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Abstract. In this paper, academic and industrial test cases have been conducted in
order to validate the approach of using a Penalized Direct Forcing method coupled with
an immersed turbulent wall model. Good results are obtained compared to a body fitted
mesh with the Werner & Wengle wall model. In a shortcoming second step, we can project
the coupling between the immersed wall law and a K-epsilon model, as well as obstacle
shape optimization during the flow computation.

1 Context

The context of this work is the design of passive safety devices acting as hydraulic
diodes and, more precisely, the optimisation of the shape of their parts. Here, we are
facing the computation of the fluid flow inside passive safety devices designed for French
Pressurized Water Reactor (PWR) of 3rd generation. Following the Fukushima accident
(loss of electrical sources), passive safety systems have gained in popularity. The added
value of these systems is to reduce the dependence of nuclear power plants on active
safety systems (e.g. emergency pumps powered by electrical sources) which represent a
significant cost of operation and need regular maintenance. The introduction of passive
safety systems allows to improve the safety of nuclear power plants while reducing their
operating costs.

The systems we are studying are based on the hydraulic diode principle. One of these
passive systems is the flow limiter, patented by the CEA [1]. It consists of thin fins,
cleverly placed in the downcomer of a PWR vessel, at the level of the cold branch inlet
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Figure 1: Illustration of the flow limiter and its location in the vessel of a PWR during normal
conditions[2]

(see Figure 1). The principle consists in letting the flow pass in one direction and reduce
it in the other. This flow reduction is obtained by the creation of a flow vortex induced
by the presence of fins. The purpose of the limiter is therefore to not distrub the flow
during normal conditions, while minimizing the flow leaving the vessel in the event of a
large-break loss of coolant type accident, which could lead to the total emptying of the
vessel and discovering of the core.

Aim

As mentioned in the context, our final goal is to realize a shape optimization process
for the previously presented devices. This shape optimisation process led us to consider
that a fictitious domain method, introduced by Saul’ev [3], is an adequate modelisation
method because of its ability to dissociate the fluid domain from the obstacle one. With
this approach and via immersed boundary conditions, the shape of the in-flow obstacles
(as the fins in the flow limiter) can vary with no impact on the computation grid. This
grant us the possibility to work on several different forms of obstacles without having
to use an adapted mesh at each mesh variation. This is a great advantage that can save
us time. Here, we use the Penalized Direct Forcing [4] method as immersed boundary
method.

But, in order to compute turbulent flows (often with a cartesian mesh for a fictitious
domain method), we need a fine enough mesh on the near wall region in order to solve
the turbulent boundary layer. Doing so can be time consuming and require a higher grid
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generation cost. That is why we have chosen to use an immersed turbulent wall model
that will compute the shear stress and the velocity on the near wall area.

First, we will start by introducing the Penalized Direct Forcing Method, followed by
the presentation of the turbulent wall model. Later, we will present results of simulation
for academic and industrial test cases.

2 Fictitious domain method

With the fictitious domain methods, the physical domain is embedded in a greater
domain which is used as the computation domain and called fictitious domain. In other
words, fictitious domain methods consist in dissociating the physical domain from the
computational domain. The mesh is no longer adapted to the shape of the physical domain
and usually is a Cartesian mesh that covers the physical and external domains to become
the only computational domain. The shape of the physical domain is taken into account
by modifying the equations of the problem or by adding new terms. This approach has
been developped by V.K. SAUL’EV [3] in the 1960s.

Implementation is greatly simplified for the engineer as it is now a matter of using a
single mesh (which can be a ”simple” Cartesian mesh) over the entire domain which no
longer has to take into account the geometry of the obstacles.

This avoids the need to mesh each obstacle (very useful for cluttered environments or,
as is the case here, shape changing object).

2.1 Penalized Direct Forcing method

M. Belliard et al. [5] have developed a new method called Penalized Direct Forcing
(PDF), which is based on L2-penalty method [6] and Direct Forcing (DF) [7]. The PDF
method takes the advantages of both method by using a forcing term as for the DF method
but expressed as a L2-penalty that makes the forcing term implicit.

