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Abstract

In this work a generalized anisotropic model in large strains based on the classical isotropic
plasticity theory is presented. The anisotropic theory is based on the concept of mapped ten-
sors from the anisotropic real space to the isotropic fictitious one. In classical orthotropy
theories it is necessary to use a special constitutive law for each material. The proposed theory
is a generalization of classical theories and allows the use of models and algorithms developed
for isotropic materials. It is based on establishing a one-to-one relationship between the
behavior of an anisotropic real material and that of an isotropic fictitious one. Therefore,
the problem is solved in the isotropic fictious space and the results are transported to the
real field. This theory is applied to simulate the behavior of each material in the composite.
The whole behavior of the composite is modeled by incorporating the anisotropic model
within a model based on a modified mixing theory. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

An anisotropic material is one which exhibits properties with different values
when measured in different directions. Modeling the behavior of an elastic anisotropic
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solid does not present big difficulties. In this case, it is possible to use the general
elasticity theory (Hull, 1987; Pendleton and Tuttle, 1989; Matthews and Rawlings,
1994), etc. The formulation of a constitutive law adequate to simulate the non-linear
behavior of orthotropic or anisotropic solids such us fiber reinforced composites is a
complex task. The main objective of this work is to present a general theory which
allows to model the non-linear constitutive behavior of this type of materials.

The general formulation of anisotropic yield surfaces should describe the behavior
of isotropic materials as a particular case. When the yield surface of an isotropic
material is obtained as a particular case of an anisotropic one, it must have the
properties of isotropic functions described by Gurtin (1981).

The first attempts to formulate yield functions for orthotropic materials are due to
Hill who was able to extend the isotropic Von Mises model to the orthotropic case
(Hill, 1948, 1971, 1979, 1990). The main limitation of this theory is the impossibility
of modeling materials that present a behavior which not only depends on the second
invariant of the stress tensor, i.e. the case of geomaterials or composite materials.
Several authors proposed yield functions in the anisotropic stress space (Bassani,
1977; Budiansky, 1984; Barlat and Lian, 1989; Barlat et al. 1989, 1991). In 1991
Barlat et. al. proposed a linear transformation of the stress state of an anisotropic
material by multiplying all the components of the stress tensor by different con-
stants. Many authors have used four rank tensors in the formulation of yield func-
tions for anisotropic materials, see, for instance Shih and Lee (1978), Eisenberg and
Yen (1984) and Voyiadjis and Foroozesh (1990). In 1982 Dvorak and Bahei-El-Din
used tensorial operators with a von Mises yield function to simulate the behavior of
composite materials. In 1993 Karafillis and Boyce proposed a general expression of
yield surfaces of polycrystalline materials which allows to describe isotropic and
anisotropic materials. The anisotropy of the material is described with a set of irre-
ductible tensorial variables. This set of variables allows to make a linear transforma-
tion of the stress state of the anisotropic material to an isotropic plasticity equivalent
material (IPE). Later, Voyiadjis and Thiagarajan (1995) based on previous works,
proposed a general yield surface which depends on a four rank tensor and applied this
model to study the behavior of unidirectional fiber reinforced composites.

The non-linear anisotropic theory developed in this work is a generalization of the
classic isotropic plasticity theory (Malvern, 1969; Lubliner, 1990). It is based in a
one-to-one transformation of the stress and strain spaces by means of a four rank
tensor. This transformation preserves the convexity of the plastic potential and the
yield functions which assures that the material does not return to an elastic state
once it has reached a plastic state under monotonically growing loads. Applications
of this theory to the linear and non-linear analysis of composites under small and
large strains conditions were reported in previous works of the authors (Oller et al.,
1993a, 1995a; Car et al., 2001).

The layout of the paper is the following. In the next section the constitutive model
for anisotropic materials undergoing large strains is described. The treatment of the
anisotropic behavior of the overall composite using mixing theory is then presented.
The accuracy and potential of the anisotropic model is tested in the failure analysis
of a composite specimen for which experimental results are available.
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2. Anisotropic material in large strains
2.1. A brief introduction to the anisotropic model in small strains

The anisotropic theory developed in this work is based on the ideas proposed by
Betten (Betten, 1981, 1988) and uses the concept of mapped tensors. This concept
allows to use the advantages and algorithms developed for classic isotropic materials.
The implementation of this theory in finite element codes is straightforward.

