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Abstract. A multiscale model based on finite element (FE) and the Parametric High-Fidelity-Generalized-
Method-of-Cells (PHFGMC) micromechanical model was formulated and implemented to solve the
compression problem in unidirectional IM7/977-3 carbon epoxy composite. The nonlinear PHFGMC
governing equations were obtained from a two-layered (local-global) virtual work principle and solved
using a incremental-iterative formulation. In addition, the semi-analytical modified Lo and Chim failure
criterion (based on the buckling of Timoshenko’s beam) for unidirectional fiber-reinforced composite
materials under compression [1] was adopted and combined with the FE-PHFGMC multiscale model.
In this study, the criterion was employed for the general case of a multi-axial loading state accompanied
with a nonlinear polymeric matrix behavior, where the local and thus effective properties of the com-
posite change continuously throughout the loading path. Therefore the predicted lamina strength was
incrementally reevaluated. In the present model, the use of the nonlinear constitutive model Ramberg-
Osgood was used for the matrix media and a linear-elastic transversely-isotropic law for the fiber, as
common for carbon fibrous composites. This extends the existing criterion to account for the material
microstructure with a refined parametric discretization, as well as the effect of a nonlinear constitutive
law. The advantage of the proposed model is to predict the compressive damage (kink band formation
and its width) and the compressive strength (within 11% of experimental data).

1 INTRODUCTION

According to the U.S. Department of commerce, advanced composite structures are at the forefront
of innovative solutions for the challenges facing leading industries and communities, e.g. rebuilding
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Figure 1: Kink band in a carbon reinforced composite IM7/977-3 under compression

old infrastructure, building new climate resilience public utilities, and improving the fuel-efficiency of
airplanes and vehicles [2]. The main advantage of composites is their light weight and increased strength
compared to traditional materials.

Accurate local and global analysis of mechanical behavior of composites, including damage under vari-
ous loading conditions, is critical to predicting material and structural performance and durability. In par-
ticular, this study focused on the damage and failure under axial compression of a unidirectional carbon-
epoxy composite. This loading configuration is of great importance since the compressive strength mea-
sured in experiments is significantly lower than the laminate tensile strength. The main failure mecha-
nism observed in experiments is known as kink bands, where the fibers micro-buckle as seen in fig. 1.
Early works considered the fiber buckling (and breakage due to bending) to be the driver of the kink
band formation [3, 4]. Later works hypothesised that the initial formation of the kink band, however, is
a result of damage in the matrix phase that causes instability after which the fibers buckle. The matrix
damage is attributed to axial shear stresses that are concentrated around material inhomogeneities like
fiber waviness [5, 6].

The kink band width is found to be from 10 to 25 times the fiber diameter [7, 8], and cannot be captured
by a two dimensional representation of the microstructure (as in the case of the current PHFGMC model).
This larger length-scale requires a mesoscale analysis, where at least several fibers are included in the
domain, in all three dimensions, to capture the fiber-matrix interaction that produces the stress field,
damage, instability, and ultimately, the kink band. Many works modeled the mesoscale problem for
various material systems and microstructures [9, 10, 11] among others. This numerical analysis is usually
carried out by explicitly modeling the fibers and matrix in a finite element (FE) model, which results in a
very large number of degrees-of-freedom (DOF) necessary to bridge the gap between the micro and meso
scales. Moreover, this approach is impractical for larger specimens or part assemblies. The multiscale
approach proposed in this study aims at reducing the number of variables while accurately predicting the
compressive strength and kink band formation.

2



Ido Meshi, Uri Breiman AND Rami Haj-Ali

To this end, a multiscale FE-PHFGMC analysis was formulated and implemented for compression load-
ing. The nonlinear PHFGMC micromechanical model [12] is a dedicated micromechanical method,
extending its HFGMC predecessor. The microstructure is discretized into volumetric subcells that form
the RUC and representing the composite’s periodic microstructure. The PHFGMC model requires less
DOF than a comparable FE model due to a combination of factors [13]. In the current formulation,
the linearized governing equations are obtained from a virtual work principle applied to both the micro
and macro/meso scale variables and solved using a new incremental-iterative formulation. The pro-
posed formulation yields an overall symmetric system of equations and also enables the implementation
of advanced numerical stabilization methods available in current FE programs. Predictions of the FE-
PHFGMC for damage initiation, its evolution, and the overall stress-strain response are shown to be in
good agreement with experimental data.

