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Analysis of a stabilized finite element approximation of
the Oseen equations using orthogonal subscales

Ramon Codina

Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain

Abstract

In this paper we present a stabilized finite element formulation to solve the Oseen equations as a model problem involving both
convection effects and the incompressibility restriction. The need for stabilization techniques to solve this problem arises because
of the restriction in the possible choices for the velocity and pressure spaces dictated by the inf–sup condition, as well as the
instabilities encountered when convection is dominant. Both can be overcome by resorting from the standard Galerkin method to a
stabilized formulation. The one presented here is based on the subgrid scale concept, in which unresolvable scales of the continuous
solution are approximately accounted for. In particular, the approach developed herein is based on the assumption that unresolved
subscales are orthogonal to the finite element space. It is shown that this formulation is stable and optimally convergent for an
adequate choice of the algorithmic parameters on which the method depends.
© 2006 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

This paper deals with a finite element formulation to solve second-order boundary value problems with two main
features: the presence of (dominant) first-order terms with the physical meaning of convection and the inclusion of
constraints in the solution space, in our case incompressibility. The simplest linear model that contains both ingredients
is the Oseen problem, which consists of finding a pair [u,p] as solution of the equations

−ν�u + a · ∇u + ∇p = f in Ω ⊂ R
d, d = 2,3, (1)

∇ · u = 0 in Ω, (2)

u = 0 on ∂Ω, (3)

where u is the velocity field, p is the pressure, ν is the viscosity, a is the advection velocity, f is the vector of
body forces, Ω is the computational domain, assumed to be bounded and polyhedral, and d is the number of space
dimensions. For the sake of simplicity, we have considered the simplest Dirichlet condition (3). Likewise, several
simplifying assumptions will be made for the advection velocity a. In particular, we will take it in C0(Ω̄), weakly
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divergence free and with derivatives of order up to k + 1 locally bounded by the maximum of |a| (see assumption H2
in Section 3.1).

The Oseen problem stated above can be thought of as a linearization of the stationary incompressible Navier–
Stokes equations. It also appears as one of the steps of some multilevel methods for these equations, or may result
from a time discretization of the transient Navier–Stokes problem if the advection velocity is treated explicitly. This
is why it is often used as a first step towards the analysis of the full nonlinear problem, both to obtain a priori and
a posteriori estimates.

Let us introduce some standard notation. The space of square integrable functions in a domain ω is denoted by
L2(ω), and the space of functions whose distributional derivatives of order up to m � 0 (integer) belong to L2(ω)

by Hm(ω). The space H 1
0 (ω) consists of functions in H 1(ω) vanishing on ∂ω. The topological dual of H 1

0 (Ω) is
denoted by H−1(Ω), and the duality pairing by 〈·, ·〉. A bold character is used to denote the vector counterpart of
all these spaces. The L2 inner product in ω (for scalars, vectors or tensors) is denoted by (·, ·)ω , and the norm in a
Banach space X by ‖·‖X . This notation is simplified in some cases as follows: (·, ·)Ω ≡ (·, ·), ‖·‖L2(Ω) ≡ ‖·‖, for m

integer (positive or negative) ‖·‖Hm(Ω) ≡ ‖·‖m, and if K is the domain of an element (see below) ‖·‖L2(K) ≡ ‖·‖K ,
‖·‖Hm(K) ≡ ‖·‖m,K .

Using this notation, the velocity and pressure finite element spaces for the continuous problem are V0 := H 1
0(Ω),

Q0 := L2(Ω)/R, W0 := V0 ×Q0. We shall be interested also in the larger spaces V := H 1(Ω), Q := L2(Ω), W :=
V ×Q.

Let U ≡ [u,p] ∈ W0, V ≡ [v, q] ∈ W0. The variational statement for problem (1)–(2) can be written in terms of
the bilinear form defined on W0 ×W0 as

B(U ,V ) := ν(∇u,∇v) + (a · ∇u,v) − (p,∇ · v) + (q,∇ · u). (4)

Problem (1)–(2) with the homogeneous Dirichlet condition consists then in finding U ∈W0 such that

B(U ,V ) = 〈f ,v〉 =: L(V ), ∀V ∈ W0. (5)

The standard Galerkin approximation of this abstract variational problem is now straightforward. Let Ph denote
a finite element partition of the domain Ω . The diameter of an element domain K ∈ Ph is denoted by hK and the
diameter of the finite element partition by h = max{hK | K ∈ Ph}. For simplicity, we assume that all the element
domains are the image of a reference element K̂ through a polynomial mapping, affine for simplicial elements, bilinear
for quadrilaterals and trilinear for hexahedra. On K̂ we define the polynomial spaces Rk(K̂) where, as usual, Rk = Pk

for simplicial elements and Rk = Qk for quadrilaterals and hexahedra. From these polynomial spaces we can construct
the conforming finite element spaces Vh ⊂ V and Qh ⊂ Q in the usual manner, as well as the corresponding subspaces
Vh,0 and Qh,0. In principle, functions in Vh are continuous, whereas functions in Qh not necessarily. Likewise, the
orders k of these spaces may be different.

The discrete version of problem (5) is: find Uh ∈Wh,0 such that

B(Uh,V h) = L(V h), ∀V h ∈ Wh,0. (6)

The well posedness of this problem relies on the ellipticity of the viscous term and the inf–sup or Babuška–Brezzi
condition (see [7]), which can be shown to hold for the continuous problem. The first property is automatically
inherited by its discrete counterpart. However, the inf–sup condition needs to be explicitly required. This leads to the
need of using mixed interpolations, that is, different for u and p, and verifying

inf
qh∈Qh,0

sup
vh∈Vh,0

(qh,∇ · vh)

‖qh‖‖vh‖1
� β > 0, (7)

for a constant β independent of h.
From the computational point of view, and also when Eq. (1) is generalized to include for example zero order

terms in u, it is convenient to use the same interpolation for the velocity and the pressure. This choice turns out to
violate condition (7). This is why many of the so-called stabilized formulations have been proposed to approximate
problem (5). The idea is to replace (6) by another discrete variational problem in which the bilinear form B is replaced
by a possibly mesh dependent bilinear form Bh with enhanced stability properties. Examples of these type of methods
are those of Brezzi and Pitkäranta [10], Brezzi and Douglas [6], Douglas and Wang [20], the Galerkin/least-squares
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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(GLS) technique of Hughes et al. [28], Franca et al. [21,22] and first-order system least-squares methods (see e.g. [4]
and references therein).

The second source of instability in the approximation of the Oseen equations arises because of the convective term.
When it dominates the viscous one, the stability the latter provides is not enough to have control on the numerical
solution and spurious oscillations may appear. Several strategies have been devised to overcome this problem, starting
with the classical upwind discretizations. One of the most popular methods to stabilize convection in the finite element
context is the so-called SUPG method [12]. Variants of this stabilization mechanism, which also allow to use equal
velocity–pressure interpolation, can be found in [14,23,29,30].

In the next section, one of such stabilized formulations is described. It is based on the subgrid scale approach
introduced by Hughes in [26,27] for the scalar convection–diffusion equation. The basic idea is to approximate the
effect of the component of the continuous solution which cannot be resolved by the finite element mesh on the discrete
finite element solution. An important feature of the formulation developed herein is that the unresolved subscales are
assumed to be L2 orthogonal to the finite element space. It turns out that for the Stokes problem (that it, when
convection is absent) this method reduces to the one presented in [18], which was motivated by a completely different
reasoning. After having stated two different variants of the proposed formulation, a complete numerical analysis of
these is undertaken, showing its stability and convergence properties. Optimal a priori convergence estimates are
proven for the h-version of the method. A third formulation, which is only intended to stabilize the pressure, is also
analyzed. Two numerical examples are presented in Section 4 to show the good performance of the first of these
formulations and finally some conclusions are drawn.

