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Abstract-A constitutive model, based on large strain plasticity, for simulation of industrial powder 
compaction processes is presented. The elastic response is stated in terms of a hyperelastic model 
based on a hookean elastic free energy. Plastic response is defined in terms of a two parameter yield 
surface that evolves in terms of the relative density. Two different flow rules are considered and 
tested in front of some available experimental results. Application to the simulation of an actual 
powder-metallurgy compaction process is also shown. Copyright © 1996 Elsevier Science Ltd. 

I. INTRODUCTION 

Compaction processes play a fundamental role in powder metallurgy and structural cer­
amics manufacturing. In both cases the raw material is a very fine powder which is 
compacted, by different forming procedures, and then submitted to a sintering process 
(Sands and Shakespeare, 1966; Dixon and Clayton, 1971; Arunachalam and Roman, 
1990). The most common compaction procedure is the so-called uniaxial compaction in 
which the powder in the die is compacted and shaped by the action of a set of punches 
which act sequentially along the vertical direction. Typical mean values of the relative 
powder density I] (measured with respect to the density after the sintering process) before 
and after the compaction are 1]0 = 0.4 and I]r = 0.95, respectively, which means that the 
original volume occupied by the specimen reduces around 2.4 times. The main goal of the 
compaction process is to obtain a distribution of the density over the compacted specimen 
(from now on called the compact) as uniform as possible, in order to reach full effectiveness 
of the subsequent sintering process. A good prediction and control of the spring-back 
effects and the residual stresses, after loading removal, are also crucial for the goodness of 
the industrial manufacturing process. Design of a compaction process consists, essentially, 
in determining the sequence and relative displacements of die and punches in order to 
achieve such goals. The design process, which has to be done for any new type of piece to 
be manufactured, could be effectively improved by using a simulation tool, able to predict 
the mechanical response of the compact along the process. One of the main ingredients of 
such a code is an appropriated constitutive equation for the compact. 

In the last few years, various constitutive models have been proposed for those 
purposes. They can be basically classified into: 

• Microscopic models, also known as direct models (Turner, 1994; Tamura et al. 1994; 
Akisaya et al. 1994). They modelize each particle as a sphere (or approximated sphere) and 
the movement of many of them is computed accounting for their relative interaction. 
Although these models are thought to simulate the mechanical behaviour of the material, 
they fail to model real complex situations like the particles collapse during the process 
or the shape irregularity of local dislocations. Moreover, these simulations require long 
computational times since many particles have to be taken into account. 

• Continuum or macroscopic models (Abouaf, 1985; Chenot et al. 1990; Bandstra et 
al. 1990; Weber and Brown, 1990; Gethin et al. 1992; Gethin and Lewis, 1994). They 
consider the mechanical behaviour of the compact in a continuum mechanics environment. 
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This results in a set of equations describing the variation of density and, more generally, of 
all the variables of the problem according to the external pressure. This strategy comes 
with a numerical tool to solve the set of equations and thus compute the evolution of those 
variables. Up to date, a common characteristic of these models has been the use of the 
plasticity theory. The first models of this group were derived from others used for porous 
materials (Shima and Oyade, 1976; Weber and Brown 1990; Tomokazu et al., 1992; Riera 
et al. 1993; Coccoz et al. 1994) or frictional materials (Trasorras et al. 1989; Bandstra et 
al. 1990). Generally, the relative density has been chosen as a hardening variable, implying 
that various phenomena like the diffusion and the particle's relative sliding are not con­
sidered or are considered negligible. Basically, the differences between these models lie in 
the yield function definition and its evolution during the process. 

The approach considered in this work lies on a constitutive model, devised for the 
development of a numerical tool for simulation of powder compaction processes (Oliver et 
aI., 1992; Cante, 1995), in the light of previous experiences (Abouaf, 1985; Weber and 
Brown, 1990). Since the model is thought to be used in large scale computations, simplicity 
and computational efficiency is stressed in balance with its ability to capture the most 
relevant physical features of the process: distribution and evolution of density, strains and 
stresses. Large strain elasto-plasticity is chosen as a suitable constitutive equation for the 
problem together with dry friction models to capture friction effects at the walls of dies and 
punches. 

