented in FORTRAN on a Personal computer with an Intel 
486dx/66 processor. 

The computational results have been obtained by generating random instances with 
the following characteristics: 

• set of frequencies: 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10; 

• number of products: 1000, 5000, 10 000; 
• quantity per product per unit time (qi): randomly generated between 0.1 and 5, between 

5 and 100 and between 0.1 and 100; 

• unit volume per product (Vi): randomly generated between 0.001 and 0.01; 

• unit inventory cost per product (hi): randomly generated between 0.001 and 0.05, 
between 0.05 and 1 and between 0.001 and 1; 

• transportation cost per trip (c): 300. 

The results are shown in Table 1. Each row corresponds to 5 problem instances with the 
characteristics described in columns 1-3. Column 1 gives the number of products; Column 
2 gives the range of the quantity per product and Column 3 the range of the inventory 
cost hi. 

Columns 4-7 show the computational results obtained by the branch-and-bound pro­
posed in Speranza and Ukovich (1991), referred as Old branch-and-bound; Column 4 gives 
the average number of visited nodes (the maximum number of possible nodes has been 
fixed in 30 000); Column 5 gives the number of times we have obtained the optimal solution 
on 5 instances; Column 6 the node in which the optimal solution has been found (average 
on the 5 instances); finally, Column 7 gives the average CPU time (minutes and second­
s). In columns 8-11 the computational results obtained by the new branch-and-bound, 
referred as New branch-and-bound, are shown as in columns 4-7. 

The computational results show that the new branch-and-bound is more efficient than 
the one proposed in Speranza and Ukovich (1991), both in terms of number of visited 
nodes and CPU time. 
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Table I Comparison of the branch-and-bound algorithms 

Parameters Old branch-and-bound New branch-and-bound 
Prod. Quant. Inventory Nodes N Opt. Time Nodes N Opt. Time 
1000 0.1-5 0.001-0.05 13 784 3 1064 05.09 3431 5 1031 00.53 
1000 0.1-5 0.05-1 148 5 125 00.02 51 5 37 00.00 
1000 0.1-5 0.001-1 192 5 160 00.03 136 5 114 00.02 
1000 5-100 0.001-0.05 22290 3 4676 06.44 8411 5 2021 01.41 
1000 5-100 0.05-1 1363 5 431 00.26 410 5 185 00.06 
1000 5-100 0.001-1 3996 5 1899 01.23 1100 5 728 00.18 
1000 0.1-100 0.001-0.5 9274 4 1387 02.47 1697 5 589 00.22 
1000 0.1-100 0.05-1 949 5 221 00.18 227 5 47 00.03 
1000 0.1-100 0.001-1 1970 5 1123 00.39 644 5 392 00.10 
5000 0.1-5 0.001-0.05 15255 3 1175 16.37 6251 5 1344 03.55 
5000 0.1-5 0.05-1 3341 5 944 03.36 681 5 300 00.31 
5000 0.1-5 0.001-1 1321 5 1090 01.26 610 5 507 00.30 
5000 5-100 0.001-0.05 30000 0 0 34.28 19070 5 690 12.15 
5000 5-100 0.05-1 2070 5 434 01.58 249 5 117 00.14 
5000 5-100 0.001-1 24608 1223 26.56 4776 5 666 03.06 
5000 0.1-100 0.001-0.05 30000 0 0 34.41 13097 5 645 08.33 
5000 0.1-100 0.05-1 2212 5 305 02.08 364 5 122 00.18 
5000 0.1-100 0.001-1 24 798 1 92 27.08 6588 5 368 04.68 
10000 0.1-5 0.001-0.05 30000 0 0 59.02 10454 5 1730 12.01 
10 000 0.1-5 0.05-1 3097 5 683 06.17 854 5 211 01.13 
10 000 0.1-5 0.001-1 2562 5 689 05.13 850 5 345 01.14 
10 000 5-100 0.001-0.05 4079 5 1306 07.18 584 5 515 00.52 
10000 5-100 0.05-1 3388 5 217 05.52 244 5 75 00.24 
10000 5-100 0.001-1 3615 5 794 06.21 418 5 348 00.39 
10 000 0.1-100 0.001-0.05 4722 5 1954 08.42 803 5 577 01.10 
10000 0.1-100 0.05-1 3917 5 377 07.00 494 5 157 00.45 
10000 0.1-100 0.001-1 4725 5 1995 08.43 804 5 649 01.10 
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