Several authors have developed a generalization of the classic isotropic plasticity
theory to the anisotropic case (Betten, 1981, 1988; Oller et al., 1993a,b). The basic
idea consists of modeling the behavior of an anisotropic real solid by means of a
fictitious isotropic solid. A basic assumption of this model is that the elastic strain is
unique for the anisotropic and isotropic solids. This hypothesis introduces a limita-
tion in the theory, because it involves a proportionality concept between the yield
strength and the elasticity modulus for each material direction.

The constitutive model presented in this work is more general and it can simulate
high anisotropic materials, such as fiber reinforced composites. The anisotropic
behavior of the material is expressed in terms of an isotropic fictitious stress and
strain spaces which are the linear tensor transformations of the real anisotropic
stress and strain spaces. All the information on the material anisotropy is contained
in the fourth order transformation tensors A° and A® relating the stresses and
strains in the real (anisotropic) and fictitious (isotropic) spaces. The parameters that
define the transformation tensors can be calibrated from adequate experimental
tests. The constitutive model in the fictitious isotropic space is defined by the same
yield function, plastic potential and integration algorithms developed for standard
isotropic materials.

2.1.1. Constitutive equation

The constitutive equation derives from the first and second laws of thermo-
dynamics, the expression of the Helmholtz free energy, the additive decomposition
of the strain tensor into elastic and plastic part and the Clasius—Duhem inequality.
The latter is written as

o] . [ oy . oy . 1
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where E is the dissipation, o is the Cauchy stress tensor, ¥ = ﬁ e : C: ¢ is the free
energy function, € is the rate of change of the strain, m is the density, 7 is the specific
entropy, 6 is the temperature, « is a set of internal variables and q is the conductivity
heat flow. Applying the Coleman method on Eq. (1) (Malvern, 1969; Lubliner, 1990)
the constitutive equation in the real space is obtained by

oy
(o) maae € (2)

where C is the four rank constitutive tensor.
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The constitutive equation of the fictitious isotropic material is obtained consider-
ing the uniqueness of dissipation in the isotropic and anisotropic spaces (Car et al.,
2001). Applying the Coleman method the constitutive equation in the fictitious
isotropic space can be written as

’ %

G6=m—=C:¢§ (3)

o8]

58

where C is the four rank constitutive tensor and ¢ is the strain in the fictitious space.
From now on (?) will denote variables in the fictitious isotropic space.

2.1.2. Yield and plastic potential functions
The yield and plastic potential functions are defined in Cauchy stress space, i.c.

Yield function ¢7(0; ) =0 4)
Potential function g (o3 o) = K (5)

where o is the Caunchy stress tensor, ¢° and g are the yield and plastic potential
functions, and K is a constant.

2.1.3. Translation of stresses from the anisotropic to the isotropic space
The relationship between the anisotropic and isotropic stress spaces is based on
the following linear transformation (see Fig. 1)
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Fig. 1. Space transformations. Real and fictitious stress and strain spaces in small strains.
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where A7 is a four rank tensor which relates the stress tensors in the anisotropic and
isotropic spaces and ¢ and ¢ are the Cauchy stress tensor in the isotropic and ani-
sotropic spaces respectively.

For the definition of the shape and properties of the tensorial operator it is
necessary to take into account the symmetry of the Cauchy stress tensor in the ani-
sotropic and isotropic spaces, therefore the four rank transformation tensor must
satisfy the following symmetries:

AZk/ = A_;;k/ = AZlk (7

The symmetry of the four rank transformation tensor is also necessary:
Z‘kl = lej ®)

The four rank transformation tensor A° is obtained in global axis from the defi-
nition of the tensor components in local axes, through the following transformation

Ag’/cl = RU”~V (A gqu) loc qukl (9)

The four rank rotation tensor R is defined as:

Rk = righjy (10)

where ry = cos[(_e)i)glob, (_e)k)loc], ¢ is the unit vector corresponding to the kth
component of the global reference coordinate system chosen. The rotation tensor R
takes into account the angles between the local principal directions of the aniso-
tropic material and those of the global coordinate system.

The components of A° in the local coordinate system are defined as

(4111 10e= R(0) (4%322) 0= R(O0)

(11
(A(;le)loc: (Ag121)1oc: (Agllz)loc: R(45)

where R(0) :-ﬁ is the ratio between the strength of the material in the fictitious
isotropic and real anisotropic spaces in the local x axis direction, R(90) :% is the
ratio between the strength of the material in the isotropic and anisotropic spaces in
the local y axis direction and R(45) :-% is the ratio between the shear strengths of

the material in the fictitious and real spaces. It is important to note that the para-
meters which define A” can be obtained from simple experimental tests.