The outline of the remains of the paper is as follows: in Section 2, justification is made 
about the use of an elasto-plastic constitutive equation. Section 3 is devoted to describe the 
constitutive model and some relevant aspects of the numerical integration. After describing, 
in Section 4, the chosen treatment for the contact and friction effects, Section 5 is devoted to 
the assessment of the model, in front of experimental tests, through numerical simulations. 
Finally some concluding remarks are done in Section 6. 

2. THE PHYSICAL PROCESS: JUSTIFICATION OF THE USE OF A PLASTICITY BASED 
MODEL 

At the beginning of the compaction process the material is highly compressible and 
the strains are almost fully irrecoverable. From a macroscopic point of view the material 
can then be considered as a porous material with a high voids ratio and, consequently, with 
a low initial relative density '10 defined as: 

(1) 

where '11 is the relative density at time t, PI is the apparent density at time t and Ps is the 
solid density (after syntering). The apparent density evolves from the initial value Po to the 
final one Ps attained when the relative density tends to I. 

The behaviour of the material along the compaction process can be explained at the 
grain level as the combination of two different behaviours concerning to (Sands and 
Shakespeare, 1966) : (i) the voids matrix, that evolves reducing the voids ratio, and (ii) the 
solid grains. During the first steps of the process the apparent strain comes from voids 
reduction, thus being irrecoverable. In later stages the number of grain contacts increases 
and variations of the apparent strain are also due to the elastic (recoverable) deformation 
of the grains. At final stages the rate of strain is almost fully elastic and the material behaves 
elastically (Fig. 1). 

Large strain plasticity provides a framework to simulate the large apparent (grain 
+voids) irrecoverable deformation associated with voids reduction as well as the much 
smaller elastic and plastic strain in the powder particles. Appropriated definitions of the 
yield function and the flow rule can be derived to approach the fluid-like behaviour of the 
powder at the initial stages evolving towards a typical metallic behaviour at later stages of 
the compaction process. Section 3 is devoted to this subject. 
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Fig. I. Uniaxial compaction process. 

3. CONSTITUTIVE MODEL 

3.1. Kinematics 
Let n c [RN (N = 2,3) be the open and bounded domain occupied by the body at the 

reference (material) configuration and let X En be the referential description of a particle 
of the body. Let [0,11 be the time-like interval of interest where t should be understood 
as a monotonically increasing parameter describing the progression of the deformation 
process. 

Let F = 8<p/8X be the deformation gradient, where <p: n x [0, 11 --> [RN is the mapping 
that describes the movement of the body n. Then we define U(X, t) = <p(X, t) - X as the 
displacement field and we assume the multiplicative decomposition of F (Fig. 2), introduced 
by Kroner (1960) and developed by Lee and Liu (1967), Mandel (1972) among others, 
defined as: 

F(X, t) = P(X, t)£P(X, t) (2) 

where P and FP are the elastic and plastic counterparts, respectively, of the deformation 
gradient tensor F. 

Let us consider at the reference configuration n the Green-Lagrange strain tensor: 

(3) 

where G is the metric tensor at the reference configuration. Similarly, we consider, at the 

-------

........ 

"-
) 

/­...... / n 
Fig. 2. Multiplicative decomposition. 



