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Abstract:10

The revolution of hydraulic fracturing1 has dramatically increased the supply and lowered the cost of natural gas in the United11

States driving an expansion of natural gas-fired generation capacity in many electrical grids2. Unrelated to the natural gas12

expansion, lower capital costs3 and renewable portfolio4 standards are driving an expansion of intermittent renewable generation13

capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the14

reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating15

output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates16

that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries17

to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas18

pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas19

pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring20

at the locations of flow reversals.21
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I. INTRODUCTION

30

The ongoing evolution to intermittent wind and solar electric generation is causing many electrical grid operators to use more

31

agile natural gas-fired electric generation to balance these new stochastic resources. This interdependence causes a cascade of

32

the fluctuations of renewable generation into the systems that supply fuel to the gas-fired generators, i.e. natural gas pipelines.

33

We develop a model of the coupling between electrical grid fluctuations and natural gas pipeline systems, analyze the resulting

34

fluctuations of pipeline pressure, and draw conclusions about the impact of renewable electrical generation on the stability and

35

security of natural gas pipelines.

36

By making unconventional natural gas sources economic to extract, hydrofracking has created a revolution in the U.S. natural

37

gas industry1. Many of these new gas sources are in nontraditional locations such as the Marcellus shale in Pennsylvania, the

38

Niobrara shale in Eastern Colorado, and the Bakken shale in North Dakota. See Fig. 1. The dramatic increase in supply has

39

driven down prices and spurred many new or expanded uses for natural gas5,6. This revolution in the natural gas supply and

40

loads is creating new challenges for natural gas pipelines that transport the gas from source to load. With a limited amount of

41

throughput and short-term gas storage (in the form of pressure in pipeline itself), these pipelines may become vulnerable as their

42

operating environment changes.

43

A dominant new load on the gas pipelines is natural gas-fired generators. Previously, the marginal cost of electricity from

44

these generators was higher than from coal-fired generators. However, the rapid drop in gas prices has made gas generation

45

competitive with coal and spurred its construction. An example of this dramatic expansion is in the electrical grid controlled by

46

the Independent System Operator of New England (ISO-NE) where natural gas-fired electrical generation increased from 5% of

47

total capacity to 51% in a span of 20 years2. A parallel development in many U.S. electrical grids is the expansion of intermittent

48

renewable generation such as wind and PhotoVoltaic (PV) generation—a trend that is expected to continue as utilities work
to meet state-imposed renewable portfolio standards that mandate a certain fraction of electrical generation be derived from
renewable sources. See Fig. 2. In contrast to traditional nuclear, coal, or gas-fired generation, these new forms of generation
have a small degree of controllability. To maintain the second-by-second balance of generation and load, other grid resources
must respond to counteract the fluctuations of the intermittent generation. Although many different types of advanced control
of nontraditional resources are being considered to provide these balancing services, e.g. grid-scale battery storage and demand
response, the currently most available resources are the controllable traditional generators with gas-fired generators being the
most flexible among these.

The combination of expanded natural gas-fired generation and its increased use to balance intermittent renewable generation
is creating loads on natural gas pipelines that are significantly different than in the past. Traditional gas pipeline loads (Load
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FIG. 1. (Left) The Natural Gas Pipeline Network of the United States. Interstate pipelines are not significantly meshed and primarily display
a tree-like structure. (Right) Major US shale gas basins – new sources of natural gas that will encourage realignment of US National Gas
Network.

FIG. 2. (Left) US Power Transmission Grid (including potential future transmission expansions) superimposed on wind power capacity map.
(Right) Solar power capacity map with proposed transmission lines to improve the integration of solar resources into the existing power grid.
(Adapted from National Public Radio, Visualizing the U.S. Electric Grid, 2009.)

Distribution Companies or LDCs) primarily serve space or water heating or other individual customer needs and evolve slowly59

throughout the day in a relatively well-known pattern that can be predicted based on historical information and weather forecasts.60

Other traditional pipeline customers are industrial loads that, although they may change from day to day, are very predictable61

over the span of a day. In contrast, when gas-fired generation is used to balance fluctuating renewable generation, a component of62

the resulting gas loads take on a stochastic nature. Unlike the gas load of an LDC, wind and PV generation respond to short-term63

fluctuations in environmental conditions, e.g. wind fluctuations on the timescale of 10-100 minutes and solar insolation fluctu-64

ations on the timescale of 1-100 minutes. At the longer timescales, these fluctuations may contain spatiotemporal correlations65

that increase the aggregate fluctuations of wind or PV generation across an entire electrical grid magnifying the fluctuations of66

natural gas loads used by gas generators to balance these changes.67

Fluctuating gas loads create new dynamics in natural gas pipelines that can impact their reliability and the reliability of all68

interdependent infrastructures, including the electrical grid. To a great extent, electrical grid dynamics are determined by the very69

small amount of energy stored in the rotating kinetic energy of large centralized generators. Under a serious upset, this energy70

storage can maintain the reliable operation of the grid for a second or two while other resources are adjusted to compensate—71

typically an adjustment of mechanical power input to these same generators supported by a change in fuel burn rate. In some72

respects, if the grid “storage” is sufficient to survive the initial upset, an electrical grid with fuel-burning generators has very73

large amounts of storage on longer timescale in the fuel supplied to those generators.74

Gas pipelines dynamics evolve on very different timescales. In the short term (10-100 minutes), gas pipelines have a large75

amount of storage in the compressed natural gas in the pipeline itself. A typical gas pipeline might be run very near its upper76

limit on pressure of 800 psi whereas the minimum gas delivery pressure is 500 psi. Even if all gas injections into the pipeline77

were cutoff, the gas loads would slowly reduce the pressure of compressed gas over a few hours without any significant impact78

on the loads until the gas pressure falls below the minimum delivery pressure. However, unlike the electrical grid, there may79

be very little gas storage on longer timescales. Injections of gas into the pipeline are scheduled via bi-lateral transactions in gas80

markets and are typically held constant throughout a 24-hour period. Therefore, the gas pressure in the pipeline evolves over81

both space and time according to the spatiotemporal arrangements of the gas injection and gas loads. If the injections and loads82

are out of balance, the gas pressure will undergo spatiotemporal evolution. However, the fluctuations in pressure will not be83
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spatially uniform. In fact, the pressure fluctuations are nonlocal with the swings at one locations depending on the behavior at84

all other locations.85

The feedback between fluctuating gas loads and gas pressure creates coupled reliability concerns across the natural gas pipeline86

and electrical grid infrastructures. The nonlocal effects mentioned above can couple with spatiotemporal correlations in the87

fluctuations of renewable generation through the response of the gas generators to magnify pressure fluctuations at certain88

locations in the pipeline. These fluctuations may lead to significant over or under pressures, both of which have serious impact89

on the reliability and safety of the pipeline itself. Under pressures may impact the gas generators by forcing them to reduce90

electrical output or potentially shutdown to preserve the integrity of service to other pipeline customers. As we will show in this91

manuscript, the most sensitive locations are those of zero flow at the end of the pipeline with unidirectional flow or at location(s)92

of flow reversal in pipelines with well separated injection locations. Therefore, the evolving spatial dependence of U.S. natural93

gas supply will couple to the stochasticity to create additional uncertainty in the reliability of the gas and electrical systems.94