2. Description of the method

2.1. Algebraic subgrid scale methods

The finite element formulation to be analyzed in this paper has its roots in the so-called multiscale formulations of
the problem [26,27]. The basic idea is to approximate the continuous space W by Wh ⊕ W̃ , where W̃ is an approx-
imation to the complement of Wh in W . Likewise, W0 is approximated by Wh,0 ⊕ W̃0, with W̃0 an approximation
to the complement of Wh,0 in W0. The space W̃0 will be called the space of subgrid scales or subscales. Assuming
these are zero on the element boundaries, a possible way to construct W̃0 is by bubble functions. This leads to the
modified discrete problem

B(Uh,V h) +
∑
K

∫
K

Ũ ·L∗(V h)dΩ = L(V h), (8)

where
∑

K stands for the summation over all K ∈ Ph, L∗ is the formal adjoint of the Oseen operator, which for
divergence free advection velocities is given by

L∗(V h) =
[−ν�vh − a · ∇vh − ∇qh

−∇ · vh

]
,

and Ũ is the subscale to be approximated. Either the use of bubble functions or the approximation of the problem’s
Green function suggest to take Ũ as [9]

Ũ = τK

[
F −L(Uh)

]
in K ∈ Ph, (9)

L being the Oseen operator and τK a matrix of numerical parameters defined for each element domain K ∈Ph, which
we will take as

τK = diag(τ 1,K, τ2,K), τ 1,K = τ1,KI d , (10)

τ1,K =
[

c1ν

h2
K,min

+ c2|a|∞,K

hK,min

]−1

, (11)

τ2,K = c3ν + c4|a|∞,KhK,min, (12)

where ci are constants (i = 1,2,3,4), on which precise conditions will be given later on, I d is the d × d identity
matrix, |a|∞,K is the maximum of the Euclidean norm of a in the element domain K and hK,min is a function of
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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the element diameter hK which will be also precised later. The lack of analytical knowledge in the design of τK

will be substituted by the convergence analysis, which will establish whether this particular form is adequate or not.
A heuristic justification of (9)–(12) based on a Fourier analysis of the problem of which Ũ is solution can be found
in [17].

At this point it is convenient to introduce some notation. For a set of symmetric and positive-definite matrices
{τK, K ∈Ph}, we define the inner product weighted by these matrices and its associated norm by

(X,Y )τ :=
∑
K

(τKX,Y )K, ‖Y‖τ := √
(Y ,Y )τ . (13)

In these expressions, the functions X are Y need not being continuous for the local L2 products to make sense. The
inner product in (13) will play an essential role in the analysis of the following section. We may introduce also the
inner products (·, ·)τi

, defined as in (13) using the elementwise value of the scalar algorithmic parameters τi (i = 1,2).
This allows us to write problem (8) with the subscales approximated by (9) as

Basgs(Uh,V h) = Lasgs(V h) ∀V h ∈W0, (14)

where

Basgs(Uh,V h) : = B(Uh,V h) + (−ν�uh + a · ∇uh + ∇ph, ν�vh + a · ∇vh + ∇qh)τ1

+ (∇ · uh,∇ · vh)τ2 , (15)

Lasgs(V h) := L(V h) + (f , ν�vh + a · ∇vh + ∇qh)τ1 . (16)

A version of this method, including also zero order terms coming from Coriolis forces and permeability effects, is
analyzed in [16].

2.2. Orthogonal subscales

It is shown in [15] that (9) can in fact be generalized to

Ũ = τK

[
F −L(Uh)

] + τKV h,ort in K ∈Ph, (17)

where V h,ort is any element orthogonal to W̃0 (here and below, orthogonality is understood with respect to the L2

inner product, unless otherwise specified).
Let us call Πτ the projection onto Wh associated to the inner product in (13), hereafter referred to as τ -projection.

Likewise, we will denote by Πτ,0 the τ -projection onto Wh,0 and Π⊥
τ := I − Πτ , where I is the identity in Wh. If

W̃ is selected to be approximately orthogonal to Wh, it can be shown that [15]

V h,ort = −Πτ

[
F −L(Uh)

]
. (18)

The numerical formulation to be analyzed in this paper is obtained by using this in (17) and neglecting the orthogonal
τ -projection of the viscous and force terms. The former are exactly zero for linear elements and for higher order
interpolations disregarding them leads to a method which is still consistent (in a sense explained later; cf. Remark 3).
The final stabilized formulation consists of finding Uh ∈ W0 such that

BI (Uh,V h) = L(V h) ∀V h ∈W0, (19)

where the bilinear form BI is given by

BI (Uh,V h) = B(Uh,V h) + (
Π⊥

τ1
(a · ∇uh + ∇ph),a · ∇vh + ∇qh

)
τ1

+ (
Π⊥

τ2
(∇ · uh),∇ · vh

)
τ2

, (20)

where B is defined in (4). Here and in what follows, the symbols Πτi
, Πτi,0 and Π⊥

τi
are used for the projections onto

Vh, Vh,0 and V⊥
h , for i = 1, and onto Qh, Qh,0 and Q⊥

h , for i = 2. These projections are computed with the inner
products (·, ·)τi

, i = 1,2, respectively.
Once arrived to (20) it is observed that what the present method provides with respect to the standard Galerkin

method is a least-squares control on the component of the terms a · ∇uh + ∇ph and ∇ · uh orthogonal to the corre-
sponding finite element spaces with respect to the appropriate inner product. The objective of this paper is to analyze
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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this formulation and to show that it is stable and optimally convergent. In spite of the fact that this analysis is different
from that of the more classical method (14), mainly because BI will not be globally coercive, we will obtain the same
error estimates using different arguments. The differences in the implementation of (14) and (19) are discussed in
Remark 2 below.

There is a simple modification of the bilinear form (20) which leads to another stabilized method with slightly
better stability properties. The idea is to control separately the components of a · ∇uh and ∇ph τ1-orthogonal to Vh.
The bilinear form associated to this method is

BII(Uh,V h) = B(Uh,V h) + (
Π⊥

τ1
(a · ∇uh),a · ∇vh

)
τ1

+ (
Π⊥

τ1
(∇ph),∇qh

)
τ1

+ (
Π⊥

τ2
(∇ · uh),∇ · vh

)
τ2

. (21)

Dropping the orthogonal projections Π⊥
τ1

and Π⊥
τ2

, the method reduces to a general version of that analyzed in [14],
which has a consistency error that makes it only applicable with P1 elements. Likewise, when the convective term is
absent the method coincides with that analyzed in [18] for the Stokes problem. In this situation, and when the meshes
are made of patches of 2 × 2 quadrilaterals (in 2D), it is shown in [2] that the projections can be computed locally on
each patch. Finally, let us mention the method proposed in [13] to stabilize convection which, like the stabilization of
the convective term in (21), does not involve the whole residual of the equation to be solved.

Remark 1. Both methods I and II could be slightly modified by projecting onto Wh,0 in (18) instead of projecting
onto Wh. This would simplify the analysis presented in the following section, since the stability condition (35) stated
there would not be needed, and all the results to be presented carry over to this case. However, even though the global
convergence is optimal, projecting onto Wh,0 leads to spurious numerical boundary layers, similar to those found for
the pressure in classical fractional step schemes for the transient problem (see for example [25]). Further discussion
about this point can be found in [18].

2.3. Matrix form of the discrete problem

In order to highlight the modifications of the stabilized methods I and II (associated to the bilinear forms BI

and BII , respectively) with respect to the standard Galerkin method, we consider here the matrix form of all these
formulations.

The matrix form of the Galerkin method is[
K + A G

D 0

][
U
P

]
=

[
F
0

]
,

where U and P are the arrays of nodal velocities and pressures, respectively, K is the matrix arising from the viscous
term, A from the advection term, G from the pressure gradient, D from the velocity divergence and F is the resulting
vector of nodal forces. Here and in the following we assume that the modifications on the first equation to account for
the boundary conditions have not yet been performed.

Let us consider now method I, for simplicity with τ1,K ≡ τ1 constant for all the elements and τ2,K = 0. The
practical way to compute the orthogonal τ1-projection Π⊥

τ1
is to compute Πτ1 and then use Π⊥

τ1
= I −Πτ1 . Therefore,

if we call ξh the τ1-projection of a ·∇uh +∇ph onto Vh (which for τ1 constant is equal to the L2-projection) method I
consists in fact of three discrete variational equations which allow to find [uh,ph, ξh] ∈ Vh,0 ×Qh,0 × Vh, namely,

ν(∇uh,∇vh) + (a · ∇uh,vh) + (∇ph,vh) + τ1(a · ∇uh + ∇ph − ξh,a · ∇vh) = 〈f ,vh〉,
(qh,∇ · uh) + τ1(∇qh,a · ∇uh + ∇ph − ξh) = 0,

(a · ∇uh + ∇ph,ηh) − (ξh,ηh) = 0,

which must hold for all [vh, qh,ηh] ∈ Vh,0 ×Qh,0 ×Vh. If we denote by a subscript a the matrices arising from terms
weighted by a ·∇vh (which suggests ‘derivative with respect to a’) and by subscript d the matrices arising from terms
weighted by −∇qh (suggesting the ‘divergence’), it is easy to see that the matrix version of the previous equations is[K + A + τ1Aa G + τ1Ga −τ1Ma

D − τ1Ad −τ1Gd τ1Md

][ U
P

]
=

[F
0

]
, (22)
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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where M is the Gramm matrix of the finite element interpolation, and thus Ma and Md the matrices obtained by
replacing the test function ηh by a · ∇vh and −∇qh, respectively.