3164 J. Oliver et al. 

present configuration 0
" 

the Almansi strain vector e which can be related to E through 
classical push-forward cfJ*(o) and pull-back cfJ*(o) operators (Abraham et al. 1983): 

(4) 

Then, it can be shown (Simo and Hughes, 1986; Lubliner, 1990) that the multiplicative 
decomposition of the deformation gradient tensor (2) leads to an additive decomposition 
of the strain at the present configuration given by: 

(5) 

3.2. Constitutive equation 

3.2.1. Free energy and elastic response. In accordance with the assumptions of Mandel 
(1972) the local thermodynamic state is defined by means of the variables ee and q, i.e. 
the elastic strain and the internal variables, respectively, corresponding to the present 
configuration. Then, the free energy density ljJ is defined, assuming uncoupled elastic 
behaviour, as: 

(6) 

where ljJe(e-eP) and ljJP(q) correspond to the elastic and plastic counterparts of the free 
energy. In general plasticity models, the internal variables q are used to describe the 
evolution of the yield function in order to model kinematic or isotropic hardening behav­
iours (Lubliner, 1990; Simo and Hughes, 1986). In the present approach, this evolution 
can be directly modelled in terms of the relative density (see Section 3.2.2) without resorting 
to any specific internal variable apart from the plastic strain eP• Thus, the free energy can 
be written as the elastic counterpart ljJe(ee) in eqn (6). On the other hand, we assume the 
elastic deformation small with respect to the total deformation (P ~ 1) and the elastic free 
energy characterized by the following hookean expression in terms of the elastic strain: 

1 1- 2 ljJe = 2( e - eP ) : c : (e - eP) = 2 A( tr ee) + fie ee ° ee) (7) 

where c = 2[11+21 ® 1 is the elastic constitutive tensor evaluated at the present configur­
ation, I and 1 are fourth and second order unit tensors, respectively, and ~ and J1 are the 
Lame's constants which can be related to the Young's modulus and Poisson's ratio in a 
standard manner (Lubliner, 1990). It is also assumed an isotropic and hyperelastic response 
of the material so that the Kirchoff stress tensor T at the present configuration reads: 

8ljJ -
T = -(ee, q) = c :(e-eP) = 2fi(e-eP) + A tr [e-eP]I. 

8ee 
(8) 

Equation (8) can be moved to the reference configuration by performing pull-back oper­
ations of the type: 

(9) 

where S is the second Piola-Kirchoff stress tensor. 

3.2.2. Relative density. Mass conservation can be formulated as: 

P, DetF = Po (10) 

where P, and Po are the particle apparent densities at the present and the initial times, 
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respectively. Equation (10) can be rewritten in terms of the relative densities by dividing 
both sides by the solid density leading to: 

'10 (X) 
'1(X, t) = '1,(X) = Det [F(X, t)] 

where '10 is the initial relative density and '1, is the relative density at time t. 

(11) 

3.2.3. Yield function. The yield function considered here follows the initial proposal 
ofKuhn and Downey (1971) later used by Weber and Brown (1990). A closed yield surface 
is described at the stress space in terms of the mean stress and the J2 invariant of the 
deviatoric stresses. The initial yield surface is a point placed at the origin of the stress space. 
During the initial steps of the compaction process it evolves quite closely to the hydrostatic 
pressure axis to simulate the limited capability of the powder to carry shear stresses. In 
later stages it tends assymptotically to a Huber-Von Mises cylinder typical of metallic 
materials (Fig. 3). The analytical expression of such a yield surface at the present con­
figuration is given by: 

(12) 

whose derivative with respect to the stresses reads: 

(13) 

where (Jy stands for the uniaxial yield stress. In eqn (12) parameters at and a2, which have 
to be determined from the raw material properties, evolve in terms of the relative density 
'1, and rule the shape and size of the yield surface. Terms tr[-r] = 1Ygij = g: -r and dev[-r] = 
-r-~tr[-r]g-t stand for the trace and deviatoric part of the stress tensor -r, respectively. In 
Fig. 3 the yield function and typical evolution of parameters at and a2 are plotted. 