Neither gas pipeline nor electrical grid operators have the analysis tools to sufficiently address the probabilistic nature of the95

reliability impacts created by the coupled stochasticity of these infrastructures. The goal of the manuscript is to lay the foundation96

for these tools by developing a model and analysis to predict the spatiotemporal evolution of the probability distribution of97

gas pipeline pressure fluctuations. This first step seeks to develop a measure of probabilistic risk that can be subsequently98

integrated into the operations of both the electrical and pipeline infrastructure networks. We approach the problem by adopting99

phenomenological gas flow equations consisting of Partial Differential Equations (PDE) in one spatial dimension that have been100

accepted as accurate representations of long natural gas pipelines7–11.101

We develop models of fluctuations of gas-fired generator natural gas loads and the constraints imposed by natural gas markets102

to analyze the stochastically-driven PDEs. We develop analytic expression for probability distributions of gas pipeline pressures103

as a function of space and time and as a function of the settings of gas compressor stations that push the gas along the pipeline.104

Our analysis shows that, under constant compressor station settings, the mean square pressure fluctuations grow linearly in time105

similar to a diffusive process. We find that the largest mean square pressure fluctuations occur at location of zero flow that can106

potentially occur at any location along the pipeline depending on the average natural gas injections and loads. The results form107

the basis for a risk-aware optimization problem for the gas compressor stations controls.108

The material in the rest of the manuscript is organized as follows. Section II reviews the state of the art in modeling gas &109

grid coupling and impact of wind generation on the gas network. Section III describes the basic model of natural gas pipelines.110

Section IV describes pressure sensitivity to fluctuating gas draws. Future work and extensions are discussed in Section V.111

Appendixes describe in greater detail the physical models of gas flow and the approximations used to develop the models112

discussed in the main text.113

II. SYNOPSIS OF THE STATE OF THE ART114

A. Modeling of the gas & grid coupling115

Numerous studies have considered combined optimization and operational planning for interacting energy infrastructures.116

Integrated natural gas and electric optimal power flow12,13 and optimal unit commitment with natural gas security constraints14–16
117

have been proposed, in addition to techniques for short-term operation17–21 and expansion planning22,23. Those studies rely on118

the steady-state Weymouth equations24,25, which do not capture the dynamic fluctuations that lead to intra-day gas supply issues.119

Studies on coordinated multi time-period scheduling have also relied on steady-state equations26, as well as on finite-difference120

approximations27,28. This is a vibrant field of research where many new ideas continue to emerge. For example, ISO-like natural121

gas coordinator was suggested in29 to harmonize gas and power industries and enable responsive coordination. Notice that to122

verify this and other suggestions in a meaningful way further development of optimization and control techniques that utilize123

physically realistic models of gas network flow transients on the time-scale of power system operations are needed.124

B. Wind Variability Impacts on Gas Supply Systems125

Several studies have examined the impact of wind variability on the operation of natural gas infrastructure networks20,30,126

which used the so-called “Panhandle A” approximation and the Weymouth equation, respectively, for gas system simulation? .127

Similar approaches have been used to examine the impact of stochastic variability on gas systems due to other energy sources128

with multi-scale behaviors, such as hydro power17. A recent study has examined risk assessment for integrated electric power129

and natural gas systems and proposed techniques for obtaining gas system security certificates within the electric generator130

dispatch space31.131
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FIG. 3. Schematic representation of the Transco gas transmission network.

III. MODEL OF NATURAL GAS PIPELINES132

The Transco pipeline (see Fig. 3) is a major interstate pipeline that delivers large quantities of natural gas to population centers133

and to natural gas-fired generators that supply electricity to those same population centers. Like many other major interstate134

pipelines, the Transco pipeline displays a nearly radial structure and it is equipped with many compressors that are often nearly135

equally spaced along its length (∼50-100 km between compressors). These two properties are reasonably well approximated by136

the radial, distributed compression model discussed in the main text. Under these two approximations, the Transco and similar137

pipelines can be analyzed using the simplified models and analysis discussed in the following.138

We adopt a phenomenological, spatially one-dimensional model of a transmission pipeline delivering gas over long distances139

(∼ 1000’s of km)—a reasonable model of interstate pipelines in the US. The form of this model is generally accepted as140

an accurate representation of long pipelines7–11. See the supplementary information (Appendixes) for model derivation and141

additional details. The gas injections may be configured in many different ways, e.g. at a single source at the originating end of142

the pipeline, two sources at either end of the pipeline, or in a distributed manner along the pipeline. However, in all that follows,143

the injections will be assumed to be constant in time–a simplification that is also a close representation of pipeline operations in144

the U.S. Natural gas loads are distributed along the pipeline and may fluctuate in time. Pressure gradients drive the gas along145

the pipeline from sources to sinks, and these gradients are maintained by gas compressors. A few other assumptions in the146

derivation and analysis of the model are made, but these are mostly taken to simplify the presentation. We will point out where147

these assumptions can be removed via more complicated analysis.148

A. Gas Dynamic Equations149

By integrating over the cross section of the natural gas pipeline, the three-dimensional equations of hydrodynamics are reduced150

to a representation in one spatial dimension. Mass conservation becomes151

c−2s ∂tp+ ∂xφ = −q, (1)

where t is time, x is coordinate along the pipe (0 < x < L), p is the pressure along the pipe, φ is the mass flow along the pipe,152

q(x) is the density of the distributed gas consumption (q > 0 for injection and q < 0 for loads), and cs is sound velocity of the153

gas. Using a friction factor β as a phenomenological representation of turbulent drag, Navier-Stokes equation becomes154