2 METHODS

The multiscale algorithm implemented in this work used a FE model at the macro/meso scale and the
PHFGMC model at the microscale. Note that the fibers and matrix are modeled explicitly only at the
microstructure level and not at the mesoscale. This allows for a relatively coarse mesh at the mesoscale
and a finer mesh only at the microscale problem. During the solution procedure, the strain field at
the mesoscale (far-field) is passed to the microscale at every material (integration) point as the applied
boundary conditions of the micromechanical problem. The PHFGMC model is then used to solve this
problem resulting in the local fields and damage state in the microstructure. The local stress field is
homogenized and it is passed back to the higher scale along with the RUC effective stiffness. After
assembly, the FE incremental-iterative nonlinear solver is called.

2.1 Governing equations of the PHFGMC model

In the PHFGMC micromechanical model formulation for doubly periodic microstructure, the domain
is divided into an arbitrary number of quadrilateral subcells. This enables a refined description of the
microstructure and a higher resolution of the calculated fields. A standard linear mapping using bi-
linear shape functions is used for subcell transformation from the physical local (microscale) coordinates
(y2,y3) to the uniform parametric coordinate system (r,s), where the calculations at the subcell level are
carried out [14] (see fig. 2). The displacement vector in a random subcell (β) is given by [12]:

u(β) = εεε0 ·x+WWW (β)
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(2.1)

where the first term is the displacement associated with a linear far-field strain field of the macro scale x
and the terms that follow form the quadratic perturbation field in the micro scale y. The microvariable
vectors are (WWW 1,WWW 2,WWW 3,WWW 4,WWW 0), where WWW i (i = 1,2,3,4) represent the average displacement on the
subcell faces, and WWW 0 is an additional microvariable vector.
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Figure 2: Adapted from [15]: Schematic representation of doubly periodic composite in the PHFGMC
model. The composite (a) is made of multiple RUC’s (b). The composite is represented by a single
RUC (c) divided into an arbitrary number of subcells under applied remote strain and periodic BC. Each
subcell is mapped from the physical to the parametric domain (e),(d)

For a random subcell (β), the external and internal average virtual work balance is expressed by:

δεεε0
(β),T IIIε0

(β)+δWWW (β),T III(β)W =
∫

V
δεεε

(β),T
σσσ
(β)dV

=
∫

V
(δεεε0

(β),T +δWWW (β),T AAAW
(β),T )σσσ(β)dV (2.2)

where σσσ is the Cauchy stress tensor, εεε is defined as:

εεε
(β) = εεε0 +AAA(β)

W WWW (β) (2.3)

with AAA(β)
W containing linear functions of the parametric coordinates and the Jacobian of the parametric

mapping. The generalized internal resisting force vector of the subcell can be identified with its two parts
as:

III(β)ε0 =
∫

V (β)
σσσ
(β)dV ; III(β)W =

∫
V (β)

AAAW
(β),T

σσσ
(β)dV (2.4)

By using the generalized Hooke’s law for infinitesimal strains with eq. (2.3), the stress tensor can be
described in terms of the microvariables and the far-field infinitesimal strain:

σσσ
(β) =CCC(β)

εεε
(β) =CCC(β)

(
εεε0 +AAA(β)

W WWW (β)
)

(2.5)

The obtained equations can be formulated in a matrix form:

[KKK]{û}= {III} (2.6)

The algorithmic stiffness matrix that relates the overall generalized force vector, III = (IIIW , IIIε0), and the
overall variables of the subcells, û = (WWW ,εεε0), is obtained by assembly of the stiffness matrices of all the
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subcells. The subcell stiffness is expressed by:

KKK(β) =

[ ∫
V AAAT

WCCCAAAW dV
∫

V AAAT
WCCCdV∫

V CCCAAAW dV
∫

V CCCdV

](β)
=

[
KKKWW KKKWε0

KKKε0W KKKε0ε0

](β)
(2.7)

Note that indeed the stiffness matrix of the PHFGMC is symmetric. The second-order Gaussian quadra-
ture rule using 2-by-2 integration points is suitable for numerically evaluating the above integrals since
the integrands are either linear or quadratic functions. Further, the traction continuity between neigh-
boring subcells is satisfied in an average sense by the weak formulation. The displacement continuity
and periodicity could be easily achieved by associating the microvariables of shared faces with a single
active microvariable in the overall system of equations.