The algebraic problem (22) can be solved using a block iteration algorithm segregating the calculation of Ξ from
that of U and P. However, if an iterative solver is used, it is also feasible to solve it in a direct monolithic way. The
array Ξ can be formally condensed to yield the system[

K + A + τ1(Aa − MaM−1A) G + τ1(Ga − MaM−1G)

D + τ1(MdM−1A − Ad) τ1(MdM−1G − Gd)

][
U
P

]
=

[
F
0

]
. (23)

Iterative solvers for this system only require the evaluation of matrix–vector products. The only point to be considered
when solving (23) is the evaluation of M−1Z = Y for a given array Z, which implies solving the system Z = MY.
This can be done very efficiently using Jacobi iterations and taking as preconditioner a diagonal approximation to M.
Usually, two or three iterations are sufficient, and their computational cost in the overall calculation is negligible. This
is the approach we have followed in the numerical examples.

Let us consider now method II, which consists of finding [uh,ph, ξh,1, ξh,2] ∈ Vh,0 ×Qh,0 × Vh × Vh such that

ν(∇uh,∇vh) + (a · ∇uh,vh) + (∇ph,vh) + τ1(a · ∇uh − ξh,1,a · ∇vh) = 〈f ,vh〉,
(qh,∇ · uh) + τ1(∇qh,∇ph − ξh,2) = 0,

(a · ∇uh,ηh,1) − (ξh,1,ηh,1) = 0,

(∇ph,ηh,2) − (ξh,2,ηh,2) = 0,

for all [vh, qh,ηh,1,ηh,2] ∈ Vh,0 ×Qh,0 × Vh × Vh. The matrix version of this discrete variational problem is⎡
⎢⎣

K + A + τ1Aa G −τ1Ma 0
D −τ1Gd 0 τ1Md

A 0 −M 0
0 G 0 −M

⎤
⎥⎦

⎡
⎢⎣

U
P
Ξ1
Ξ2

⎤
⎥⎦ =

⎡
⎢⎣

F
0
0
0

⎤
⎥⎦ , (24)

and the condensed counterpart is[
K + A + τ1(Aa − MaM−1A) G

D τ1(MdM−1G − Gd)

][
U
P

]
=

[
F
0

]
. (25)

The difference in the terms introduced by methods I and II is clearly observed by comparing (22) and (24) or (23)
and (25). It is seen that method II introduces less terms, but two projections onto Vh need to be performed.

Remark 2. After having described the algebraic problem obtained from the stabilization with orthogonal subscales,
it is important to mention the differences with the more usual method (14), which is similar to the classical SUPG or
GLS methods. First of all, in these cases the whole element residual needs to be computed within each element. In
particular, second-order derivatives of the shape functions have to be computed and stored for higher order elements, a
cumbersome and time consuming process. Likewise, the right-hand side of the algebraic system needs to be modified.
The advantage with respect to method (19) analyzed here is that no variables other than the velocity and the pressure
need to be dealt with. In particular, no projections need to be performed. The relative importance of these two facts
depends on the numerical example being solved.

3. Numerical analysis

3.1. Preliminaries

In this section we prove that methods I and II are stable and optimally convergent. We will consider also a slight
modification of these methods that is only intended to stabilize the pressure, and therefore with poor stability prop-
erties for convection dominated flows. However, this method allows us to prove convergence in a finer norm than for
methods I and II.
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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Let us state now some properties of the family of finite element partitions F := {Ph | h > 0} that we will use. First,
we assume that F is nondegenerate (that is, the quotient hK/�K remains bounded, with �K the diameter of the ball
inscribed in K), and therefore the inverse estimate

‖∇vh‖K � Cinv

hK

‖vh‖K, K ∈Ph, (26)

holds for any finite element function vh (see, e.g., [5]).
The precise conditions we will need for the constants ci in (11) and (12) can be written in terms of the constant

Cinv in the inverse estimate (26). Although other choices for these conditions are possible, we will assume that

c1 = α2C2
inv, c2 = αCinv, with α > 1, (27)

c3 = σ, c4 = σ

αCinv
, with 0 < σ � 1. (28)

We shall restrict our attention to interpolations of degree k for both the velocity and the pressure, although the
extension to different velocity–pressure interpolations offers no difficulty, provided the pressure interpolation is con-
tinuous.

We will need the following approximation property: for any function v in Hr(Ω), 0 � r � k + 1, there exists a
finite element interpolant v̂h such that

‖v − v̂h‖m,K � CIh
n−m
K ‖v‖Hn(SK), 0 � n � r, 0 � m � n,

for K ∈ Ph, where CI is a positive constant and SK is the patch of elements neighboring K and m, n, r are inte-
gers [5]. For n � 2 and d = 2,3, v̂h can be taken as the standard nodal interpolant and SK can be replaced by K .

For nondegenerate F the patches are quasi-uniform, that is, there exist positive constants C and C′ such that (cf.
[1, Theorem 1.9]):

ChK ′ � hK � C′hK ′ , ∀K ′ ∈ SK, ∀K ∈Ph, (29)

which allows us to write the interpolation estimate as

‖v − v̂h‖m,K � CI

∑
K ′⊂SK

hn−m
K ′ ‖v‖n,K ′ , 0 � n � r, 0 � m � n, (30)

for K ∈Ph. Likewise, (29) is the basic ingredient to prove the following property of the family F :

Lemma 1. Let xK be the coordinates of the barycenter of an element domain K . If the family of finite element
partitions F is nondegenerate, then there exist functions χ1, χ2, with χ1(·, h),χ2(·, h) ∈ C0(Ω) for all h > 0, such
that

hK,min := χ1(xK,h) � hK � χ2(xK,h), ∀K ∈ Ph, h > 0,

sup
h>0

sup
x∈Ω

χ2(x, h)

χ1(x, h)
� χ0 < ∞.

Proof. Let a be a vertex node of the finite element partition and let ha be the average of the element diameters of
the elements to which a belongs. If H(x, h) is the piecewise continuous interpolation of degree one from the nodal
values ha , (29) implies that

A1H(xK,h) � hK � A2H(xK,h)

for constants A1, A2 > 0. The result follows taking χi(x, h) = AiH(x, h), i = 1,2 (and χ0 = A2/A1). �
Observe that hK,min appears in the definition of the stabilization parameters (11) and (12) (other choices are also

possible by modifying conditions (27) and (28)). From the continuity of a and (29), these parameters will satisfy

Cτi,K ′ � τi,K � C′τi,K ′, ∀K ′ ∈ SK, ∀K ∈Ph, i = 1,2, (31)
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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for constants C, C′ > 0, not necessarily the same as before. In what follows, C denotes a positive constant, indepen-
dent of the mesh size h and of the coefficients of the differential equation. The value of C may vary in its different
appearances.

Lemma 1 allows us to make the following construction. For each h > 0, let Nh be the set of nodal points of the
partition Ph. Scalar continuous finite element functions are uniquely determined by their values at the nodes in Nh.
Likewise, we denote by NK the set of nodes in an element domain K ∈ Ph. If a is a node, with coordinates xa , we
may now construct a set of algorithmic parameters {τ̄i,a | a ∈ Nh, i = 1,2}, where τi,a is simply defined by replacing
in (11)–(12) the element parameter hK,min by χ1(xa, h) and |a|∞,K by the Euclidean norm of a evaluated at xa .

To prove stability (cf. Theorems 1, 3, 5), we will need in particular to take the velocity test function close to
τ1,KΠτ1,0(ξh) within each element domain K (for certain ξh). Unfortunately, these functions are discontinuous, and
therefore we will need to approximate them by continuous functions, belonging to the finite element space. We con-
struct these approximations as follows. Let Na(x), x ∈ Ω , be the standard shape (basis) function associated to node
a ∈ Nh. A finite element function vh can be thus written as

vh(x)|K =
∑

a∈NK

Na(x)|Kva, K ∈ Ph,

where {va | a ∈ NK } is the set of element nodal parameters of vh. From {τ̄i,a | a ∈ Nh, i = 1,2} and {τi,K | K ∈
Ph, i = 1,2} we define

τ ◦ vh by τ ◦ vh(x)|K := τKvh(x)|K, (32)

τ � vh by τ � vh(x)|K :=
∑

a∈NK

Na(x)|Kτ̄av
a. (33)

Here and in the following result τ may be either τ1 or τ2:

Lemma 2. Assume that the family F of finite element partitions is nondegenerate. Then, for any finite element function
vh, the functions τ ◦ vh and τ � vh defined in (32) and (33), respectively, satisfy

‖τ ◦ vh − τ � vh‖K � τKψ(h)‖vh‖K, (34)

where ψ(h) → 0 as h → 0.