∂xp+
β

2d

φ|φ|
p

= γp. (2)

Here, d is the pipe diameter and γ(x) is a distributed representation of the many compressor stations in long pipelines. A real155

compressor station can operate in several different modes, one of which is a fixed compression ratio γ such that pout = γpin156

where pout and pin are the pressures at the outlet and inlet of the compressor. Here, we have distributed this lumped compression157

ratio along the pipeline such it makes a positive contribution to the ∂xp of size γ(x). Fast acoustic transients are ignored in Eq. (2)158

by assuming cs � u, where u is the typical gas velocity. u is generally small enough that this condition holds everywhere in159

the pipeline, however, u (and its associated Reynolds number) is also large enough that β can be taken to be constant. We note160

that Eqs. (1,2) have already been supplemented with an ideal gas isothermal equation of state for the natural gas of the form161

p = c2sρ. (See e.g.32 for modern discussion of the modeling and simulations in the general non-isothermal case.) The model162
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derivation in the Appendixes addresses more general and more realistic settings such as meshed networks and compression163

spatially concentrated at the nodes.164

B. Simplified Market Model165

The flow of natural gas in a pipeline is scheduled via bilateral transactions between buyers and sellers in a day-ahead market166

with market clearing and gas flows scheduling done well in advance of the following 24-hour period of gas delivery. Scheduling167

consists of determining the locations and constant rates of gas injections. The gas pipeline operator expects that gas loads will168

be fairly uniform over the 24-hour delivery period. Some level of fluctuating gas load is allowed, and it is these fluctuations that169

is expected to grow as natural gas-fired electrical generation is increasingly used to balance renewable fluctuations. After the170

24-hour delivery period begins and gas buyers have better estimates of their actual needs, they can make mid course corrections171

by transacting and scheduling gas flows in two subsequent intra-day markets at 10 and 14 hours after the start of the 24-hour172

delivery period. In the three intervening periods, the gas injections are held relatively constant, and it is these periods we seek to173

analyze.174

We model these subperiods by first solving for a stationary solution where time-averaged gas loads q(st)(x) are given and are175

globally balanced by time-independent gas injections at either end of the pipeline, i.e. φ(st)(0) = φ0 ≥ 0 and φ(st)(L) = φL ≤176

0. The stationary gas flow along the pipe is related to the loads by177

∂xφ
(st)(x) = −q(st)(x), (3)

and the global mass balance implies178

φ(st)(0)− φ(st)(L) =

∫ L

0

dx q0(x). (4)

Natural gas pipeline operators require that Eq. (4) be satisfied over the 24-hour delivery period. To insure this condition over the179

24-hour period, there may be some deviation in the balance in the intra-day periods to compensate for inaccurate forecasting or180

changes in the average gas loads. However, in the remainder of this discussion, we will assume that the stationary solution is181

balanced in each intra-day subperiod. In the following, we will add fluctuations to q(st)(x), and therefore φ(st)(x), to model the182

affects of renewable generation on the pipeline pressure fluctuations.183

C. Compressor Model For Stationary Flows184

Before adding fluctuations, we first describe the control of the gas compressors for the stationary gas flows. If the gas loads185

q(x) and flow φ(x) were actually stationary, then the control for the gas compression stations could be computed once and186

implemented for the entire 24-hour gas delivery period, or at least for the intra-day periods. Natural gas pipeline operators seek187

to maintain a relatively uniform pressure profile up to the the pressure drop between compressor stations. Our simple model188

of spatially-distributed compression γ(x) in Eq. (2) is a reasonable representation of gas pipeline operations and provides a189

spatially uniform pressure p0 when190

γ(x) =
βφ(st)(x)|φ(st)(x)|

2d p20
. (5)

We pick this model for ease of presentation. Spatially discrete compression and nonuniform pressure profiles33–36 can be incor-191

porated in an edge-node network model in straightforward manner. See Appendixes for additional discussions.192

IV. PRESSURE SENSITIVITY TO FLUCTUATING GAS DRAWS193

Time-dependent gas loads require the solution of the dynamic versions of Eqs. (1,2). Here, we consider the time-dependent194

component to be fluctuations of the gas loads about their forecasted values, q(t;x) = q(st)(x)+ξ(t;x), where ξ(t;x) models the195

random, zero mean and statistically stationary fluctuations. As described in Appendix B when these fluctuations are relatively196

weak (even though they may be spatio-temporarily nontrivial), an analytical solution for the time-dependent variance of the gas197

pressure valid at t� τ becomes198

〈(δp(x))2〉
p20

=

(
q(st)c2sτ
p20

)2
t

τ

(
Z(x)

Y

)2 ∫∫ L

0

dx1 dx2
L2

〈ξ(t, x1)ξ(t, x2)〉
(q(st))2

. (6)
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FIG. 4. Stationary mass flux φ(st)(x) and compression γ(x) though the pipeline versus the distance x along the pipeline. Here, the length of
the pipeline as been set to one, i.e. L= 1. The plot shows two different cases of stationary mass flux to demonstrate the effect on the spatial
dependence of the sensitivity parameter Z(x)/Y . In both cases, the flow reversal occurs at x∗= 0.6. The combined mass flux into the pipe
from x= 0 and x= 1 is the same for both cases. Case 1 is comprised of uniformly distributed gas loads at all locations along the pipeline. Case
2 represents a combination of some distributed load along with a concentrated load at x = x∗=0.6.

The solution shows that a pipeline’s sensitivity to fluctuating gas draws depends on the stationary solutions φ(st)(x) or γ(x) and199

the statistics of the fluctuating gas loads.200

Here, we analyze three exemplary stationary configurations to explore the qualitative features of this sensitivity. The first two201

cases are shown in Fig. 4.202

• Case 1 displays injection of gas only at the two ends of the pipeline (φ(st)(0)/φ0 = 1 and φ(st)(L)/φ0 = −2/3) with203

uniformly distributed gas draws along the pipeline (q(st)=const). The resulting mass flux along the pipeline is φ(st)(x) =204

φ0(1 − x/x∗) – thin black trace in Fig. 4 – where x∗ = 0.6L. According to Eq. (5), the stationary compression is205

proportional to φ(st)|φ(st)| creating a compression profile that goes to zero at x∗ and is biased toward either end of the206

pipeline at x = 0 or x = L – thick black trace in Fig. 4.207

• Case 2 is a simple modification of Case 1 that concentrates the gas draws near a single location at x∗. In Case 2, φ(st)(x) =208