Periodicity constraints are applied to the microstructure boundary, such that the displacement of two
opposite points on opposite faces are set equal:

u(y) = u(y+L) (2.8)

where L is a spatial vector in the periodicity direction with a magnitude of one periodic RVE length
(in that direction). The implementation in the PHFGMC is done pair-wise in an average sense, which
leads to the constraints on the microvariables. Namely, the average displacement on the kth face of some
random subcell (β) using the aforementioned linear mapping is given by [16]:

ū(βk) ≡ 1
lk

∫
lk

u(β)(yyy)dlk

=
1
2

∫ 1

−1
u(βk)(ξk)dξk = εεε0 ·x+WWW (β)

k (2.9)

where k = 1,2, ..,4 and ξk is a contour parametric integration variable. Rearranging eq. (2.8) for average
displacements:

ū(βk)− ū(γn) = 0 (2.10)

⇒WWW (β)
k −WWW (γ)

n = 0 (2.11)

where β and γ are indices of any pair of periodic subcells, and k, n are the relevant faces of each subcell.

Incremental-iterative procedure

In the case of nonlinear material response, the Newton incremental-iterative method is employed. The
following nonlinear derivations assume incremental and tangential variables similar to the total-variables
previously derived in the linear part. The equilibrium residual of the entire system of equations can be
expressed in a general manner by:

RRR≡ III−PPP =

{ ∫
V AAAT

W σσσdV∫
V σσσdV

}
−
{

PPPW

PPPε0

}
(2.12)

where III is the internal force vector and PPP is the external force vector (and PPPW , PPPε0 are the external load
applied to the microscale, macroscale, respectively). Under equilibrium RRR = 000 and by using Newton’s
method:

∂RRR
∂û

∆û =−RRR (2.13)
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Under the assumption that the external load is independent of the generalized displacement and from
eq. (2.6) the global stiffness matrix is:

∂RRR
∂û

=
∂III
∂û
≡ KKK (2.14)

In the current formulation, the static condensation method is performed, where the equations associated
with the applied remote displacement field are eliminated. Noting that the external load applied on the
microscale PPPW is zero (since all the external loads are applied on the macroscale) ultimately leads to the
incremental linearized symmetric system of equations solving for the microvariables (from n to n+1):

KKKn
WW ∆WWW n+1 =−IIIn

W −KKKn
Wε0

∆εεε
n+1
0 (2.15)

where the constitutive tangent matrix CCC(β),n is used to evaluate KKKn
WW , KKKn

Wε0
.

For a full Newton incremental-iterative scheme, iterations are performed in each increment in the fol-
lowing manner (from i to i+1):

KKKi
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i
=−IIIi

W −KKKi
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0 (2.16)

∆WWW n+1 = ∆WWW n+1 +∆W̃WW
i

∆ε̃εε
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0 =

{
∆εεε

n+1
0 , i = 1

000, i 6= 1

Effective properties

Once the set of equations of the PHFGMC is solved for the microvariables, the strain and stress tensors
are calculated using eqs. (2.3) and (2.5), respectively. In addition, the tangent strain concentration tensor
GGG(β),t can be readily established. This tensor constitutes the relationship between the external far-field
strain increment ∆εεε0, applied on the composite to the local average strain increment ∆ε̄εε

(β) within an
arbitrary subcell (β):

∆ε̄εε
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6

∑
k=1

A(βk) (∆ūuu⊗nnn+nnn⊗∆ūuu)(βk) ≡ GGG(β),t : ∆εεε0

where V (β) is the volume of subcell (β), ∆uuu(β) is the displacement field increment, nnn(β) is the normal to
the subcell boundary A(β), and each face of the subcell is noted by βk.
The tangent effective constitutive tensor CCC∗,t that relates the global average stress to the applied strain
can be determined from:

CCC∗,t =
1

Vtotal

Nsc

∑
β=1

∫
V (β)

CCC(β),tGGG(β),tdV (2.18)

where Vtotal is the total volume of the domain, CCC(β),t is the local tangent stiffness matrix of subcell β, and
Nsc is the total number of subcells.
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Figure 3: Schematic illustration of the FE-PHFGMC multiscale model

2.2 Mesoscale FE-PHFGMC model setup and configuration

The analysis was carried out in Abaqus FEA 2018 software. In fig. 3 a schematic illustration of the
FE-PHFGMC is presented. The 3D mesoscale FE model was used with large deformation, corotational
formulation to solve for the large rotations near the kink band edges. The fiber initial waviness was
modeled using the following trigonometric function:

ψ(x,y,z) = arctan
(

tan(ψ0)sin
(

πz
L

))
(2.19)

where, ψ is the misalignment angle relative to the load line, ψ0 is the maximum misalignment angle
(assumed to be 2◦ degrees), z is the axial (fiber) direction, and L is the length of the entire mesoscale
domain. Note that the waviness is assumed to be constant with respect to the x,y coordinates. This
formula was implemented using the ORIENT user subroutine [17]. The overall mesoscale dimensions
were L = 500µm and a cross-section of 20µm×20µm.