Proof. For any piecewise continuous finite element function wh we have that

C1h
d/2
K ‖wh‖L∞(K) � ‖wh‖L2(K) � C2h

d/2
K ‖wh‖L∞(K),

where C1 and C2 are positive constants. The first inequality is an inverse estimate valid for nondegenerate F (see [5])
and the second is obvious. Using this we obtain

C−1
2 h

−d/2
K ‖τ ◦ vh − τ � vh‖L2(K) � ‖τ ◦ vh − τ � vh‖L∞(K)

=
∥∥∥∥ ∑

a∈NK

(τK − τ̄a)Na(x)va

∥∥∥∥
L∞(K)

� τK max
a∈NK

∣∣∣∣ τ̄a

τK

− 1

∣∣∣∣
∥∥∥∥ ∑

a∈NK

∣∣Na(x)va
∣∣∥∥∥∥

L∞(K)

� CτK max
a∈NK

∣∣∣∣ τ̄a

τK

− 1

∣∣∣∣‖vh‖L∞(K)

� CτK max
a∈NK

∣∣∣∣ τ̄a

τK

− 1

∣∣∣∣C−1
1 h

−d/2
K ‖vh‖L2(K),

for a positive constant C. From the continuity assumed for the advection velocity a we have that τ̄a → τK as h → 0,
and the result follows. �

This result and definitions (32) and (33) are also valid when vh is a vector function. We have thus constructed a
continuous function τ � vh that approximates τ ◦ vh when the mesh diameter goes to zero.
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
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The final assumption is that we will assume that there is a constant β0 > 0 such that

‖zh‖τ1 � 1

β0

∥∥Πτ1,0(zh) + Π⊥
τ1

(zh)
∥∥

τ1
, zh ≡ a · ∇vh + ∇qh, (35)

for all [vh, qh] ∈ Vh,0 × Qh,0 and for h > 0. This condition means that a bound for the norms of Πτ1,0(zh) and
Π⊥

τ1
(zh) is enough to bound the whole norm of vector zh, which in turn implies that the component of zh in Vh which

is τ1-orthogonal to Vh,0 is not independent of the other two components, Πτ1,0(zh) and Π⊥
τ1

(zh).
We will not pursue a study of this condition in this paper. The assumption that it holds will be one of the hypothesis

of the analysis presented below. Let us only mention that exactly the same analysis as in [18] can be applied here, and
can be used to prove that it holds for example in the case of Pk elements. Nevertheless, we insist on the fact that this
condition is not essential, in the sense explained in Remark 1.

For zh = ∇ ·vh (now a scalar), and replacing τ1,K by τ2,K , it is trivially verified that (35) always holds with β0 = 1,
since vh = 0 on ∂Ω implies that ∇ · vh has zero mean, and therefore Πτ2,0(∇ · vh) = Πτ2(∇ · vh). However, to keep
the notation compact, we will use also (35) in this case.

The stability condition (35) completes the set of assumptions that will be used in the following. For future reference,
let us collect them:

H1. The advection velocity a is in C0(Ω̄) and weakly divergence free.
H2. There is a constant CD such that the k + 1 derivatives of a within element K are bounded above by CD|a|∞,K ,

K ∈Ph.
H3. The family F of finite element partitions is nondegenerate.
H4. The stability condition (35) holds.
H5. The algorithmic parameters τ1,K and τ2,K are given by (11) and (12), respectively, with the constants ci given by

(27)–(28).
H6. The data are such that the exact velocity components are in Hk+1(Ω) and the exact pressure in Hk(Ω), k � 1.

Assumption H6 will only be needed to prove that convergence is optimal when finite element interpolations of
degree k are used. We will call

ε(h) :=
∑
K

(
τ

−1/2
1,K hk+1

K ‖u‖k+1,K + τ
−1/2
2,K hk

K‖p‖k,K

)
. (36)

The ultimate purpose of the analysis below is to show that this is the error function (in norms to be defined) of the
different methods considered.

3.2. Method I

The problem in this case is stated in (19). We prove now that this method is stable and convergent in the mesh
dependent norm

|||V h|||I ≡ ∣∣∣∣∣∣[vh, qh]
∣∣∣∣∣∣

I
:= ν1/2‖∇vh‖ + ‖a · ∇vh + ∇qh‖τ1 + ‖∇ · vh‖τ2 . (37)

Theorem 1 (Stability of method I). Under assumptions H1, H3, H4 and H5, there is a constant βI > 0 such that, for h

sufficiently small and α in (27)–(28) large enough,

inf
Uh∈Wh,0

sup
V h∈Wh,0

BI (Uh,V h)

|||Uh|||I |||V h|||I � βI . (38)

Proof. Fix Uh ≡ [uh,ph] ∈Wh,0, arbitrary, and let us introduce the abbreviations ξh ≡ a · ∇uh + ∇ph, δh ≡ ∇ · uh.
From the definition of BI it follows that

BI

([uh,ph], [uh,ph]
) = ν‖∇uh‖2 + ∥∥Π⊥

τ1
(ξh)

∥∥2
τ1

+ ∥∥Π⊥
τ2

(δh)
∥∥2

τ2
. (39)

Clearly, BI is not coercive in the norm (37). All we can expect is stability in the form given by (38). If now we take
[vh, qh] = [τ1 � Πτ ,0(ξh), τ2 � Πτ ,0(δh)] it is found that
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011

1 2



ARTICLE IN PRESS APNUM:1978
JID:APNUM AID:1978 /FLA [m3SC+; v 1.69; Prn:17/01/2007; 10:14] P.10 (1-20)

10 R. Codina / Applied Numerical Mathematics ••• (••••) •••–•••
BI

([uh,ph],
[
τ1 � Πτ1,0(ξh), τ2 � Πτ2,0(δh)

])
= ν

(∇uh,∇
[
τ1 � Πτ1,0(ξh)

]) + (
ξh, τ1 ◦ Πτ1,0(ξh)

) + (
ξh, τ1 � Πτ1,0(ξh) − τ1 ◦ Πτ1,0(ξh)

)
+(

τ2 ◦ Πτ2,0(δh), δh

) + (
τ2 � Πτ2,0(δh) − τ2 ◦ Πτ2,0(δh), δh

)
+(

a · ∇[
τ1 � Πτ1,0(ξh)

]
,Π⊥

τ1
(ξh)

)
τ1

+ (∇[
τ2 � Πτ2,0(δh)

]
,Π⊥

τ1
(ξh)

)
τ1

+(∇ · [τ1 � Πτ1,0(ξh)
]
,Π⊥

τ2
(δh)

)
τ2

. (40)

Note that(
ξh, τ1 ◦ Πτ1,0(ξh)

) = (
ξh,Πτ1,0(ξh)

)
τ1

= ∥∥Πτ1,0(ξh)
∥∥2

τ1
,

and, similarly, (τ2 ◦ Πτ2,0(δh), δh) = ‖Πτ2,0(δh)‖2
τ2

. This, Schwarz’s inequality and the inverse estimate (26) in (40)
imply

BI

([uh,ph],
[
τ1 � Πτ1,0(ξh), τ2 � Πτ2,0(δh)

])
� −

∑
K

Cinv

hK

ν‖∇uh‖K

∥∥τ1 � Πτ1,0(ξh)
∥∥

K

+∥∥Πτ1,0(ξh)
∥∥2

τ1
−

∑
K

‖ξh‖K

∥∥τ1 � Πτ1,0(ξh) − τ1 ◦ Πτ1,0(ξh)
∥∥

K

+∥∥Πτ2,0(δh)
∥∥2

τ2
−

∑
K

‖δh‖K

∥∥τ2 � Πτ2,0(δh) − τ2 ◦ Πτ2,0(δh)
∥∥

K

−
∑
K

Cinv

hK

|a|∞,Kτ1,K

∥∥τ1 � Πτ1,0(ξh)
∥∥

K

∥∥Π⊥
τ1

(ξh)
∥∥

K
−

∑
K

Cinv

hK

τ1,K

∥∥τ2 � Πτ2,0(δh)
∥∥

K

∥∥Π⊥
τ1

(ξh)
∥∥

K

−
∑
K

Cinv

hK

τ2,K

∥∥τ1 � Πτ1,0(ξh)
∥∥

K

∥∥Π⊥
τ2

(δh)
∥∥

K
. (41)

The bounds (27)–(28) assumed for the constants ci in the definition of τ1,K and τ2,K imply

Cinv

hK

ν1/2 � 1

α
τ

−1/2
1,K ,

Cinv

hK

|a|∞,K � 1

α
τ−1

1,K,
Cinv

hK

τ
1/2
1,Kτ

1/2
2,K � 1

α
.