φ0 0.918 sign(1 − x/x∗)
√
|1− x/x∗| – thin red trace in Fig. 4 – where the choice of the 0.918 factor for Case 2 makes209

the total gas injection into the pipeline, φ(st)(0) − φ(st)(L), the same as in Case 1. The larger gas draws near to x∗210

are indicated by the higher values of ∂xφ(st) at x∗. The resulting compression shows a linear dependence with heavier211

weighting of compression closer to x∗ than in Case 1.212

Using the distributed compression γ(x) in Fig. 4, Z(x)/Y is computed using Eq. (6). The results for Case 1 and Case 2213

are shown in Fig. 5 and Fig. 6, respectively. The different traces in these Figures are for different values of the coefficient,214

C ≡ βφ20L/(dp
2
0), that scales the compression density γ(x). Interpreting the distributed compression in terms of a set of215

discrete compressor stations of uniform compression ratio, Case 2 with C = 50 corresponds to between 6 and 7 compressors216

with compression ratio 1.5 placed uniformly between x= 0 to x∗, i.e. a typical number of compressors for a mildly stressed217

pipeline configuration.218

When the pipeline is under very little stress (C = 1), both Case 1 and Case 2 show a relatively uniform Z(x)/Y ∼ 1. Under219

these conditions, there are no regions of the pipeline that show a significantly enhanced sensitivity to stochastic gas loads. As220

the stress is increased (larger C), proportionally more compression is deployed in the stationary solution. Both Case 1 and Case221

2 show a depression of Z(x)/Y near the ends of the pipeline, i.e. the injection points, and an enhancement near x∗. Although222

the total gas injection into the pipeline is the same in Cases 1 and 2 (for the same value of C), the enhancement of the sensitivity223

to stochastic gas loads in Case 2 is stronger and more focused for two reasons. First, the total (aggregated) compression on the224

system is larger in Case 2. This can be seen from the curves for compression γ(x) in Fig. 4. Second, the stationary gas loads are225

more concentrated near x∗ resulting in more compression located near x∗. After normalization by Y , Z(x)/Y displays a sharper226

peak. If the gas load were entirely concentrated at x∗, the mass flux and compression would be uniform along the pipeline (on227

either side of x∗), and the peak in Z(x)/Y would be even sharper.228
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FIG. 5. The fluctuation sensitivity parameter Z(x)/Y versus x for Case 1 in Fig. 4. For a given pipeline geometry, the different curves
represent different scalings of the total stationary mass flux into the pipeline or the total compression deployed in the stationary solution.

FIG. 6. Same as Fig. 5 except for Case 2 in Fig. 4.

The result that the pipeline shows the highest sensitivity to fluctuations near x∗ is not a coincidence. The mass flux in the229

pipeline exhibits a reversal at this point and the compression changes sign. It is at the flow reversal that the integral in Eq. (6) of230

the Appendix is the largest. Therefore, in pipelines where the direction of the stationary mass flux is primarily in one direction231

over long distances, the resulting compression will cause the points of flow reversal to be the most sensitive to pressure fluctuation232

from stochastic gas draws. This qualitative result begins to suggest the possibility of fluctuation-aware control algorithms that233

adjust either the mean gas pressure or the spatial distribution of compression to limit the probability of the gas pressure violating234

either upper or lower pressure limits.235

Gas injections at the ends of the pipeline do not always dominate the flow in a pipeline. Such a situation may occur near the236

beginning of a major pipeline where there are many sources of gas injections interspersed with many gas customers. The flow237

in the pipeline may alternate many times before a significant unidirectional flow builds up. This situation often occurs in the238

Williams Transco interstate pipeline near its beginning in Texas37. This situation may also arise in smaller intrastate pipelines239

where many smaller, spatially distributed sources are injecting into a pipeline that is serving many different customers. Case 3240

models these configurations by distributing both gas loads and injections along the pipeline with zero injection or load at the241

ends, i.e. φ(st)(0) = φ(st)(L) = 0. Fig. 7 (solid line) displays a realization of spatially disordered stationary loads and injections242
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FIG. 7. Disordered stationary gas injections and loads (q(st), solid line) and the fluctuation sensitivity parameter (Z(x)/Y , dashed line) versus
x for Case 3. The total gas injection into the pipeline is equivalent to C ≈ 14.9 in Case 1 in Fig. 5 or Case 2 in Fig. 6. The disorder of q(st)(x)
results in many flow reversals that suppress Z(x)/Y suggesting that this configuration is more robust to gas load fluctuations than a pipeline
with more unidirectional flow.

q(st)(x) that corresponds to a total gas flow equivalent to C ≈ 14.9 in Case 1 or 2 from above. Although the total gas injection243

is similar, the frequent flow reversals limit and the build up of the integral in Eq. (6) reduces the values of Z(x)/Y in Fig. 7244

(dashed line) as compared to the Cases 1 and 2 where the flow is more spatially uniform. The spatial disorder of q(st)(x) results245

in a system that is more robust to fluctuations of gas loads.246

V. PERSPECTIVES247

We have developed a dynamical model of natural gas pipelines that incorporates the effect of fluctuating gas injections and248

loads on the pressure at all points along the pipeline. The model divides the injections and loads into a stationary component and249

a fluctuating in time component. Compressors along the pipeline are adjusted so that the solution for the stationary gas pressure250

is spatially uniform. An asymptotic solution for the fluctuating pressure factorizes into a product of two terms. The first term251

depends on the profile of the stationary injection/consumption along the paper and is related to the compression deployed in the252

stationary solution. Surprisingly, this term does not depend on the gas load fluctuations. The second term grows diffusively in253

time as given by a spatiotemporal integral of the zero-mean gas load fluctuations. Results for exemplary cases show that the254

sensitivity of pressure fluctuations to gas load fluctuations is peaked at and around locations of stationary mass flux reversals. The255

results suggest the development of a risk-aware gas compressor control that limits the probability of the gas pressure exceeding256

upper engineering limits or lower contract delivery limits. Pipelines with spatially-disordered injections and loads show less257

sensitivity to gas load fluctuations.258

There are many areas for future work including:259

• The current formulation should be converted to a node-edge network model more amenable to the simulation of real gas260

networks with compression concentrated at gas compressor stations.261

• Discrete compressor stations will force the relaxation of our assumption of spatially uniform pressure.262