The yield condition in both spaces is:

P(0; ) = p(6; &) = p(0; A% ) = 0 (12)
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where ¢ and ¢ are respectively the yield functions in the real anisotropic and the
fictitious isotropic spaces.

2.1.4. Transformation of strains from the anisotropic to the isotropic space
The relationship between the elastic strains in the real anisotropic space and the
fictitious isotropic space is given by:

52’ = AZ}«/SZ/ (13)
where A°® varepsilon is a four rank tensor, £ and ¢ are the strain tensors in
the isotropic and anisotropic spaces respectively. The hypothesis expressed by
Eq. (13) implies no uniqueness in the elastic strains between spaces. Tensor A®
varepsilon is computed taking into account Eqs. (36) and (13) and the constitutive
equation in the anisotropic and isotropic spaces [Eqs. (2) and (3)] (Car et al., 2001).
This gives

A —(6 --)_IA" C 14
mnrs — mnij ijkl klrs ( )

where C‘,,m,;,- is the constitutive tensor in the fictitious isotropic space and Cyyy is the
constitutive tensor in the real anisotropic space. Note that Cyy,, includes the current
properties of the material. The choice of é',,m(/ can be arbitrary and for this purpose
the property of any known material can be chosen.

The components of the are first defined in local axes and then transformed into
global axes by the following expression

Czjk/ = Ri]'rs(crqu)locquk/ (15)
where (Cigq)10 18 the anisotropic constitutive tensor in the local coordinate system.

In Fig. 1 the stress and strain spaces and the constitutive equation in both iso-
tropic and anisotropic spaces are schematically shown. Recall that four rank tensors
(A°) and (A¥®) establish the relationships between the variables in both spaces.

2.2. Definition of the elasto-plastic isotropic model in large strains

Kinematic changes is one of the most complex aspects to be considered when
defining constitutive equations under large strain conditions. The kinematics are
used in this work are based on the multiplicative decomposition of the gradient
deformation tensorb introduced by Kroner (1960) and developed by Lee (1969) and
Mandel (1971).

The multiplicative decomposition results from the definition of the gradient tensor
as

P Ox o X

=—=——=F'F 16
X X X (16)
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where F¢ and F? are the elastic and plastic part of the gradient deformation. The
elastic part of the deformation gradient is obtained by unloading the points of the
deformed configuration up to the intermediate configuration °’.

In the kinematics of the elasto-plastic continuum under large strains three config-
urations are distinguished: original (°Q2), intermediate ‘Q’ and deformed (‘2). The
intermediate configuration is based on the coordinate system X. In Fig. 2 the dif-
ferent configurations are shown.

2.2.1. Small elastic and large plastic strain case. Free energy expression

Composition materials are usually subjected to small elastic strains. Thus the
elastic part of the deformation gradient F¢ tends to unity and the elastic part of the
left Cauchy—Green tensor (b€)~! tends to the spatial metric tensor g. In this case the
distinction between intermediate and deformed configurations is irrelevant.

However, the plastic strains continue being finite and therefore it is necessary to
keep the presence of the right Cauchy—Green tensor C in the material expression of
the constitutive model to preserve its physical meaning.

For the small elastic strain case it is enough to characterize the elastic component
of the free energy by means of a quadratic function of the elastic part of Almansi
strain tensor, i.€.

Y=—e:c:¢e° 17

where c¢ is the constitutive tensor on the updated configuration.
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Fig. 2. Original, intermediate and deformed configurations.
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2.2.2. Constitutive equation

Taking into account the expression of dissipation on the updated configuration,
the additive decomposition of the Almansi strains and the free energy expression
(Eq. (17)], the Kirchhoff stresses are obtained as:

T=c:e=c:(e—¢) (18)

In Eq. (18) the constitutive tensor ¢ could be considered constant either on the
updated or in the referential configuration. If it is considered constant in the refer-
ence configuration ¢, is obtained by performing a ““push forward” operation (Garcia
Garino, 1993; Cante, 1995. Spatial variables are used in the definition of the con-
stitutive equation because they describe in a natural way the physics of the problem.
The afore-mentioned ideas do not preclude the possibility to formulate constitutive
models in terms of material variables or using a reference configuration different
from the deformed configuration. If the constitutive tensor is considered constant on
the updated configuration, the constitutive tensor in the reference configuration
comes out by performing a ‘“pull back” operation (Garcia Garino, 1993; Cante,
1995).