Using these inequalities, Lemma 2 (which implies that ‖τ �vh‖ � τK(1+ψ(h))‖vh‖K ), and the arithmetic–geometric
inequality, it can be readily verified that

BI

([uh,ph],
[
τ1 � Πτ1,0(ξh), τ2 � Πτ2,0(δh)

])
� − 1

2α

[
1 + ψ(h)

]
ν‖∇uh‖2 +

[
1 − 3

2α

[
1 + ψ(h)

] − 1

2
ψ(h)

]∥∥Πτ1,0(ξh)
∥∥2

τ1

− 1

α

[
1 + ψ(h)

]∥∥Π⊥
τ1

(ξh)
∥∥2

τ1
− 1

2
ψ(h)‖ξh‖2

τ1
+

[
1 − 1

2α

[
1 + ψ(h)

] − 1

2
ψ(h)

]∥∥Πτ2,0(δh)
∥∥2

τ2

− 1

2α

[
1 + ψ(h)

]∥∥Π⊥
τ2

(δh)
∥∥2

τ1
− 1

2
ψ(h)‖δh‖2

τ2
. (42)

Let us call v0
h ≡ uh + τ1 � Πτ1,0(ξh), q0

h ≡ qh + τ2 � Πτ2,0(δh). Adding up (39) and (42), taking h small enough
and α large enough (α > 3/2) so that

1 − 3

2α

[
1 + ψ(h)

] − 1

2
ψ(h) � C1 > 0,

and using the stability condition (35), we obtain

BI

([uh,ph],
[
v0

h, q
0
h

])
� C1ν‖∇uh‖2 +

[
β2

0C1 − 1

2
ψ(h)

][‖ξh‖2
τ1

+ ‖δh‖2
τ2

]
,

and therefore, if h is small enough,

BI

([uh,ph],
[
v0, q0]) � C

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣2

. (43)
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On the other hand, using repeatedly the inverse estimate (26), the definition of τ1 and τ2, Lemma 2 and the fact that
the norm of projection operators is � 1, it follows that∣∣∣∣∣∣[τ1 � Πτ1,0(ξh), τ2 � Πτ2,0(δh)

]∣∣∣∣∣∣2
I

�
∑
K

C
C2

inv

h2
K

[
1 + ψ(h)

]2[(
ντ 2

1,K + 2|a|2∞,Kτ 3
1,K + τ 2

1,Kτ2,K

)∥∥Πτ1,0(ξh)
∥∥2

K
+ 2τ1,Kτ 2

2,K

∥∥Πτ2,0(δh)
∥∥2

K

]
� C

(‖ξh‖2
τ1

+ ‖δh‖2
τ2

)
� C

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣2

I
,

and therefore,∣∣∣∣∣∣[v0
h, q

0
h

]∣∣∣∣∣∣
I
�

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣

I
+ ∣∣∣∣∣∣[τ1 � Πτ1,0(ξh), τ2 � Πτ2,0(δh)

]∣∣∣∣∣∣
I

� C
∣∣∣∣∣∣[uh,ph]

∣∣∣∣∣∣
I
.

The theorem follows using this in (43). �
Let U be the solution of the continuous problem. Since it verifies B(U ,V h) = 〈f ,vh〉 for all V h ∈ Wh,0, it follows

that

BI (U ,V h) = 〈f ,vh〉 + (
Π⊥

τ1
(a · ∇u + ∇p),a · ∇vh + ∇qh

)
τ1

+ (
Π⊥

τ2
(∇ · u),∇ · vh

)
τ2

.

Since BI (Uh,V h) = 〈f ,vh〉 it follows that

BI (U − Uh,V h) = (
Π⊥

τ1
(a · ∇u + ∇p),a · ∇vh + ∇qh

)
τ1

+ (
Π⊥

τ2
(∇ · u),∇ · vh

)
τ2

, (44)

from where we see that the method is not consistent in the classical variational sense, since the RHS of (44) is not
zero. However, the consistency error can be bounded as follows:

Lemma 3 (Bound for the consistency error of method I). Assume that hypothesis H2, H5 and H6 hold. Then, there is
a constant C (in this case independent of U ) such that

BI (U − Uh,V h) � Cε(h)|||V h|||I (45)

for all V h ∈Wh,0.

Proof. From (44) we have that

BI (U − Uh,V h)

� C‖a · ∇vh + ∇qh‖τ1

∥∥(a · ∇u + ∇p) − Πτ1(a · ∇u + ∇p)
∥∥

τ1
+ C‖∇ · vh‖τ2

∥∥(∇ · u) − Πτ2(∇ · u)
∥∥

τ2

� C
∣∣∣∣∣∣[vh, qh]

∣∣∣∣∣∣
I

(∥∥a · ∇u − Πτ1(a · ∇u)
∥∥

τ1
+ ∥∥∇p − Πτ1(∇p)

∥∥
τ1

+ ∥∥(∇ · u) − Πτ2(∇ · u)
∥∥

τ2

)
,

for all V h ∈Wh,0. Let v ∈ Hr(Ω), 0 � r � k + 1, and let v̂h be a finite element interpolant satisfying (30) for m = 0.
Due to the best approximation property of the τ -projection Πτ (τ = τ1 or τ2) with respect to the norm ‖ · ‖τ , we have
that ∥∥v − Πτ(v)

∥∥
τ

� ‖v − v̂h‖τ � C
∑
K

τ
1/2
K hr

K‖v‖Hr(K), (46)

where we have used (31). The result follows now from this, the boundedness of the derivatives of a and the bounds
(27)–(28) assumed for the constants ci , which imply that τ1,K behaves as h2

Kτ−1
2,K . �

Remark 3. There is a possible way to formulate the present method in a manner that it can be viewed as consistent.
Indeed, if we introduce

B�
I

([uh,ph, ξh, δh], [vh, qh,ηh, γh]
)

:= B
([uh,ph], [vh, qh]

) + (a · ∇uh + ∇ph − ξh,a · ∇vh + ∇qh − ηh)τ + (∇ · uh − δh,∇ · vh − γh)τ ,
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the discrete problem is equivalent to find [uh,ph, ξh, δh] ∈ Vh,0 × Qh,0 × Vh × Qh such that B�
I ([uh,ph, ξh, δh],

[vh, qh,ηh, γh]) = 〈f ,vh〉 for all [vh, qh,ηh, γh] ∈ Vh,0 × Qh,0 × Vh × Qh. This problem is consistent in the sense
that smooth enough solutions [u,p] of the continuous problem satisfy the discrete variational equation, B�

I ([u,p,a ·
∇u + ∇p,∇ · u], [vh, qh,ηh, γh]) = 〈f ,vh〉.

Remark 4. Apart from the fact that the use of the weighted L2 inner product defined by (13) and its associated
projection arises naturally from the condition that the subscales be orthogonal to the finite element space, it turns out
to be essential to establish the best approximation property used in (46).

The final result we need prior to proving convergence is:

Lemma 4 (Estimates of the interpolation error of method I). Let U = [u,p] be the solution of the continuous problem
and Ûh = [ûh, p̂h] a finite element interpolant of U satisfying (30), and assume that H1, H5 and H6 hold. Then

BI (U − Ûh,V h) � Cε(h)|||V h|||I , ∀V h ∈Wh,0, (47)

|||U − Ûh|||I � Cε(h). (48)

Proof. Let êu := u − ûh and êp := p − p̂h be the finite element interpolation errors for the velocity and the pressure,
respectively. From the definition (20) of BI we have that

BI (U − Ûh,V h) = ν(∇ êu,∇vh) + (a · ∇ êu,vh) − (êp,∇ · vh) + (qh,∇ · êu)

+ (
Π⊥

τ1
(a · ∇ êu + ∇ êp),a · ∇vh + ∇qh

)
τ1

+ (
Π⊥

τ2
(∇ · êu),∇ · vh

)
τ2

.