1\ = 1 

--__ ~---4~----~--4n--~----~r_--_T-------+r~ 

+----->-:--1\ 

Fig. 3. Yield surface evolution and typical evolution of parameters al and a2• rp = (Jy~, 
r, = (Jy J~(a2/ad. 
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3.2.4. Flow rules. In this work two different flow rules have been considered: 

(i) Non associated flow rule: the plastic flow is proportional to the elastic strain 
according to : 

(14) 

where Lv(o) stands for the Lie derivative (Abraham et al. 1983). Definition of the flow rule 
in terms of Lie derivatives fulfills the objectivity requirements for the plastic flow rule 
(Simo, 1988a, 1988b). 

(ii) Associatedflow rule: 

(15) 

The plastic flow is supplemented by the classical Kuhn~ Tucker conditions (Lubliner, 1990; 
Simo and Hughes, 1986): 

(16) 

allowing for the determination of the plastic multiplier t 

3.3. Numerical integration of the constitutive equation 
Assuming the variables of the model at time tn and the incremental displacement field 

f1 Un+ 1 = Un+ 1 - Un at time tn+ 1 are known, the update of the different variables of the 
model at time tn+ 1 is done as described in the next sections. 

3.3.1. Strain and relative density updates. The present configuration and the defor­
mation gradient tensor are updated according to : 

<fJn+ 1 (X) = <fJn(X) + f1Un+ 1 (X) 

Fn+ 1 (X) = Fn(X) +GRAD f1Un+ 1 (X) (17) 

where GRAD stands for the material gradient operator. Then, from eqns (3) and (11) the 
following updates of the strain field and relative density emerge: 

(18) 

3.3.2. Plastic strain update: non-associated flow rule. An implicit (backward Euler) 
numerical integration of eqn (14) leads to (Cante, 1995): 

(19) 

where f1An+ 1 = f1t~(tn+ I)' Term e~ is computed as e~ = cjJn+ 1 * [cjJ:(em where cjJ: and cjJn+ 1 * 
stand for pull back and push forward operators at times tn and tn+ 1 respectively. 

Equation (19) can be solved for e~+ 1 leading to the following closed form expression 
in terms of the plastic multiplier: 

e~+ 1 (x) = (1- IXn+ 1 )en + 1 (x) + IXn+ 1 e~(x) (20) 

where: 
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(21) 

Finally, from eqn (20) the stresses can be evaluated resorting to eqn (8) as: 

(22) 

The update of the plastic strain and the stresses given by eqns (20)-(22) requires the 
determination of the plastic multiplier increment LlAn+ 1 which is done by the following 
elastic-predictor plastic-corrector algorithm (Simo and Hughes, 1986): 

• Elastic predictor: 
Assuming no evolution of the plastic strain during the considered time step we define 

the trial elastic strain as: 

(23) 

and the corresponding predicted values for the stress field and yield function: 

trial _ • etrial 

rn+ 1 - c. en+ 1 

(24) 

• Plastic corrector: 
Case I: If cP~~\ < 0, then, from eqn (24) cPn+ 1 < O. In this case the Kuhn-Tucker 

conditions (16) lead to LlAn+ 1 = 0, so that, from eqns (20) and (22) there is no evolution of 
the plastic strain and we can write: 

(25) 

Case 11 : Otherwise, if cP~~\ > 0 the trial state is not admissible so that LlAn+ 1 > 0 and 
then e~ =F e~+ I' Substitution of eqn (20) into eqn (22) leads to : 

(26) 

Condition LlAn+ 1 > 0 implies that in eqn (I6) cPn+ 1 = 0 (consistency condition, Simo and 
Hughes, 1986), so that 

(27) 

Finally, from eqns (I2) and (27) straightforward computations lead to the following closed 
form determination of IXn+ 1 as: 

~ a2 (17n+ 1 )0"; 
IX~+ 1 = ------''---:-------

11 dev r,rial 112 +! a (rI ) [tr r,rial ] 2 . n+1 9 1 '/n+1 n+1 
(28) 

Once IXn+ 1 is determined the plastic multiplier LlAn+ 1 can be solved from eqn (21a). 