2.2.3. Yield condition

The yield condition distinguishes elastic and plastic behavior. All the stress states
inside the domain limited by the yield function are considered elastic and those on
the yield surface are considered plastic (Lubliner, 1990; Crisfield, 1991). The yield
condition depends on the material type. On the updated configuration it is defined
as:

g a)=Frg)—k(e)=0 (19)

where 7 is the Kirchhoff stress tensor, g is the metric tensor on the updated config-
uration and « is the plastic internal variable which controls the evolution of the yield
surface.

2.2.4. Flow rule
The flow rule defines the evolution of the plastic strains. On the updated config-
uration it is defined as:
og

Ley=d" == (20)
ot

where g = g(t; g) is the plastic potential function and / is a non-negative scalar
known as the plastic consistency parameter which satisfies the Kuhn—Tucker condi-
tions (Lubliner, 1990; Crisfield, 1991)

/=0 o(T; g, ) <0 M)(T;g;a):O 21
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2.2.5. Tangent elasto-plastic constitutive tensor
The tangent clasto-plastic constitutive tensor relates the Kirchhoff stress tensor
and the Almansi strains by

L,(t)=¢c?:L,(e) (22)

The objective derivative of Eq. (18) gives the rate constitutive equation

Ly(t) = Ly(c): (e —€") +c:[Ly(e) — Ly(e")] (23)

2.2.6. Constitutive tensor constant on the updated configuration
As previously mentioned the constitutive tensor can be considered constant either
on the referential or the updated configuration. This leads to the definition of dif-
ferent materials. If the constitutive tensor in considered constant on the updated
configuration, the consistency condition comes out by taking into account the defi-
nition of the yield condition on the updated configuration [Eq. (19)], i.e.
¢ op 3¢8k

¢:—:LV(T)+8 L()+8k8

i =0 (24)

where « is the rate of change of the internal variables defined by

oz:/i[hK ?}_h L,(e") (25)

where the second order tensor h, is a function of the stress state and of the hard-
ening variable. In the most simple case of the incremental theory of plasticity h, is
the Kirchhoff stress tensor. The objective derivative of the spatial metric tensor is
obtained by considering the relationship between the rates of change of the right
Cauchy—Green tensor and the Green—Lagrange strain tensor, i.e.

C=2E (26)
On the updated configuration this relation is written as:

L,(g) = 2L.(e) @27

Considering Egs. (20), (23), (24) and (27) the consistency equation can be
rewritten as

d)_a_‘p [Lv(c) (e—e’)+c: [L(e) 3]}+28_‘§ Ly(e) - 3k [hK g_ﬂ 0

(28)

The product L,(c) : (e — e”) can be expressed as (Cante, 1995)

Lc):(e—¢€’)=d: L,(e) (29)
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where d is given by:
A [e;’,a,-k + SikeZ] —2 [a,-,e;;, + Sik(Sjltr[ej-}]] (30)

Taking into account Egs. (28), (29) and (30) the plastic consistency parameter is
obtained as

0 0
ij: (c+d): Lye)+ 2—¢ : Ly(e)
Q= ot og 31)
’ R10) g 8k|: 8g:|
—c:———|he: =
ot ot ok ot

The tangent elasto-plastic constitutive tensor is obtained from Eq. (23), the plastic
consistency parameter given by Eq. (31) and the definition of the plastic flow [Eq.
(20)]. This gives

3 o] (. 0
g.(c+d)+28—g}®(c.at

L) = |(c+d) - [

el ——— =
ot Jdt ok ot

where ¢? is the tangent elasto-plastic constitutive tensor on the updated configuration.

2.2.7. Constitutive tensor constant in the reference configuration

The constitutive tensor can be considered constant in the reference configuration.
In this case the first term of Eq. (23) is zero, and the rate of change of the Kirchhoff
stress is

Ly(7) = ¢ : [Ly(e) — Ly(e)] (33)

The plastic consistency parameter is obtained from the consistency equation [Eq. (24)],
ie.

%:(c):Lv(e)+2@:Lv(e)
L % (34)
3 0g akh_ag

ECg—a—K K.E

The tangent elasto-plastic constitutive tensor is obtained from Eq. (33), using the
plastic consistency parameter given by Eq. (34) and the definition of the plastic flow
[Eq. (20)]. This gives

3. 99 .08
[at'c+28g]®(c'ar>

b=t 5% ak[h .a_g]

s Ly(e) =c?: Ly(e) (35

ar'c'ﬁ_a_K ot



E. Car et al. | International Journal of Plasticity 17 (2001) 1437—-1463 1447
2.3. Extension of the anisotropic theory to large strain

2.3.1. Material formulation

To extend the elasto-plastic large strain model proposed to the anisotropic case is
necessary to split the referential and updated configurations into the anisotropic and
isotropic spaces, introduced in Section 2 for the small strain case. Therefore, it is
necessary to define the transformation tensors in the reference and updated config-
urations. The transformation of the second Piola Kirchhoff stress tensor in the ani-
sotropic space to the isotropic space is performed in a similar way as presented in
Eq. (6), i.e.