Let us check that each of these terms satisfies estimate (47). For the first we have

ν(∇ êu,∇vh) � Cν1/2‖∇vh‖
∑
K

ν1/2

hK

hk+1
K ‖u‖k+1,K

� C|||V h|||I
∑
K

τ
−1/2
1,K hk+1

K ‖u‖k+1,K .

Adding up the second and the fourth terms and integrating by parts we get

(a · ∇ êu,vh) + (qh,∇ · êu) = −(êu,a · ∇vh + ∇qh)

� C
∑
K

τ
1/2
1,K‖a · ∇vh + ∇qh‖Kτ

−1/2
1,K ‖êu‖K

� C|||V h|||I
∑
K

τ
−1/2
1,K hk+1

K ‖u‖k+1,K .

Note that H6 implies that u is continuous (d = 2,3) and ûh can be taken as the standard nodal interpolant. Thus, êu

vanishes on ∂Ω . The third term can be bounded as

−(êp,∇ · vh) � C
∑
K

τ
1/2
2,K‖∇ · vh‖Kτ

−1/2
2,K ‖êp‖K

� C|||V h|||I
∑
K

τ
−1/2
2,K hk

K‖p‖k,K.

Using the fact that the norm of projection operators is � 1 we obtain the following bound for the fifth term

(
Π⊥

τ1
(a · ∇ êu + ∇ êp),a · ∇vh + ∇qh

)
τ1

� C|||V h|||I
∑
K

τ
1/2
1,K

( |a|∞,K

hK

hk+1
K ‖u‖k+1,K + 1

hK

hk
K‖p‖k,K

)

� C|||V h|||I
∑
K

(
τ

−1/2
1,K hk+1

K ‖u‖k+1,K + τ
−1/2
2,K hk

K‖p‖k,K

)
.

Likewise
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
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(
Π⊥

τ2
(∇ · êu),∇ · vh

)
τ2

� C‖∇ · vh‖τ2

∑
K

τ
1/2
2,K

hK

hk+1
K ‖u‖k+1,K

� C|||V h|||I
∑
K

τ
−1/2
1,K hk+1

K ‖u‖k+1,K,

which completes the proof of (47). Estimate (48) can be proved in a similar manner. �
Now we are ready to prove the convergence result:

Theorem 2 (Convergence of method I). Under assumptions H1–H6, for h small enough there is a constant C (inde-
pendent of U ) such that

|||U − Uh|||I � Cε(h).

Proof. The proof is standard: from Theorem 1 and using Lemmas 3 and 4 (estimate (47)), there exists V h ∈ Wh,0
such that

βI |||Ûh − Uh|||I |||V h|||I � BI (Ûh − U ,V h) + BI (U − Uh,V h)

� Cε(h)|||V h|||I ,
and therefore |||Ûh − Uh|||I � Cε(h). The result follows now from Lemma 4 (estimate (48)) and the triangle inequal-
ity. �
3.3. Method II

Now the problem is: find Uh ∈Wh,0 such that BII(Uh,V h) = 〈f ,vh〉 for all V h ∈ Wh,0, with BII defined in (21).
The norm in which we will prove stability and convergence is now

|||V h|||II ≡ ∣∣∣∣∣∣[vh, qh]
∣∣∣∣∣∣

II := ∣∣∣∣∣∣[vh, qh]
∣∣∣∣∣∣

I
+ ∥∥Π⊥

τ1
(a · ∇vh)

∥∥
τ1

+ ∥∥Π⊥
τ1

(∇qh)
∥∥τ1. (49)

It is observed that this norm is slightly finer than ||| · |||I . Now we will have control over the orthogonal component of
both the convective derivative of the velocity and the pressure gradient. However, we still do not have control over all
the components of these two vectors separately (see the following subsection).

Theorem 3 (Stability of method II). Under the same assumptions as in Theorem 1, there is a constant βII > 0 such
that

inf
Uh∈Wh,0

sup
V h∈Wh,0

BII(Uh,V h)

|||Uh|||II |||V h|||II � βII .

Proof. Let us proceed exactly as in the proof of Theorem 1. Using the inequality a2 +b2 � (a2 +b2)/3+ (a +b)2/3,
it is found that instead of (39) we now have

BII
([uh,ph], [uh,ph]

)
� ν‖∇uh‖2 + 1

3

∥∥Π⊥
τ1

(ξh)
∥∥2

τ1
+∥∥Π⊥

τ2
(δh)

∥∥2
τ2

+ 1

3

∥∥Π⊥
τ1

(a · ∇uh)
∥∥2

τ1
+ 1

3

∥∥Π⊥
τ1

(∇ph)
∥∥2

τ1
.

Once again, the bilinear form BII is not coercive in the norm (49). If now we take [vh, qh] = [τ1 � Πτ1,0(ξh),

τ2 � Πτ2,0(δh)], an expression similar to (40) is found. Only the sixth and seventh terms of the RHS of this inequality
are different. They and their bounds in (41) have to be replaced by(

a · ∇[
τ1 � Πτ1,0(ξh)

]
,Π⊥

τ1
(a · ∇uh)

)
τ1

+ (∇[
τ2 � Πτ2,0(δh)

]
,Π⊥

τ1
(∇ph)

)
τ1

� −
∑
K

Cinv

hK

| a |∞,K τ1,K

∥∥τ1 � Πτ1,0(ξh)
∥∥

K

∥∥Π⊥
τ1

(a · ∇uh)
∥∥

K

−
∑ Cinv

hK

τ1,K

∥∥τ2 � Πτ2,0(δh)
∥∥

K

∥∥Π⊥
τ1

(∇ph)
∥∥

K
.
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Calling again v0
h ≡ uh + τ1 � Πτ1,0(ξh), q0

h ≡ qh + τ2 � Πτ2,0(δh), it is found now that

BI

([uh,ph],
[
v0

h, q
0
h

])
�

[
1 − 1

2α

[
1 + ψ(h)

]]
ν‖∇uh‖2 +

[
1 − 3

2α

[
1 + ψ(h)

] − 1

2
ψ(h)

]∥∥Πτ1,0(ξh)
∥∥2

τ1

+1

3

∥∥Π⊥
τ1

(ξh)
∥∥2

τ1
− 1

2
ψ(h)‖ξh‖2

τ1
+

[
1

3
− 1

2α

[
1 + ψ(h)

]]∥∥Π⊥
τ1

(a · ∇uh)
∥∥2

τ1

+
[

1

3
− 1

2α

[
1 + ψ(h)

]]∥∥Π⊥
τ1

(∇ph)
∥∥2

τ1
+

[
1 − 1

2α

[
1 + ψ(h)

] − 1

2
ψ(h)

]∥∥Πτ2,0(δh)
∥∥2

τ2

+
[

1 − 1

2α

[
1 + ψ(h)

]]∥∥Π⊥
τ2

(δh)
∥∥2

τ1
− 1

2
ψ(h)‖δh‖2

τ2
.

From this and (35) it follows that for h small enough there is an α > 1 for which

BII
([uh,ph],

[
v0

h, q
0
h

])
� C

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣2

II .

Similar bounds to those employed in Theorem 1 yield∣∣∣∣∣∣[τ1 � Πτ1,0(ξh), τ2 � Πτ2,0(δh)
]∣∣∣∣∣∣2

II � C
(‖ξh‖2

τ1
+ ‖δh‖2

τ2

)
� C

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣2

II,

and the proof concludes as in Theorem 1. �
The consistency error of method II is

BII(U − Uh,V h) = (
Π⊥

τ1
(a · ∇u),a · ∇vh

)
τ1

+ (
Π⊥

τ1
(∇p),∇qh

)
τ1

+ (
Π⊥

τ2
(∇ · u),∇ · vh

)
τ2

.

The bound (45) of Lemma 3 also holds for this case, as well as the estimates for the interpolation error given in (47)
and (48). The proof of all these facts follows the same lines as for method I, only with minor modifications. We give
directly the convergence result, whose proof is also straightforward:

Theorem 4 (Convergence of method II). Under the same assumptions as in Theorem 2, there is a constant C (inde-
pendent of U ) such that

|||U − Uh|||II � Cε(h),

where ε(h) is the same error function as for method I, given by (36).