The forcing term is added to the momentum equation and is expressed as follows :

FPDF =
χs
η · δt

(un+1
imp − un) (1)

with η ε R+
∗ the penalty term, as η � 1 and un+1

imp the imposed speed at the interface.
This formulation also has the advantage to be easily adaptable for a fractional-step

algorithm [8]. Moreover, with the immersed boundary approach, on a discrete level, the
approximation of the immersed boundary may not be located on nodes. Therefore the
velocity imposed by the immersed boundary on its closest nodes (grey cross on Figure 3)
has to be computed or reconstructed. It can be done either by direct assignment or by an
intepolation of the velocity. More informations are given in [9]

2.2 Fractional-step method

The aim here is to compute the velocity using an implicit approximation of the imposed
velocity in the forcing term. This is done by spreading the forcing term in the prediction
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and the correction stages of the projection.
The first step of this fractional-step algorithm is the prediction step : it consists in com-

puting a predicted velocity ũ by adding the forcing as a source term in the momentum
equation, which is solved ignoring or approximating the pressure gradient :

ρn
ũ− un

δt
+∇h · ρn(un ⊗ un)− µ∇2

h ũ +∇P n =
χsρ

n

ηδt
(un+1

imp − ũ) on Ω (2)

The second step of the algorithm is the correction step in order to recover the pressure
P n+1 and the solenöıdal velocity un+1, by using the just computed predicted velocity ũ
and the second part of the forcing term :

ρn
un+1 − ũ

δt
+∇h(P

n+1 − P n) =
χsρ

n

ηδt
(ũ− un+1) on Ω (3)

The correction equation (3) can be simplified as :

ρn(1 +
χs
η

)(un+1 − ũ) = −∇h(P
n+1 − P n) on Ω (4)

Then, we apply the divergence operator, at a space-discrete level with a finite element
formulation, to the equation (4), and, with the help of the continuity equation, the previous
equation becomes :

div(
η

η + χs
) ∇h(P

n+1 − P n) =
1

δt
div(ρnũ) (5)

And finally the equation (4) leads us to get the new velocity :

un+1 = ũ− δt

(1 + χs

η
)ρn
∇h(P

n+1 − pn) on Ω (6)

3 Wall model

The graph in Figure 2, illustrates the theoretical evolution of the dimensionless velocity
as a function of the dimensionless distance to the wall [11].

Here U is the tangential velocity, u∗ the friction velocity and y+ = yu∗

ν
the dimensionless

distance to the wall with ν the fluid viscosity at the wall and y the distance to the wall.
The friction velocity can be defined by τ = ρ · u∗2 with τ the wall shear stress. It can
be seen that, as close as possible to the wall, the dimensionless velocity u+ = u

u∗
evolves

linearly with the distance to the wall, this area is called the viscous sublayer ; this is a
zone where viscous effects are predominant with a viscosity ν of the same order as the
turbulent viscosity. Then starting from y+ = 20-30, the evolution becomes logarithmic :
this part is called the inertial zone (the viscous effects become negligible compared to the
inertial effects).
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Figure 2: Diagram illustrating the evolution of the dimensionless velocity profile in the turbulent
boundary layer [10].

A wall model is used to determine the velocity profile, in the vicinity of the surface of
the object of study, as a function of the distance from the wall in a turbulent flow. It fills
the gaps in the near-wall turbulence model when we do not want to use a very fine mesh
near the boundary.

3.1 Power law wall model

Wilhelm et al. [12] proposed an another wall model with an improvement for the
computation of the friction velocity. This new wall model is no more expressed in log, but
in power of y+. It allows to not rely on an iterative procedure for the computation of the
friction velocity and proposes a simple technique to compute velocity at a forced node.

To reconstruct this velocity, [12] relies on the use of fluid points to determine the
velocity at a reference point (Ref) which lies on the normal direction to the wall. Once
the position yref and the velocity uref of the reference point are determined, the velocity
at the forced node y can easily be computed : the velocity profile has two expressions,
depending on whether the Ref point is in the viscous sub-layer or not :

If y+Ref < y+c then u(y) = uRef
y

yRef
(7)

If y+Ref > y+c then u(y) = uRef (
y

yRef
)B (8)
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Figure 3: The grey cells are the ones crossed by the approximation of the boundary, the grey crosses
are the forced nodes. The blue cells are the pure fluid cells.

with A = 8.3 and B = 1/7. The viscous sub-layer height y+c is fixed to 11.81 ([12]).
This is the wall model we want to evaluate on academic and industrial test cases, in

order to use it later on the shape optimization process.

3.2 Determination of the reference point at the discret level

Once the projection of the forced point (x, cf. Figure 3) on the immersed boundary
(xp) is done, we define the reference point (xf ) as the fluid point, on the normal direction,
belonging to a pure fluid cell. A pure fluid cell is a cell in the near-wall fluid domain without
any of its nodes being in contact with the cells crossed by the immersed boundary (blue
cell in Figure 3).