Sy = A3k Ske (36)

where A is a four rank tensor which relates the stress tensors in the real and ficti-
tious spaces, S and S are the second Piola—Kirchhoff stress tensor in the fictitious
isotropic and real anisotropic stress spaces respectively. The four rank tensor AS is
defined in the reference configuration and remains constant in this configuration.
The definition of the elements of AS is done in a similar way as for A°.

The global expression of A® is obtained by standard transformation of the local
components given by

AfJKL = Rurs (AJ%SPQ) CRPQKL (37)

lo

where (A}SQSPQ)IOC is the four rank stress transformation tensor in the local coordinate
system and R is a rotation matrix.

It is also necessary to define the relationship between the Green—Lagrange elastic
strain in the real anisotropic space Ej; and the Green-Lagrange elastic strain E§ ;in
the fictitious isotropic space. This relation is defined in the same way as presented in
Eq. (15); i.e.

E?J = AfJKLE{;(L (38)

where A® is a four rank tensor which relates the Green—Lagrange strains in the
anisotropic and isotropic spaces, E and E are the Green—Lagrange strain tensors on
the isotropic space and anisotropic space respectively. The four rank strain trans-
formation tensor is computed taking into account Egs. (36) and (38) and and it is
equivalent to the expression given by Eq. (14)

Alivrs = (CMNIJ) A}k Cxirs (39)

where Cynyy is the constitutive tensor in the isotropic space and Cgygs is the con-
stitutive tensor in the real anisotropic space. The choice of C,sy;; can be arbitrary
and for this purpose the properties of any known material can be chosen, because
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their influence in the computations is cancelled when all the quantities are returned
to the real space.

The anisotropic constitutive tensor C is defined in global axes by the following
transformations

Cukr = Rirs(Crsro),, RprokL (40)

where (C RSPQ)IOC is the local four rank constitutive tensor in the anisotropic space in

the local coordinate system and R is a rotation matrix.

2.3.2. Formulation on the updated configuration
The relationship between the Kirchhoff stresses in the anisotropic and isotropic

spaces on the updated configuration is given by
FE’I = a;;-kl’['k[ (41)

where a” is the four rank tensor which relates the stress tensor in the anisotropic and
isotropic spaces on the updated configuration, T and T are the Kirchhoff stress ten-
sors in the isotropic and anisotropic spaces respectively.

In a large strain context, it is necessary to redefine the four rank transformation
tensor on the updated configuration due to the fact that the four rank tensor a’ is
not constant in this configuration and it is a function tensor AS in the referential
configuration and the deformation gradient F. Tensor a® in the updated configura-
tion is obtained by the “push-forward” operations (Car et al., 2001):

ag'kl =Fy (F_I)KI(F_T)iL (FT)JjAflKL (42)

Similarly, the relation between Almansi strains in the anisotropic and isotropic
spaces is defined by

éi/ = afﬂdekl (43)
where tensor a°, establishes the relationship between the Almansi strain tensors in
the anisotropic and isotropic spaces and e and e are the Almansi strain tensors in the

isotropic and anisotropic spaces respectively.
In an similar way a¢ on the updated configuration is obtained as:

ay, = (F7),,(F7) o Fi(F') JjA,EJKL (44)
In Fig. 3 the four rank tensors which relate the stresses and strains spaces in the
real and fictitious spaces in the referential (AS and A¥) and updated (a® and a®)

configurations are shown.

2.3.3. Flow rule and evolution law for the internal variables
The evolution law of the plastic deformation on the updated configuration is given by

L&) =d" = ;La—g (45)
at
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Taking into account that all the information on the material anisotropy is con-
tained in the four rank transformation tensor a®, the following plastic potential
function on the fictitious space is proposed

gtga)=gnatga)=g(Tiga)=k (46)
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Fig. 3. Extension of the anisotropic model to large strains. Spaces definition in reference and updated
configurations.
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Considering Egs. (46) and (45) the evolution of the plastic part of Almansi strain
is