3.4. Viscous dominated case

Both in methods I and II the stability result obtained shows that a · ∇uh + ∇ph is under control. However, we do
not have explicit bounds over these two terms (and their errors) separately. Nevertheless, there is the possibility of
bounding the pressure gradient making use of the control over the viscous term, since

τ1,K‖∇ph‖2
K � τ1,K‖a · ∇uh + ∇ph‖2

K + τ1,K‖a · ∇uh‖2
K

� τ1,K‖a · ∇uh + ∇ph‖2
K + C

( |a|∞,KhK

ν

)
ν‖∇uh‖2

K. (50)

Let us introduce the dimensionless quantities

Re := |a|∞L

ν
, ReK := |a|∞,KhK

ν
, Reh := max{ReK | K ∈Ph},

where L is a characteristic length of Ω . These numbers may be called the global, cell and mesh Reynolds numbers,
respectively.

From (50) it is seen that we have control over τ1,K‖∇ph‖2
K , but with a constant depending on the inverse of ReK .

Therefore, this estimate is numerically meaningful only for small values of ReK . However, if we allow our stability
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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and error estimates to depend on this parameter, it is not necessary to use neither method I nor method II, but rather a
simplified form of these which does not include the stabilizing term for the velocity streamline derivative. This method
consists of finding Uh ∈Wh,0 such that Bν(Uh,V h) = 〈f ,vh〉 for all V h ∈Wh,0, with Bν defined as

Bν(Uh,V h) = B(Uh,V h) + (
Π⊥

τ (∇ph),∇qh

)
τ
, (51)

and with B given in (4). Clearly, the only purpose of this method is to stabilize the pressure. The behavior in convec-
tive dominated situations will be similar to that of the standard Galerkin method using div-stable velocity–pressure
interpolations.

Except for the presence of the convective term in B , this formulation is the same as that introduced in [18]. We will
present here a different stability proof which furthermore will show the dependence of the stability and error estimates
on Reh and Re. For that, let us introduce the norm

|||V h|||ν ≡ ∣∣∣∣∣∣[vh, qh]
∣∣∣∣∣∣

ν
:= ν1/2‖∇vh‖ + 1

1 + Reh

‖∇qh‖τ + 1

1 + Re

1

ν1/2
‖qh‖, (52)

in which the analysis of the method will be performed. Now the parameters τK , which correspond to τ1,K of the
previous methods, can be taken as

τK = h2
K,min

α2C2
invν

, (53)

and τ2,K simply set to zero.

Theorem 5 (Stability of the viscous dominated case). Assume that H3 and H4 hold, and the parameters τK are given
by (53). Then, for h sufficiently small there is a constant βν > 0 such that

inf
Uh∈Wh,0

sup
V h∈Wh,0

Bν(Uh,V h)

|||Uh|||ν |||V h||| ν

� βν. (54)

Proof. The proof of this result is similar to the proofs of Theorems 1 and 3, except for the presence of the L2 norm
of qh in the definition (52). Now we have that

Bν

([uh,ph], [uh,ph]
) = ν‖∇uh‖2 + ∥∥Π⊥

τ (∇ph)
∥∥2

τ
, (55)

and, using the same strategy as in Theorem 1,

Bν

([uh,ph],
[
τ � Πτ,0(∇ph),0

])
= ν

(∇uh,∇
[
τ � Πτ,0(∇ph)

]) + (
a · ∇uh, τ � Πτ,0(∇ph)

)
+(∇ph, τ ◦ Πτ,0(∇ph)

) + (∇ph, τ � Πτ,0(∇ph) − τ ◦ Πτ,0(∇ph)
)

� −
∑
K

ν
Cinv

hK

‖∇uh‖K

∥∥τ � Πτ,0(∇ph)
∥∥

K
−

∑
K

|a|∞,K‖∇uh‖K

∥∥τ � Πτ,0(∇ph)
∥∥

K

+∥∥Πτ,0(∇ph)
∥∥2

τ
−

∑
K

‖∇ph‖K

∥∥τ � Πτ,0(∇ph) − τ ◦ Πτ,0(∇ph)
∥∥

K
.

Noting that τK |a|2∞,K � CνRe2
h and using Lemma 2, it is not difficult to see that this last inequality can be written as

Bν

([uh,ph],
[
τ � Πτ,0(∇ph),0

])
� C1

∥∥Πτ,0(∇ph)
∥∥2

τ
− C2ψ(h)‖∇ph‖2

τ − C3
(
1 + Re2

h

)
ν‖∇uh‖2, (56)

where the constants Ci , i = 1,2,3, do not depend neither on Reh nor on Re. To introduce the L2 norm of ph, let us
invoke the inf–sup condition for the continuous problem, namely, the continuous counterpart of condition (7). Since
ph belongs to L2(Ω), there exists a function v ∈ V0 such that

β‖ph‖‖∇v‖ �
∣∣(ph,∇ · v)

∣∣.
We have used the L2 norm of ∇v in the LHS since due to the Poincaré–Friedrics inequality it is equivalent to the
H 1 norm of v. We may thus normalize v so that ‖∇v‖ = ‖ph‖/ν. Let now v̂h be a finite element interpolant of v
satisfying (30). Using the fact that |a − b| � |a| − |b|, we have:
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
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Bν

([uh,ph], [v̂h,0]) = ∣∣ν(∇uh,∇v̂h) + (a · ∇uh, v̂h) − (ph,∇ · v̂h)
∣∣

�
∣∣(ph,∇ · v)

∣∣ − ∣∣(ph,∇ · (v − v̂h)
)∣∣ − ∣∣ν(∇uh,∇v̂h)

∣∣ − ∣∣(a · ∇uh, v̂h)
∣∣. (57)

If CL denotes the constant of the Poincaré–Friedrics inequality and CI the constant in the interpolation estimates (30),
we have that

‖v − v̂h‖K � CI

∑
K ′⊂SK

hK ′ ‖∇v‖K ′,

‖∇v̂h‖ � ‖∇v − ∇v̂h‖ + ‖∇v‖ � C‖∇v‖ = C
1

ν
‖ph‖,

‖v̂h‖ � CL‖∇v̂h‖ � CLC
1

ν
‖ph‖.

Integrating by parts the second term in (57), using these bounds and the quasi-uniformity of the patches SK , we obtain

Bν

([uh,ph], [v̂h,0])
� β

1

ν
‖ph‖2 −

∑
K

‖∇ph‖K‖v − v̂h‖K − ν‖∇uh‖‖∇v̂h‖ − |a|∞‖∇uh‖v̂h‖

� β
1

ν
‖ph‖2 − C

∑
K

hK‖∇ph‖K‖∇v‖K − C‖∇uh‖‖ph‖ − |a|∞CLC
1

ν
‖∇uh‖‖ph‖. (58)

On the other hand, from Young’s inequality we have that

∑
K

hK‖∇ph‖K‖∇v‖K �
∑
K

[
h2

K

2νε
‖∇ph‖2

K + νε

2
‖∇v‖2

K

]

� C

ε
‖∇ph‖2

τ + ε

2ν
‖ph‖2,

for all ε > 0. Using a similar inequality for the last two terms of (58), taking ε small enough and noting that since CL

is proportional to L, |a|∞CL/ν is proportional to Re, we obtain

Bν

([uh,ph], [v̂h,0]) � C4
1

ν
‖ph‖2 − C5‖∇ph‖2

τ − C6
(
1 + Re2)ν‖∇uh‖2, (59)

for constants C4, C5 and C6 independent of Reh and Re. If now we take

v0
h ≡ uh + A1

1 + Re2
h

τ � Πτ,0(∇ph) + A2

1 + Re2
v̂h,

q0
h ≡ ph, (60)

and add up (55), (56) and (59) multiplied by the corresponding coefficients, we obtain

Bν

([uh,ph],
[
v0

h, q
0
h

])
� [1 − C3A1 − C6A2]ν‖∇uh‖2 +

[
1 − C2ψ(h)

1 + Re2
h

A1

β0
− C5

1 + Re2

A2

β0

]∥∥Π⊥
τ (∇ph)

∥∥2
τ

+
[

C1A1

1 + Re2
h

− C2ψ(h)

1 + Re2
h

A1

β0
− C5

1 + Re2

A2

β0

]∥∥Πτ,0(∇ph)
∥∥2

τ
+

[
C4

ν

A2

1 + Re2

]
‖ph‖2

where we have made use of the stability condition (35) (now with zh = ∇ph). From this, it follows that there are
values of the constants A1 and A2 for which

Bν

([uh,ph],
[
v0

h, q
0
h

])
� C

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣2

ν
.