3.3.3. Plastic strain update: associatedflow rule. Implicit integration of eqn (IS) leads 
now to: 

(29) 

and, after substitution of eqn (13), eqn (29) reads: 
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(30) 

where g is the metric tensor at the present configuration. The next steps are similar to the 
ones considered for the non-associated flow rule case. Equations (22) and (30) supplemented 
by the Kuhn-Tucker conditions (16) lead, through the predictor-corrector algorithm 
scheme of Section 3.3.2, to the following closed form solution for the stress field (Cante, 
1995): 

where 

{

1'trial 
n+1 

l' -
n+ 1 - trial trial 

IXn+ I dev [1'n+ d + f3n+ IPn+ 11 

Ptrial =! tr [1'trial 1 n+ I 3 n+ I , 

4>(1'~r~Ll1n+l) < 0 

4>(1'~r~L I1n+ I) ): 0 
(31 ) 

(32) 

and K = ~ + (2/3)p. Substitution of the stress field 1'n+ I given by eqn (31 b) into the yield 
condition 4> (1'n + ], I1n+ I) = 0 (consistency condition) leads, after same algebraic com­
putations (Cante, 1995), to the following polynomical expression: 

132 11 d trial 112 + 2 (trial) 2 2 ( ) 2 0 n+ I ev 1'n+ I IXn+ I Pn+ I -3 a2 I1n+ I (J,. = (33) 

which can be solved for LlAn+ I considering eqns (32). In Boxes 1 and 2, the algorithms for 
the associated and non-associated flow rule cases, respectively, are summarized. Also, the 
corresponding consistent tangent moduli cP defined by drn+ I = cP : den+ I is given there for 
both cases. Details about the obtention of those consistent tangent operators can be found 
elsewhere (Cante, 1995). 

4. BOUNDARY TREATMENT: CONTACT AND FRICTION 

In order to be used for simulation of actual industrial powder compaction processes 
the constitutive model described above has to be supplemented with some additional 
ingredients referring to the boundary conditions. 

Confinement of the powder by dies and punches implies the addition of a contact 
model for the solid. Two main options are available at this point: penalty methods, which 
have the advantages of easiness of implementation and preservation of the quadratic 
convergence of Newton schemes for the solver, and augmented-Iagrangian methods (Simo 
and Laursen, 1992; Laursen and Simo, 1993) which have robustness as the main advantage. 
For the considered powder compaction process large changes in the material stiffness 
occurring along the process, substantially affect the robustness of the penalty methods and 
make the second family of methods more convenient. Thus, a unilateral contact scheme 
based on an augmented-Iagrangian approach has been used for the simulations presented 
below (Cante, 1995). 

Another relevant aspect of compaction processes is the friction between the compact, 
and the walls of dies and punches. Several options are also available here (Curnier, 1984), 
but in order to check the reliability of the proposed constitutive equation, a dry friction 
model (Coulomb-type friction) has been considered sufficient to capture the more relevant 
aspects of friction. Further details about the considered contact and friction models are 
given elsewhere (Cante, 1995). 

5. MODEL ASSESSMENT: NUMERICAL EXPERIMENTS 

The constitutive equation presented above, together with the described methodology 
to account for contact-friction effects, have been implemented in a non-linear finite element 
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Box I 

Non associated flow rule: numerical integration 

I. Updates. 

2. Elastic predictor. 

3. Yield condition and plastic corrector. 
If 4> (T~':\, '1n+ d ~ 0 Then 

else 

4. Consistent tangent moduli 

where 

~+! =e:; 

I 
t.An+! = --I 

ctn + I 
where 
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code. In order to evaluate the capability of the whole approach to simulate powder com­
paction processes some tests have been driven and the corresponding numerical results are 
compared with available experimental results in the next sections. 