• The solution for the stationary compression should be converted to an optimization for gas pipeline operations (e.g. for263

minimum cost of compression, maximum throughput, etc) while limiting the probability of violating an upper or lower264

gas pressure limit.265
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Appendix A: Description of Appendixes273

The Supplementary Information contained in the Appendixes describes in greater detail the physical models of gas flow and274

the approximations used to develop the models discussed in the main text.275

Methods used to derive main results of the paper are detailed in Appendix B, consisting of two Subsections devoted to discus-276

sion of the linearized one-dimensional model of stochastic gas dynamics and following analysis of the probabilistic measure of277

risk, respectively.278

The remaining Appendixes provide discussions of more general modeling needed to support the paper’s conclusions. Ap-279

pendix C describes basic hydrodynamic equations for a single pipe and discusses the slow transient approximation used in the280

main text. Appendix D generalizes the single pipe Dynamic Gas Flow (DGF) description to the case of non-steady gas flows281

over a meshed network. Appendix E briefly discusses steady Gas Flow (GF) solutions of the DGF model and puts them in the282

context of the Optimum Gas Flow (OGF) problem used to determine gas compressor operation. In Appendix F, the DGF system283

is linearized around a steady solution and the general solution of the linear dynamic problem over the network is constructed.284

The solution is split into homogeneous (zero mode) and inhomogeneous parts and it is argued that the inhomogeneous part of the285

linearized DGF becomes asymptotically small in the regime of interest. Here we also add a Subsection briefly discussing the in-286

homogeneous correction, for the general case and then also for the special model of a long pipeline with distributed compression287

discussed in the main text.288

Appendix B: Methods289

1. Linearized Model of Stochastic Gas Dynamics290

The stationary solution described above applies to gas pipelines with well-behaved gas loads. Under these conditions, the291

pressure p0 does not vary and the pipeline operations are very secure and reliable. Stochastic gas loads that arise from gas292

generation compensating fluctuating renewable generation change this picture. Fluctuating gas loads are added to the stationary293

solution294

q(st)(x)→ q(t;x) = q(st)(x) + ξ(t;x), (B1)

where ξ(t;x) is zero mean (〈ξ〉 = 0) so that each load, although stochastic, is restricted to consume its scheduled amount q(st)(x)295

over the intra-day market subperiod. The stochastic component of the gas load ξ(t;x) is expected to include spatiotemporal296

correlations typical of renewable generation, e.g. ξ(t;x) for wind generation is expected to be correlated on the time scale of297

tens of minutes to hours over lengths from tens to hundreds of miles.298

The effect of the stochastic gas loads is analyzed by linearizing the hydrodynamic model in Eqs. (1,2). (Linearization of299

the basic non-stationary gas flow equations was already discussed in the literature, however only in the context of simplifying300

numerical evaluations of the underlying partial differential equations (e.g.38 and references therein). Here, we carry it two steps301

further–we derive analytical relations and then to analyze effects of stochastic fluctuations and spatial disorder in gas loads.302

Another recent analytical approach retains the basic nonlinearity but assumes adiabaticity, i.e. very slow changes in the gas303

loads39. Although promising computationally, this approach fails to account for fast, but not necessarily large, fluctuations in304

the gas draws originating from the electric grid-natural gas pipeline interaction.) Expanding these equations to first order in the305

fluctuations yields306

c−2s ∂tδp+ ∂xδφ = −ξ, (B2)

∂xδp+
β

d

φ(st)δφ
p0

− β

d

(φ(st))2

p20
δp = 0, (B3)

where δp and δφ are the fluctuating pipeline pressures and mass flows, respectively. Although the gas loads fluctuate, the gas307

injections φ0 and φL remain at their stationary values imposing conditions on the fluctuating mass flows308 ∫ L

0

dx ∂xδφ = 0. (B4)

The structure of Eqs. (B2-B4) provides some guidance regarding the types of solutions expected. Differentiating Eq. (B3)309

with respect to x (and temporarily assuming a uniform φ(st)) enables the elimination of δφ via Eq. (B2). The resulting PDE in310
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δp has the structure of a nonlinear diffusion equation that is driven by exogenous perturbations ξ(t;x). Because 〈ξ〉 = 0 over the311

intra-day periods, it is tempting to drop all time derivatives in Eq. (B4) and compute time-independent mean square fluctuations312

of δp, however, this approach is incomplete. Spatiotemporal correlations in ξ(t;x) occurring on time scales shorter than the313

intra-day period will result in gas draw fluctuations that create shorter-term imbalance with net flow of gas into or out of the314

pipeline. Eq. (B4) shows that these non-zero net fluctuations are not allowed to leak out either end of the pipeline because φ0315

and φL are held fixed. The only way for the system to accommodate these short-term correlated fluctuations is through a “zero316

mode” where the average pressure in the entire pipeline raises or falls along with the fluctuating injections. This zero mode and317

its effects on the pipeline pressure fluctuations are the emphasis of the remainder of this manuscript.318

2. Probabilistic Measure of Risk: Analysis319

To represent the slow drifts of pipeline pressure discussed above, we suggest a solution to Eqs. (B2,B3) of the form320

δp(t;x) = a(t)Z(x) + b(t;x), (B5)

where the two components of the solution respond to the different characteristics of the fluctuations ξ(t;x). The first component321

a(t)Z(x) is the zero mode where Z(x) is a slowly varying function of x that captures the spatial distribution of gas stored in the322

pipeline as pressure rise or fall driven by the correlated component of the fluctuating gas draws. The time dependence of these323

global pressure swings are captured by a(t). In contrast, b(t;x) varies more rapidly in space and responds to the uncorrelated324

component of the fluctuations of ξ(t;x) that occur on finer spatial and time scales. The larger spatial derivatives of b(t;x) result325

in relatively rapid diffusion of pressure (and gas) which limits the impact of b(t;x) on pressure fluctuations.326

Substituting our proposed solution (B5) into Eqs. (B2,B3) yields an equation for the zero mode327

∂xZ −
β

d

φ(st)(x′)|φ(st)(x′)|
p20

Z = 0, (B6)

which has a solution328

Z(x) = exp

[∫ x

0

dx′
βφ(st)|φ(st)|

d p20

]
= exp

[∫ x

0

2γ(x′)dx′
]
. (B7)

The solution for Z(x) does not depend on the form of the fluctuations ξ. Rather, it depends on the stationary solution φ(st)(x),329

or equivalently on deployed gas compression in the stationary solution. The same substitution also yields an expression for a(t)330

that does depend on the gas load fluctuations:331

c−2s Z∂ta+ δxδφ = −ξ. (B8)