The theorem now follows after checking that∣∣∣∣∣∣[v0
h, q

0
h

]∣∣∣∣∣∣
ν
� C

∣∣∣∣∣∣[uh,ph]
∣∣∣∣∣∣

ν
,

which is easily verified from the definition (60) of [v0, q0] and noting that (1 + x2)−1 � 2(1 + x)−1 for all x > 0. �
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The same strategy as for methods I and II can now be followed to prove convergence. We omit the intermediate
steps and simply state the final result:

Theorem 6 (Convergence of the viscous dominated case). If assumptions H1–H5 hold and the parameters τK are
given by (53), for h small enough there is a constant C (independent of U ) such that

|||U − Uh|||ν � C(1 + Reh)
∑
K

(
τ

−1/2
K hk+1

K ‖u‖k+1,K + ν−1/2hk
K‖p‖k,K

)
.

This convergence estimate, as well as the stability estimate (54), deteriorates as ν decreases. Due to the dependence
on Reh and Re explicitly displayed by (52), it is seen that control over the L2 norm of the pressure is rapidly lost as
ν → 0, since in this case Re → ∞. However, a somewhat stronger control is obtained on ‖∇qh‖τ . We may consider
that the finite element mesh is sufficiently refined so as to maintain Reh (relatively) small. These results are similar to
those obtained in [30] for the nonlinear Navier–Stokes equations, even though the method analyzed in this reference
is also intended to stabilize convection.

Remark 5. In the absence of convection, the norm (52) in which stability and convergence has been proven is even
finer than for the Galerkin method using div-stable velocity–pressure interpolations. This in particular allows to extend
this pressure stabilized method to the nonlinear Navier–Stokes equations and obtain exactly the same results as for
the Galerkin method (see [11,24]). This extension is analyzed in [19] for the stationary problem and in [3] for the
transient case.

Remark 6. In [8] a method similar to the one presented here for the Stokes problem is put as example of a general
stabilization procedure. It is claimed there that optimal error estimates are obtained if τK is taken of order O(1) instead
of given by (53). However, this is possible only if pressures are at least of the same regularity as the velocities.

4. Numerical results

In this section we compare the numerical results obtained with the first stabilized formulation analyzed in this
paper, given by (19), and the algebraic subgrid scale method, given by (14), in two simple bidimensional examples.
We will use the acronym OSS for the former (standing for orthogonal subscale stabilization) and ASGS for the latter.
The stabilization parameters used are the same in both formulations, with the constants in (11)–(12) taken as c1 = 4,
c2 = 2, c3 = 1, c4 = 1/2, and hK,min as the length of the element side for bilinear elements and half of it for biquadratic
elements, the two interpolation types considered.

4.1. Flow in an L-shaped domain

The purpose of this example is to check the performance of the OSS method in a simple example but showing three
features of practical interest: the presence of internal layers, of boundary layers and high pressure variations.

The computational domain is taken as the interior of [0,3] × [0,3] \ [0,2] × [1,3]. The inlet is taken at x = 0,
where a discontinuous inflow velocity u = (1,0) for 0 � y � 1/2 and u = (0,0) for 1/2 < y � 1 is prescribed.
A zero pressure is prescribed at the outlet y = 3 and on the rest of the boundary u is fixed to (0,0). The Oseen
equations (1)–(2) are solved, taking a = (1,0) and ν = 10−4. For such a small viscosity, the inflow discontinuous
profile propagates inwards with little smearing and a velocity boundary layer is created at x = 3. It has to be noted
that since the boundary data are discontinuous the velocity components do not belong to H 1(Ω). Nevertheless, this
test is intended not to check convergence, but as an example of a problem with internal layers.

The domain is discretized using 2000 biquadratic elements of equal size, yielding 8241 nodal points. For these
elements, second-order derivatives cannot be neglected in the ASGS method (14).

Pressure contours and velocity vectors are shown in Fig. 1. These results have been obtained using the ASGS
method, and are very similar to those obtained using the OSS formulation. The differences are observed in Fig. 2.
Three main conclusions can be drawn from these. First, internal layers are approximated similarly, with the same
overshoots and undershoots in both methods. This could be expected, since both the ASGS and OSS introduce stream-
line diffusion, but no crosswind numerical dissipation. From the y-velocity section at y = 2 it is seen that the OSS
Please cite this article in press as: R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal
subscales, Applied Numerical Mathematics (2007), doi:10.1016/j.apnum.2006.11.011
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Fig. 1. Pressure contours (left) and velocity vectors (right) for the flow in an L-shaped domain.

Fig. 2. x-velocity at x = 1 (left), y-velocity at y = 2 (middle) and pressure at x = 3 (right) for the flow in an L-shaped domain.

yields more oscillations near the boundary layer, which are due to the fact that it introduces less numerical diffusion.
This is also the reason why the pressure variation is much better captured using OSS that ASGS, as it is seen from
the pressure section at the wall x = 3. A similar behavior was found in the numerical examples presented in [15] for
advection–diffusion and Stokes problems.

Referring to the cost of the calculation, it obviously depends on the particular implementation adopted. We have
used as iterative solver the GMRES method only with diagonal scaling, with a Krylov dimension of 25 and a residual
tolerance of 10−8. Giving the reference 100 time units (t.u.) to the solution of the linear system for the ASGS method,
the solution of the linear system for OSS has been 97.2 t.u., in spite of the fact that Jacobi iterations have been needed
to deal with M−1, as explained in Section 2.3. This reduction is due to the fact that 142 iterations have been required
for ASGS and only 129 for OSS. The construction of the system matrix has taken 53.7 t.u. for OSS and 58.5 t.u. for
ASGS.

4.2. Convergence test

The purpose of this test is to show that when the solution is smooth, the OSS method has an optimal convergence
rate, similar to that of the ASGS formulation.

We take Ω as the unit square and the force term so that the exact solution is p = 0 and u(x, y) = (f (x)g′(y),

−f ′(x)g(y)), with f (x) = x2(1 − x)2 and g(y) = y2(1 − y)2. This velocity field vanishes on ∂Ω . The viscosity has
been taken ν = 0.001 and the advection velocity a = (2,3). We have used meshes with different element sizes h,
which once normalized range form 0.1 to 0.025.

In Fig. 3 we have plotted the convergence of the velocities obtained with the OSS and the ASGS methods as the
mesh is refined in the discrete �2 norm and for both the Q1 (bilinear) and Q2 (biquadratic) interpolations (with the
same set of nodes in both cases). This error is defined as
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Fig. 3. Discrete �2 errors for Example 3 using Q1 and Q2 elements.

E =
[ npts∑

a=1

2∑
i=1

(
Ua

i − ui(xa)
)2

]1/2[ npts∑
a=1

2∑
i=1

(
ui(xa)

)2

]−1/2

,

where npts is the total number of nodal points, Ua
i is the ith component of the nodal velocity at node a and xa are the

coordinates of this node.
The optimal convergence rate that should be expected is 2 for Q1 elements and 3 for the Q2 case. From Fig. 3 it is

seen that this is approximately what has been found. In both cases the convergence rate is slightly higher for the OSS
method. These results are very similar to those obtained in [15] with the same test for the nonlinear Navier–Stokes
equations.

5. Concluding remarks

Three different stabilized finite element formulations for the Oseen problem have been presented in this paper.
Their main features are:

(1) The original method (referred to as method I in the paper) is directly based on the subgrid scale concept, assuming
that the subscales are orthogonal to the finite element space. After some simple approximations, a stabilized
formulation is obtained with two major benefits with respect to the original Galerkin method: it allows the use of
equal velocity–pressure interpolations and it provides optimal control on the streamline derivative of the velocity
field.

(2) The second method (method II) is somewhat simpler, since it introduces less coupling in the discrete velocity–
pressure equations (although one more projection needs to be performed). Furthermore, stability and error esti-
mates have been shown to hold in a norm finer than for method I, since now it is possible to control the orthogonal
components of the convective term and the pressure gradient.

(3) If only the pressure interpolation is to be stabilized, a simplification of methods I and II has been proposed and
analyzed. The norm in which stability and convergence have been proven depends explicitly on the mesh Reynolds
number and the global Reynolds number.

Finally, the numerical experiments presented show that the OSS formulation is very accurate and introduces less
numerical dissipation than the more usual ASGS method. This implies that it allows stronger localized oscillations
near boundaries, but also that it leads to a sharper resolution of strong variations of the unknowns. This fact has as a
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consequence a better treatment of the pressure near boundaries. See [15,18] for further discussion about this point and
some additional numerical results.
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