Bg 0g Jdt ;0g =\ 7T
=== —=]2:a" = ca’ 47
Br T ot ot a (e) a “7)

where (é) is the plastic flow normal to the plastic potential function g in the iso-
tropic space. The additivity concept of the strain velocity allows to extend the strain
transformation rule to the plastic part of the strains, so

g

10 — a€ - p:)' e. 9% .t _ e 2\
&’ =a‘:d va.af.a a‘:(e):a (48)

where d” is the isotropic plastic strain on the updated configuration. The evolution
of the plastic hardening internal variable is given by

a = Ah"),: == = i(h™),:
where the second order tensor (h™), is a function of the actual stress state and of the
actual hardening plastic variable. This tensor, in the most simple case of plasticity
theory, is the stress tensor. Therefore, the evolution law of the internal variable is
written as

g

=T 2.
ot

(50)

3. Anisotropic composite material model
3.1. Introduction

The use of composite materials in structures like fiber reinforced plastic (FRP) has
significantly increased during the past few years. This trend is mainly due to the fact
that composite materials have properties which are very different from conventional
isotropic engineering materials.

Composite materials present high strength to weight and high stiffness to weight
ratio, are corrosion resistant, thermally stable and are well suited for structures in
which the weight is a fundamental variable in the design process. Structural com-
ponents requiring high stiffness and strength, impact resistance, complex shape and
high volume production are suitable candidates to be manufactured using composite
materials. This explains why aerospace, automotive and marine industries use these
materials (Ali, 1996; O’Rourke, 1989). Components manufactured with composite
materials are tough and durable, exceeding in many occasions the performance of
metal parts.
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In the redesign process of a structural component using composite materials,
simple replacement of the component is not enough. Due to the special character-
istics of these materials (high anisotropy and high strength ratio between matrix and
fibers), the redesign of the component is necessary. Furthermore, analytical techni-
ques for components manufactured with composite materials are entirely different
from conventional methods of analysis used for isotropic materials and require
specialist knowledge. The design process of components made up of composite
materials today is mainly based on empirical methods. The absence of numerical
simulation tools for the non-linear analysis of the behavior of composite materials is
observed in the literature.

The failure mechanism of fiber reinforced materials is complex due to the presence
of diverse phenomena and can happen as a combination of diverse failure mechan-
isms. In this work the anisotropic constitutive model of previous section has been
extended by using mixing theory to take into account this complex phenomena.
Details of the particular class of mixing theory used are described next. The model is
based on three theories:

e large strains for isotropic materials,

e mapping space theory for anisotropic materials. This theory allows to translate
the anisotropic plastic behavior of the material into an isotropic plastic one.

e cenhanced mixing theory for isotropic materials which allows to combine basic
substances.

The adequate selection of the constitutive model, yield criteria and plastic flow
rule are very important in the description of the non-linear anisotropic behavior of
FRP materials.

3.2. Mixing theory

There are several theories which allow to simulate the constitutive behavior of
composite materials, among them Mixing Theory is considered one of the most
appropriate.

Trusdell and Toupin (1960) studied mixing theory providing the background for
the work of Ortiz and Popov (1982a). These results also constitute the base of the
work of Green and Naghdi (1965) and Ortiz and Popov (1982b) for bi-phase mate-
rials. The model presented here is a more general one and it allows to represent the
non linear constitutive behavior of a material made up of “n” anisotropic phases
undergoing large strains.

The mixing model chosen is based on the following assumptions: (i) in each infi-
nitesimal volume of a composite material a finite number of compounding sub-
stances participate; (ii) each substance participates in the behavior of the composite
in the same proportion that its volumetric participation; (iii) all compounds have the
same strain (closing equation or compatibility concept); (iv) the volume occupied by
each compound is much smaller than the total volume of the composite.

The second hypothesis implies a homogeneous distribution of all substances in a
certain region of the composite. The interaction between the different compounding
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substances, each one with their own constitutive (“base’) model, yields the behavior
of the composite which depends on the percentage volume occupied by each sub-
stance and its distribution in the composite.

The third hypothesis is based on the fact that all phases in the mixture have the
same strain field.! The strain compatability condition must be fulfilled in the refer-
ence and updated configurations for each phase. On the updated configuration the
condition can be written as (Truesdell and Toupin, 1960; Onate et al., 1991):

e = (eg),= (¢),= - = (), (STa)

The definition of the stress t of the whole composite is obtained considering an
hyperelastic model (Malvern, 1969) as

o

N e
T=m Je Zk(f’”c e ;kc(r)c (52)

where k¢ is the ratio between the volume of the compounding ¢ and the total volume
of the whole composite. The elasto-plastic tangent constitutive tensor is obtained as
(Car et al., 2001)

cT — azw — Zk (CT) (53)
de®de L e

where (cT)C is the tangent elasto-plastic real anisotropic constitutive tensor. Details
of the derivation of the elastoplastic tensor are given in Oller et al. (1994).