4 Numerical results

4.1 An academic test case

In order to validate the approach of using a Penalized Direct Forcing method coupled
with an immersed turbulent wall model [12], we have computed the turbulent flow in a
plane canal as reported by Comte-Bellot [13].
The fluid is air, the length of the canal is set to 10.8 m, the distance between the planes
is 0.18 m, the kinematic viscosity is : 1.5 · 10−5 m2/s, the density set to 1.208 kg/m3,
the Reynolds number Re=104760. The RANS equations are solved with the CEA code
TrioCFD, using the Penalized Direct Forcing method for the consideration of the immersed
boundaries, and the experimental eddy viscosity, cf. Figure 5 left.

The exprerimental velocity field is imposed at the inlet of the canal (Figure 5 right).
Imposing that velocity field at the inlet allows us to get, in a faster way, a fully develop-

ped flow. The usage of an experimental eddy viscosity spare us the usage of a turbulence
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Figure 4: A sample of the fictitious domain mesh with the immersed boundary in red

Figure 5: The eddy viscosity (left) and the inlet velocity (right) used for our study, displayed for half
the distance between the two canal planes.

model and thus allows us to focus on the ability of the immersed wall model to compute
the boundary node velocity.

First, we validate our immersed wall law on body fitted cases using the same y+. To
do this, the immersed boundary is located on mesh axis, cf. Figure 4.1.

A simple uniform cartesian grid is used to mesh the fictitious domain that contain the
canal planes. We used several mesh sizes, along the perpendicular direction to the planes,
to match the position of the first node to the following y+ :

Cell size (m) 0,00115 0,0023 0,0035 0,0045 0,005
y+ 30 60 90 117 130

Figure 6 plots the velocity L2-norm error as a function of y+ for the PDF method
coupled with the [12] wall model (black). The classical body fitted approach with a Werner
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& Wengle[14] wall model is reported in blue. We can see that the error between the PDF
method with the immersed wall model is very similar to the bodyfitted with the W&W
wall model, the difference is less than 2%. The y+ convergence order is about 0.6.

Figure 6: L2-norm error of the velocity for the PDF coupled with the wall model (black stars) and the
bodyfitted (blue squares) with Werner & Wengle wall model

Second, we evaluate the error introduced by a y+ distribution when the mesh axis is
not aligned with the canal.
Then, we also did simulations with tilted canal planes to assess the error when the distance
to the wall is no longuer uniform. Figure 7 plots the velocity L2-norm error as a function
of y+ for the PDF method with the [12] wall model for various angles. Four angles of
inclination, θ = 0o, 11o, 30o, 45o, are considered.

On Figure 7 we can see in blue (0o) the error for the non tilted case. For an angle of
30o or higher the error is similar to the aligned case. The error obtained for an angle of
11o is the highest.

4.2 An industrial test case

We also computed the flow around an industrial device which is the flow limiter (Fi-
gures 8 and 9 ), with the following conditions : an input mass flow rate of 5200 kg/s, an
ouput pressure of 43.7 bar, a constant eddy viscosity (0.141 m2/s ; obtained via Schlich-
ting’s formula : νt = c · l · ρ · V with c = 0.047, l = 0.3 m , ρ = 795.25 kg/m3 and V = 10
m/s). We used the same code (TrioCFD) and the same approach : the Penalized Direct
Forcing method and immersed wall model. Similarly to the academic test case, the PDF
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Figure 7: L-2 error for various angles of the planes

approach applied on an industrial test case, provides similar results compared to a body
fitted meshing with the W&W wall model. This work shows that, with a low generation
cost mesh, we can get an equivalent results than with a body fitted grid.

Figure 8: Simulation of the flow limiter with the Penalized Direct Forcing method and the immersed
wall model
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Figure 9: Mesh of the flow limiter with the PDF approach

5 Concluding remarks

We have presented the PDF method equiped with an immersed wall model, based on a
power-law velocity profile for the description of the turbulent boundary layer, and its nu-
merical implementation. This wall model was chosen because of its polynomial expression
allowing freedom from an iterative procedure for the calculation of the friction velocity. At
the academic level, immersed boundary simulations of the comte-Bellot experiment were
conducted. Several mesh size have been used to verify the model on body-fitted mesh
cases. Satisfactory results are obtained for axis aligned (y+ constant distance to the wall)
or tilted (y+ fluctuating distance to the wall) canal planes. The y+ convergence order
is about 0.6 in relative velocity L2-norm error and the error is the highest for a small
angle of dicrepency between the mesh axis and the canal one. At the Industrial level,
flow simulations inside an in-vessel flow limiter were conducted to verify the feasibility of
the industrial computation with turbulent immersed wall laws. Results are coherent com-
paring with previous laminar results [9], but with higher pressure drop. Concerning the
perspectives, we can project the coupling between the immersed wall law and a K-epsilon
model, as well as obstacle shape optimization during the flow computation.
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