The element type was the C3D8R, a general purpose linear brick element, with reduced integration (one
integration point). Its size at the gauge area was 10 µm in all directions. The element size is smaller than
the expected kink band width for a sufficient spacial resolution. The boundary conditions were applied
only at the mesoscale. The microstructure is geometrically represented by a 2D hexagonal array, how-
ever, note that the PHFGMC formulation and solution are in all three dimensions. Periodicity in the FE
as well (except for the axial direction) to avoid macro buckling by using *EQUATION constraint. Vis-
cus regularization was included to address the instability (automatic stabilization with dissipated energy
fraction set to 0.005). The automatic time incrementation was set to a maximum increment of 0.025.

The PHFGMC micromechanical model was implemented as a UMAT user subroutine that is called at
every macroscopic material point. The composite investigated in this study was IM7/977-3 unidirectional
carbon-epoxy composite. The fiber was assumed to be anisotropic linear elastic with the properties given
in table 1. The matrix constitutive law was Ramberg-Osgood J2 plasticity [18] to capture both the elastic
and damage responses (properties in table 2). The one-dimensional representation of this constitutive
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law is given by:

Eε = σ+α

(
|σ|
σ0

)(n−1)

σ (2.20)

where, Young’s modulus, E, Poisson’s ratio, ν, Yield stress, σ0, Exponent, n, Yield offset, α. Note
that this is an implicit equation with respect to the stresses, which has to be solved iteratively. (For
the generalized 3D form see [19]). In addition, the modified Lo and Chim failure criterion [20, 1] was
applied for the entire material point (after the microscale problem is solved) to control the kink band
width:

σlc =
G∗A

1.5+12
(5.195

π

)2
(

G∗A
E∗A

) (2.21)

where, σlc is the critical axial stress predicted by the model, G∗A and E∗A are the effective longitudinal
modulus and effective axial shear modulus, respectively. Note that the E∗A and G∗A values could vary
throughout the mesoscale based on the microscale solution at each material point. This implies that the
critical value is not constant in all points and, in fact, lower in damaged areas.

Table 1: PHFGMC model: The fiber linear elastic anisotropic properties

E11, E22 (MPa) E33 (MPa) ν12, ν13 ν23 G12 (MPa) G13, G23 (MPa)
18500 265000 0.55 0.02094 6000 13000

Table 2: PHFGMC model: The matrix nonlinear Ramberg-Osgood constitutive law properties

E (MPa) ν σ0 (MPa) n α

4000 0.35 260 11 5

3 Results

The stress-strain curve is given in fig. 4. The experimental strength values obtained from a unidirectional
coupon test [21] are 11% lower than the predicted value. While this is an acceptable error, the failure
criterion parameters should be recalibrated to reduce further it.

Selected stress contours are given in fig. 5. The kink band width, w was predicted to be 180 µm, which
is within the range observed experimentally (assuming fiber diameter of 8µm). The width is determined
by the current material stiffness and the failure criterion parameters and therefore cannot be calibrated
independently (if one wishes to closely match the experimental data).
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Figure 4: The FE-PHFGMC prediction for the axial response of the mesoscale problem under compres-
sion and the strength is compared to experimental value [21]
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Figure 5: The FE-PHFGMC predictions of the macroscopic shear and axial stress fields (left and right,
respectively) in the mesoscale problem under compression. The kink band width, w is within the range
observed in experiments.

9



Ido Meshi, Uri Breiman AND Rami Haj-Ali

It was found that the matrix nonlinear constitutive law alone was sufficient to generate the instability, but
the kink band width prediction was incorrect as it kept growing in size after the kink band had formed.
The failure criterion was added to control the width, which is otherwise determined by the fiber diameter
[5] that is not explicitly modeled here (it was homogenized).
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