Due to the presence of complex phenomena in the failure of composite materials
the classical mixing theory is not enough, i.e. short fiber reinforced composite
materials or debonding phenomena. This phenomena takes place in composite
materials when there is a relative slip between compoundings and the maximum
shear stress of the interface is greater than its yield value. In this case the matrix is
not able to transfer the loads to the fiber, so the fiber can not increase its stress state
because the matrix-fiber interface can not resist it. The modification in the con-
stitutive model to take into account these phenomena is based on the ideas that the
transfer of loads between matrix and fiber change when the matrix plastifies. This
model is considered a “‘non-local material” model. It is based on defining the stress
state in the fiber at the time the matrix reaches the plastic state. Then the fibers
increase their stress state according to a new constitutive tensor which is a function
of the frictional forces between matrix and fibers.

The classical mixing theory is valid only for materials with a parallel behavior, i.e.
composite materials with large fibers. In the case of composite materials with short fibers
the compatibility equation [Eq. (51a)] is not valid. Therefore, in this case it is necessary
to modify the compatibility equation (Oller et al., 1995b) or make a correction in the

! This assumption is valid in absence of atomic diffusion. The atomic diffusion phenomena take place
at high temperatures. In this analysis a moderate temperature below melting point is considered.
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properties of each compound preserving the compatibility equation (Car et al.,
1998). This method leads to a simpler formulation.

To take into account such phenomena, it is necessary to change the compatibility
equation through the modification of the properties of the compounds. For short
fiber composite materials, or composite materials with debonding phenomena the
compatibility equation can be written as

ey = n (ef} + eZ)l == nz(eg + ef})z =...= nn(efj + e,”,)ﬂ (54)
(e;/')l (e;/)z

(e’,,)
ii)n

Eq. (54) expresses that the strains in each point and component e; is 7; times the
deformation of the whole material e. Factor n; is a function of the internal strains
variables. With this hypothesis, the stress in a compound is computed as

(t)=c¢;: (e —e€”)= g < (e~ e’); (55)

i

The proportionality factor n; define a new constitutive tensor ¢’; which allows to
compute the stress of the ith compound in terms of the overall strains in the com-
posite.

It is important to note that the elasto-plastic constitutive model presented in Sec-
tion 2.3 is one of the ““base” models used in the mixing theory above described.

In particular, in fiber reinforced composites a constitutive model for each phase is
considered. A standard isotropic plasticity model has been chosen for the matrix
material, whereas the behavior of the fiber reinforcement is modelled by the aniso-
tropic elasto-plastic model proposed here.

Fig. 4 shows an schematic flow diagram for the non-linear finite element analysis
of a bi-phase material. The matrix phase is considered to be an isotropic material
and the reinforcement fibers are modeled as an anisotropic material.

4. Numerical example. Shear test of a composite specimen

In this section, an application example using the proposed model is presented. The
example consists of the study of the non linear behavior of a specimen made of a
bidirectional laminated composite material (+45°, —45°)gg subjected to a plane shear
state according to ASTM D4255 (American Society for Testing and Material, 1994).
The matrix of the composite is a RS-3 Policinato resin and the reinforcement are
carbon fibers XN-50 with volumetric participations of 40 and 60% respectively.

In the numerical simulation the resin behaves like an isotropic material with an
elasto-plastic constitutive law, while the fibers behave as an anisotropic elasto-plas-
tic material.

The mechanical properties of the epoxi resin and XN-50 fiber are given in Tables 1
and 2.
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Fig. 4. Constitutive model for bi-phase reinforced composite material.
Table 1
Material properties of epoxy resin
Young’s modulus 3170 MPa
Poisson coefficient 0.35
Yield stress 75, 53 MPa
Post yield behaviour law Exponential with softening
Fracture energy 1,47 N/m
40%

Vm
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The dimensions of the specimen and the position on the testing machine are
shown in Fig. 5. Prescribed vertical displacements are considered on the test which

induce a plane shear stress state.

The simulations have been carried out using a finite element mesh of standard 3
node plane stress triangular finite elements with 2074 elements, 1114 nodes and 2228
degrees of freedom. Fig. 6 shows the finite element mesh used in the numerical

simulations.