5.1. Assessment of the flow rule 
Doremus et al. (1994) performed a set of compaction experiments using the triaxial 

press schematically plotted in Fig. 4b. Both isostatic compaction (hydrostatic pressure) and 
triaxial tests were driven. The raw material was iron powder with particle sizes ranging 
from 10 pm to 100 pm. The compacted specimens had an initial height h = 24 mm and 
diameter D = 20 mm. Triaxial tests consisted of an initial isostatic compaction step, up to 
the value (Jr = 400 MPa for the hydrostatic pressure, followed by a subsequent uniaxial 
compaction step carried out by keeping constant (Jr and increasing the vertical stress (Jz up 
to a maximum value of (Jz = 1250 MPa (Fig 4a). 

In the simulations the following values are taken for the material properties: 

Young's modulus = 2.0 x 103 MPa 

Poisson's ratio = 0.37 
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Initial apparent density = 3.67 gr/cm3 

Solid density = 7.5 gr/cm3 

Initial relative apparent density = '10 = 3.67/7.5 = 0.489 

Yield stress = 90 MPa 

In Fig. 5, corresponding to the isostatic compression step, experimental and numerical 
results (density vs pressure) are compared for both the associated and non-associated flow 
rules. Good agreements are found for both cases and no substantial difference due to the 
chosen flow rule is observed. 

Box 2 

Associated flow rule: numerical integration 

I. Updates. 

2. Elastic predictor. 

3. Yield condition and plastic corrector. 
If 4>(r~ri:L /]n+ d ~ 0 Then 

~+l = e~ 

else 

tl.An+ I = positive root of (33) 

4. Consistent tangent moduli. 
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Fig. 4. (a) Initial geometry of the sample and maximum applied triaxial stress. (b) Schematic 
diagram of the triaxial cell (Ernst and Barnekow, 1994). 
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Fig. 5. Isostatic compaction test. (a) Non-associated flow rule. (b) Associated flow rule. 
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Fig. 6. Triaxial test. (a) Non-associated flow rule. (b) Associated flow rule. 

Figure 6 corresponds to the complete triaxial (isostatic + uniaxial compression) test. 
Density vs uniaxial strain curves are plotted for both flow rules and for different values of 
the hydrostatic pressure p attained at the end of the isostatic compression step. In these 
figures the uniaxial strain is computed as (Lf - Lo)/ Lo where Lo and LJ are the initial and 
current heights of the specimen, respectively. 

As far as numerical simulations are concerned, results of Fig. 6 show very different 
behaviour for the non-associated and associated flow rules, the results fitting much better 
the experiments in the second case (Fig. 6b). This fact shows that the actual plastic flow, 
for the considered type of metallic powder, is much better approached by a flow normal to 
the yield surface, i.e. the one given by the associated flow rule of eqn (15), even at early 
stages of the compaction process. 

Results reported by Ernst and Barnekow (1994) are used to perform some additional 
assessments of the associated flow rule. The considered cylindrical specimens had a diameter 
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of 14.3 mm and an initial height of SO mm. The raw material was 100.29 (Hoganas) with 
1 % Microwax C (Hoescht) for which the following values are taken as material properties: 

Young's modulus = 5.0 x 104 MPa 

Poisson's ratio = 0.37 

Initial apparent density = Po = 2.94 gr/cm 3 

Solid density = Ps = 7.35 gr/cm 3 

Initial relative apparent density = 110 = 2.94/7.35 = 0.4 

Yield stress = 170 MPa 

An isostatic compaction process was driven up to reach a pressure of 250 MPa. Also, 
a purely uniaxial compaction process was considered to reach a vertical pressure of 900 
MPa. Comparisons between numerical and experimental results are presented in Fig. 7, in 
terms of the vertical pressure vs apparent density, which show quite satisfactory agreements. 