Since a(t) is independent of x, Eq. (B8) can be integrated over the length of the pipeline to yield an explicit expression for a(t):332

a = − c2s
LY

∫ t

0

dt′
∫ L

0

dx ξ(t′, x), Y =

∫ L

0

dx Z/L, (B9)

where Eq. (B4) has been used to eliminate the δφ term.333

The physical interpretation of the zero mode a(t)Z(x) now becomes clear. The double integral in Eq. (B9) filters out the334

uncorrelated components of ξ showing that the time dependence of the zero mode a(t) only responds to the fluctuations of ξ that335

are correlated in space (over the entire length of the pipeline) and in time (since the beginning of the intra-day market period).336

A discussion of the solution component b(t;x) is given below in Section F 1.337

The zero mode a(t)Z(x) will dominate the contribution to δp(t) at times longer than the correlation time τ of ξ where τ338

is expected to be in the range of tens of minutes to hours for fluctuating gas loads creating by gas-fired electric generators339

balancing intermittent wind generation. For t � τ , we may safely drop the b in favor of a(t)Z(x) and estimate the pressure340

variation covariance as341

〈(δp(x))2〉 =
c4sτt

L2

(
Z(x)

Y

)2 ∫∫ L

0

dx1 dx2〈ξ(t, x1)ξ(t, x2)〉, (B10)

where we have also assumed statistical stationarity of ξ(t;x) over time.342

Eq. (B10) can be rearranged slightly to reveal a physical interpretation, as shown in Fig. (6) of the main text. The first term on343

the right hand side of Eq. (6) of the main text is the square of the fractional pressure decline if the entire pipeline was subject to344

the spatially averaged gas load q(st) without any compensating injections for one correlation time τ of the gas load fluctuations.345
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This first term is multiplied by the number of correlation times (t/τ ) since the intra-day period began. The third term provides the346

only x dependence and describes the sensitivity of different locations in the pipeline to pressure fluctuations. This dependence347

comes entirely through Z(x) which (see Eq. (B7)) depends only on the compression deployed in the stationary solution. The348

dependence onZ(x) demonstrates that a highly stressed pipeline, i.e. one with a large
∫
γ(x′)dx′, is more susceptible to pressure349

fluctuations driven by stochastic gas loads, and Z(x) shows which pipeline locations are most susceptible. The final term on350

the the right hand side of Eq. (6) of the main text measures the spatial average of the correlated fluctuations in the gas loads351

normalized by the average stationary gas load.352

The right hand side of expression for a(t) in Eq. (B9) is a time integral over a stochastic process, and per the law of large353

numbers, a(t;x) and δp(t;x) are expected to be asymptotically Gaussian when the integration time is longer than the correlation354

time of ξ. In this limit, the estimate of the pressure fluctuation covariance in Eq. (B10) or Eq. (6) of the main text also predicts the355

tails of the distribution over δp, thus allowing the estimation of the probability of relatively rare events of high or low pressure356

fluctuations (under the condition that the fluctuations are still within the linear approximation used here). Eq. (B10) becomes a357

probabilistic measure of risk to reliability of natural gas pipeline operations and a route to modeling the risk that cascades to the358

interdependent infrastructures such as electric power systems.359

Appendix C: Gas Flow Equations: Individual Pipe360

Following36, we consider the flow of a compressible gas in a single length of pipe. Major transmission pipelines are typically361

16-48 inches in diameter and operate at high pressures and mass flows, e.g. 200 to 1500 pounds per square inch (psi) and moving362

millions of cubic feet of gas per day40,41. Under these highly turbulent conditions, the pressure drop and energy loss due to shear363

is well represented by a nearly constant phenomenological friction factor f . The resulting gas flow model is a partial differential364

equation (PDE) with one spatial dimension x (along the pipe axis) and one time dimension7–9:365

∂tρ+ ∂x(uρ) = 0, (C1)

∂t(ρu)+∂x(ρu2)+∂xp= −ρu|u|
2d

f−ρg sinα, (C2)

p = ρZRT. (C3)

Here, u, p, ρ are velocity, pressure, and density at position x; Z is the gas compressibility factor; T is the temperature, R is the366

gas constant, and d is the diameter of the pipe.367

Eqs. (C1,C2,C3) represent mass conservation, momentum balance and the ideal gas thermodynamic relation, respectively.368

The first term on the rhs of Eq. (C2) represents the friction losses in the pipe. The second term on the rhs of Eq. (C2) accounts369

for the gain or loss of momentum due to gravity g if the pipe is tilted by angle α. The frictional losses typically dominate the370

gravitational term, which is typically dropped. Similarly, the gas inertia term (∂t(ρu) is also typically small compared to the371

frictional losses (as the flow velocity is significantly smaller than sound velocity) and is dropped. For simplicity of presentation,372

we have also assumed that the temperature does not change significantly along the pipe.373

Taking into account these assumptions, Eqs. (C1,C2,C3) are rewritten in terms of the pressure p and the mass flux φ = uρ:374

c−2s ∂tp+ ∂xφ = 0, (C4)

∂xp+
β

2d

φ|φ|
p

= 0, (C5)

where cs ≡
√
ZRT is the sound velocity and β ≡ fZRT are both considered constant. To resolve the dynamic problem for375

t ∈ [0, τ ] over x ∈ [0, L] we also need to supply Eqs. (C4,C5) with initial and boundary conditions for flows,376

t = 0, ∀x ∈ [0, L] : φ(0;x) = φ0(x), (C6)

∀t : φ(t; 0) = q(in)(t), φ(t;L) = q(out)(t), (C7)

which are consistent, i.e. φ0(0) = q(in)(0) and φ0(L) = q(out)(0), in addition fixing pressure initially at an end of the pipe, e.g.377

p(0; 0) = p0.378

Appendix D: Dynamic Gas Flow (DGF) over Network379

The single pipe setting in Eqs. C4 and C5 is generalized to a gas network represented by a graph G = (V,E) with a set of380

vertexes V and set of edges E, where the edges will be considered directed or undirected, depending on the context. See Fig. 8381

for a schematic illustration. We will adopt (i, j) and {i, j} notations for directed and undirected edges, respectively. Each vertex,382
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FIG. 8. Schematic illustration of the network-structure notations. a) Schematic illustration of a single edge (i, j) of a network. Nodes at either
end are indicated by open circles and labeled by their nodal pressure pi and pj . Compressors are indicated with filled squares. Mass flow φij

is directed from i to j and injections qi and qj contribute to this flow. Nodal pressure pi is modified by the compression ratio αi→j yielding
pij(xij = 0). The pressure falls along {i, j} reaching pij(xij = Lij). If compressor αj→i is not present, then pij(xij = Lij) = pj . b)
Schematic of many edges connected in a meshed network. Nodes are indexed by i = 0, 1, · · · , where node 0 is typically reserved for the swing
bus – the node where pressure is maintained constant throughout the dynamics. Compressors and injections and edge mass flows are the same
as in a).