In Fig. 7 the boundary conditions applied to the finite element mesh are shown.
Fig. 7a shows the detail of the boundary conditions of the left hand side holes in
which a displacement in the vertical (y) direction is imposed. Fig. 7b shows the

Table 2
Material properties of XN-50 fiber
Young’s modulus 507.177 MPa
Poisson coefficient 0,0
Yield stress 3183.34 MPa
Post yield behaviour law Linear with hardening
Vy 60%
N | 2
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Fig. 5. (a) Geometry of the specimen, (b) testing machine.
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boundary conditions in the right hand side holes where there are not imposed dis-
placement. An incremental analysis considering 200 displacement increments was

performed.

Fig. 8 shows the deformation of the specimen in the final state. Displacements
have been amplified three times to show the local effect produced on each hole.

XL

K,

Y

Fig. 6. Finite element mesh.

displacement

A5
Lo D

[>
SREOERS

b)

Fig. 7. Boundary conditions used in the numerical simulation. (a) Left holes, (b) right holes.
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Deviation effects on deformed mesh during the development of the test can also
be observed.

In Fig. 9 contours of the displacement module is presented. It is observed that in
the central area of the specimen the displacement field presents a high gradient due
to the relative displacements produced by the aluminium rails (see Fig. 5).

Contours of the oy, stress in the central area of the composite are plotted in
Fig. 10a. The maximum shear stress was reached in two zones of the central area.
Fig. 10b shows the plastic shear strains in the central area of the composite. Plastic
shear strains are also concentrated in the center of the specimen. The irreversible
plastic strain gives an idea of the diffuse fracture on the sample (see Fig. 11).

In Fig. 11 the comparison between the tested specimen and the numerical simula-
tion is displayed. In Fig. 11a, the photograph of the tested specimen is shown. In the
tested specimens two cracks can be observed with an angle of 45° with respect to the
longitudinal axis of specimen. In the central area there is another crack. Fig. 11b
shows the equivalent plastic strains contours obtained which indicate a diffuse frac-
ture region (Lubliner et al., 1989; Oller, 1991). The first fracture band appears in the
central area of the specimen whereas two other fracture bands progress at 45° with
respect to the longitudinal axis of the specimen. Fig. 12a shows a detail of the cracks
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Fig. 8. Shear test ASTM D4255. Deformation 3:1.
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Fig. 9. Test of Policinato RS-3-XN-50 specimen. Contour of displacement.

2) b)

Fig. 10. Test of Policinato RS-3-XN-50 specimen. (a) Contour of shear stress o,,, (b) contour of plastic
shear strains e”.
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Fig. 11. Test of Policinato RS-3-XN-50 specimen. (a) Photograph of tested specimen; (b) equivalent
plastic strains contour.

a) b)

Fig. 12. Test of Policinato RS-3-XN-50 specimen. (a) Detail of central area, (b) detail of a crack.
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Fig. 13. Test of Policinato RS-3-XN-50 specimen. Load-displacement plot.

in the central area of the specimen and Fig. 12b shows a detail of the first crack. In
both figures it is possible to see the delamination phenomena taking place in the
specimen. This is due to the presence in the composite of a high modulus phase: the
fiber, and a low modulus phase: the matrix.

The curve in Fig. 13 shows the total load vs. the displacement imposed at the left
side holes. Results obtained with the mixing theory considering a linear behavior of
each phase under small and large strains are compared with those obtained with the
proposed non-linear model. Results using the small strain linear elastic model pro-
vide upper limit values. In this figure a non linear response of the composite is
appreciated. One of the reasons of the non linear behavior of reinforced composite
materials is due to the propagation of cracks in the matrix and the relative dis-
placement between fibers and matrix. The phenomena of matrix cracking and
debonding or slip between fibers and matrix reduces the global stiffness and leads to
inelastic and not recoverable strains.

5. Concluding remarks

The conventional techniques used for the analysis of simple isotropic materials are
not valid for the non linear study of composites structures. It is, therefore, necessary
to introduce new theories which account for the complex phenomena that take place
in composite materials behavior.

An extension of the classic isotropic plasticity theory to multiphase anisotropic
materials undergoing large strains has been presented. The anisotropic theory is
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based on the concept of mapped tensors from the real anisotropic space to a ficti-
tious isotropic space. The use of an auxiliary fictitious isotropic space simplifies both
the formulation of the non linear constitutive model and the computational imple-
mentation into standard non linear finite element codes.

Also in this work, and as an alternative to more standard composite models, the
non linear behavior of composites is modelled by means of a modified mixing theory,
acting on the anisotropic elasto-plastic model formulated in large strains developed
in the paper.

The example presented shows that the constitutive model developed is
appropriated for the analysis of composite materials in linear and non-linear
regimes. The formulation is quite general and it allows to reproduce complex non
linear phenomena in composite materials such as anisotropy, large strains, plasticity
and fracture.
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