5.2. Numerical simulation of an actual industrial compaction process 
The next example refers to the simulation of a multi-level compaction process (Krauss 

et al. 1991). The compact specimen is a bearing used in the automotive industry whose 
geometry (axisymmetric) is shown in Fig. S. The initial and final shapes are plotted in the 
figure with dashed and full lines, respectively. Characteristic sizes of the specimen are as 
follows 

RI = 16.1 mm HI = 40.3 mm 

R2 = 22.4mm H2 = 9.40 mm 

R3 = 27.7mm H3 = 17.Smm 

R4 = 32.1 mm H4 = 60.0 mm 

Hs = 7.50mm. 
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Fig. 8. Simulation of an industrial compaction process. Geometry and loading description. 

a = 8.56 
b = 12.3 
C = 12.14 
d = 8.56 
e = 18.36 

The compaction is performed by means of the action of five punches, labelled a, b, c, d and 
e in the figure, whose corresponding displacements are the following: a = 8.56 mm, b = 12.3 
mm, c = 12.14 mm, d = 8.56 mm and e = 18.36 mm. 

Once the specimen is compacted, extraction of the compact from the mould was also 
simulated in a second step by releasing punches a and band d, and pushing the compact 
by means of punches c and e up to complete the extraction. The considered properties of 
the material are: 

Young's modulus = 1.3 x 104 MPa 

Poisson's ratio = 0.37 

Initial apparent density = Po = 2.94 gr/cm3 

Solid density = Ps = 7.35 gr/cm3 

Initial relative apparent density = 110 = 2.94/7.35 = 0.4 

Yield stress = 100 MPa 

Friction effects are considered through a Coulomb's friction model with a friction 
coefficient J1. = 0.1. 

Figure 9 shows the evolution of the density at different stages of the compaction step. 
It can be observed to be a fairly uniform density evolution, as corresponds to a well designed 
compaction process. Figure lOa--c corresponds to the predicted residual stress states after 
the compact extraction showing typical stress concentrations around the inner corners. 
Finally, Fig. lOd, shows the predicted final shape (amplified 25 times) exhibiting radial and 
vertical spring-back. 

6. CONCLUDING REMARKS 

Closing this work the following comments about the presented approach should be 
made: 



compaction step. 
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(a) (b) 

(c) (d) 

Fig. 10. Simulation of an industrial compaction process. Predicted residual stress states: (a) radial 
stress, (b) axial stress, (c) shear stress, (d) predicted final shape (amplified 25 times). 
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• It is stated in a solid mechanics environment using a material (Lagrangian) descrip­
tion. Although the raw material, a very fine powder, resembles a fluid, which could induce 
to resort to Eulerian descriptions (Jinka et ai., 1992; Brekelmans et al., 1991), it is the 
opinion of the authors that a Lagrangian approach has several computational advantages. 
In fact, compressibility of the material and, consequently, evolution of the density play a 
fundamental role in the process and cannot be neglected at all. In a Lagrangian description 
mass conservation can be stated locally in a closed form (see eqn 11), thus not enlarging 
the number of unknowns of the discretized system of equations to be solved. In an Eulerian 
description, however, mass conservation is locally stated through the continuity equations 
which have to be numerically integrated adding up to a new non-linear equation (due to 
convective terms) to the discretized system of equations that rules the problem. 

• Large strain plasticity has proved to be able to capture the most relevant features 
of the compaction process. Evolution of the material compressibility can be modelled 
through a quite simple (two parameters) yield surface and appropriated flow rules. Con­
cerning this point, an associated flow rule has shown a much better behaviour, fitting 
experimental results, than the non-associated one, at least for the types of metallic powder 
considered in this work. If this can be generalized to other non-metallic types of powder is 
an open question. 

• Special care has been taken in computational aspects of the model. Due to the 
hyperelastic character of the elastic response, and since the proposed flow rules can be 
integrated in closed form, consistent tangent operators can be easily derived. The experi­
ences of the authors in simulation of some real compaction processes have shown that the 
use of such operators is crucial to keep quadratic convergence and, thus, the required 
computational time small enough. As the model is envisaged to be used for design of 
industrial compaction processes based on trial and error procedures, this fact becomes 
extremely relevant. 
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