i ∈ V represents a node with a gas injection/consumption rate qi (mass per unit time). Each edge (i, j) ∈ E is a single pipe with383

mass flow φij . The flow along each edge is described by a set of PDEs:384

∀t ∈ [0, τ ], ∀{i, j} ∈ E, ∀x ∈ [0;Lij ] :

c−2s ∂tpij(t, x) + ∂xφij(t, x) = 0, (D1)

∂xpij(t, x) +
β

2d

φij(t, x)|φij(t, x)|
pij(t, x)

= 0, (D2)

where pij(t, x) and φij(t, x) are the pressure and mass flow, respectively, at time t and position x along edge (i, j) of length385

Lij . Here, pij = pji, φij = −φji, and Lij = Lji. See Fig. 8a for a schematic description of the variables.386

The flow of gas create a pressure drop. To compensate, the pressure is boosted at compressor stations potentially located at387

both ends of each edge {i, j}. αi→j is the compression ratio of the station adjacent to node i while αj→i is the compression ratio388

adjacent to node j. We choose to place compressors at the two ends of every line/pipe for generality, which also simplifies the389

notations in the following discussion. In reality there will be only none or one compressor on any particular edge of the graph.390

Note also that αi→j may be larger or smaller than unity, thus representing compression or decompression. If only compression391

is allowed, then αi→j ≥ 1. The relationships between the pressures in Fig. 8 are392

∀t ∈ [0, τ ], ∀(i, j) ∈ E : pij(t, 0) = pi→j(t), (D3)
pij(t, Lij) = pj→i(t), pi→j = piαi→j , pj→i = pjαj→i,

where pi and pi→j are the pressures at node i and just past the compressor on edge (i, j) adjacent to node i and the last part393

of Eq. (D3) is added for clarity. If there is no compressor installed at the beginning of the edge (i, j) or if the compressor394

is inactive, αi→j = 1. In the current operational paradigm, compression rates are not changed very frequently, however, we395

anticipate changes and allow the αi→j to depend on time.396

Eqs. (D2,D3) are complemented with mass conservation at all nodes of the network:397

∀t ∈ [0, τ ], ∀i ∈ V :
∑

j:(i,j)∈E

φij(t, 0) = qi(t). (D4)

When the gas injections q(t) = (qi(t)|i ∈ V) for are given for t ∈ [0, τ ], nodal conditions (D4) generalize the single-pipe398

boundary conditions in (C7) to a pipe network. Eqs. (D1,D2,D3,D4) constitute a complete set of equations describing the399

Dynamic Gas Flow (DGF) problem if they are supplemented with compression ratios, i.e. α = (αi→j |(i, j) ∈ E), initial400

conditions on the flows401

t = 0, ∀{i, j} ∈ E, ∀xij ∈ [0, Lij ] :

φij(0;xij) = φ
(in)
ij (xij), (D5)

and pressure at one arbitrarily chosen slack node, pi=0(0) = p0.402
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Appendix E: Stationary Gas Flow and Optimum Gas Flow403

The stationary/steady version of the DGF problem is the Gas Flow (GF) problem. In the GF problem, all input parameters404

(consumptions/injections, compression ratios and the pressure at the slack bus) are constant in time, and the total injection and405

consumption are balanced406 ∑
i∈V

q
(st)
i = 0. (E1)

The steady solution of Eq. (D1) is uniform mass flow along each pipe in the network, ∀{i, j} : φi→j = const. Substituting this407

result into Eq. (D2) and taking straightforward spatial integration yields algebraic relations between flow through and pressures408

at both ends of every pipe in the network409

∀(i, j) ∈ E : p
(st)
i→j = p

(st)
i αi→j ; (p

(st)
ij (x))2 = (p

(st)
i→j)

2 − βx

d
φ
(st)
ij |φ

(st)
ij |. (E2)

The GF problem has a unique solution provided the compression ratios are known.410

Compression ratios α are time-independent in the steady GF setting. The configuration of α over the network is typically411

decided using a combination of economic and operational factors. The model selected in the main text corresponds to a simple412

greedy approach, i.e. maintain constant pressure throughout the network for flows corresponding to the forecasted comsump-413

tions/injections. This model roughly replicates the behavior of pipeline operators in the U.S. where the energy consumed in the414

compression of the gas is not a major concern. More sophisticated compression dispatch options, in particular minimization of415

the total work spent on compression subject to maintaining pressure within acceptable limits, have been extensively discussed416

in the literature, e.g.33,34,36,42 and references therein.417

Appendix F: Perturbative solution of the DGF problem418

We generalize discussion in the main text by introducing stochastic gas loads (due, e.g., to natural gas-fired generators) from419

a line to a network, such that q(t) = q(st) + ξ(t) where components of ξ(t) = (ξi(t)|i ∈ V) are time varying but relatively420

small in comparison with q(st). We look for a linearized solution of the DGF problem of the form p(t) = p(st) + δp(t) and421

φ(t) = φ(st) + δφ(t), where the respective corrections are small, i.e. |δp(t)| � p(st) and |δφ(t)| � φ(st). The linearized422

versions of Eqs. (D1,D2,D3,D4) become423

∀t ∈ [0, τ ], ∀{i, j} ∈ E, ∀x ∈ [0;Lij ] :

c−2s ∂tδpij + ∂xδφij = 0, (F1)

∂xδpij +
β

2d

(
δφij |φ(st)

ij |

p
(st)
ij

+
φ
(st)
ij |δφij |

p
(st)
ij

−
δpijφ

(st)
ij |φ

(st)
ij |

(p
(st)
ij )2

)
= 0, (F2)

∀t ∈ [0, τ ], ∀(i, j) ∈ E : δpi→j = δpiαi→j , (F3)
δpij(t, 0) = δpi→j(t), δpij(t, Lij) = δpj→i(t), (F4)

∀t ∈ [0, τ ], ∀i ∈ V :
∑

j:(i,j)∈E

δφij(t, 0) = ξi(t). (F5)

The remainder of the Subsection is devoted to finding an asymptotic solution of Eqs. (F1,F2,F3,F4,F5). Here, asymptotic424

implies finding solutions for time τ longer than the correlation time of the fluctuation consumption ξ. We seek solutions that425

eliminate the complexity of the PDE of Eqs. (F1, F2,F3,F4,F5) and that connect the nodal quantities by algebraic relationships.426

Therefore, generalizing the solution proposed in the main text (see Eq. (10)), we look for a solution of Eqs. (F1,F2) of the427

form428

δpij = aij(t)Zij(x) + bij(t, x), (F6)

where aij(t) only depends on time. Here in Eq. (F6) Zij(x) solves the following linear homogeneous equation429

∂xZij −
β

d

φ
(st)
ij |φ

(st)
ij |

p
(st)
ij

Zij = 0, (F7)

where Zij(x) counts x from node i, i.e. reversing the direction of counting one gets, Zij(Lij) = Zji(0).430



15

Assuming that τ is sufficiently large, we conjecture (which will be verified after the global asymptotic solution is found) that431

the major contribution to δpij in Eq. (F6) originates from the first “zero-mode” term aij(t)Zij(x) that (as will be seen below)432

grows in time compared to the second term that does not.433

To find the leading (zero mode) term we proceed as follows. The integration of Eq. (F7) over the spatial dependence of the434

stationary profile (E2), yields435

Zij(x) =
p
(st)
i→j + p

(st)
j→i

2p
(st)
ij (x)

, (F8)

where the normalization constant is chosen to guarantee,
∫ L

0
Zij(x)dx/L = 1. We solve for the time-dependent factor aij(t) by436

substituting δpij with aij(t)Zij(x) into Eq. (F1) and integrate the result over the entire spatial extent of the pipe {i, j} yielding437

aij(t) = c2s

∫ t

0

dt′ (δφij(t
′, 0)− δφij(t′, L)) . (F9)

In the asymptotic limit where δpij is approximated by aij(t)Zij(x) for every pipe (graph edge), Eqs. (F4) can only be satisfied438

if the aij(t) have the same functional dependence on time, i.e.,439

∀{i, j} ∈ E : aij(t) = a(t)cij , (F10)

where cij = cji is an edge specific constant. To compute the global time-dependent factor a(t) in Eq. (F10) we sum over all the440

nodes of the graph441 ∑
i∈V

ξi =
∑
{i,j}∈E

(δφij(t, 0)− δφij(t, Lij)) , (F11)

integrate over time, define442

Ξ(t)
.
=

∫ t

0

dt′
∑
i∈V

ξi(t
′), (F12)

and finally sum Eq. (F10) overall edges:443

a(t) =
c2sΞ(t)∑
{i,j}∈E cij

. (F13)

Therefore, ∀t, ∀{i, j} ∈ E, x ∈ [0, Lij ] :444

δpij(t, x) ≈ c2sΞ(t)∑
{i,j}∈E cij

cijZij(x). (F14)

The unknown edge constants cij are derived by substituting Eqs. (F14) into Eqs. (F3, F10) yielding445

∀i, ∀j, k s.t. (i, j), (i, k) ∈ E :
cijZij(0)

αi→j
=
cikZik(0)

αi→k
. (F15)

Eqs. (F14, F15, F8) express the complete asymptotic (zero mode) solution of the DGF problem.446

Assuming that the random gas load fluctuations ξi(t) are zero-mean, temporarily homogeneous, and relatively short correlated447

in both time (the correlation time is less than τ ) and space (the correlation length is less than the spatial extent of the network),448

and observing that δpij in Eq. (F14) is given by a time-integral and spatial-sum of the fluctuations, one concludes that according449

to the Large Deviation theory, the pressure fluctuations form a Gaussian random process which jitter diffusively in time, i.e. the450

Probability Distribution Function (PDF) of δpij(t, x) is451

P(δpij(t, x) = δ)→ (2πtDij(x))
−1/2

exp

(
− δ2

2tDij(x)

)
, (F16)

Dij =

(
c2scijZij(x)∑
{k,l}∈E ckl

)2〈(∑
n∈V

ξn(t′)

)2〉
, (F17)

where the correlation function on the right-hand-side does not depend on t′ due to assumption of the statistical homogeneity of452

ξ.453
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1. Correction to the asymptotic solution454

In the general analysis of the preceding Section of this SI, the pressure fluctuations are separated into homogeneous (zero455

mode) and inhomogeneous (forced) components, according to Eq. (F6). The formal separation in Eq. (F6) leads to a differential456

equation for the inhomogenous solution b(t;x) which, for the general formulation above, is fully defined by Eqs. (F18,F19).457

Once the leading, growing in time, contribution to δpij is found, one verifies that, bij(t, x), extracted from458

∂xbij +
β

2d

(
δφij |φ(st)

ij |

p
(st)
ij

+
φ
(st)
ij |δφij |

p
(st)
ij

−
δpijφ

(st)
ij |φ

(st)
ij |

(p
(st)
ij )2

)
= 0. (F18)

c−2s Zij
d

dt
aij + ∂xδφij = 0, (F19)

does not grow with time, and thus it is asymptotically smaller — consistently with what was conjectured above to derive the459

leading contribution.460

Let us discuss this asymptotic separation of the solution into dominant contribution and correction in more details for the461

simplified analysis/model of the main text. Repeating the solution separation on the (simplified) continuous-compression model,462

we find a differential equation for b(t;x) in terms of δφ, i.e.463

∂xb+
β

d

|φst|δφ+ φst|δφ|
2p0

− β

d

(φst)2

p20
b = 0. (F20)

Fluctuations in δφ drive b(t;x), but unlike for the homogeneous solution, Eq. (F20) shows that this effect is entirely local.464

Specifically, Eq. (14) of the main text shows that the homogeneous component responds to the global imbalance in gas loads465

while the response in Eq. (F20) is to the local δφ. In addition, the response in Eq. (F20) decays in space and does so quickly in466

areas of high compression for the stationary solution (see Eq. (5) of the main text). In contrast, the homogeneous solution grows467

more quickly in areas of high compression (see Eq. (12) of the main text). These two properties contribute to the dominance of468

the homogeneous solution over the inhomogeneous solution at longer times.469
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